初一下册数学第一单元试卷及答案2017

合集下载

七年级数学下册第一章单元测试题及答案

七年级数学下册第一章单元测试题及答案

七年级数学下册第一章单元测试题及答案第一章:整式的乘除单元测试卷(一)一、精心选择(每小题3分,共21分)1.多项式xy^4+2x^3y^3-9xy+8的次数是A。

3 B。

4 C。

5 D。

62.下列计算正确的是A。

2x^2·6x^4=12x^8 B。

(y^4)m/(y^3)m=ymC。

(x+y)^2=x^2+y^2 D。

4a^2-a^2=33.计算(a+b)(-a+b)的结果是A。

b^2-a^2 B。

a^2-b^2 C。

-a^2-2ab+b^2 D。

-a^2+2ab+b^24.3a^2-5a+1与-2a^2-3a-4的和为A。

5a^2-2a-3 B。

a^2-8a-3 C。

-a^2-3a-5 D。

a^2-8a+55.下列结果正确的是A。

-2/(1/3)=-6 B。

9×5=45 C。

(-5)³=-125 D。

2-3=-1/86.若(am·bn)^2=a^8b^6,那么m^2-2n的值是A。

10 B。

52 C。

20 D。

327.要使式子9x^2+25y^2成为一个完全平方式,则需加上()A。

15xy B。

±15xy C。

30xy D。

±30xy二、耐心填一填(第1~4题1分,第5、6题2分,共28分)1.在代数式3xy^2,m,6a^2-a+3,12,4x^2yz-(1/2)xy^2,3ab中,单项式有5个,多项式有2个。

2.单项式-5x^2y^4z的系数是-5,次数是7.3.多项式3ab^4-ab+1/5有3项,它们分别是3ab^4、-ab、1/5.4.⑴x^2·x^5=x^7.⑵(y^3)^4=y^12.⑶(2a^2b)^3=8a^6b^3.⑷( -x^5y^2)^4=x^20y^8.⑸a^9÷a^3=a^6.⑹10×5-2×4=46.5.⑴(-2)/(1/3)=-6.⑵(x-5)(x+5)=x^2-25.⑶(2a-b)^2=4a^2-4ab+b^2.⑷(-12x^5y^3)/(-3xy^2)=4x^4y。

初一数学下册第一章单元测试题答卷及参考答案

初一数学下册第一章单元测试题答卷及参考答案

七年级下册第一章复习题一、 选择题1.下面说法中,正确的是() (A )x 的系数为0(B )x 的次数为0(C )3x 的系数为1(D )3x 的次数为1 2.下列合并同类项正确的个数是()①224a a a +=;②22321xy xy -=;③123+=;④33ab ab ab -=;⑤2312424m m -=. (A )①③(B )②③(C )③(D )③④3.下列计算正确的是()(A )xy y x 32=+(B )3422=-y y (C )55=-k k (D )-a 2-4a 2=-5a 2 4.在下列多项式乘法中,不能用平方差公式计算的是().(A )()()m n m n +-+(B )()()m n m n -+(C )()()m n m n ---(D )()()m n m n --+5.计算21()2a b -的结果是(). (A )22124a ab b -+(B )2214a ab b -+ (C )2212a ab b -+(D )2214a b - 6.如图,有长方形面积的四种表示法:①))((b a n m ++②)()(b a n b a m +++③)()(n m b n m a +++④nb na mb ma +++其中()(A )只有①正确(B )只有④正确(C )有①④正确(D )四个都正确7.计算32010·(31)2008的结果是() (A )2(B )31(C )9(D )918.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:)53()32(2222b ab a b ab a ++---+=25a 26b -,空格的地方被墨水弄脏了,请问空格中的一项是()(A )+2ab (B )+3ab (C )+4ab (D )-ab9.如下图,用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案,那么,第n 个图案中有白色纸片()张。

2017年北师大版七年级数学初一下第一章整式的乘除单元测试卷含答案

2017年北师大版七年级数学初一下第一章整式的乘除单元测试卷含答案

第1章 整式的乘除 单元测试卷一、选择题(共10小题,每小题3分,共30分)温馨提示:每小题四个答案中只有一个是正确的,请把正确的答案选出来! 1.下列运算正确的是( )A. 954a a a =+ B. 33333a a a a =⋅⋅ C. 954632a a a =⨯ D. ()743a a =-=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2( )A. 1-B. 1C. 0D. 1997 3.设()()A b a b a +-=+223535,则A=( )A. 30abB. 60abC. 15abD. 12ab 4.已知,3,5=-=+xy y x 则=+22y x ( )A. 25. B 25- C 19 D 、19- 5.已知,5,3==bax x 则=-ba x 23( )A 、2527 B 、109C 、53D 、52 6. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式: ①(2a +b )(m +n ); ②2a (m +n )+b (m +n ); ③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , 你认为其中正确的有A 、①②B 、③④C 、①②③D 、①②③④ ( )7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -112 ,则a²+b 2的值等于( )A 、84B 、78C 、12D 、6 9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8 B .a 8-2a 4b 4+b 8 C .a 8+b 8 D .a 8-b 8nm a ba10.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为 ( )A 、Q P >B 、Q P =C 、Q P <D 、不能确定二、填空题(共6小题,每小题4分,共24分)温馨提示:填空题必须是将最简洁最正确的答案填在空格处! 11.设12142++mx x 是一个完全平方式,则m =_______。

七年级下册数学第一单元测试卷【含答案】

七年级下册数学第一单元测试卷【含答案】

七年级下册数学第一单元测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是2dm、3dm、4dm,那么它的体积是多少?A. 24立方分米B. 20立方分米C. 18立方分米D. 22立方分米4. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/105. 如果a=3,那么2a+5的值是多少?A. 6B. 11C. 8D. 14二、判断题(每题1分,共5分)1. 两个质数相乘,其结果一定还是质数。

()2. 一个三角形的内角和一定是180度。

()3. 长方体的六个面都是相同的。

()4. 分子和分母相同的分数是最简分数。

()5. 如果a是正数,那么-a一定是负数。

()三、填空题(每题1分,共5分)1. 100的因数有______个。

2. 一个三角形的两个内角分别是30度和60度,那么第三个内角是______度。

3. 一个长方体的长是5cm,宽是3cm,高是4cm,那么它的表面积是______平方厘米。

4. 把分数3/4化成小数,其结果是______。

5. 如果a=5,那么3a-2的值是______。

四、简答题(每题2分,共10分)1. 什么是质数?请给出三个质数的例子。

2. 请解释三角形内角和定理。

3. 请简述长方体的体积公式。

4. 请解释什么是最简分数。

5. 如果一个数是负数,那么它的相反数是什么?五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,求这个长方形的周长和面积。

2. 一个等腰三角形的底边长是8cm,腰长是5cm,求这个三角形的周长。

3. 把分数4/5、3/4、2/3按照大小顺序排列。

4. 如果a=4,那么2a+3的值是多少?5. 一个长方体的长、宽、高分别是2cm、3cm、4cm,求这个长方体的体积。

最新人教版7年级下册第一单元数学测试卷含答案

最新人教版7年级下册第一单元数学测试卷含答案

人教版7年级下册第一单元数学测试卷含答案7年级下册数学第一单元测试卷一.填空题1、图形在平移时,下列特征中不发生改变的有________(把你认为正确的序号都填上).①图形的形状;②图形的位置;③线段的长度;④角的大小;⑤垂直关系;⑥平行关系.2、对于同一平面内的三条直线、、,给出下列五个论断:①∥;②∥;③⊥;④∥;⑤⊥.以其中两个论断为条件,一个论断为结论,组成一个你认为正确的命题:__________________.3、命题“对顶角相等”中的题设是_________ ,结论是___________ 。

4、如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=__________.5、如图,∠1=70°,若m∥n,则∠2=6、如下图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=__________.7、三条直线最多能组成个直角.8、如图,直线a、b被直线c所截,若要a∥b,需增加条件(填一个即可).9、如图:(1)当∥时,∠DAC=∠BCA;(2)当 = 时,AB//DC.10、如图,点A1,A2,A3,A4在射线OA上,点B1,B2,B3在射线OB上,且A1B1∥A2B2∥A3B3,A2B1∥A3B2∥A4B3.若△A2B1B2,△A3B2B3的面积分别为1,4,则图中三个阴影三角形面积之和为____________.11、命题“等腰三角形的两个底角相等”的逆命题是_____。

二.选择题13、下列语句错误的是( )A.连接两点的线段的长度叫做两点间的距离B.两条直线平行,同旁内角互补C.若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角D.平移变换中,各组对应点连成两线段平行且相等14、给出下列说法:①两条直线被第三条直线所截,则内错角相等;②平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;③平面内的三条直线任意两条都不平行,则它们一定有三个交点;④若一个角的两边分别平行于另一个角的两边,则这两个角相等或互补.其中正确的个数是()A.B.C.D.15、如图,,要使a∥b,则∠2等于()A.75° B.95° C.105° D.115°16、如图,AB//CD ,,的度数是 ( )A. B. C. D.17、如图,,和相交于点,,,则等于()A. B. C. D.18、如图,在△ABC中,已知∠B和∠C的平分线相交于点F,过点F作DE∥BC,交AB于点D,交AC于点E。

最新人教版初中数学七年级数学下册第一单元《相交线与平行线》测试题(有答案解析)(1)

最新人教版初中数学七年级数学下册第一单元《相交线与平行线》测试题(有答案解析)(1)

一、选择题1.在下列命题中,为真命题的是( )A .相等的角是对顶角B .平行于同一条直线的两条直线互相平行C .同旁内角互补D .垂直于同一条直线的两条直线互相平行 2.下列命题中是真命题的有( )①两个角的和等于平角时,这两个角互为邻补角;②过一点有且只有一条直线与已知直线平行;③两条平行线被第三条直线所截,所得的一对内错角的角平分线互相平行;④图形B 由图形A 平移得到,则图形B 与图形A 中的对应点所连线段平行(或在同一条直线上)且相等;A .1个B .2个C .3个D .4个 3.下列命题中,假命题是( ) A .对顶角相等B .同角的余角相等C .面积相等的两个三角形全等D .平行于同一条直线的两直线平行 4.如图,直线,a b 被直线c 所截,下列条件中不能判定a//b 的是( )A .25∠=∠B .45∠=∠C .35180∠+∠=︒D .12180∠+∠=︒ 5.现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一组对边平行,另一组对边相等的四边形是平行四边形;③在圆中,平分弦的直径垂直于弦;④平行于同一条直线的两直线互相平行.其中真命题的个数为( )A .1个B .2个C .3个D .4个 6.下列命题中,属于真命题的是( ) A .相等的角是对顶角B .一个角的补角大于这个角C .绝对值最小的数是0D .如果a b =,那么a=b7.如图,1∠与2∠是同位角的共有( )个A .1个B .2个C .3个D .4个8.下列各命题中,属于假命题的是( )A .若0a b ->,则a b >B .若0a b -=,则0ab ≥C .若0a b -<,则a b <D .若0a b -≠,则0ab ≠9.如图,直线12l l //,被直线3l 、4l 所截,并且34l l ⊥,144∠=,则2∠等于( )A .56°B .36°C .44°D .46° 10.把一张有一组对边平行的纸条,按如图所示的方式析叠,若∠EFB =35°,则下列结论错误的是( )A .∠C 'EF =35°B .∠AEC =120° C .∠BGE =70°D .∠BFD =110° 11.如图,下列条件中,不能判断AD ∥BC 的是( )A .∠FBC =∠DABB .∠ADC +∠BCD =180° C .∠BAC =∠ACED .∠DAC =∠BCA 12.如图,A 、P 是直线m 上的任意两个点,B 、C 是直线n 上的两个定点,且直线m ∥n .则下列说法正确的是( )A .AC=BPB .△ABC 的周长等于△BCP 的周长 C .△ABC 的面积等于△ABP 的面积D .△ABC 的面积等于△PBC 的面积二、填空题13.如图,64BCA ∠=︒,CE 平分ACB ∠,CD 平分ECB ∠,//DF BC 交CE 于点F ,则CDF ∠的度数为_________°.14.阅读下面材料:在数学课上,老师提出如下问题:如图,需要在A 、B 两地和公路l 之间修地下管道.请你设计一种最节省材料的修路方案:小丽设计的方案如下:如图,(1)连接AB ;(2)过点A 画线段AC ⊥直线l 于点C ,所以线段BA 和线段AC 即为所求.老师说:“小丽的画法正确”请回答:小丽的画图依据是___.15.如图,斜边长12cm ,∠A=30°的直角三角尺ABC 绕点C 顺时针方向旋转90°至''A B C 的位置,再沿CB 向左平移使点B'落在原三角尺ABC 的斜边AB 上,则三角尺向左平移的距离为_____.(结果保留根号)16.如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 的方向平移2个单位后,得到A B C ''',连接A C ',则A B C ''的周长为________.17.把命题“两直线平行,同位角相等”改写成“若…,则…”__.18.过直线AB 上一点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC =50°时,则∠BOD 的度数__.19.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到△DEF 的位置,AB =10,DO =4,平移距离为6,则阴影部分面积为__20.如图,∠AOB =60°,在∠AOB 的内部有一点P ,以P 为顶点,作∠CPD ,使∠CPD 的两边与∠AOB 的两边分别平行,∠CPD 的度数为_______度.三、解答题21.如图,直线AB ,CD 相交于点O ,OA 平分EOC ∠.(1)若70EOC ∠=︒,求BOD ∠的度数;(2)若:4:5∠∠=EOC EOD ,求BOC ∠的度数.22.作图题:如图,A 为射线OB 外一点.(1)连接OA ;(2)过点A 画出射线OB 的垂线AC ,垂足为点C (可以使用各种数学工具) (3)在线段AC 的延长线上取点D ,使得CD AC =;(4)画出射线OD ;(5)请直接写出上述所得图形中直角有 个.23.填空(请补全下列证明过程及括号内的依据)已知:如图,12,B C ∠=∠∠=∠.求证:180B BFC ︒∠+∠=证明:∵12∠=∠(已知),且1CGD ∠=∠(__________________________),∴2CGD ∠=∠(_______________________________),∴//CE BF (____________________________),∴∠___________C =∠(_________________________),又B C ∠=∠(已知),∴∠_________________B =∠(等量代换),∴//AB CD (_________________), ∴180B BFC ︒∠+∠=(_________________________).24.如图,已知AC BC ⊥,CD AB ⊥,DE AC ⊥,1∠与2∠互补,判断HF 与AB 是否垂直,并说明理由(填空).解:垂直,理由如下:∵DE AC ⊥,AC BC ⊥,∴90AED ACB ==︒∠∠(垂直的意义)∴//DE BC (_____)∴1DCB ∠=∠(_____)∵1∠与2∠互补(已知)∴DCB ∠与2∠互补∴_________//________(_____)∴BFH CDB ∠=∠(_____)∵CD AB ⊥∴90CDB ∠=︒∴90HFB ︒∠=∴HF AB ⊥.25.如图,已知:∠DGA=∠FHC ,∠A=∠F .求证:DF ∥AC .(注:证明时要求写出每一步的依据)26.直线AB 、CD 相交于点O ,OE 平分AOD ∠,90FOC ,50BOF ∠=︒,求AOC ∠与AOE ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据对顶角、平行公理的推论、平行线的判定、同旁内角逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、平行于同一条直线的两条直线互相平行,此项是真命题;C 、两直线平行,同旁内角互补,此项是假命题;D、在同一平面内,垂直于同一条直线的两条直线互相平行,此项是假命题;故选:B.【点睛】本题考查了命题与定理、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.2.B解析:B【分析】根据补角和邻补角的定义可判断①,根据平行公理可判断②,根据平行线的性质和判定可判断③,根据平移的性质可判断④,进而可得答案.【详解】解:两个角的和等于平角时,这两个角互为补角,故命题①是假命题;过直线外一点有且只有一条直线与已知直线平行,故命题②是假命题;两条平行线被第三条直线所截,所得的一对内错角的角平分线互相平行,故命题③是真命题;图形B由图形A平移得到,则图形B与图形A中的对应点所连线段平行(或在同一条直线上)且相等,故命题④是真命题.综上,真命题有2个.故选:B.【点睛】本题考查了真假命题、平行线的判定和性质以及平移的性质等知识,属于基础题型,熟练掌握上述知识是解题的关键.3.C解析:C【分析】根据对顶角的性质对A进行判断;根据余角的性质对B进行判断;根据三角形全等的判断对C进行判断;根据平行线的传递性对D进行判断.【详解】解:A、对顶角相等,所以A选项为真命题;B、同角的余角相等,所以B选项为真命题;C、面积相等的两个三角形不一定全等,所以C选项为假命题;D、平行于同一条直线的两条直线平行,所以D选项为真命题.故选:C.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.4.D解析:D【分析】根据平行线的判定定理逐项判断即可.【详解】解:A. 由2∠和5∠是同位角,则25∠=∠ ,可得a//b ,故该选项不符合题意;B. 由4∠和5∠是内错角,则45∠=∠,可得a//b ,故该选项不符合题意;C. 由∠3和∠1相等,35180∠+∠=︒,可得a//b ,故该选项不符合题意;D. 由∠1和∠2是邻补角,则12180∠+∠=︒不能判定a//b ,故该选项满足题意. 故答案为D .【点睛】本题主要考查了平行线的判定,掌握同位角相等,两直线平行;同旁内角互补,两直线平行是解答本题的关键.5.B解析:B【分析】根据全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质一一判断即可.【详解】①斜边中线和一个锐角分别对应相等的两个直角三角形全等,是真命题;②一组对边平行,另一组对边相等的四边形是平行四边形,是假命题,比如等腰梯形; ③在圆中,平分弦的直径垂直于弦,是假命题(此弦非直径);④平行于同一条直线的两直线互相平行,是真命题;故选B .【点睛】本题考查命题与定理、全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质等知识,解题的关键是熟练掌握基本概念.6.C解析:C【分析】根据对顶角、补角、绝对值的定义与性质逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、一个角的补角不一定大于这个角,如这个角为130︒,其补角为50︒,小于这个角,此项是假命题;C 、由绝对值的非负性得:绝对值最小的数是0,此项是真命题;D 、如果a b =,那么a b =或=-a b ,此项是假命题;故选:C .【点睛】本题考查了对顶角、补角、绝对值、真命题与假命题,熟练掌握各定义与性质是解题关键.7.B解析:B【分析】根据同位角的概念对每个图形一一判断,选出正确答案即可.【详解】图1:1∠与2∠是同位角;图2:1∠与2∠不是同位角;图3:1∠与2∠不是同位角;图4:1∠与2∠是同位角;只有图1、图4中1∠与2∠是同位角.故选:B .【点睛】本题主要考查同位角的概念,熟记同位角的概念是解题关键.8.D解析:D【分析】根据不等式的性质对各选项进行逐一判断即可.【详解】A 、正确,符合不等式的性质;B 、正确,符合不等式的性质.C 、正确,符合不等式的性质;D 、错误,例如a=2,b=0;故选D .【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.9.D解析:D【分析】依据l 1∥l 2,即可得到∠1=∠3=44°,再根据l 3⊥l 4,可得∠2=90°-44°=46°.【详解】解:如图,∵l1∥l2,∴∠1=∠3=44°,又∵l3⊥l4,∴∠2=90°-44°=46°,故选:D.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.10.B解析:B【分析】根据平行线的性质即可求解.【详解】A.∵AE∥BF,∴∠C'EF=∠EFB=35°(两直线平行,内错角相等),故A选项不符合题意;B.∵纸条按如图所示的方式析叠,∴∠FEG=∠C'EF=35°,∴∠AEC=180°﹣∠FEG﹣∠C'EF=180°﹣35°﹣35°=110°,故B选项符合题意;C.∵∠BGE=∠FEG+∠EFB=35°+35°=70°,故C选项不符合题意;D.∵AE∥BF,∴∠EGF=∠AEC=110°(两直线平行,内错角相等),∵EC∥FD,∴∠BFD=∠EGF=110°(两直线平行,内错角相等),故D选项不符合题意;故选:B.【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.11.C解析:C【分析】根据平行线的判定方法一一判断即可.【详解】解:A.∵∠FBC=∠DAB,∴AD∥BC,故A正确,本选项不符合题意;B.∵∠ADC+∠BCD=180°,∴AD∥BC,故B正确,本选项不符合题意;C.∵∠BAC=∠ACE,∴AB∥CD,故C不正确,本选项符合题意;D.∵∠DAC=∠BCA,∴AD∥BC,故D正确,本选项不符合题意;故选:C.【点睛】本题考查平行线的判定,解题的关键是准确识图,运用判定得出正确的平行关系.12.D解析:D【分析】根据平行线之间的距离及三角形的面积即可得出答案.【详解】解:∵A、P是直线m上的任意两个点,B、C是直线n上的两个定点,且直线m∥n,根据平行线之间的距离相等可得:△ABC与△PBC是同底等高的三角形,故△ABC的面积等于△PBC的面积.故选D.【点睛】本题考查平行线之间的距离;三角形的面积.二、填空题13.16【分析】根据角平分线的定义可求∠BCF的度数再根据角平分线的定义可求∠BCD和∠DCF的度数再根据平行线的性质可求∠CDF的度数【详解】解:∵∠BCA=64°CE平分∠ACB∴∠BCF=32°∵解析:16【分析】根据角平分线的定义可求∠BCF的度数,再根据角平分线的定义可求∠BCD和∠DCF的度数,再根据平行线的性质可求∠CDF的度数.【详解】解:∵∠BCA=64°,CE平分∠ACB,∴∠BCF=32°,∵CD平分∠ECB,∴∠BCD=∠DCF=16°,∵DF∥BC,∴∠CDF=∠BCD=16°,故答案为:16.【点睛】本题考查了角平分线的定义,平行线的性质,关键是熟悉两直线平行,内错角相等的知识点.14.两点之间线段最短;直线外一点到这条直线上所有点连结的线段中垂线段最短(或垂线段最短)【分析】根据线段的概念和垂线的性质即可求解【详解】由垂线段最短可知点A 到直线l 的最短距离为AC 由两点之间线段最短可 解析:两点之间线段最短;直线外一点到这条直线上所有点连结的线段中,垂线段最短(或垂线段最短)【分析】根据线段的概念和垂线的性质即可求解.【详解】由垂线段最短可知,点A 到直线l 的最短距离为AC ,由两点之间线段最短可知,点B 到点A 的最短距离为AB .故答案为:两点之间线段最短;直线外一点到这条直线上所有点连结的线段中,垂线段最短(或垂线段最短);【点睛】本题考察线段的概念和垂线的性质,熟练掌握其概念和性质是解题的关键.15.cm 【分析】作B′D//BC 与AB 交于点D 故三角板向左平移的距离为B′D 的长利用直角三角形的性质求出BC=B′C=6cmAC=cm 进而根据相似三角形对应线段成比例的性质即可求解【详解】如图作B′D/解析:(6-cm【分析】作B′D//BC 与AB 交于点D ,故三角板向左平移的距离为B′D 的长,利用直角三角形的性质求出BC=B′C=6cm ,AC=,进而根据相似三角形对应线段成比例的性质即可求解.【详解】如图,作B′D//BC 与AB 交于点D ,故三角板向左平移的距离为B′D 的长.∵AB=12cm ,∠A=30°,∴BC=B′C=6cm ,AC=cm ,∵B′D//BC ,∴AC D BC B AB ='',即66(6BC C B A AB D ⨯=='-'=cm ,故三角板向左平移的距离为(6-cm .【点睛】本题考查直角三角形的性质、相似三角形的性质,旋转和平移的性质,解题的关键是作辅助线构造相似三角形.16.12【分析】根据平移的性质得则可计算则可判断为等边三角形继而可求得的周长【详解】平移两个单位得到的又是等边三角形的周长为故答案为:12【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动会 解析:12【分析】根据平移的性质得2BB '=,4A B AB ''==,=60A B C B ∠''∠=︒,则可计算624B C BC BB '=-'=-=,则4A B B C ''='=,可判断A B C ''△为等边三角形,继而可求得A B C ''△的周长.【详解】 ABC 平移两个单位得到的A B C ''',2BB ∴'=,AB A B ='',4AB =,6BC =,4A B AB ∴''==,624B C BC BB '=-'=-=,4A B B C ∴''='=,又60B ∠=︒,60A B C ∴∠''=︒,A B C ∴''是等边三角形,A B C ∴''的周长为4312⨯=.故答案为:12.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.17.若两直线平行则同位角相等【分析】命题写成如果…那么…的形式如果后面接的部分是题设那么后面解的部分是结论【详解】解:命题两直线平行同位角相等可以改写成若两直线平行则同位角相等故答案为:若两直线平行则同 解析:若两直线平行,则同位角相等【分析】命题写成“如果…,那么…”的形式,“如果”后面接的部分是题设,“那么”后面解的部分是结论.【详解】解:命题“两直线平行,同位角相等”可以改写成“若两直线平行,则同位角相等”,故答案为:“若两直线平行,则同位角相等”.【点睛】本题考查了命题的概念,掌握命题写成“如果…,那么…”的形式,“如果”后面接的部分是题设,“那么”后面解的部分是结论是解题的关键.18.40º或140º【分析】根据题意可知射线OCOD可能在直线AB的同侧也可能在直线AB的异侧分两种情况进行讨论即可【详解】解:由OC⊥OD可得∠DOC=90°如图1当∠AOC=50°时∠BOD=180解析:40º或140º【分析】根据题意可知,射线OC、OD可能在直线AB的同侧,也可能在直线AB的异侧,分两种情况进行讨论即可.【详解】解:由OC⊥OD,可得∠DOC=90°,如图1,当∠AOC=50°时,∠BOD=180°-50°-90°=40°;如图2,当∠AOC=50°时,∠AOD=90°-50°=40°,此时,∠BOD=180°-∠AOD=140°.故答案为40º或140º.【点睛】本题考查了垂线的定义及角的计算.解决问题的关键是根据题意画出图形,解题时注意分类讨论思想的运用.19.【分析】根据平移的性质得出BE=6DE=AB=10则OE=6则阴影部分面积=S 四边形ODFC=S梯形ABEO根据梯形的面积公式即可求解【详解】解:由平移的性质知BE=6DE=AB=10∴OE=DE﹣解析:【分析】根据平移的性质得出BE=6,DE=AB=10,则OE=6,则阴影部分面积=S四边形ODFC=S梯形ABEO,根据梯形的面积公式即可求解.【详解】解:由平移的性质知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S 四边形ODFC =S 梯形ABEO 12=(AB+OE )•BE 12=×(10+6)×6=48. 故答案为48.【点睛】 本题主要考查了平移的性质及梯形的面积公式,得出阴影部分和梯形ABEO 的面积相等是解题的关键.20.60或120【分析】根据题意分两种情况如图所示(见解析)再分别根据平行线的性质即可得【详解】由题意分以下两种情况:(1)如图1(两直线平行同位角相等)(两直线平行内错角相等);(2)如图2(两直线平解析:60或120【分析】根据题意分两种情况,如图所示(见解析),再分别根据平行线的性质即可得.【详解】由题意,分以下两种情况:(1)如图1,//,//PC OB PD OA ,60AOB PDB ∴=∠=∠︒(两直线平行,同位角相等),60PDB CPD ∴=∠=∠︒(两直线平行,内错角相等);(2)如图2,//,//PC OB PD OA ,60AOB PDB ∴=∠=∠︒(两直线平行,同位角相等),180120C P B P D D ∠=︒-∴∠=︒(两直线平行,同旁内角互补);综上,CPD ∠的度数为60︒或120︒,故答案为:60或120.【点睛】本题考查了平行线的性质,依据题意,正确分两种情况讨论是解题关键.三、解答题21.(1)35BOD ∠=︒;(2)140∠=︒BOC【分析】(1)首先根据角平分线的性质得出∠AOC ,然后利用对顶角相等即可得出∠BOD ; (2)首先设4EOC x ∠=,则5EOD x ∠=,然后根据平角的性质构建方程,得出∠EOC ,再利用角平分线的性质得出∠AOC ,最后由平角得旋转即可得出∠BOC 即可.【详解】()170,EOC OA ∠=︒平分EOC ∠, 1352AOC EOC ∴∠=∠=︒, 35BOD AOC ∴∠=∠=︒;()2设4EOC x ∠=,则5EOD x ∠=,,54180x x ∴+=︒,解得20x =︒,则80EOC ∠=︒,又OA 平分0E C ∠,40AOC ∴∠=︒,180********BOC AOC ∴∠=︒-∠=︒-︒=︒.【点睛】本题主要考查利用角平分线、对顶角以及平角的性质求解角的度数,熟练掌握,即可解题.22.(1)见解析;(2)见解析;(3)见解析;(4)见解析;(5)4【分析】(1)用线段连接即可;(2)用三角板的两条直角边画图即可;(3)用圆规截取即可;(4)根据射线的定义画图即可;(5)根据直角的定义结合图形解答即可.【详解】解:(1)如图所示;(2)如图所示;(3)如图所示;(4)如图所示;(5)直角有:∠ACO ,∠ACB ,∠DCO ,∠DCB 共4个,故答案为:4.【点睛】本题考查了线段、射线、垂线、直角的定义,以及作一条线段等于已知线段,熟练掌握各知识点是解答本题的关键.23.对顶角相等;等量代换;同位角相等,则两直线平行;BFD ;两直线平行,则同位角相等;BFD ;内错角相等,则两直线平行;两直线平行,则同旁内角互补【分析】结合题意,根据平行线的性质分析,即可得到答案.【详解】∵12∠=∠且1CGD ∠=∠(对顶角相等),∴2CGD ∠=∠(等量代换),∴//CE BF (同位角相等,则两直线平行),∴∠BFD C =∠(两直线平行,则同位角相等),又B C ∠=∠(已知),∴∠BFD B =∠(等量代换),∴//AB CD (内错角相等,则两直线平行),∴180B BFC ︒∠+∠=(两直线平行,则同旁内角互补).故答案为:对顶角相等;等量代换;同位角相等,则两直线平行;BFD ;两直线平行,则同位角相等;BFD ;内错角相等,则两直线平行;两直线平行,则同旁内角互补.【点睛】本题考查了平行线的知识;解题的关键是熟练掌握平行线、内错角、同旁内角、同位角、对顶角的性质,从而完成求解.24.同位角相等,两直线平行;两直线平行,内错角相等;CD ;FH ;同旁内角互补,两直线平行;两直线平行,同位角相等.【分析】根据平行线的性质及平行线的判定解答.【详解】解:垂直,理由如下:∵DE AC ⊥,AC BC ⊥,∴90AED ACB ==︒∠∠(垂直的意义)∴//DE BC (同位角相等,两直线平行)∴1DCB ∠=∠(两直线平行,内错角相等)∵1∠与2∠互补(已知)∴DCB ∠与2∠互补∴CD //FH (同旁内角互补,两直线平行)∴BFH CDB ∠=∠(两直线平行,同位角相等)∵CD AB ⊥∴90CDB ∠=︒∴90HFB ︒∠=∴HF AB ⊥.故答案为:同位角相等,两直线平行;两直线平行,内错角相等;CD ;FH ;同旁内角互补,两直线平行;两直线平行,同位角相等.【点睛】此题考查平行线的判定及性质定理,熟记定理并熟练应用解决问题是解题的关键. 25.见解析.【分析】先根据∠DGA=∠EGC 证出AE ∥BF ,再根据平行证明出∠F=∠FBC 即可求证出结论.【详解】证明:∵∠DGA=∠EGC(对顶角相等)又∵∠DGA=∠FHC (已知)∴∠EGC=∠FHC (等量代换)∴AE ∥BF (同位角相等,两直线平行)∴∠A=∠FBC (两直线平行,同位角相等)又∵∠A=∠F (已知)∴∠F=∠FBC (等量代换)∴DF ∥AC (内错角相等,两直线平行).【点睛】此题考查平行线的判定与性质:同位角相等,两直线平行;两直线平行,同位角相等;内错角相等,两直线平行.26.40AOC ∠=︒;70AOE ∠=︒【分析】先利用平角定义与90FOC求出90FOD ∠=︒,再利用互余关系求=40BOD ∠︒,利用对顶角性质求40AOC ∠=︒,利用邻补角定义,求出140AOD ∠=︒,利用角平分线定义便可求出AOE ∠.【详解】 解:90FOC ∠=︒,∴1801809090FOD FOC ∠=︒-∠=︒-︒=︒, ∵50BOF ∠=︒,90-50=40BOD FOD BOF ∴∠=∠-∠=︒︒︒,AOC ∠与BOD ∠是对顶角,40AOC BOD ∴∠=∠=︒;COD ∠是一个平角,∴∠AOC+∠AOD=180º,∵40AOC ∠=︒,140AOD ∴∠=︒, OE 平分AOD ∠, 12AOE AOD ∴∠=∠, 70AOE ∴∠=︒.【点睛】本题考查的知识点是对顶角、邻补角、两角互余、角平分线的意义,解题关键是熟练利用角平分线定理.。

(压轴题)初中数学七年级数学下册第一单元《相交线与平行线》测试题(答案解析)

(压轴题)初中数学七年级数学下册第一单元《相交线与平行线》测试题(答案解析)

一、选择题1.下列说法中,正确的是( )A .在同一平面内,过一点有无数条直线与已知直线垂直B .两直线相交,对顶角互补C .垂线段最短D .直线外一点到这条直线的垂线段叫做点到直线的距离2.在下列命题中,为真命题的是( )A .相等的角是对顶角B .平行于同一条直线的两条直线互相平行C .同旁内角互补D .垂直于同一条直线的两条直线互相平行 3.如图://AB DE ,50B ∠=︒,110D ∠=︒,BCD ∠的度数为( )A .160︒B .115︒C .110︒D .120︒ 4.下列命题中是真命题的有( )①两个角的和等于平角时,这两个角互为邻补角;②过一点有且只有一条直线与已知直线平行;③两条平行线被第三条直线所截,所得的一对内错角的角平分线互相平行;④图形B 由图形A 平移得到,则图形B 与图形A 中的对应点所连线段平行(或在同一条直线上)且相等;A .1个B .2个C .3个D .4个5.如图,把一长方形纸片ABCD 沿EG 折叠后,AEG A EG '∠=∠,点A 、B 分别落在A '、B ′的位置,EA '与BC 相交于点F ,已知1125∠=︒,则2∠的度数是( )A .55°B .60°C .70°D .75° 6.下列语句是命题的是( ) A .平分一条线段 B .直角都相等C .在直线AB 上取一点D .你喜欢数学吗? 7.如图,下列条件中,不能判断直线a ∥b 的是( )A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°8.下列命题:①两边及其中一边的对角对应相等的两个三角形全等;②两角及其中一角的对边对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等;④面积相等的两个三角形肯定全等;⑤有两条直角边对应相等的两个直角三角形全等.其中正确的个数是()A.1个B.2个C.3个D.4个9.如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB∥CE,且∠ADC=∠B:④AB∥CE,且∠BCD=∠BAD.其中能推出BC∥AD的条件为()A.①②B.②④C.②③D.②③④10.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为()A.10°B.20°C.25°D.30°11.下列命题中,属于假命题的是()A.如果三角形三个内角的度数比是1:2:3,那么这个三角形是直角三角形B.内错角不一定相等C.平行于同一直线的两条直线平行>-,则a一定小于0D.若数a使得a a12.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为()A.20 B.24 C.25 D.26二、填空题13.两个角的两边两两互相平行,且一个角的12等于另一个角的13,则这两个角中较小角的度数为____︒. 14.如图,长8米宽6米的草坪上有一条弯折的小路(小路进出口的宽度相等,且每段小路均为平行四边形),小路进出口的宽度均为1米,则绿地的面积为__平方米.15.如图,AB ∥CD ,AB ⊥AE ,∠CAE =42°,则∠ACD 的度数为__.16.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.17.如图,已知∠1=(3x +24)°,∠2=(5x +20)°,要使m ∥n ,那么∠1=_____(度).18.如图所示,AB ∥CD ,EC ⊥CD .若∠BEC =30°,则∠ABE 的度数为_____.19.如图,直线////a b c ,直角三角板的直角顶点落在直线b 上,若135∠=︒,则2∠等于_______.20.在数学拓展课程《玩转学具》课堂中,老师把我们常用的一副三角板带进了课堂.(1)嘉嘉将一副三角板按如图1所示的方式放置,使点A 落在DE 上,且//BC DE ,则ACE ∠的度数为__________.(2)如图2,淇淇将等腰直角三角板放在一组平行的直线与之间,并使直角顶点A 在直线a 上,顶点C 在直线b 上,现测得130∠=,则2∠的度数为__________.三、解答题21.完成下面推理过程,在括号内的横线上填空或填上推理依据.如图,已知://AB EF ,EP EQ ⊥,90EQC APE ∠+∠=︒,求证://AB CD证明://AB EFAPE ∴∠=__________(__________)EP EQ ⊥ PEQ ∴∠=_________(___________)即90QEF PEF ∠+∠=︒90APE QEF ∴∠+∠=︒90EQC APE ∠+∠=︒EQC ∠=________//EF ∴_______(__________________)//AB CD ∴(________________)22.如图//AB CD ,62B ∠=︒,EG 平分BED ∠,EG EF ⊥,求CEF ∠的度数.23.补全解答过程:如图,EF ∥AD ,∠1=∠2,若∠BAC =70°,求∠AGD .解:∵EF ∥AD ,(已知)∴∠2= ,(两直线平行,同位角相等).又∵∠1=∠2,(已知)∴∠1=∠3,(等量代换)∴AB ∥ ,( )∴∠AGD +∠BAC =180°.( )∵∠BAC =70°,(已知)∴∠AGD = .24.把一块含60°角的直角三角尺()0090,60EFG EFG EGF ∠=∠=放在两条平行线,AB CD 之间.(1)如图1,若三角形的60°角的顶点G 放在CD 上,且221∠=∠,求1∠的度数; (2)如图2,若把三角尺的两个锐角的顶点,E G 分别放在AB 和CD 上,请你探索并说明AEF ∠与FGC ∠间的数量关系;(3)如图3,若把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上,请直接写出AEG ∠与CFG ∠的数量关系.25.如图:AD 是BAC ∠的角平分线,点E 是射线AC 上一点,延长ED 至点F ,180CAD ADF ︒∠+∠=.求证:(1)//AB EF ;(2)2ADE CEF ∠=∠26.如图,已知∠1+∠2=180°,∠B =∠DEF ,求证:DE ∥BC .请将下面的推理过程补充完整.证明:∵∠1+∠2=180(已知)∠2=∠3(对顶角相等)∴∠1+∠3=180°∴AB∥EF(),∴∠B=∠EFC()∵∠B=∠DEF(),∴∠DEF=()∴DE∥BC()【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】依据垂线的性质、对顶角的性质、垂线段的性质以及点到直线的距离的概念,即可得出结论.【详解】解:A.在同一平面内,过一点有且仅有一条直线与已知直线垂直,故本选项错误;B.两直线相交,对顶角相等,故本选项错误;C.垂线段最短,故本选项正确;D.直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故本选项错误;故选:C.【点睛】本题主要考查了垂线的性质、对顶角的性质、垂线段的性质以及点到直线的距离的概念,熟练掌握概念是解题的关键.2.B解析:B【分析】根据对顶角、平行公理的推论、平行线的判定、同旁内角逐项判断即可得.【详解】A、相等的角不一定是对顶角,此项是假命题;B、平行于同一条直线的两条直线互相平行,此项是真命题;C、两直线平行,同旁内角互补,此项是假命题;D、在同一平面内,垂直于同一条直线的两条直线互相平行,此项是假命题;故选:B.【点睛】本题考查了命题与定理、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.3.D解析:D【分析】如图(见解析),利用平行线的判定与性质、角的和差即可得.【详解】CF AB,如图,过点C作//AB DE,//∴,AB DE CF////∴∠=∠∠+∠=︒,BCF B DCF D,180∠=︒∠=︒,B D50,110∴∠=︒∠=︒-∠=︒,BCF DCF D50,18070∴∠=∠+∠=︒,BCD BCF DCF120故选:D.【点睛】本题考查了平行线的判定与性质、角的和差,熟练掌握平行线的判定与性质是解题关键.4.B解析:B【分析】根据补角和邻补角的定义可判断①,根据平行公理可判断②,根据平行线的性质和判定可判断③,根据平移的性质可判断④,进而可得答案.【详解】解:两个角的和等于平角时,这两个角互为补角,故命题①是假命题;过直线外一点有且只有一条直线与已知直线平行,故命题②是假命题;两条平行线被第三条直线所截,所得的一对内错角的角平分线互相平行,故命题③是真命题;图形B 由图形A 平移得到,则图形B 与图形A 中的对应点所连线段平行(或在同一条直线上)且相等,故命题④是真命题.综上,真命题有2个.故选:B .【点睛】本题考查了真假命题、平行线的判定和性质以及平移的性质等知识,属于基础题型,熟练掌握上述知识是解题的关键.5.C解析:C【分析】先根据平行线的性质可得55AEG ∠=︒,再根据平角的定义可得70∠︒=DEF ,然后根据平行线的性质即可得.【详解】由题意得://AD BC ,1125∠=︒,180155AEG ∴∠=︒-∠=︒,AEG A EG '∠=∠,55A EG '∴∠=︒,18070DEF AEG A EG '∴∠=︒-∠-∠=︒,又//AD BC ,270DEF ∴∠=∠=︒,故选:C .【点睛】本题考查了平角的定义、平行线的性质,熟练掌握平行线的性质是解题关键.6.B解析:B【分析】根据命题的定义分别进行判断.【详解】A.平分一条线段,为描述性语言,不是命题;B.直角都相等,是命题;C.在直线AB 上取一点,为描述性语言,不是命题;D.你喜欢数学吗?是疑问句,不是命题.故选:B .【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.7.B解析:B【分析】根据平行线的判定定理逐项判断即可.【详解】A、当∠1=∠3时,a∥b,内错角相等,两直线平行,故正确;B、∠2与∠3不是同位角,也不是内错角,无法判断,故错误;C、当∠4=∠5时,a∥b,同位角相等,两直线平行,故正确;D、当∠2+∠4=180°时,a∥b,同旁内角互补,两直线平行,故正确.故选:B.【点睛】本题考查了平行线的判定,熟记判定定理是解题的关键.8.B解析:B【分析】根据全等三角形的判断定理逐项判断即可.【详解】解:①两边及其夹角对应相等的两个三角形全等,故该项错误;②两角及其中一角的对边对应相等的两个三角形全等,符合AAS定理,故该项正确;③有两条边和第三条边上的高对应相等的两个三角形不一定全等,有可能是锐角三角形,也有可能是钝角三角形,故该项错误;④面积相等的两个三角形不一定全等,因为形状可能不相同,故该项错误;⑤有两条直角边对应相等的两个直角三角形全等,符合ASA定理,故该项正确.故选:B.【点睛】此题主要考查对全等三角形的判定定理的掌握,正确理解判定定理是解题关键.9.D解析:D【分析】根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB∥CD,不符合题意;②∵∠3=∠4,∴BC∥AD,符合题意;③∵AB∥CD,∴∠B+∠BCD=180°,∵∠ADC=∠B,∴∠ADC+∠BCD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;④∵AB∥CE,∴∠B+∠BCD=180°,∵∠BCD=∠BAD,∴∠B+∠BAD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;故能推出BC∥AD的条件为②③④.故选:D.【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.10.C解析:C【解析】分析:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故选C.11.D解析:D【分析】利用三角形内角和对A进行判断;根据内错角的定义对B进行判断;根据平行线的判定方法对C进行判断;根据绝对值的意义对D进行判断.【详解】解:A、如果三角形三个内角的度数比是1:2:3,则三个角的度数分别为30°,60°,90°,所以这个三角形是直角三角形,所以A选项为真命题;B、内错角不一定相等,所以B选项为真命题;C、平行于同一直线的两条直线平行,所以C选项为真命题;D、若数a使得|a|>-a,则a为不等于0的实数,所以D选项为假命题.故选:D.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.D解析:D【解析】由平移的性质知,BE=4,DE=AB=8,可得HE=DE-DH=8-3=5,所以S 四边形HDFC =S 梯形ABEH=12(AB+EH )×BE=12(8+5)×4=26.故选D. 二、填空题13.72【分析】如果两个角的两边互相平行则这两个角相等或互补根据题意这两个角只能互补然后列方程求解即可【详解】解:设其中一个角是x°则另一个角是(180-x)°根据题意得解得x=72∴180-x=108解析:72【分析】如果两个角的两边互相平行,则这两个角相等或互补.根据题意,这两个角只能互补,然后列方程求解即可.【详解】解:设其中一个角是x°,则另一个角是(180-x)°,根据题意,得11(180)23x x =-, 解得x=72,∴180-x=108°;∴较小角的度数为72°.故答案为:72.【点睛】本题考查了平行线的性质,一元一次方程的应用,运用“若两个角的两边互相平行,则两个角相等或互补”,而此题中显然没有两个角相等这一情况是解决此题的突破点. 14.42【分析】利用平移表示出草坪的长和宽然后根据长方形的面积公式列式计算即可得解【详解】解:由平移的性质得:草坪的长为8﹣1=7(米)宽为6米草坪的面积=7×6=42(平方米)故答案为:42【点睛】本解析:42【分析】利用平移表示出草坪的长和宽,然后根据长方形的面积公式列式计算即可得解.【详解】解:由平移的性质,得:草坪的长为8﹣1=7(米),宽为6米,草坪的面积=7×6=42(平方米).故答案为:42.【点睛】本题考查了平移的性质,熟记性质并理解求出与草坪的面积相当的长方形的长和宽是解题的关键.15.132°【分析】直接利用平行线的性质结合垂直定义得出∠BAC度数以及∠ACD的度数【详解】解:∵AB⊥AE∠CAE=42°∴∠BAC=90°﹣42°=48°∵AB∥CD∴∠BAC+∠ACD=180°解析:132°【分析】直接利用平行线的性质结合垂直定义得出∠BAC度数以及∠ACD的度数.【详解】解:∵AB⊥AE,∠CAE=42°,∴∠BAC=90°﹣42°=48°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠ACD=132°.故答案为:132°.【点睛】此题主要考查了平行线的性质,正确得出∠BAC度数是解题关键.16.如果两个角相等那么这两个角的余角相等【分析】把命题的题设写在如果的后面把命题的结论部分写在那么的后面即可【详解】解:命题等角的余角相等写成如果…那么…的形式为:如果两个角是相等角的余角那么这两个角相解析:如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是相等角的余角,那么这两个角相等.故答案为:如果两个角是相等角的余角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.17.75【分析】直接利用邻补角的定义结合平行线的性质得出答案【详解】如图所示:∠1+∠3=180°∵m∥n∴∠2=∠3∴∠1+∠2=180°∴3x+24+5x+20=180解得:x=17则∠1=(3x+解析:75【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180,解得:x=17,则∠1=(3x+24)°=75°.故答案为75.【点睛】此题主要考查了平行线的判定与性质,正确得出∠1+∠2=180°是解题关键.18.120°【分析】先根据平行线的性质得到∠GEC=90°再根据垂线的定义以及平行线的性质进行计算即可【详解】过点E作EG∥AB则EG∥CD由平行线的性质可得∠GEC=90°所以∠GEB=90°﹣30°解析:120°.【分析】先根据平行线的性质,得到∠GEC=90°,再根据垂线的定义以及平行线的性质进行计算即可.【详解】过点E作EG∥AB,则EG∥CD,由平行线的性质可得∠GEC=90°,所以∠GEB=90°﹣30°=60°,因为EG∥AB,所以∠ABE=180°﹣60°=120°.故答案为:120°.【点睛】本题主要考查了平行线的性质和垂直的概念等,解题时注意:两直线平行,同旁内角互补.19.【分析】如图利用平行线的性质得出∠3=35°然后进一步得出∠4的度数从而再次利用平行线性质得出答案即可【详解】如图所示∵∴∴∠4=90°−∠3=55°∵∴∠2=∠4=55°故答案为:55°【点睛】本解析:55︒【分析】如图,利用平行线的性质得出∠3=35°,然后进一步得出∠4的度数,从而再次利用平行线性质得出答案即可.【详解】如图所示,∵//a b ,135∠=︒,∴335∠=︒,∴∠4=90°−∠3=55°,∵////a b c ,∴∠2=∠4=55°.故答案为:55°.【点睛】本题主要考查了平行线的性质,熟练掌握相关概念是解题关键.20.15°15°【分析】(1)根据平行线的性质得出∠D+∠BCD=180°从而得到∠BCD 再利用角的和差得到∠ACE ;(2)根据平行线的性质得出∠2+∠BAC+∠ACB+∠1=180°再由等腰直角三角形解析:15° 15°【分析】(1)根据平行线的性质得出∠D+∠BCD=180°,从而得到∠BCD ,再利用角的和差得到∠ACE ;(2)根据平行线的性质得出∠2+∠BAC+∠ACB+∠1=180°,再由等腰直角三角形的性质得到∠BAC=90°,∠ACB=45°,结合∠1的度数可得结果.【详解】解:(1)由三角板的性质可知:∠D=60°,∠ACB=45°,∠DCE=90°,∵BC ∥DE ,∴∠D+∠BCD=180°,∴∠BCD=120°,∴∠BCE=∠BCD-∠DCE=30°,∴∠ACE=∠ACB-∠BCE=15°,故答案为:15°;(2)∵a ∥b ,∴∠2+∠BAC+∠ACB+∠1=180°,∵△ABC 为等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠2=180°-∠BAC-∠ACB=45°,∵∠1=30°,∴∠2=15°,故答案为:15°.【点睛】本题考查了三角板的性质,平行线的性质,解题时注意:两直线平行,同旁内角互补.三、解答题21.∠PEF ;两直线平行,内错角相等;90°;垂直的定义;∠QEF ;CD ;内错角相等,两直线平行;同一平面内,平行于同一条直线的两条直线互相平行.【分析】根据平行线的性质得到∠APE=∠PEF ,根据余角的性质得到∠EQC=∠QEF 根据平行线的判定定理即可得到结论.【详解】证明:∵AB ∥EF∴∠APE=∠PEF (两直线平行,内错角相等)∵EP ⊥EQ∴∠PEQ=90°(垂直的定义)即∠QEF+∠PEF=90°∴∠APE+∠QEF=90°∵∠EQC+∠APE=90°∴∠EQC=∠QEF∴EF ∥CD (内错角相等,两直线平行)∴AB ∥CD (同一平面内,平行于同一条直线的两条直线互相平行),故答案为:∠PEF ;两直线平行,内错角相等;90°;垂直的定义;∠QEF ;CD ;内错角相等,两直线平行;同一平面内,平行于同一条直线的两条直线互相平行.【点睛】本题考查了平行线的判定和性质,垂直的定义,熟练掌握平行线的判定和性质是解题的关键.22.59°【分析】由题意,先求出BED ∠,由角平分线定义得到GED ∠,再结合垂直和平角的定义,即可求出答案.【详解】解:根据题意,∵//AB CD ,∴62BED B ∠=∠=︒,∵EG 平分BED ∠, ∴11623122GED BED ∠=∠=⨯︒=︒, ∵EG EF ⊥,∴90FEG ∠=︒,∴180319059CEF ∠=︒-︒-︒=︒;【点睛】本题考查了角平分线的定义,平行线的性质,以及余角、补角的定义,解题的关键是熟练掌握所学的知识,正确求出角的度数.23.∠3;DG ;内错角相等,两直线平行;两直线平行,同旁内角互补;110°【分析】由EF ∥AD ,可得∠2=∠3,由等量代换可得∠1=∠3,可得AB ∥DG ,根据平行线的性质可得∠BAC+∠AGD=180°,即可求解.【详解】∵EF ∥AD (已知),∴∠2=∠3.(两直线平行,同位角相等)又∵∠1=∠2,(已知)∴∠1=∠3,(等量代换)∴AB ∥DG .(内错角相等,两直线平行)∴∠BAC+∠AGD=180°.(两直线平行,同旁内角互补)又∵∠BAC=70°,(已知)∴∠AGD=110°.故答案为:∠3;DG ;内错角相等,两直线平行;两直线平行,同旁内角互补;110°.【点睛】本题主要考查了平行线的判定与性质,理解平行线的判定与性质进行证明是解此题的关键.24.(1)40°;(2)∠AEF+∠FGC=90°;(3)AEG ∠+CFG ∠=300°【分析】(1)根据平行线的性质得:1=∠EGD ,结合∠2=2∠1和平角的定义,即可求解; (2)过点F 作FP ∥AB ,根据平行线的性质和直角的意义,即可求解;(3)根据平行线的性质得∠AEF+∠CFE=180°,结合条件,即可求解.【详解】(1)∵AB ∥CD ,∴∠1=∠EGD ,∵∠2+∠FGE+∠EGD=180°,∠2=2∠1,∴2∠1+60°+∠1=180°,解得∠1=40°;(2)如图,过点F 作FP ∥AB ,∵CD ∥AB ,∴FP ∥AB ∥CD ,∴∠AEF=∠EFP ,∠FGC=∠GFP .∴∠AEF+∠FGC=∠EFP+∠GFP=∠EFG ,∵∠EFG=90°,∴∠AEF+∠FGC=90°;(3) AEG ∠+CFG ∠=300°,理由如下:∵AB ∥CD ,∴∠AEF+∠CFE=180°,即AEG ∠−30°+CFG ∠−90°=180°,整理得:AEG ∠+CFG ∠=300°.【点睛】本题主要考查平行线的性质,添加辅助线,构造相等的角,是解题的关键 25.(1)证明见解析;(2)证明见解析.【分析】(1)根据角平分线和同旁内角互补两直线平行即可证得;(2)由(1)得2CEF EAB DAB ∠=∠=∠,又因为DAB ADE ∠=∠,即可证得.【详解】(1)AD 是BAC ∠的角平分线.CAD DAB ∴∠=∠ 又180CAD ADF ︒∠+∠=180DAB ADF ︒∠+∠=//AB EF ∴(2)//AB EF2CEF EAB DAB ∴∠=∠=∠又DAB ADE ∠=∠2ADE CEF ∴∠=∠【点睛】本题考查角平分线和平行线的证明与性质,掌握平行线证明方法是解题的关键. 26.见解析【分析】根据平行的性质和判定定理填空.【详解】解:证明:∵∠1+∠2=180(已知),∠2=∠3(对顶角相等),∴∠1+∠3=180°,∴AB∥EF(同旁内角互补,两直线平行),∴∠B=∠EFC(两直线平行,同位角相等),∵∠B=∠DEF(已知),∴∠DEF=∠EFC(等量代换),∴DE∥BC(内错角相等,两直线平行).【点睛】本题考查平行的性质和判定,解题的关键是掌握平行的性质和判定定理.。

人教版初中数学七年级数学下册第一单元《相交线与平行线》测试卷

人教版初中数学七年级数学下册第一单元《相交线与平行线》测试卷

一、选择题1.下列说法中,正确的是( )A .在同一平面内,过一点有无数条直线与已知直线垂直B .两直线相交,对顶角互补C .垂线段最短D .直线外一点到这条直线的垂线段叫做点到直线的距离2.如图,两个直角三角形重叠在一起,将ABC 沿AB 方向平移2cm 得到DEF ,2cm CH =,4cm EF =,下列结论:①//BH EF ;②AD BE =;③BD CH =:④C BHD ∠=∠;⑤阴影部分的面积为26cm .其中正确的是( )A .①②③④B .②③④⑤C .①②③⑤D .①②④⑤ 3.下面的语句,不正确的是( )A .对顶角相等B .相等的角是对顶角C .两直线平行,内错角相等D .在同一平面内,经过一点,有且只有一条直线与已知直线垂直4.如图,由点B 观察点A 的方向是( ).A .南偏东62︒B .北偏东28︒C .南偏西28︒D .北偏东62︒ 5.下列命题中是真命题的是( ) A .如果0a b +<那么0ab < B .内错角相等C .三角形的内角和等于180︒D .相等的角是对顶角 6.在同一平面内,有3条直线a ,b ,c ,其中直线a 与直线b 相交,直线a 与直线c 平行,那么b 与c 的位置关系是( )A .平行B .相交C .平行或相交D .不能确定7.如图,下列条件中,不能判断直线a ∥b 的是( )A .∠1=∠3B .∠2=∠3C .∠4=∠5D .∠2+∠4=180° 8.如图,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角 9.如图,1∠与2∠是同位角的共有( )个A .1个B .2个C .3个D .4个 10.命题“垂直于同一条直线的两条直线互相平行”的条件是( ) A .垂直B .两条直线互相平行C .同一条直线D .两条直线垂直于同一条直线11.下列命题中,属于假命题的是( )A .如果三角形三个内角的度数比是1:2:3,那么这个三角形是直角三角形B .内错角不一定相等C .平行于同一直线的两条直线平行D .若数a 使得a a >-,则a 一定小于012.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是0二、填空题13.命题“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是_______命题(填“真”或“假”).14.已知A ∠与B (A ∠,B 都是大于0°且小于180°的角)的两边一边平行,另一边垂直,且227A B ∠-∠=︒,则A ∠的度数为_________.15.在同一平面内,A ∠与B 的两边分别平行,若50A ∠=︒,则B 的度数为__________︒.16.两条直线相交所构成的四个角,其中:①有三个角都相等;②有一对对顶角相等;③有一个角是直角;④有一对邻补角相等,能判定这两条直线垂直的有_______. 17.如图,,OA OC OB OD ⊥⊥,4位同学观察图形后分别说了自己的观点.甲:AOB ∠COD =∠;乙:180BOC AOD ∠+∠=︒;丙:90AOB COD ∠+∠=︒;丁:图中小于平角的角有6个;其中正确的结论有__________个.18.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.19.如图所示,AB ∥CD ,EC ⊥CD .若∠BEC =30°,则∠ABE 的度数为_____.20.如图,现给出下列条件:①1B ∠∠=,②25∠∠=,③34∠∠=,④1D ∠∠=,⑤B BCD 180∠∠+=︒.其中能够得到AB//CD 的条件是_______.(只填序号)三、解答题21.如图,点P 是AOB ∠的边OB 上的一点.(1)过点P 画OB 的垂线,交OA 于点E ;(2)过点P 画OA 的垂线,垂足为H ;(3)过点P 画OA 的平行线PC ;(4)若每个小正方形的边长是1,则点P 到OA 的距离是___________;(5)线段,,PE PH OE 的大小关系是_____________________(用“<”连接).22.如图,已知180EFC BDC ︒∠+∠=,DEF B ∠=∠.(1)试判断DE 与BC 的位置关系,并说明理由.(2)若DE 平分ADC ∠,3BDC B ∠=∠,求EFC ∠的度数.23.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,C EFG ∠=∠,CED GHD ∠=∠,试判断AED ∠与D ∠之间的数量关系,并说明理由.24.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)∠AOC 的对顶角为______,∠AOC 的邻补角为______;(2)若∠EOC =70°,求∠BOD 的度数;(3)若∠EOC :∠EOD =2:3,求∠BOD 的度数.25.如图,O 为直线AB 上一点,50AOC ∠=︒,OD 平分AOC ∠,90DOE ∠=︒.(1)求出BOD ∠的度数.(2)请通过计算 OE 是否平分BOC ∠.26.试用举反例的方法说明下列命题是假命题.例如:如果ab <0,那么a +b <0.反例:设a =4,b =-3,ab =4⨯(-3)=-12<0,而a +b =4+(-3)=1>0,所以这个命题是假命题.(1)如果a +b >0,那么ab >0.(2)如果a 是无理数,b 也是无理数,那么a +b 也是无理数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】依据垂线的性质、对顶角的性质、垂线段的性质以及点到直线的距离的概念,即可得出结论.【详解】解:A .在同一平面内,过一点有且仅有一条直线与已知直线垂直,故本选项错误; B .两直线相交,对顶角相等,故本选项错误;C .垂线段最短,故本选项正确;D .直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故本选项错误; 故选:C .【点睛】本题主要考查了垂线的性质、对顶角的性质、垂线段的性质以及点到直线的距离的概念,熟练掌握概念是解题的关键.2.D解析:D【分析】根据平移的性质可直接判断①②③,根据平行线的性质可判断④,阴影部分的面积=S 梯形BEFH ,于是可判断⑤,进而可得答案.【详解】解:因为将ABC 沿AB 方向平移2cm 得到DEF ,所以//BH EF ,AD BE =,DF ∥AC ,故①②正确;所以C BHD ∠=∠,故④正确;而BD 与CH 不一定相等,故③不正确;因为2cm CH =,4cm EF BC ==,所以BH=2cm ,又因为BE=2cm ,所以阴影部分的面积=S △ABC -S △DBH = S △DEF -S △DBH =S 梯形BEFH =()12422⨯+⨯=26cm ,故⑤正确;综上,正确的结论是①②④⑤.故选:D .【点睛】本题考查了平移的性质,属于基础题目,正确理解题意、熟练掌握平移的性质是解题的关键. 3.B解析:B【分析】根据对顶角的性质、平行线的性质和垂线的基本性质逐项进行分析,即可得出答案.【详解】A 、根据对顶角的性质可知,对顶角相等,故本选项正确;B 、相等的角不一定是对顶角,故本选项错误;C 、两直线平行,内错角相等,故本选项正确;D 、根据垂线的基本性质可知在同一平面内,过直线上或直线外的一点,有且只有一条直线和已知直线垂直.故本选项正确.故选:B .【点睛】本题主要考查了对顶角的性质、平行线的性质和垂线的基本性质等知识点,解题的关键是了解垂线的性质、对顶角的定义、平行线的性质等知识,难度不大.4.B解析:B【分析】根据平行线的性质求出∠ABE ,求出∠CBA ,根据图形和角的度数即可得出答案.【详解】解:如图所示:∵东西方向是平行的,∴∠ABE=∠DAB= 62°,∵∠CBE=90°,∴∠CBA=90°-62°=28°,即由点B观察点A的方向是北偏东28°,故选:B.【点睛】本题考查了平行线的性质和方向角的应用,根据题意得出∠ABE的度数是解题的关键.5.C解析:C【分析】利用反例对A进行判断;根据平行线的性质对B进行判断;根据三角形内角和定理对C进行判断;根据对顶角定义对D进行判断.【详解】解:A、当a=-2,b=-1时,则a+b<0,ab>0,所以A选项错误;B、两直线平行,内错角相等,所以B选项错误,是假命题;C、三角形的内角和等于180°,所以C选项为真命题;D、对顶角既有大小关系,又有位置关系,相等的角是对顶角的说法错误,所以D选项错误,是假命题;【点睛】本题考查命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.B解析:B【分析】根据a∥c,a与b相交,可知c与b相交,如果c与b不相交,则c与b平行,故b与a 平行,与题目中的b与a相交矛盾,从而可以解答本题.【详解】解:假设b∥c,∵a∥c,∴a∥b,而已知a与b相交于点O,故假设b∥c不成立,故b与c相交,故选:B.【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.7.B解析:B【分析】根据平行线的判定定理逐项判断即可.【详解】A、当∠1=∠3时,a∥b,内错角相等,两直线平行,故正确;B、∠2与∠3不是同位角,也不是内错角,无法判断,故错误;C、当∠4=∠5时,a∥b,同位角相等,两直线平行,故正确;D、当∠2+∠4=180°时,a∥b,同旁内角互补,两直线平行,故正确.故选:B.【点睛】本题考查了平行线的判定,熟记判定定理是解题的关键.8.A解析:A【分析】根据同位角的定义求解.【详解】解:直线a,b被直线c所截,∠1与∠2是同位角.故选:A.【点睛】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.9.B解析:B【分析】根据同位角的概念对每个图形一一判断,选出正确答案即可.【详解】图1:1∠与2∠是同位角;图2:1∠与2∠不是同位角;图3:1∠与2∠不是同位角;图4:1∠与2∠是同位角;只有图1、图4中1∠与2∠是同位角.故选:B .【点睛】本题主要考查同位角的概念,熟记同位角的概念是解题关键.10.D解析:D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D .【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断. 11.D解析:D【分析】利用三角形内角和对A 进行判断;根据内错角的定义对B 进行判断;根据平行线的判定方法对C 进行判断;根据绝对值的意义对D 进行判断.【详解】解:A 、如果三角形三个内角的度数比是1:2:3,则三个角的度数分别为30°,60°,90°,所以这个三角形是直角三角形,所以A 选项为真命题;B 、内错角不一定相等,所以B 选项为真命题;C 、平行于同一直线的两条直线平行,所以C 选项为真命题;D 、若数a 使得|a|>-a ,则a 为不等于0的实数,所以D 选项为假命题.故选:D .【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.A解析:A【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【详解】A 、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B 、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C 、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D 、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题; 故选A .【点睛】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.二、填空题13.假;【分析】将原命题的条件与结论对换位置即可得到逆命题然后判断真假【详解】如果两个三角形全等那么这两个三角形的周长相等的逆命题是如果两个三角形的周长相等那么这两个三角形全等根据周长相等无法判定三角形 解析:假;【分析】将原命题的条件与结论对换位置,即可得到逆命题,然后判断真假.【详解】“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是“如果两个三角形的周长相等,那么这两个三角形全等”,根据周长相等,无法判定三角形全等,故该逆命题是假命题,故答案为:假.【点睛】本题考查逆命题与命题的判断,掌握原命题与逆命题的关系是解题的关键.14.或【分析】分两种情况:①如图1作EF ∥BD 由BD ∥AC 推出EF ∥AC 得到∠B=∠BEF ∠A=∠AEF 根据∠A+∠B=求出∠A=;②如图2作EF ∥BD 由BD ∥AC 推出EF ∥AC 得到∠B+∠BEF=∠A解析:39︒或99︒.【分析】分两种情况:①如图1,作EF ∥BD ,由BD ∥AC 推出EF ∥AC ,得到∠B=∠BEF ,∠A=∠AEF ,根据∠A+∠B=90︒,227A B ∠-∠=︒,求出∠A=39︒;②如图2,作EF ∥BD ,由BD ∥AC 推出EF ∥AC ,得到∠B+∠BEF=180︒,∠A+∠AEF=180︒,根据∵∠AEB=∠AEF+∠BEF=90︒,227A B ∠-∠=︒,计算得出答案.【详解】分两种情况:①如图1,作EF ∥BD ,∴∠B=∠BEF ,∵EF ∥BD ,BD ∥AC ,∴EF ∥AC ,∴∠A=∠AEF ,∴∠A+∠B=∠AEF+∠BEF=90︒,∵227A B ∠-∠=︒,∴∠A=39︒;②如图2,作EF ∥BD ,∴∠B+∠BEF=180︒,∵EF ∥BD ,BD ∥AC ,∴EF ∥AC ,∴∠A+∠AEF=180︒,∴∠A+∠AEB+∠B=360︒,∵∠AEB=∠AEF+∠BEF=90︒,∴∠A+∠B=270︒,∵227A B ∠-∠=︒,∴∠A=99︒;故答案为:39︒或99︒..【点睛】此题考查平行线的性质,平行公理的推论,根据题意作出图形,引出恰当的辅助线解决问题是解题的关键.15.50或130【分析】由∠A 与∠B 的两边分别平行可得∠A=∠B 或∠A+∠B=180°继而求得答案【详解】解:∵∠A 与∠B 的两边分别平行∴∠A=∠B 或∠A+∠B=180°∵∠A=50°∴∠B=50°或∠解析:50或130【分析】由∠A 与∠B 的两边分别平行,可得∠A=∠B 或∠A+∠B=180°,继而求得答案.【详解】解:∵∠A 与∠B 的两边分别平行,∴∠A=∠B 或∠A+∠B=180°,∵∠A=50°,∴∠B=50°,或∠B=180°-∠A=180°-50°=130°.故答案为:50或130.【点睛】此题考查了平行线的性质.此题难度适中,注意由∠A与∠B的两边分别平行,可得∠A与∠B相等或互补.16.①③④【分析】①根据对顶角相等可以判定四个角相等由周角360°可知四个角都为90°则AB⊥CD;②因为对顶角相等但不能说明有角为90°不能说明这两条直线垂直;③根据垂直定义得:AB⊥CD;④因为邻补解析:①③④【分析】①根据对顶角相等可以判定四个角相等,由周角360°可知,四个角都为90°,则AB⊥CD;②因为对顶角相等,但不能说明有角为90°,不能说明这两条直线垂直;③根据垂直定义得:AB⊥CD;④因为邻补角的和为180°,又相等,所以每个角为90°,则AB⊥CD.【详解】①如图,若∠AOC=∠COB=∠BOD,∵∠AOD=∠COB,∴∠AOC=∠COB=∠BOD=∠AOD,∵∠AOC+∠COB+∠BOD+∠AOD=360°,∴∠AOC=∠COB=∠BOD=∠AOD=90°,∴AB⊥CD;所以此选项能判定这两条直线垂直;②∠AOC=∠BOD,∠AOD=∠COB,但不能说明有角为90°,所以此选项不能判定这两条直线垂直;③若∠AOC=90°,∴AB⊥CD,所以此选项能判定这两条直线垂直;④若∠AOC=∠AOD,∵∠AOC+∠AOD=180°,∴∠AOC=∠BOD=90°,所以此选项能判定这两条直线垂直;故能判定这两条直线垂直的有:①③④;故答案为:①③④.【点睛】本题考查了对顶角、邻补角以及垂直的定义,熟练掌握两条直线垂直的定义是关键. 17.3【分析】先根据垂直的定义可得再逐个判断即可得【详解】则甲的结论正确;则乙的结论正确;假设又由题中已知条件不能得到则丙的结论错误;图中小于平角的角为共有6个则丁的结论正确;综上正确的结论有3个故答案 解析:3【分析】先根据垂直的定义可得90AOC BOD ∠=∠=︒,再逐个判断即可得.【详解】,OA OC OB OD ⊥⊥,9090AOB BOC AOC COD BOC BOD ∠+∠=∠=︒⎧∴⎨∠+∠=∠=︒⎩, AOB COD ∴∠=∠,则甲的结论正确;180AOB BOC COD BOC AOC BOD ∠+∠+∠+∠=∠+∠=︒,180AOD BOC ∴∠+∠=︒,则乙的结论正确;假设90AOB COD ∠+∠=︒,90AOB BOC ∠+∠=︒,BOC COD ∴∠=∠,又90COD BOC ∠+∠=︒,45BOC COD ∴∠=∠=︒,由题中已知条件不能得到,则丙的结论错误;图中小于平角的角为,,,,,AOB AOC AOD BOC BOD COD ∠∠∠∠∠∠,共有6个, 则丁的结论正确;综上,正确的结论有3个,故答案为:3.【点睛】本题考查了垂直的定义、角的和差等知识点,熟练掌握角的运算是解题关键.18.40°【分析】本题主要利用两直线平行同旁内角互补两直线平行内错角相等以及角平分线的定义进行做题【详解】∵AD ∥BC ∴∠BCD=180°-∠D=80°又∵CA 平分∠BCD ∴∠ACB=∠BCD=40°∴解析:40°【分析】本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.【详解】∵AD ∥BC ,∴∠BCD=180°-∠D=80°,又∵CA平分∠BCD,∠BCD=40°,∴∠ACB=12∴∠DAC=∠ACB=40°.【点睛】本题重点考查了平行线的性质及角平分线的定义,是一道较为简单的题目.19.120°【分析】先根据平行线的性质得到∠GEC=90°再根据垂线的定义以及平行线的性质进行计算即可【详解】过点E作EG∥AB则EG∥CD由平行线的性质可得∠GEC=90°所以∠GEB=90°﹣30°解析:120°.【分析】先根据平行线的性质,得到∠GEC=90°,再根据垂线的定义以及平行线的性质进行计算即可.【详解】过点E作EG∥AB,则EG∥CD,由平行线的性质可得∠GEC=90°,所以∠GEB=90°﹣30°=60°,因为EG∥AB,所以∠ABE=180°﹣60°=120°.故答案为:120°.【点睛】本题主要考查了平行线的性质和垂直的概念等,解题时注意:两直线平行,同旁内角互补.20.①②⑤【分析】根据平行线的判定定理对各小题进行逐一判断即可【详解】解:①∵∠1=∠B∴AB∥CD故本小题正确;②∵∠2=∠5∴AB∥CD故本小题正确;③∵∠3=∠4∴AD∥BC故本小题错误;④∵∠1解析:①②⑤【分析】根据平行线的判定定理对各小题进行逐一判断即可【详解】解:①∵∠1=∠B,∴AB∥CD,故本小题正确;②∵∠2=∠5,∴AB∥CD,故本小题正确;③∵∠3=∠4,∴AD∥BC,故本小题错误;④∵∠1=∠D,∴AD∥BC,故本小题错误;⑤∵∠B+∠BCD=180°,∴AB∥CD,故本小题正确.故答案为①②⑤.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.三、解答题<< 21.(1)见解析;(2)见解析;(3)见解析;(4)1;(5)PH PE OE【分析】(1)(2)根据题意画垂线;(3)根据题意画平行线;(4)根据点到直线距离的定义计算;(5)根据直角三角形的直角边小于斜边可以证得.【详解】∠的边OB上的一点.如图,点P是AOB(1)过点P画OB的垂线,交OA于点E;(2)过点P画OA的垂线,垂足为H;(3)过点P画OA的平行线PC;(4)由题意PH即点P到OA的距离,且PH=1,∴答案为1;(5)∵在RT△PHE中,PH是直角边,PE是斜边,∴PH<PE,同理在RT△POE中,PE是直角边,OE是斜边,∴PE<OE,∴线段PE,PH,OE的大小关系是PH PE OE<<.故答案为PH<PE<OE.【点睛】本题考查垂线和平行线的画法、垂线的应用及直角三角形的性质,熟练掌握“垂线段最短”的定理是解题关键.22.(1)DE∥BC;(2)72°【分析】(1)先根据已知条件得出∠EFC=∠ADC,故AD∥EF,由平行线的性质得∠DEF=∠ADE,再由∠DEF=∠B,可知∠B=∠ADE,故可得出结论.(2)依据DE平分∠ADC,∠BDC=3∠B,即可得到∠ADC的度数,再根据平行线的性质,即可得出∠EFC的度数.【详解】解:(1)DE∥BC.理由:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,又∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC.(2)∵DE平分∠ADC,∴∠ADE=∠CDE,又∵DE∥BC,∴∠ADE=∠B,∵∠BDC=3∠B,∴∠BDC=3∠ADE=3∠CDE,又∵∠BDC+∠ADC=180°,3∠ADE+2∠ADE=180°,解得∠ADE=36°,∴∠ADF=72°,又∵AD∥EF,∴∠EFC=∠ADC=72°.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行是解答此题的关键.23.∠AED+∠D=180°,理由见解析【分析】根据平行线的判定定理得出CE∥FG,根据平行线的性质得出∠C=∠FGD,求出∠FGD=∠EFG,根据平行线的判定得出AB∥CD,再根据平行线的性质得出即可.【详解】解:∠AED+∠D=180°,理由是:∵∠CED=∠GHD,∴CE∥FG,∴∠C=∠FGD,∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°.【点睛】本题考查了平行线的性质和判定定理,能灵活运用平行线的性质和判定定理进行推理是解此题的关键.24.(1)∠BOD ,∠BOC 或∠AOD ;(2)∠BOD =35°;(3)∠BOD =36°.【分析】(1)根据对顶角、邻补角的意义,结合图形即可得出答案;(2)根据角平分线的意义和对顶角的性质,即可得出答案;(3)根据平角、按比例分配,角平分线的意义、对顶角性质可得答案.【详解】(1)根据对顶角、邻补角的意义得:∠AOC 的对顶角为∠BOD ,∠AOC 的邻补角为∠BOC 或∠AOD ,故答案为:∠BOD ,∠BOC 或∠AOD(2)∵OA 平分∠EOC.∠EOC =70°,∴∠AOE =∠AOC 12=∠EOC =35°, ∵∠AOC =∠BOD ,∴∠BOD =35°,(3)∵∠EOC :∠EOD =2:3,∠EOC+∠EOD =180°,∴∠EOC =180°×25=72°,∠EOD =180°×35=108°, ∵OA 平分∠EOC , ∴∠AOE =∠AOC 12=∠EOC =36°, 又∵∠AOC =∠BOD ,∴∠BOD =36°.【点睛】本题考查对顶角、邻补角、角平分线、平角的意义和性质,通过图形具体理解这些角的意义是正确计算的前提.25.(1) 155︒;(2)平分,见解析【分析】(1)由角平分线求出∠AOD=12∠AOC=25︒,利用邻补角的性质求出BOD ∠的度数; (2)根据角度的和差计算求出∠BOE 和∠COE 的度数,即可得到结论.【详解】 (1)∵50AOC ∠=︒,OD 平分AOC ∠,∴∠AOD=12∠AOC=25︒, ∴BOD ∠=180155AOD ︒-∠=︒;(2)∵90DOE ∠=︒,∠AOD=25︒,∴∠BOE=18065AOD DOE ︒-∠-∠=︒,∵OD 平分AOC ∠,∴∠COD=∠AOD=25︒,∴∠COE=9065COD ︒-∠=︒,∴∠BOE=∠COE ,∴OE 平分BOC ∠.【点睛】此题考查几何图形中角度的计算,角平分线的性质,平角的性质,邻补角的性质,掌握图形中各角之间的数量关系是解题的关键.26.(1)见解析;(2)见解析.【分析】(1)此题是一道开放题,可举的例子多,但只举一例就可.如果a+b >0,那么ab >0;所举的反例就是,a 、b 一个为正数,一个为负数,且正数的绝对值大于负数.(2)可利用平方差公式找这样的无理数,比如【详解】解:(1)取a=2,b=-1,则a+b=1>0,但ab=-2<0.所以此命题是假命题.(2)取,,a 、b 均为无理数.但a+b=2是有理数,所以此命题是假命题.【点睛】本题主要锻炼了学生的逆向思维.在证明几何题的过程中,有时需从反例上先去判断,然后再证明.。

2017-2018学年人教版七年级数学下册1-6单元测试(含答案)

2017-2018学年人教版七年级数学下册1-6单元测试(含答案)

单元测试(一)相交线与平行线(时间:40分钟满分:100分)一、选择题(题号12345678910答案1.下列各组角中,∠1与∠2互为对顶角的是()2.如图,OB⊥OD,OC⊥OA,∠BOC=32°,那么∠AOD等于()A.148°B.132°C.128°D.90°3.如图,直线AB∥CD,AB,CD与直线BE分别交于点B,E,∠B=70°,则∠BED=()A.110°B.70°C.60°D.50°4.下面的每组图形中,左图平移后可以得到右图的是()5.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.54°C.56°D.66°6.如图,描述同位角、内错角、同旁内角关系不正确的是()A.∠1与∠4是同位角B.∠2与∠3是内错角C.∠3与∠4是同旁内角D.∠2与∠4是同旁内角7.如图,下列条件,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠1=∠4C.∠2+∠3=180°D.∠3=∠58.下列命题中,真命题的个数是()①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.A.3 B.2 C.1 D.09.如图所示,下列说法中错误的是()A.∵∠A+∠ADC=180°,∴AB∥CD B.∵AB∥CD,∴∠ABC+∠C=180°C.∵AD∥BC,∴∠3=∠4 D.∵∠1=∠2,∴AD∥BC10.如图,把一张长方形纸片ABCD沿EG折叠后,点A,B分别落在A′,B′的位置上,EA′与BC交于点F.已知∠1=130°,则∠2的度数是()A.50°B.80°C.65°D.40°二、填空题(本大题共6小题,每小题4分,共24分)11.命题“同旁内角互补,两直线平行”写成“如果……那么……”的形式是________________________.它是________命题(填“真”或“假”).12.自来水公司为某小区A改造供水系统,如图,沿路线AO铺设管道和BO主管道衔接(AO⊥BO),路线最短,工程造价最低,根据是____________.13.如图,直线AB,CD,EF相交于点O,∠AOF=3∠BOF,∠AOC=90°,那么∠COE =____________.14.如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=____________.15.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A,B 两岛的视角∠ACB=____________.16.如图,a∥b,PA⊥PB,∠1=35°,则∠2的度数是____________.三、解答题(共46分)17.(6分)填写推理理由:已知:如图,D,F,E分别是BC,AC,AB上的点,DF∥AB,DE∥AC,试说明∠EDF =∠A.解:∵DF∥AB(已知),∴∠A+∠AFD=180°(________________________________).∵DE∥AC(已知),∴∠AFD+∠EDF=180°(________________________________).∴∠A=∠EDF(________________________).18.(10分)如图,直线CD与直线AB相交于点C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.19.(8分)(1)如图,点M是三角形ABC中AB的中点,经平移后,点M落在M′处.请在正方形网格中画出三角形ABC平移后的图形三角形A′B′C′;(2)若图中每个小网格的边长为1,则三角形ABC的面积为________.20.(10分)如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH.(1)求证:AB∥CD;(2)求∠KOH的度数.21.(12分)(1)如图1,已知任意三角形ABC,过点C作DE∥AB,求证:∠DCA=∠A;(2)如图1,求证:三角形ABC的三个内角(即∠A,∠B,∠ACB)之和等于180°;(3)如图2,求证:∠AGF=∠AEF+∠F;(4)如图3,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=150°,求∠F的度数.单元测试(二) 实数(时间:40分钟 满分:100分)一、选择题(题号 1 2 3 4 5 6 7 8 9 10 答案1.9的平方根是()A .±3B .-3C .3D .± 32.下列说法不正确的是()A .8的立方根是2B .-8的立方根是-2C .0的立方根是0D .125的立方根是±5 3.下列运算中,正确的是()A .252-1=24B .914=312C .81=±9D .-(-13)2=-134.在实数3.141 59,364,2,1.010 010 001,4.21··,π,227中,无理数有()A .1个B .2个C .3个D .4个5.如图,点P 在数轴上表示的数可能是()A .-2.3B .- 3C . 3D .- 56.有下列说法:①-3是81的平方根;②-7是(-7)2的算术平方根;③25的平方根是±5;④-9的平方根是±3;⑤0没有算术平方根.其中,正确的有()A .0个B .1个C .2个D .3个 7.下列结论正确的是()A .数轴上任一点都表示唯一的有理数B .数轴上任一点都表示唯一的无理数C .两个无理数之和一定是无理数D .数轴上任意两点之间还有无数个点8.在0到20的自然数中,立方根是有理数的共有()A .1个B .2个C .3个D .4个 9.如果m =7-1,那么m 的取值范围是() A .0<m<1 B .1<m<2 C .2<m<3 D .3<m<410.规定用符号[m]表示一个实数m 的整数部分,例如:[23]=0,[3.14]=3.按此规定[-10+1]的值为()A .-4B .-3C .-2D .1 二、填空题(本大题共6小题,每小题4分,共24分)11.19的算术平方根是________. 12.下列四个实数:-5,0,π,3中,最大的是________.13.3-2的相反数是________,绝对值是________.14.小红做了一个棱长为5 cm 的正方体盒子,小明说:“我做的盒子的体积比你的大218 cm 3.”则小明做的盒子的棱长为________cm . 15.比较大小:5-12________58. 16.如图,已知直径为1个单位长度的圆形纸片上的点A 与数轴上表示-1的点重合.若将该圆形纸片沿数轴顺时针滚动一周(无滑动)后点A 与数轴上的点A′重合,则点A′表示的数为____________.三、解答题(共46分)17.(6分)求下列各式的值:(1)-1625; (2)±0.016 9; (3)0.09-3-8.18.(6分)将下列各数填入相应的集合内. -7,0.32,12,0,8,12,-364,π,0.303 003…. (1)有理数集合:{ …}; (2)无理数集合:{ …}; (3)负实数集合:{ …}. 19.(12分)计算:(1)|-2|+(-3)2-4;(2)2+32-52;(3)6(16-6);(4)||3-2+||3-2-||2-1.20.(10分)已知一个正方体的体积是1 000 cm 3,现在要在它的8个角上分别截去8个大小相同的小正方体,使得截去后余下的体积是488 cm 3,问截得的每个小正方体的棱长是多少?21.(12分)借助于计算器计算下列各题:(1)11-2; (2) 1 111-22;(3)111 111-222; (4)11 111 111-2 222. 仔细观察上面几道题及其计算结果,你能发现什么规律?并用发现的这一规律直接写出下面的结果:=__________________.单元测试(三)平面直角坐标系(时间:40分钟满分:100分)一、选择题(本大题共10小题,每小题3分,共30分)题号12345678910答案1.在平面直角坐标系中,点(-5,0.1)在()A.第一象限B.第二象限C.第三象限D.第四象限2.如图,在平面直角坐标系中,点M的坐标为()A.(3,-2) B.(-2,3) C.(-3,2) D.(2,-3)3.在平面直角坐标系中,第四象限的点M到横轴的距离为28,到纵轴的距离为6,则点M 的坐标为()A.(6,-28) B.(-6,28) C.(28,-6) D.(-28,-6)4.在平面直角坐标系中,若一图形各点的纵坐标不变,横坐标分别减5,则图形与原图形相比()A.向右平移了5个单位长度B.向左平移了5个单位长度C.向上平移了5个单位长度D.向下平移了5个单位长度5.若y轴上的点A到x轴的距离为3,则点A的坐标为()A.(3,0) B.(3,0)或(-3,0) C.(0,3)或(0,-3) D.(0,3)6.如图,在平面直角坐标系中,三角形ABC的顶点都在方格纸的格点上,如果将三角形ABC先向右平移4个单位长度,再向下平移1个单位长度,得到三角形A1B1C1,那么点A 的对应点A1的坐标为()A.(4,3) B.(2,4) C.(3,1) D.(2,5)7.如图,小明家相对于学校的位置,下列描述最正确的是()A.在距离学校300米处B.在学校的西北方向C.在西北方向300米处D.在学校西北方向300米处8.如图是天安门周围的景点分布示意图.若以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,表示电报大楼的点的坐标为(-4,0),表示王府井的点的坐标为(3,2),则表示博物馆的点的坐标是()A.(1,0) B.(2,0) C.(1,-2) D.(1,-1)9.若以A(-0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限10.定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1,l2的距离分别为a,b,则称有序非负实数对(a,b)是点M的“距离坐标”.根据上述定义,距离坐标为(2,3)的点的个数是()A.4 B.3 C.2 D.1二、填空题(本大题共6小题,每小题4分,共24分)11.如果电影院中“5排7号”记作(5,7),那么(3,4)表示的意义是____________________.12.在平面直角坐标系中,将点A向右平移了3个单位长度得到点B(-2,1),则点A的坐标为____________.13.观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红“马”走完“马3进四”后到达B点,则表示B点位置的数对是____________.14.如图,把图1中的圆A经过平移得到圆O(如图2),如果图1中圆A上一点P的坐标为(m,n),那么平移后在图2中的对应点P′的坐标为____________.15.已知AB∥x轴,A点的坐标为(-3,2),并且AB=4,则B点的坐标为____________.16.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为8的正方形内部的整点的个数为________.三、解答题(共46分)17.(6分)图中标明了小英家附近的一些地方.(1)写出汽车站和消防站的坐标;(2)某星期日早晨,小英同学从家里出发,沿(3,2),(3,-1),(1,-1),(-1,-2),(-3,-1)的路线转了一下,又回到了家里,写出路上她经过的地方.18.(10分)(1)写出如图1所示的平面直角坐标系中A,B,C,D四个点的坐标,并分别指出它们所在的象限;(2)如图2是小明家(图中点O)和学校所在地的简单地图,已知OA=2 cm,OB=2.5 cm,OP=4 cm,C为OP的中点.①请用距离和方位角表示图中商场、学校、公园、停车场分别相对于小明家的位置;②如果学校距离小明家400 m,那么商场和停车场分别距离小明家多少米?图1 图219.(8分)已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),把三角形ABO向下平移3个单位长度,再向右平移2个单位长度后得三角形DEF.(1)直接写出A,B,O三个对应点D,E,F的坐标;(2)求三角形DEF的面积.20.(10分)小明给如图建立平面直角坐标系,使医院的坐标为(0,0),火车站的坐标为(2,2).(1)写出体育场、文化宫、超市、宾馆、市场的坐标;(2)分别指出(1)中场所在第几象限?(3)同学小丽针对这幅图也建立了一个直角坐标系,可是她得到的同一场所的坐标和小明的不一样,是小丽做错了吗?21.(12分)如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3,4-b)与点Q(2a,2b-3)也是通过上述变换得到的对应点,求a,b的值.单元测试(四) 二元一次方程组 (时间:40分钟 满分:100分)一、选择题(本大题共10小题,每小题3分,共30分)1.下列不属于二元一次方程组的是()A .⎩⎪⎨⎪⎧x +y =3x -y =1B .⎩⎪⎨⎪⎧x =3x -y =1C .⎩⎪⎨⎪⎧x +y =3y =1D .⎩⎪⎨⎪⎧xy =3x -y =12.利用代入消元法解方程组⎩⎪⎨⎪⎧2x +3y =6,①5x -3y =2,②下列做法正确的是()A .由①得x =6+3y2B .由①得y =6-2x3C .由②得y =-2+3x5D .由②得y =5x +233.方程组⎩⎪⎨⎪⎧x -y =2,2x +y =4的解是()A .⎩⎪⎨⎪⎧x =1y =2 B .⎩⎪⎨⎪⎧x =3y =1C .⎩⎪⎨⎪⎧x =0y =-2D .⎩⎪⎨⎪⎧x =2y =04.若-2a m b 4与5a n +2b 2m +n 可以合并成一项,则mn 的值是()A .2B .0C .-1D .15.以二元一次方程组⎩⎪⎨⎪⎧x +3y =7,y -x =1的解为坐标的点(x ,y)在平面直角坐标系的()A .第一象限B .第二象限C .第三象限D .第四象限6.由方程组⎩⎪⎨⎪⎧2x +m =1,y -3=m 可写出x 与y 的关系是()A .2x +y =4B .2x -y =4C .2x +y =-4D .2x -y =-47.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有()A .6种B .7种C .8种D .9种8.小亮解方程组⎩⎪⎨⎪⎧2x +y =●,2x -y =12的解为⎩⎪⎨⎪⎧x =5,y =★,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为()A .⎩⎪⎨⎪⎧●=8★=2B .⎩⎪⎨⎪⎧●=8★=-2 C .⎩⎪⎨⎪⎧●=-8★=2 D .⎩⎪⎨⎪⎧●=-8★=-29.若方程组⎩⎪⎨⎪⎧3x +5y =m +2,2x +3y =m 的解x 与y 的和为0,则m 的值为()A .-2B .0C .2D .410.内江至成都全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇.相遇时,小汽车比客车多行驶20千米.设小汽车和客车的平均速度分别为x 千米/小时和y 千米/小时,则下列方程组正确的是()A .⎩⎨⎧76x +76y =17076x -76y =20B .⎩⎪⎨⎪⎧x -y =2076x +76y =170C .⎩⎪⎨⎪⎧x +y =2076x -76y =170D .⎩⎪⎨⎪⎧x +y =2076x +76y =170二、填空题(本大题共6小题,每小题4分,共24分)11.若一个二元一次方程组的解为⎩⎪⎨⎪⎧x =18,y =-10,则这个方程组可以是______________________.12.用加减消元法解方程组⎩⎪⎨⎪⎧3x +y =-1,①4x +2y =1,②由①×2-②得______________.13.若x 3m -2-2y n -1=5是二元一次方程,则m +n =________.14.在代数式ax 2+bx +c 中,x 分别取0,1,-1时,其值分别为-5,-6,0,则a =________,b =________,c =________.15.若|x -2y +1|+(2x -y -5)2=0,则x +y 的值为________.16.有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57人.绵阳市仙海湖某船家有3艘大船与6艘小船,一次可以载乘客的人数为________.三、解答题(共46分)17.(8分)解下列方程组:(1)⎩⎪⎨⎪⎧x -2y =1,3x -5y =8; (2)⎩⎪⎨⎪⎧x 2-y +23=-2,3x +5y =-1.18.(8分)已知⎩⎪⎨⎪⎧x =2,y =-3是关于x ,y 的二元一次方程3x =y +a 的解,求a(a -1)的值.19.(8分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =5,4ax +5by =-22与⎩⎪⎨⎪⎧2x -y =1,ax -by -8=0有相同的解,求a ,b的值.20.(10分)某商场投入13 800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)(2)全部售完500箱矿泉水,该商场共获得利润多少元?21.(12分)为庆祝“六一”儿童节,某市中小学统一组织文艺会演,甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装参加演出,下面如果两所学校分别单独购买服装,一共应付5 000元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱? (2)甲、乙两校各有多少学生准备参加演出?(3)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请为两校设计一种省钱的购买服装方案.单元测试(五) 不等式与不等式组 (时间:40分钟 满分:100分)一、选择题(1. 1.其中是不等式的有() A .2个 B .3个 C .4个 D .5个 2.不等式3x ≤2(x -1)的解集为()A .x ≤-2B .x ≥-2C .x ≤-1D .x ≥-13.若m>n ,则下列不等式不一定成立的是()A .m +2>n +2B .2m>2nC .m 2>n 2D .m 2>n 24.下列说法中正确的是()A .y =3是不等式y +4<5的解B .y =2是不等式3y ≥6的解C .不等式3y <11的解是y =3D .y =3是不等式3y <11的解集5.不等式组⎩⎪⎨⎪⎧2x -1<3,-x 2≤1的整数解有()A .1个B .2个C .3个D .4个6.若代数式14a 的值不大于12a +1的值,则a 应满足()A .a ≥-4B .a ≤-4C .a >4D .a ≤47.小丽同学准备用自己节省的零花钱购买一部手机,她已存有750元,并计划从本月起每月节省30元,直到她至少存有1 080元,设x 个月后小丽至少有1 080元,则可列计算月数的不等式为()A .30x +750>1 080B .30x -750≥1 080C .30x -750≤1 080D .30x +750≥1 0808.已知点P(2a -1,1-a)在第一象限,则a 的取值范围在数轴上表示正确的是()9.若不等式组⎩⎪⎨⎪⎧1+x>a ,2x -4≤0有解,则a 的取值范围是()A .a ≤3B .a<3C .a<2D .a ≤210.某种毛巾原零售价每条6元,凡一次性购买两条以上(含两条),商家推出两种优惠销售办法,第一种:“两条按原价,其余按七折优惠”;第二种:“全部按原价的八折优惠”,若想在购买相同数量的情况下,使第一种办法比第二种办法得到的优惠多,最少要购买毛巾()A .7条B .6条C .5条D .4条 二、填空题(本大题共6小题,每小题4分,共24分)11.用不等式表示,比x 的5倍大1的数不小于x 的一半与4的差:________________. 12.数轴上实数b 的对应点的位置如图所示,比较大小:12b +1________0(用“<”或“>”填空).13.不等式组⎩⎪⎨⎪⎧1-x >0,3x >2x -4的非负整数解是____________.14.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元,设这批手表有x 块,则根据题意可列不等式________________.15.如果不等式组⎩⎪⎨⎪⎧x -1>0,x -a <0无解,那么a 的取值范围是____________.16.定义新运算,对于任意实数a ,b 都有:a ⊕b =a(a -b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2-5)+1=2×(-3)+1=-5,那么不等式3⊕x <13的解集为____________. 三、解答题(共46分)17.(10分)(1)解不等式:5(x -2)+8<6(x -1)+7;(2)解不等式组⎩⎪⎨⎪⎧x +13>0,①2(x +5)≥6(x -1),②并在数轴上表示其解集.18.(6分)若代数式3(2k +5)2的值不大于代数式5k +1的值,求k 的取值范围.19.(8分)已知实数a 是不等于3的常数,解不等式组⎩⎪⎨⎪⎧-2x +3≥-3,①12(x -2a )+12x<0,②并依据a 的取值情况写出其解集.20.(10分)某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满,已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.21.(12分)学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑3 000元,购买1台学习机800元.(1)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168 000元,则购买平板电脑最多多少台?(2)在(1)的条件下,购买学习机的台数不超过平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?单元测试(六)数据的收集、整理与描述(时间:40分钟满分:100分)一、选择题(本大题共10小题,每小题3分,共30分)题号12345678910答案1.下列调查适合作抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查2.下列调查,样本具有代表性的是()A.了解全校同学对课程的喜欢情况,对某班同学进行调查B.了解某小区居民的防火意识,对你们班同学进行调查C.了解商场的平均日营业额,选在周末进行调查D.了解观众对所看电影的评价情况,对座位号是奇数号的观众进行调查3.某市2018年中考考生约为4万人,从中抽取2 000名考生的数学成绩进行分析.在这个问题中,样本是指()A.2 000 B.2 000名考生的数学成绩C.4万名考生的数学成绩D.2 000名考生4.天籁音乐行出售三种音乐CD,即古典音乐、流行音乐、民族音乐,为了表示这三种唱片的销售量占总销售量的百分比,应该用()A.扇形统计图B.折线统计图C.条形统计图D.以上都可以5.下面的折线图描述了某地某日的气温变化情况.根据图中信息,下列说法错误的是()A.4:00气温最低B.6:00气温为24 ℃C.14:00气温最高D.气温是30 ℃的时刻为16:006.某学校教研组对七年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图.据此统计图估计该校七年级支持“分组合作学习”方式的学生数约为(含非常喜欢和喜欢两种情况)()A.216 B.252 C.288 D.324第6题图7.某校图书管理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图所示的不完整的统计图,已知甲类书有30本,则丙类书的本数是()A.80 B.90 C.144 D.2008.对某班最近一次数学测试成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如图所示的频数分布直方图,根据直方图提供的信息,在这次测试中,成绩为A等(80分以上,不含80分)的百分率为()A.24% B.40% C.42% D.50%第8题图9.某校公布了反映该校各年级学生体育达标情况的两张统计图,该校七、八、九三个年级共有学生800人.甲、乙、丙三个同学看了这两张统计图后,甲说:“七年级的体育达标率最高.”乙说:“八年级共有学生264人.”丙说:“九年级的体育达标率最高.”甲、乙、丙三个同学中,说法正确的是()A.甲和乙B.乙和丙C.甲和丙D.甲、乙、丙10.小敏为了了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).根据以上信息,以下结论错误的是()A.被抽取的天数为50天B.空气轻微污染的天数所占比例为10%C.扇形统计图中表示“优”的扇形的圆心角度数57.6°D.估计该市这一年(365天)达到优和良的总天数不多于290天二、填空题(本大题共6小题,每小题4分,共24分)11.如果你是班长,想组织一次春游活动,用问卷的形式向全班同学进行调查,你设计的调查内容是(请列举一条)____________________________.12.某中学为了了解本校2 000名学生所需运动服尺码,在全校范围内随机抽取100名学生进行调查,这次抽样调查的样本容量是________.13.在一次数学测试中,将某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组占全班总数的20%,则第六组的频数是________.14.学校为七年级学生订制校服,校服型号有小号、中号、大号、特大号四种.随机抽取了100名学生调查他们的身高,得到身高频数分布表如下:型号身高(x/cm) 频数小号145≤x<155 22中号155≤x<165 45大号165≤x<175 28特大号175≤x<185 5已知该校七年级学生有800名,那么中号校服应订制________套.15.某校在一次期末考试中,随机抽取八年级30名学生的数学成绩进行分析,其中3名学生的数学成绩达108分以上,据此估计该校八年级630名学生中期末考试数学成绩达108分以上的学生约有________名.16.某记者抽样调查了某校一些学生假期用于读书的时间(单位:分钟)后,绘制了频数分布直方图,从左到右的前5个长方形相对应的频数占被调查学生总人数的百分比之和为90%,最后一组的频数是15,则此次抽样调查的人数为________人.(注:横轴上每组数据包含最小值不包含最大值)三、解答题(共46分)17.(6分)下面这几个抽样调查选取样本的方法是否合适?并说明理由.(1)为调查全校学生对购买正版书籍、唱片和软件的支持率,在全校所有的班级中任意抽取8个班级,调查这8个班所有学生对购买正版书籍、唱片和软件的支持率;(2)电视台为调查正在播出的某电视节目的收视率情况,调查全国各省所有用户.18.(8分)如图,该折线图是反映小明家在某一周内每天的购菜所需费用情况.(1)在星期________购菜金额最小;(2)小明家在这一个星期中平均每天购菜多少元?(精确到1元)19.(10分)2017年8月8日,九寨沟发生了里氏7.0级地震,某中学组织了献爱心捐款活动,该校数学兴趣小组对本校学生献爱心捐款额做了一次随机抽样调查,并绘制了不完整的频数分布表和频数分布直方图(每组含前一个边界值,不含后一个边界值).捐款额(元) 频数百分比5≤x<10 5 10%10≤x<15 a 20%15≤x<20 15 30%20≤x<25 14 b25≤x<30 6 12%总计100%(1)填空:a=________,b=________;(2)补全频数分布直方图;(3)该校共有1 600名学生,估计这次活动中爱心捐款额不低于20元的学生有多少人?20.(10分)我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有________人;(2)请将统计图2补充完整;(3)统计图1中B项目对应的扇形的圆心角是________度;(4)已知该校共有学生3 600人,请根据调查结果估计该校喜欢健美操的学生人数.21.(12分)某教研机构为了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查.依据相关数据绘制成以下不完整的统计图表,请根据图表中的信息解答下列问题:类别人数占总人数比例重视 a 0.3一般57 0.38不重视 b c说不清楚9 0.06(1)求样本容量及表格中a,b,c的值,并补全统计图;(2)若该校共有初中生2 300名,请估计该校“不重视阅读数学教科书”的初中生人数;(3)①根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;②如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?单元测试(一) 相交线与平行线1.A 2.A 3.B 4.D 5.C 6.D 7.A 8.D 9.C 10.B11.如果同旁内角互补,那么这两条直线平行 真 12.垂线段最短 13.45° 14.46° 15.70° 16.55°17.两直线平行,同旁内角互补 两直线平行,同旁内角互补 同角的补角相等 18.(1)图略.(2)图略.(3)∠PQC =60°.理由如下:∵PQ ∥CD ,∴∠DCB +∠PQC =180°.∵∠DCB =120°,∴∠PQC =60°. 19.(1)略.(2)520.(1)证明:∵∠1+∠2=180°,∴AB ∥CD.(2)∵AB ∥CD ,∠3=100°,∴∠GOD =∠3=100°.∵∠GOD +∠DOH =180°,∴∠DOH =80°.又∵OK 平分∠DOH ,∴∠KOH =12∠DOH =40°.21.(1)证明:∵DE ∥AB ,∴∠DCA =∠A.(2)证明:在三角形ABC 中,∵DE ∥AB ,∴∠A =∠ACD ,∠B =∠BCE(内错角相等).∵∠ACD +∠BCA +∠BCE =180°,∴∠A +∠B +∠ACB =180°,即三角形的内角和为180°.(3)证明:∵∠AGF +∠FGE =180°,由(2)知,∠GEF +∠EFG +∠FGE =180°,∴∠AGF =180°-∠EGF =∠AEF +∠F.(4)∵AB ∥CD ,∠CDE =119°,∴∠DEB =119°,∠AED =61°.∵GF 交∠DEB 的平分线EF 于点F ,∴∠DEF =59.5°.∴∠AEF =120.5°.∵∠AGF =150°,由(3)知,∠AGF =∠AEF +∠F ,∴∠F =150°-120.5°=29.5°.单元测试(二) 实数1.A 2.D 3.D 4.B 5.B 6.C 7.D 8.C 9.B 10.C 11.13 12.π 13.2-3 2-3 14.7 15.< 16.π-1 17.(1)-45.(2)±0.13.(3)2.3.18.(1)-7,0.32,12,0,-364 (2)8,12,π,0.303 003… (3)-7,-364 19.(1)原式=2+9-2=9. (2)原式=(1+3-5)2=- 2.(3)原式=6×16-(6)2=1-6=-5.(4)原式=3-2+2-3-2+1=3-2 2.20.设截得的每个小正方体的棱长为x cm .依题意,得1 000-8x 3=488.∴8x 3=512.∴x =4.答:截得的每个小正方体的棱长是4 cm .21.(1)11-2=3.(2) 1 111-22=33.(3)111 111-222=333;(4)11 111 111-2 222=3 333.用字母表示这些等式的规律:(n 为正整数),即发现规律:根号内被开方数是2n 个数字1和n 个数字2的差,结果为n 个数字3.单元测试(三) 平面直角坐标系1.B 2.C 3.A 4.B 5.C 6.D 7.D 8.D 9.C 10.A 11.3排4号 12.(-5,1) 13.(4,7) 14.(m +2,n -1) 15.(1,2)或(-7,2) 16.49 16.49 17.(1)汽车站(1,1),消防站(2,-2).(2)经过的地方:游乐场,公园,姥姥家,宠物店,邮局.18.(1)A(2,2),在第一象限;B(0,-4),在y 轴上;C(-4,3),在第二象限;D(-3,-4),在第三象限.(2)①商场:北偏西30°,2.5 cm ;学校:北偏东45°,2 cm ;公园:南偏东60°,2 cm ;停车场:南偏东60°,4 cm .②商场距离小明家500米,停车场距离小明家800米.19.(1)D(3,0),E(5,-2),F(2,-3).(2)三角形DEF 的面积=3×3-12×1×3-12×1×3-12×2×2=4. 20.(1)体育场的坐标为(-2,5),文化宫的坐标为(-1,3),超市的坐标为(4,-1),宾馆的坐标为(4,4),市场的坐标为(6,5).(2)体育场、文化宫在第二象限,市场、宾馆在第一象限,超市在第四象限.(3)不是,因为对于同一幅图,直角坐标系的原点、坐标轴方向不同,得到的点的坐标也就不一样.21.(1)A(2,3)与D(-2,-3);B(1,2)与E(-1,-2);C(3,1)与F(-3,-1).对应点的坐标的特征:横坐标互为相反数,纵坐标互为相反数.(2)由(1)可得a +3=-2a ,4-b =-(2b -3).解得a =-1,b =-1.单元测试(四) 二元一次方程组1.D 2.B 3.D 4.B 5.A 6.A 7.A 8.B 9.C 10.A11.答案不唯一,如⎩⎪⎨⎪⎧x =18x +y =8 12.2x =-3 13.314.2 -3 -5 15.6 16.9617.(1)⎩⎪⎨⎪⎧x =11,y =5.(2)⎩⎪⎨⎪⎧x =-2,y =1.18.∵⎩⎪⎨⎪⎧x =2,y =-3是关于x ,y 的二元一次方程3x =y +a 的解,∴3×2=-3+a.解得a =9.∴a(a-1)=9×(9-1)=72.19.由题意可将x +y =5与2x -y =1组成方程组⎩⎪⎨⎪⎧x +y =5,2x -y =1.解得⎩⎪⎨⎪⎧x =2,y =3.把⎩⎪⎨⎪⎧x =2,y =3代入4ax+5by =-22,得8a +15b =-22.① 把⎩⎪⎨⎪⎧x =2,y =3代入ax -by -8=0,得2a -3b -8=0.② ①与②组成方程组,得⎩⎪⎨⎪⎧8a +15b =-22,2a -3b -8=0.解得⎩⎪⎨⎪⎧a =1,b =-2.20.(1)设商场购进甲种矿泉水x 箱,购进乙种矿泉水y 箱,由题意得⎩⎪⎨⎪⎧x +y =500,24x +36y =13 800.解得⎩⎪⎨⎪⎧x =350,y =150.答:商场购进甲种矿泉水350箱,购进乙种矿泉水150箱.(2)350×(33-24)+150×(48-36)=3 150+1 800=4 950(元).答:该商场共获得利润4 950元. 21.(1)5 000-92×40=1 320(元).答:两所学校联合起来购买服装比各自购买服装共可以节省1 320元. (2)设甲、乙两所学校各有x 名、y 名学生准备参加演出,由题意,得⎩⎪⎨⎪⎧x +y =92,50x +60y =5 000.解得⎩⎪⎨⎪⎧x =52,y =40.答:甲、乙两校各有52名、40名学生准备参加演出. (3)∵甲校有10人不能参加演出,∴甲校参加演出的人数为52-10=42(人).若两校联合购买服装,则需要50×(42+40)=4 100(元),此时比各自购买服装可以节约(42+40)×60-4 100=820(元). 但如果两校联合购买91套服装,只需40×91=3 640(元), 此时又比联合购买服装可节约4 100-3 640=460(元),因此,最省钱的购买服装方案是两校联合购买91套服装.(即比实际人数多购9套)单元测试(五) 不等式与不等式组1.C 2.A 3.D 4.B 5.D 6.A 7.D 8.C 9.B 10.A11.5x +1≥12x -4 12.> 13.0 14.550×60+500(x -60)>55 000 15.a ≤1 16.x >-117.(1)去括号,得5x -10+8<6x -6+7.移项,得5x -6x <10-8-6+7.合并同类项,得-x <3.系数化为1,得x>-3.(2)解不等式①,得x>-1.解不等式②,得x ≤4.∴不等式组的解集为-1<x ≤4.解集在数轴上表示为:18.由题意,得3(2k +5)2≤5k +1.解得k ≥134.19.解不等式①,得x ≤3.解不等式②,得x<a.∵a 是不等于3的常数,∴当a>3时,不等式组的解集为x ≤3;当a<3时,不等式组的解集为x<a.20.(1)设每辆小客车的乘客座位数是x 个,每辆大客车的乘客座位数是y 个,根据题意,得⎩⎪⎨⎪⎧y -x =17,6y +5x =300.解得⎩⎪⎨⎪⎧x =18,y =35.答:每辆小客车的乘客座位数是18个,每辆大客车的乘客座位数是35个.(2)设租用a 辆小客车,则由题意得18a +35(11-a)≥300+30,解得a ≤3417.∴符合条件的a 的最大整数值为3.。

七年级数学下册第一章单元测试题(3套)和答案

七年级数学下册第一章单元测试题(3套)和答案

北师大版七年级数学下册第一章 整式的乘除一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -,ab32中,单项式有 个,多项式有 个。

2.单项式z y x 425-的系数是 ,次数是 。

3.多项式5134+-ab ab 有 项,它们分别是 。

4. ⑴ =⋅52x x 。

⑵ ()=43y 。

⑶ ()=322ba 。

⑷ ()=-425y x 。

⑸ =÷39a a 。

⑹=⨯⨯-024510 。

5.⑴=⎪⎭⎫⎝⎛-⋅⎪⎭⎫ ⎝⎛325631mn mn 。

新北师版初中数学七年级下册第一章检测卷和解析答案

新北师版初中数学七年级下册第一章检测卷和解析答案

第一章检测卷时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.计算x3·x3的结果是( )A.2x3 B.2x6C.x6 D.x92.根据北京小客车指标办的通报,截至2017年6月8日24时,个人普通小客车指标的基准中签几率继续创新低,约为0.00122,相当于817人抢一个指标,小客车指标中签难度继续加大.将0.00122用科学记数法表示应为( )A.1.22×10-5 B.122×10-3C.1.22×10-3 D.1.22×10-23.下列计算中,能用平方差公式计算的是( )A.(x+3)(x-2) B.(-1-3x)(1+3x)C.(a2+b)(a2-b) D.(3x+2)(2x-3)4.下列各式计算正确的是( )A.a+2a2=3a3 B.(a+b)2=a2+ab+b2C.2(a-b)=2a-2b D.(2ab)2÷ab=2ab(ab≠0)5.若(y+3)(y-2)=y2+my+n,则m,n的值分别为( )A.m=5,n=6 B.m=1,n=-6C.m=1,n=6 D.m=5,n=-66.计算(8a2b3-2a3b2+ab)÷ab的结果是( )A.8ab2-2a2b+1 B.8ab2-2a2bC.8a2b2-2a2b+1 D.8a2b-2a2b+17.设(a +2b )2=(a -2b )2+A ,则A 等于( ) A .8ab B .-8ab C .8b 2D .4ab8.若M =(a +3)(a -4),N =(a +2)(2a -5),其中a 为有理数,则M 、N 的大小关系是( ) A .M >N B .M <N C .M =N D .无法确定9.若a =20180,b =2016×2018-20172,c =⎝ ⎛⎭⎪⎫-232016×⎝ ⎛⎭⎪⎫322017,则下列a ,b ,c 的大小关系正确的是( )A .a <b <cB .a <c <bC .b <a <cD .c <b <a10.已知x 2+4y 2=13,xy =3,求x +2y 的值.这个问题我们可以用边长分别为x 与y 的两种正方形组成一个图形来解决,其中x >y ,能较为简单地解决这个问题的图形是( )二、填空题(每小题3分,共24分) 11.计算:a 3÷a =________.12.若长方形的面积是3a 2+2ab +3a ,长为3a ,则它的宽为__________. 13.若x n =2,y n =3,则(xy )n=________. 14.化简a 4b 3÷(ab )3的结果为________. 15.若2x +1=16,则x =________.16.用一张包装纸包一本长、宽、厚如图所示的书(单位:cm).若将封面和封底每一边都包进去3cm ,则需长方形的包装纸____________cm 2.17.已知(x +y )2=1,(x -y )2=49,则x 2+y 2的值为________.18.观察下列运算并填空. 1×2×3×4+1=24+1=25=52; 2×3×4×5+1=120+1=121=112; 3×4×5×6+1=360+1=361=192; 4×5×6×7+1=840+1=841=292; 7×8×9×10+1=5040+1=5041=712; ……试猜想:(n +1)(n +2)(n +3)(n +4)+1=________2. 三、解答题(共66分) 19.(8分)计算:(1)23×22-⎝ ⎛⎭⎪⎫120-⎝ ⎛⎭⎪⎫12-3;(2)-12+(π-3.14)0-⎝ ⎛⎭⎪⎫-13-2+(-2)3.20.(12分)化简: (1)(2x -5)(3x +2);(2)(2a +3b )(2a -3b )-(a -3b )2;(3)⎝ ⎛⎭⎪⎫52x 3y 3+4x 2y 2-3xy ÷(-3xy );(4)(a +b -c )(a +b +c ).21.(10分)先化简,再求值:(1)(1+a )(1-a )+(a -2)2,其中a =12;(2)[x 2+y 2-(x +y )2+2x (x -y )]÷4x ,其中x -2y =2.22.(8分)若m p =15,m 2q =7,m r =-75,求m 3p +4q -2r的值.23.(8分)对于任意有理数a 、b 、c 、d ,我们规定符号(a ,b )(c ,d )=ad -bc .例如:(1,3)(2,4)=1×4-2×3=-2.(1)(-2,3)(4,5)=________;(2)求(3a +1,a -2)(a +2,a -3)的值,其中a 2-4a +1=0.24.(10分)王老师家买了一套新房,其结构如图所示(单位:米).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?25.(10分)阅读:已知a+b=-4,ab=3,求a2+b2的值.解:∵a+b=-4,ab=3,∴a2+b2=(a+b)2-2ab=(-4)2-2×3=10.请你根据上述解题思路解答下面问题:(1)已知a -b =-3,ab =-2,求(a +b )(a 2-b 2)的值; (2)已知a -c -b =-10,(a -b )c =-12,求(a -b )2+c 2的值.参考答案与解析1.C 2.C 3.C 4.C 5.B 6.A 7.A 8.B 9.C10.B 解析:(x +2y )2=x 2+4xy +4y 2,故符合的图形为B. 11.a 212.a +23b +1 13.614.a 15.3 16.(2a 2+19a -10) 17.2518.(n 2+5n +5) 解析:观察几个算式可知结果都是完全平方式,且5=1×4+1,11=2×5+1,19=3×6+1,……由此可知,最后一个式子为完全平方式,且底数为(n +1)(n +4)+1=n 2+5n +5.19.解:(1)原式=8×4-1-8=23.(4分) (2)原式=-1+1-9-8=-17.(8分)20.解:(1)原式=6x 2+4x -15x -10=6x 2-11x -10.(3分) (2)原式=4a 2-9b 2-a 2+6ab -9b 2=3a 2+6ab -18b 2.(6分) (3)原式=-56x 2y 2-43xy +1.(9分)(4)原式=(a +b )2-c 2=a 2+b 2-c 2+2ab .(12分)21.解:(1)原式=1-a 2+a 2-4a +4=-4a +5.(3分)当a =12时,原式=-4×12+5=3.(5分)(2)原式=(x 2+y 2-x 2-2xy -y 2+2x 2-2xy )÷4x =(2x 2-4xy )÷4x =12x -y .(8分)∵x -2y =2,∴12x -y =1,∴原式=1.(10分)22.解:m 3p +4q -2r =(m p )3·(m 2q )2÷(m r )2.(4分)∵m p=15,m 2q =7,m r =-75,∴m 3p +4q -2r=⎝ ⎛⎭⎪⎫153×72÷⎝ ⎛⎭⎪⎫-752=15.(8分) 23.解:(1)-22(2分)(2)(3a +1,a -2)(a +2,a -3)=(3a +1)(a -3)-(a -2)(a +2)=3a 2-9a +a -3-(a 2-4)=3a 2-9a +a -3-a 2+4=2a 2-8a +1.(5分)∵a 2-4a +1=0,∴2a 2-8a =-2,∴(3a +1,a -2)(a +2,a -3)=-2+1=-1.(8分)24.解:(1)卧室的面积是2b (4a -2a )=4ab (平方米),(2分)厨房、卫生间、客厅的面积和是b ·(4a -2a -a )+a ·(4b -2b )+2a ·4b =ab +2ab +8ab =11ab (平方米),(4分)即木地板需要4ab平方米,地砖需要11ab 平方米.(5分)(2)11ab ·x +4ab ·3x =11abx +12abx =23abx (元),即王老师需要花23abx 元.(10分) 25.解:(1)∵a -b =-3,ab =-2,∴(a +b )(a 2-b 2)=(a +b )2(a -b )=[(a -b )2+4ab ](a -b )=[(-3)2+4×(-2)]×(-3)=-3.(5分)(2)∵a-c-b=-10,(a-b)c=-12,∴(a-b)2+c2=[(a-b)-c]2+2(a-b)c=(-10)2+2×(-12)=76.(10分)。

七年级数学下册第一单元测试卷【含答案】

七年级数学下册第一单元测试卷【含答案】

七年级数学下册第一单元测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少厘米?A. 3厘米B. 23厘米C. 17厘米D. 27厘米3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 下列哪个图形是平行四边形?A. 正方形B. 长方形C. 梯形D. 圆形5. 下列哪个选项是正确的?A. 1千米 = 1000米B. 1千克 = 1000克C. 1米 = 1000毫米D. 1吨 = 1000千克二、判断题(每题1分,共5分)1. 任何偶数乘以偶数都是偶数。

()2. 0是最小的自然数。

()3. 所有的质数都是奇数。

()4. 1是既不是质数也不是合数。

()5. 三角形的内角和等于180度。

()三、填空题(每题1分,共5分)1. 1千米等于______米。

2. 三角形的内角和等于______度。

3. 两个质数相乘,它们的积是______。

4. 最大的两位数是______。

5. 下列数中,______是最大的偶数。

四、简答题(每题2分,共10分)1. 请简述质数和合数的区别。

2. 请简述三角形的基本性质。

3. 请简述偶数和奇数的区别。

4. 请简述平行四边形的基本性质。

5. 请简述千米和米的关系。

五、应用题(每题2分,共10分)1. 小明有5个苹果,小红有7个苹果,他们一共有多少个苹果?2. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。

3. 一个三角形的两边长分别是8厘米和15厘米,求第三边的长度。

4. 小华有20元钱,他买了一本书花了15元,他还剩下多少钱?5. 一个平行四边形的周长是40厘米,其中一条边的长度是10厘米,求另一条边的长度。

六、分析题(每题5分,共10分)1. 请分析下列数中,哪些是质数,哪些是合数:2, 3, 4, 5, 6, 7, 8, 9, 10, 11。

2017-2018学年人教版七年级(下)数学第一章《相交线与平行线》单元测试卷(含答案解析)

2017-2018学年人教版七年级(下)数学第一章《相交线与平行线》单元测试卷(含答案解析)

2017-2018学年人教版七年级(下)数学第一章《相交线与平行线》单元测试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.如果一个角的两边平行于另一个角的两边,那么这两个角( )A .相等B .互补C .互余D .相等或互补 2.下列四个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x 2>0,那么x >0.A .1个B .2个C .3个D .4个 3.下列图形中,已知12∠=∠,则可得到//AB CD 的是( )A .B .C .D . 4.下列命题是假命题的为( )A .如果三角形三个内角的比是1:2:3,那么这个三角形是直角三角形B .锐角三角形的所有外角都是钝角C .内错角相等D .平行于同一直线的两条直线平行5.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为( )A .30°B .40°C .50°D .60° 6.如图,直线a ∥b ,直角三角形如图放置,∠DCB=90°,若∠1+∠B=65°,则∠2的度数为( )A .20B .25C .30D .357.如图,115∠=︒,90AOC ∠=︒,点B ,O ,D 在同一直线上,则2∠的度数 为( )A .75︒B .15︒C .105︒D .165︒8.如图,点E 在AC 的延长线上,下列条件中能判断AB ∥CD 的是( )A .∠1=∠2B .∠3=∠4C .∠D =∠DCE D .∠D +∠ACD=180° 9.如图,若AB ∥CD ,则α、β、γ之间的关系为( )A .α+β+γ=360°B .α﹣β+γ=180°C .α+β﹣γ=180°D .α+β+γ=180°10.甲、乙、丙、丁四名运动员参加4×100米接力赛,甲必须为第一接力棒或第四接力棒的运动员,那么这四名运动员在比赛过程的接棒顺序有( )A .3种B .4种C .6种D .12种二、填空题11.如图,已知AD ∥BC ,∠B=32°,BD 平分∠ADE ,则∠DEC=_____.12.把命题“任意两个直角都相等”改写成“如果…………,那么…………”的形式是____________________.13.如图,四边形ABCD 中,0//,110AD BC A ∠=,则B ∠=____________.14.给出下列命题及函数y=x ,y=x 2和y=1x 的图象.(如图所示) ①如果1a>a >a 2,那么0<a <1; ②如果a 2>a >1a,那么a >1; ③如果a >a 2>1a ,那么﹣1<a <0; ④如果a 2>1a>a ,那么a <﹣1, 则正确的是_____(填序号)15.如图,AB ∥CD ,OE 平分∠BOC ,OF ⊥OE ,OP ⊥CD ,∠ABO =a°.有下列结论:①∠BOE =12(180-a)°;②OF 平分∠BOD ;③∠POE =∠BOF ;④∠POB =2∠DOF.其中正确的结论是________(填序号).16.为了从500只外形相同的鸡蛋中找到唯一的一只双黄蛋,检查员将这些鸡蛋按1﹣500的顺序排成一列,第一次先从中取出序号为单数的蛋,发现其中没有双黄蛋,他将剩下的蛋的原来位置上又按1﹣250编号(即原来的2号变为1号,原来的4号变成2号,…,原来的500号变成250号).又从中取出新序号为单数的蛋进行检查,任没有发现双黄蛋,…,如此下去,检查到最后的一个是双黄蛋,问这只双黄蛋最初的序号是_____.三、解答题17.如图,AB 与CD 相交于O ,OE 平分∠AOC ,OF ⊥AB 于O ,OG ⊥OE 于O ,若∠BOD=40°,求∠AOE和∠FOG的度数.18.完成下面推理过程:如图,已知∠1 =∠2,∠B=∠C,可推得AB∥CD;理由如下:∵∠1 =∠2(已知),且∠1 =∠CGD(_______________________),∴∠2 =∠CGD(_______________________).∴CE∥BF(___________________________).∴∠____________=∠C(__________________________).又∵∠B=∠C(已知),∴∠ ____________=∠B(______________________).∴AB∥CD(_____________________________________).19.如图,点A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A'B'C'.(1)在图中画出△A'B'C',并写出平移后A'的坐标;(2)求出△A'B'C'的面积.20.如图,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.(1)填空:∠OBC+∠ODC=;(2)如图1:若DE平分∠ODC,BF平分∠CBM,求证:DE⊥BF;(3)如图2:若BF、DG分别平分∠OBC、∠ODC的外角,判断BF与DG的位置关系,并说明理由.21.如图所示,点B,E分别在AC,DF上,BD,CE均与AF相交,∠1=∠2,∠C =∠D,求证:∠A=∠F.22.如图,已知∠1=50°,∠2=130°,且BD∥CE,AC与DF平行吗?为什么?23.已知,直线//AB DC ,点P 为平面上一点,连接AP 与CP .(1)如图1,点P 在直线AB 、CD 之间,当60BAP ∠=︒,20DCP ∠=︒时,求APC ∠.(2)如图2,点P 在直线AB 、CD 之间AC 左侧,BAP ∠与DCP ∠的角平分线相交于点K ,写出AKC ∠与APC ∠之间的数量关系,并说明理由.(3)如图3,点P 落在CD 下方,BAP ∠与DCP ∠的角平分线相交于点K ,AKC ∠与APC ∠有何数量关系?并说明理由.参考答案1.D【详解】解:如图所示,∠1和∠2,∠1和∠3两对角符合条件.根据平行线的性质,得到∠1=∠2.结合邻补角的定义,得∠1+∠3=∠2+∠3=180°.故选D考点:平行线的性质.2.A【分析】利用平行线的性质、对顶角的性质、三角形的外角的性质分别判断后即可确定正确的选项.【详解】A 、两条平行线被第三条直线所截,内错角相等,故A 错误,为假命题;B 、如果∠1和∠2是对顶角,那么∠1=∠2,故B 正确,为真命题;C 、三角形的一个外角大于任何一个与它不相邻的内角,故C 错误,为假命题;D 、如x=-2时,x 2>0,但是x<0,故D 错误,为假命题,故选A .【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质、三角形的外角的性质,属于基础知识,难度不大.3.B【分析】先确定两角之间的位置关系,再根据平行线的判定来确定是否平行,以及哪两条直线平行.【详解】解:A .1∠和2∠的是对顶角,不能判断//AB CD ,此选项不正确;B .1∠和2∠的对顶角是同位角,且相等,所以//AB CD ,此选项正确;C .1∠和2∠的是内错角,且相等,故//AC BD ,不是//AB CD ,此选项错误;D .1∠和2∠互为同旁内角,同旁内角相等,两直线不一定平行,此选项错误.故选B .【点睛】本题考查平行线的判定,熟练掌握平行线的判定定理是解题关键.4.C【详解】试题解析:两直线平行,内错角相等.故C 错误.故选C.5.D【详解】如图,因为,∠1=30°,∠1+∠3=60°,所以∠3=30°,因为AD ∥BC ,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故选D.6.B【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B ,再根据两直线平行,同旁内角互补列式计算即可得解.【详解】解:如图,由三角形的外角性质可得,∠3=∠1+∠B=65°,∵a∥b,∠DCB=90°,∴∠2=180°-∠3-90°=180°-65°-90°=25°.故选B.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.7.C【详解】∵AOC=90︒∠1 =15︒∴∠BOC=75︒又∵B、O、D在同一直线上,即∠BOD=180∴∠BOC=∠BOD-∠BOC=180︒-75︒=105°8.A【分析】根据平行线的判定分别进行分析可得答案.【详解】解:A、根据内错角相等,两直线平行可得AB∥CD,故此选项符合题意;B、根据内错角相等,两直线平行可得BD∥AC,故此选项不符合题意;C、根据内错角相等,两直线平行可得BD∥AC,故此选项不符合题意;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项不符合题意;故选:A.【点睛】本题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.9.C【分析】过点E作EF∥AB,如图,易得CD∥EF,然后根据平行线的性质可得∠BAE+∠FEA=180°,∠C=∠FEC=γ,进一步即得结论.【详解】解:过点E作EF∥AB,如图,∵AB∥CD,AB∥EF,∴CD∥EF,∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.故选:C.【点睛】本题考查了平行公理的推论和平行线的性质,属于常考题型,作EF∥AB、熟练掌握平行线的性质是解题的关键.10.D【详解】当甲作第一棒时,接棒顺序有:①甲、乙、丙、丁;②甲、乙、丁、丙;③甲、丙、乙、丁;③甲、丙、丁、乙;⑤甲、丁、乙、丙;⑥甲、丁、丙、乙.因此共有6种接棒顺序.同理当甲做第四棒时,也有6种接棒顺序.因此共有6+6=12种接棒顺序.故选D.11.o64【详解】解:因为BD平分∠ADE,所以∠BDA=∠BDE,因为∠B=32°,所以∠BDA=∠BDE=32°,则∠ADE=64°,因为AD∥BC,所以∠DEC=∠ADE=64°,故答案为64°.12.如果两个角都是直角,那么这两个角相等【详解】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.解:题设为:两个角是等角的补角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是等角的补角,那么它们相等,故答案为如果两个角是等角的补角,那么它们相等.本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.13.70°【详解】∵AD//BC,∴∠A+∠B=180°,∠=180°-110°=70°,∵∠A=110°,∴B故答案为70°.14.①④【详解】由图象可知,当反比例函数图象在最上面,二次函数图象在最下面时,自变量的取值范围是0<x<1,则①正确;当二次函数图象在最上面,反比例函数图象在最下面时,自变量的取值范围是x>1和﹣1<a<0,则②错误;没有一次函数图象在最上面,反比例函数图象在最下面的可以性,则③错误;当二次函数图象在最上面,一次函数图象在最下面时,自变量的取值范围是x<-1,则④正确,故答案为①④.15.①②③【分析】根据垂直定义、角平分线的性质、直角三角形的性质求出∠POE、∠BOF、∠BOD、∠BOE、∠DOF等角的度数,即可对①②③④进行判断.【详解】①∵AB∥CD,∴∠BOD=∠ABO=a°,∴∠COB=180°﹣a°=(180﹣a)°,又∵OE平分∠BOC,∴∠BOE=12∠COB=12(180﹣a)°.故①正确;②∵OF⊥OE,∴∠EOF=90°,∴∠BOF=90°﹣12(180﹣a)°=12a°,∴∠BOF=12∠BOD,∴OF平分∠BOD所以②正确;③∵OP⊥CD,∴∠COP=90°,∴∠POE=90°﹣∠EOC=12 a°,∴∠POE=∠BOF;所以③正确;∴∠POB=90°﹣a°,而∠DOF=12a°,所以④错误.故答案为①②③.【点睛】本题考查了平行线的性质:两直线平行,内错角相等;解答此题要注意将垂直、平行、角平分线的定义结合应用,弄清图中线段和角的关系,再进行解答.16.256【详解】试题分析:根据题意,知第一次剩下的是原来编号中的偶数,有250个,第二次剩下的4的倍数,即22的倍数,剩下125个,第三次剩下的是23的倍数,剩下62个,以此类推,最后剩下1个,则需取8次,即剩下28=256.解:根据分析,知最后剩下的是号是28=256.点评:此题要能够正确分析每一次取走的是原来的什么号数以及每一次剩下的个数.17.∠AOE=20°,∠FOG=20°【详解】试题分析:根据对顶角相等得到∠AOC=∠BOD=40°,然后再根据角平分线的定义即可求得∠AOE的度数,再根据同角的余角相等即可求得∠FOG的度数. 试题解析:∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD=40°,∵OE平分∠AOC,∴∠AOE=12∠AOC=20°,∵OF⊥AB,OG⊥OE,∴∠AOF=∠EOG=90°,即∠AOG与∠FOG互余,∠AOG与∠AOE互余,∴∠FOG=∠AOE=20°.【点睛】本题考查了对顶角的性质、角平分线的定义、余角的性质等,在解题时根据对顶角的性质和角平分线,余角的性质进行解答是关键.18..对顶角相等; 同位角相等,两直线平行; BFD两直线平行,同位角相等BFD 内错角相等,两直线平行【分析】先确定∠1=∠CGD是对顶角,利用等量代换,求得∠2=∠CGD,则可根据:同位角相等,两直线平行,证得:CE∥BF,又由两直线平行,同位角相等,证得角相等,易得:∠BFD=∠B,则利用内错角相等,两直线平行,即可证得:AB∥CD.【详解】∵∠1=∠2 (已知),且∠1=∠CGD(对顶角相等),∴∠2=∠CGD (等量代换),∴CE∥BF(同位角相等,两直线平行).∴∠BFD=∠C(两直线平行,同位角相等).又∵∠B=∠C (已知),∴∠BFD=∠B (等量代换),∴AB∥CD(内错角相等,两直线平行).【点睛】此题考查了平行线的判定与性质.平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.19.(1)如图所示,△A'B'C'即为所求,点A′(0,4);(2)6.【详解】整体分析:根据平移的规律画出△A′B′C′,写出点A′的坐标,分别过点A′,B′,C′作坐标轴的平行线,构成长方形,利用图形的和差关系求出△A′B′C′的面积.解:(1)如图所示,△A'B'C'即为所求,点A′(0,4);(2)如图,△A'B'C'的面积=3×4-12×1×3-12×3×3=6.20.(1)180°;(2)见解析;(3)BF∥DG,理由见解析. 【详解】(1)∵在四边形OBCD中,∠C=∠BOD=90°,∴∠OBC+∠ODC=360°﹣90°﹣90°=180°;故答案为180°;(2)证明:延长DE交BF于H,如图1,∵∠OBC+∠ODC=180°,而∠OBC+∠CBM=180°,∴∠ODC=∠CBM,∵DE平分∠ODC,BF平分∠CBM,∴∠CDE=∠FBE,而∠DEC=∠BEH,∴∠BHE=∠C=90°,∴DE⊥BF;(3)DG∥BF.理由:作CQ∥BF,如图2,∵∠OBC+∠ODC=180°,∴∠CBM+∠NDC=180°,∵BF、DG分别平分∠OBC、∠ODC的外角,∴∠GDC+∠FBC=90°,∵CQ∥BF,∴∠FBC=∠BCQ,而∠BCQ+∠DCQ=90°,∴∠DCQ=∠GDC,∴CQ∥GD,∴BF∥DG.21.证明见解析.【分析】根据对顶角的性质得到BD∥CE的条件,然后根据平行线的性质得到∠B=∠C,已知∠C=∠D,则得到满足AB∥EF的条件,再根据两直线平行,内错角相等得到∠A=∠F.【详解】证明:∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴BD∥CE,∴∠C=∠ABD;又∵∠C=∠D,∴∠D=∠ABD,∴AB∥EF,∴∠A=∠F.考点:平行线的判定与性质;对顶角、邻补角.22.平行理由:见解析【详解】试题分析:由BD∥CE,可得∠C=∠1=50°,由∠2=130°可得∠DEG=50°,则∠C=∠DEG,即可求解.解:AC ∥DF ,理由如下:因为BD ∥CE ,所以∠1=∠C.因为∠1=50°,所以∠C=50°. 因为∠2+∠DEG=180°,∠2=130°,所以∠DEG=50°,所以∠C=∠DEG ,所以AC ∥DF.23.(1)80APC ︒∠=;(2)12AKC APC ∠=∠,见详解;(3)12AKC APC ∠=∠,见详解【分析】(1)过点P 作//A PE B ,根据平行线的性质得到,APE BAP CPE DCP ∠=∠∠=∠,再根据APC APE CPE BAP DCP ∠=∠+∠=∠+∠计算即可;(2)过K 作//KE AB ,根据平行线的性质和角平分线的定义可得出AKC ∠与APC ∠的数量关系;(3)过K 作//KE AB ,根据平行线的性质和角平分线的定义可得出AKC ∠与APC ∠的数量关系.【详解】(1)(如图1,过点P 作//A PE B//AB CD////PE AB CD ∴,APE BAP CPE DCP ∴∠=∠∠=∠602080APC APE CPE BAP DCP ︒︒︒∴∠=∠+∠=∠+∠=+=(2)12AKC APC ∠=∠ 如图2,过K 作//KE AB//AB CD////KE AB CD ∴,AKE BAK CKE DCK ∴∠=∠∠=∠AKC AKE CKE BAK DCK ∴∠=∠+∠=∠+∠过点P 作//PF AB同理可得APC BAP DCP ∠=∠+∠BAP ∠与DCP ∠的角平分线相交于点K1111() , 2222BAK DCK BAP DCP BAP DCP APC ∴∠+∠=∠+∠=∠+∠=∠ 12AKC APC ∴∠=∠ (3)12AKC APC ∠=∠ 如图3,过K 作//KE AB//AB CD////KE AB CD ∴,BAK AKE DCK CKE ∴∠=∠∠=∠AKC AKE CKE BAK DCK ∴∠=∠-∠=∠-∠过点P 作//PF AB同理可得APC BAP DCP ∠=∠-∠BAP ∠与DCP ∠的角平分线相交于点K1111()2222BAK DCK BAP DCP BAP DCP APC ∴∠-∠=∠-∠=∠-∠=∠ 12AKC APC ∴∠=∠ 【点睛】 本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算.。

七年级数学下册第一章试题

七年级数学下册第一章试题

第一章整式的运算单元测试 1一、 耐心填一填每小题3分,共30分1.单项式32n m -的系数是 ,次数是 . 2.()()23342a b ab -÷= . 3.若A=2x y -,4B x y =-,则2A B -= .4.()()3223m m -++= .5.2005200640.25⨯= .6.若23nx =,则6n x = . 7.已知15a a +=,则221aa +=___________________.441a a +=___________________. 8.用科学计数法表示: 000024⋅-= .9.若10m n +=,24mn =,则22mn += . 10.()()()24212121+++的结果为 . 二、 精心选一选每小题3分,共30分 11.多项式322431x x y xy -+-的项数、次数分别是 .A .3、4B .4、4C .3、3D .4、312.三、用心想一想21题16分,22~25小题每小题4分,26小题8分,共40分.21.计算:16822a a a ÷+ 2()()().52222344321044x x x x x ⋅+-+- 3()()55x y x y --+- 4用乘法公式计算:21005. 22.已知0106222=++-+b a b a ,求20061ab-的值 23. 先化简并求值: )2)(2(2))(2()2(2b a b a b a b a b a +--+--+,其中2,21-==b a .24.已知9ab =,3a b -=-,求223a ab b ++的值.25. 在一次联欢会上,节目主持人让大家做一个猜数的游戏,游戏的规则是:主持人让观众每人在心里想好一个除0以外的数,然后按以下顺序计算: ()1把这个数加上2后平方.()2然后再减去4. ()3再除以原来所想的那个数,得到一个商.最后把你所得到的商是多少告诉主持人,主持人便立即知道你原来所想的数是多少,你能解释其中的奥妙吗26.请先观察下列算式,再填空:181322⨯=-, 283522⨯=-.①=-22578× ; ②29- 2=8×4;③ 2-92=8×5;④213- 2=8× ;………⑴通过观察归纳,你知道上述规律的一般形式吗 请把你的猜想写出来.⑵你能运用本章所学的平方差公式来说明你的猜想的正确性吗附加题:1.把1422-+x x 化成k h x a ++2)(其中a,h,k 是常数的形式2.已知a -b=b -c=35,a 2+b 2+c 2=1则ab +bc +ca 的值等于 . 绝密★档案B第一章整式的运算单元测试2一、填空题:每空2分,共28分1.把下列代数式的字母代号填人相应集合的括号内:A. xy+1B. –2x 2+yC.3xy 2-D.214-E.x 1-F.x 4G.x ax 2x 8123--H.x+y+zI.3ab 2005-J.)y x (31+ K.c 3ab 2+ 1单项式集合 { …}2多项式集合 { …}3三次多项式 { …}4整式集合 { …}2.单项式bc a 792-的系数是 . 3.若单项式-2x 3y n-3是一个关于x 、y 的五次单项式,则n = .4.2x+y 2=4x 2+ +y 2. 5.计算:-2a 221ab+b 2-5aa 2b-ab 2 = . 6.32243b a 21c b a 43⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-= . 7.-x 2与2y 2的和为A,2x 2与1-y 2的差为B, 则A -3B= .8.()()()()()=++++-884422y x y x y x y x y x .9.有一名同学把一个整式减去多项式xy+5yz+3xz 误认为加上这个多项式,结果答案为 5yz-3xz+2xy,则原题正确答案为 .10.当a = ,b = 时,多项式a 2+b 2-4a+6b+18有最小值.二、选择题每题3分,共24分1.下列计算正确的是A 532x 2x x =+B 632x x x =⋅C 336x x x =÷D 623x x -=-)(2.有一个长方形的水稻田,长是宽的2.8倍,宽为6.5210⨯,则这块水稻田的面积是A1.183710⨯ B 510183.1⨯ C 71083.11⨯ D 610183.1⨯3.如果x 2-kx -ab = x -ax +b, 则k 应为Aa +b B a -b C b -a D -a -b4.若x -30 -23x -6-2 有意义,则x 的取值范围是A x >3 Bx ≠3 且x ≠2 C x ≠3或 x ≠2 Dx < 25.计算:322)2(21)x (4554---÷⎪⎭⎫ ⎝⎛--π-+⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛得到的结果是A8 B9 C10 D116.若a = -0.42, b = -4-2, c =241-⎪⎭⎫⎝⎛-,d =041⎪⎭⎫⎝⎛-, 则 a 、b 、c 、d 的大小关系为A a<b<c<d Bb<a<d<c C a<d<c<b Dc<a<d<b7.下列语句中正确的是Ax -3.140 没有意义B 任何数的零次幂都等于1C 一个不等于0的数的倒数的-p 次幂p 是正整数等于它的p 次幂D 在科学记数法a×10 n 中,n 一定是正整数8.若k xy 30x 252++为一完全平方式,则k 为A 36y 2B 9y 2C 4y 2 Dy 2三、1.计算13xy -2x 2-3y 2+x 2-5xy +3y 22-51x 25x 2-2x +13-35ab 3c ⋅103a 3bc ⋅-8abc 2420052006315155321352125.0)()()()(-⨯+⨯- 5〔21xyx 2+yx 2-y +23x 2y 7÷3xy 4〕÷-81x 4y 6))((c b a c b a ---+ 2.用简便方法计算: 17655.0469.27655.02345.122⨯++ 29999×10001-100002 3.化简求值:14x 2+yx 2-y -2x 2-y 2 , 其中 x=2, y=-52已知:2x -y =2, 求:〔x 2+y 2-x -y 2+2yx -y 〕÷4y 4.已知:aa -1-a 2-b= -5 求: 代数式 2b a 22+-ab 的值. 5.已知: a 2+b 2-2a +6b +10 = 0, 求:a2005-b 1的值. 6.已知多项式x 2+nx+3 与多项式 x 2-3x+m 的乘积中不含x 2和x 3项,求m 、n 的值.7.请先阅读下面的解题过程,然后仿照做下面的题.已知:01x x 2=-+,求:3x 2x 23++的值.若:0x x x 132=+++,求:200432x x x x ++++ 的值.附加题:1.计算:2200320052003200320032004222-+2.已知:多项式42bx ax x 323+++能被多项式6x 5x 2+-整除,求:a 、b 的值 .绝密★档案C第一章整式的运算单元测试3一.填空题.1. 在代数式4,3x a ,y +2,-5m 中____________为单项式,_________________为多项式. 2.多项式13254242+---x y x y x π是一个 次 项式,其中最高次项的系数为 .. 3.当k = 时,多项式8313322+---xy y kxy x 中不含xy 项. 4.)()()(12y x y x x y n n --⋅--= .5.计算:)2()63(22x y x xy -÷-= .6.29))(3(x x -=-- 7.-+2)23(y x =2)23(y x -.8. -5x 2 +4x -1=6x 2-8x +2.9.计算:31131313122⨯--= . 10.计算:02397)21(6425.0⨯-⨯⨯-= . 11.若84,32==n m ,则1232-+n m = .12.若10,8==-xy y x ,则22y x += . 13.若22)(14n x m x x +=+-, 则m = ,n = .14.当x = 时,1442+--x x 有最大值,这个值是 .15. 一个两位数,个位上的数字为a,十位上的数字比个位上的数字大2,用代数式表示这个 两位数为 .16. 若 b 、a 互为倒数,则 20042003b a⨯= . 二.选择题.1.代数式:πab x x x abc ,213,0,52,17,52--+-中,单项式共有 个. A.1个 B.2个 C.3个 D.4个2.下列各式正确的是A.2224)2(b a b a +=+B.1)412(02=-- C.32622x x x -=÷- D.523)()()(y x x y y x -=--3.计算223)31(])([-⋅---a 结果为 A.591a B.691a C.69a - D.891a - 4.2)21(b a --的运算结果是 A.2241b a + B.2241b a - C.2241b ab a ++ D.2241b ab a +- 5.若))((b x a x +-的乘积中不含x 的一次项,则b a ,的关系是A.互为倒数B.相等C.互为相反数D.b a ,都为06.下列各式中,不能用平方差公式计算的是A.)43)(34(x y y x ---B.)2)(2(2222y x y x +-C.))((a b c c b a +---+D.))((y x y x -+-7. 若y b a 25.0与b a x 34的和仍是单项式,则正确的是 A.x=2,y=0B.x=-2,y=0C.x=-2,y=1D.x=2,y=1 8. 观察下列算式:12=2,22=4,32=8,42=16,52=32,62=64,72=128,82=256,……根据其规律可知108的末位数是 ……………………………………………A 、2B 、4C 、6D 、89.下列各式中,相等关系一定成立的是A 、22)()(x y y x -=-B 、6)6)(6(2-=-+x x xC 、222)(y x y x +=+D 、)6)(2()2()2(6--=-+-x x x x x10. 如果3x 2y -2xy 2÷M=-3x+2y,则单项式M 等于A 、 xy ;B 、-xy ;C 、x ;D 、 -y12. 若A =5a 2-4a +3与B =3a 2-4a +2 ,则A 与BA 、A =B B 、A >BC 、A <BD 、以上都可能成立三.计算题. 125223223)21(})2()]()2{[(a a a a a -÷⋅+-⋅- 2)2(3)121()614121(22332mn n m mn mn n m n m +--÷+-- 3)21)(12(y x y x --++ 422)2()2)(2(2)2(-+-+-+x x x x524422222)2()2()4()2(y x y x y x y x ---++四.解答题.已知将32()(34)x mx n x x ++-+乘开的结果不含3x 和2x 项.1求m 、n 的值;2当m 、n 取第1小题的值时,求22()()m n m mn n +-+的值.五.解方程:3x+2x -1=3x -1x+1.六.求值题:1.已知()2x y -=62536,x+y=76,求xy 的值. 2.已知a -b=2,b -c=-3,c -d=5,求代数式a -cb -d÷a-d 的值. 3.已知:2424,273b a == 代简求值:2(32)(3)(2)(3)(3)a b a b a b a b a b ---+++- 7分七.探究题.观察下列各式: 2(1)(1)1x x x -+=-1根据前面各式的规律可得:1(1)(...1)n n x x x x --++++ = .其中n 为正整数2根据1求2362631222...22++++++的值,并求出它的个位数字.。

(完整)2017人教版七年级数学下册各单元测试题及答案,推荐文档

(完整)2017人教版七年级数学下册各单元测试题及答案,推荐文档

EEFDCA123(第2题)4C七年级数学第五章《相交线与平行线》测试卷班级姓名坐号成绩一、选择题(每小题3 分,共30 分)1、如图所示,∠1 和∠2 是对顶角的是()1 B 12C 1 D2D2、如图AB∥CD 可以得到()A、∠1=∠2B、∠2=∠3C、∠1=∠4D、∠3=∠43、直线AB、CD、EF 相交于O,则∠1+∠2+∠3=()BA、90°B、120°C、180°D、140°4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件:①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180°④∠3=∠8,其中能判断是a∥b 的条件的序号是()A、①②B、①③C、①④D、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A、第一次左拐30°,第二次右拐30°B、第一次右拐50°,第二次左拐130°C、第一次右拐50°,第二次右拐130°D、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的()(第4题)A B C D7、如图,在一个有4×4 个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 面积的比是()A、3:4B、5:8C、9:16D、1:28、下列现象属于平移的是()D CA B(第7题)① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走A、③B、②③C、①②④D、①②⑤9、下列说法正确的是()A、有且只有一条直线与已知直线平行B、垂直于同一条直线的两条直线互相垂直C、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。

CD、在平面内过一点有且只有一条直线与已知直线垂直。

10、直线AB∥CD,∠B=23°,∠D=42°,则∠E=()A、23°B、42°C、65°D、19°A二、填空题(本大题共6 小题,每小题3 分,共18 分)11、直线AB、CD 相交于点O,若∠AOC=100°,则(第10题)DHG∠AOD=。

七下第一章测试题及答案

七下第一章测试题及答案

七下第一章测试题及答案一、选择题(每题2分,共20分)1. 下列关于地球形状的描述,正确的是:A. 地球是一个完美的球体B. 地球是一个两极稍扁,赤道略鼓的不规则球体C. 地球是一个正方体D. 地球是一个圆柱体答案:B2. 地球的赤道周长约为:A. 4万千米B. 2万千米C. 1万千米D. 0.4万千米答案:A3. 地球的表面积约为:A. 5.1亿平方千米B. 1.49亿平方千米C. 1.49亿平方米D. 5.1亿平方米答案:B4. 地球的平均半径约为:A. 6371千米B. 6378千米C. 6371米D. 6378米答案:A5. 地球的极半径比赤道半径短:A. 21千米B. 21米C. 21厘米D. 21毫米答案:A6. 地球的自转周期是:A. 24小时B. 12小时C. 1天D. 1年答案:A7. 地球的公转周期是:A. 24小时B. 12小时C. 1天D. 1年答案:D8. 地球自转产生的地理现象是:A. 昼夜交替B. 季节变化C. 潮汐现象D. 地壳运动答案:A9. 地球公转产生的地理现象是:A. 昼夜交替B. 季节变化C. 潮汐现象D. 地壳运动答案:B10. 地球的赤道半径比极半径长:A. 21千米B. 21米C. 21厘米D. 21毫米答案:A二、填空题(每题2分,共20分)1. 地球的形状是______。

答案:两极稍扁,赤道略鼓的不规则球体2. 地球的赤道周长约为______千米。

答案:4万3. 地球的表面积约为______亿平方千米。

答案:5.14. 地球的平均半径约为______千米。

答案:63715. 地球的自转周期是______小时。

答案:246. 地球的公转周期是______年。

答案:17. 地球自转产生的地理现象是______。

答案:昼夜交替8. 地球公转产生的地理现象是______。

答案:季节变化9. 地球的极半径比赤道半径短______千米。

答案:2110. 地球的赤道半径比极半径长______千米。

[数学七年级下]第一单元-单元检测(人教版)_整卷下载(题面答案)

[数学七年级下]第一单元-单元检测(人教版)_整卷下载(题面答案)

《相交线与平行线》 测试题 一.选一选。

1.如图,直线c 截两平行直线a,b ,则下列式子不一定成立的是 ( ) A.∠1=∠5 B. ∠2=∠4 C. ∠3=∠5 D. ∠5=∠ 22.如图a ∥b ,M ,N 分别在a,b 上,P 为两平行线间一点,那么∠1+∠2+∠3= ( )。

A.180° B.270° C.360° D.540°3.如图所示,AB ∥CD,直线PQ 分别交AB,CD 于点E,F ,FG 是∠EFD 的平分线,交AB 于点G,若∠PFD=40°,那么∠FGB 等于 ( ) A.80° B.100° C.110° D.120°4.如图,已知∠1=∠2=∠3=55°,则∠4的度数是_______. ( ) A.110° B.115° C.120° D.125°5.如图,直线l 1与l 2相交于点O,OM ⊥l 1,,若∠1=44°,则∠2= ______. ( ) A.56° B.46° C.45° D.44°6.如图,直线a,b 被直线c 所截,下列说法正确的是 ( )。

A.当∠1=∠2时,一定有a ∥b.B.当a ∥b 时,一定有∠1=∠2。

C.当a ∥b 时,一定有∠1+∠2=180°.D.当a ∥b 时,一定有∠1+∠2=90°.7.如图,已知直线AB ∥CD, ∠C=115°, ∠A=25°,则∠E 的值为___ ( ) A. 70° B.80° C.90° D.100°8.如图,小明从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,此时需把方向调整到与出发时一致,则方向的调整应是__ ( )l 1l 2A.右转80°B.左转80°C.右转100°D.左转100°9.若∠1与∠2的关系为同旁内角,∠1=40°,则∠2等于( ) A .40° B .140° C .40°或140° D .不确定10.在同一平面内有两两不重合的直线1l ,2l 和l ,1l ⊥l 、2l ⊥l ,则直线1l 与2l 的位置关系是( ) A 、互相平行 B 、互相垂直 C 、不平行 D 、可能平行,可能不平行 11.∠A 的余角与∠A 的补角互为补角,那么2∠A 是( )A .锐角 B. 直角 C. 钝角 D. 不确定12. 一束光线垂直照射在水平地面,在地面上放一个平面镜,欲使这束光线经过平面镜反射后成水平光线,则平面镜与地面所成锐角的度数为( )A. 15°B. 45°C. 60°D. 75°13. 如图1,下列判断: ①∠A 与∠1是同位角; ②∠A 与∠B 是同旁内角; ③∠4与∠1是内错角;④∠1与∠3是同位角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
...-5.16、方程组12+13=3-=的解是、=4=3、=-4=-5、=165=115、=16=177、若二元一次方程5-2=4有正整数解,则的取值为、偶数、奇数、偶数或奇数、08甲、乙两地相距360千米,一轮船往返于甲、乙两地之间,顺流用18小时,逆流用24小时,若设船在静水中的速度为千米时,水流速度为千米时,在下列方程组中正确的是
....三、解方程组每题5分,共20分1、2、四、解答题每题6分,共14分1在解方程组+=10-=14时,甲正确地解得=4=-2,乙把写错而得到=2=4,若两人的运算过程均无错误,求、、的值。
2、某人用24000元买进甲、乙两种股票,在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元,试问某人买的甲、乙两股票各是多少元3、2011湖南衡阳李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?4、2010年北京崇文区一列火车从北京出发到达广州大约需要15小时.火车出发后先按原来的时速匀速行驶8小时后到达武汉,由于2009年12月世界时速铁路武广高铁正式投入运营,现在从武汉到广州火车的平均时速是原来的2倍还多50公里,所需时间也比原来缩短了4个小时.求火车从北京到武汉的平均时速和提速后武汉到广州的平均时速.52010福建德化某商店需要购进甲、乙两种商品共160件,其进价和售价如下表注获利=售价-进价1若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?2若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利的购货方案甲乙进价元件1535售价元件2045一、填空题1–429,43=1,=2456-7573,18691,-2二、选择题1.2345678三、解方程1234四、解答题1.=1,=3,=52甲股票15000,乙股票是90003【解】设李大叔去年甲种蔬菜种植了亩,乙种蔬菜种植了亩,则,解得,答李大叔去年甲种蔬菜种植了6亩,乙种蔬菜种植了4亩.4解设火车从北京到武汉的平均时速为公里每小时,提速后武汉到广州的平均时速为公里每小时.依题意,有解方程组,得答火车从北京到武汉的平均时速为150公里每小时,提速后武汉到广州的平均时速为350公里每小时.5.1设甲种商品应购进件,乙种商品应购进件根据题意,得解得答甲种商品购进100件,乙种商品购进60件2设甲种商品购进件,则乙种商品购进160-件根据题意,得解不等式组,得65<<68∵为非负整数,∴取66,67∴160-相应取94,93答有两种构货方案,方案一甲种商品购进66件,乙种商品购进94件;方案二甲种商品购进67件,乙种商品购进93件其中获利的是方案一【初一下册数学第一单元试卷及答案2017】
7、如果方程组的则=________.9若方程组的解是,某学生看错了,求出解为,则正确的值为________,=________.二、选择题每题4分共28分1、下列方程组中,属于二元一次方程组的是、、、、2、在方程组中,如果是它的一个解,那么、的值为
.=1,=2.不能惟一确定.=4,=0.=,=-13、某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为人,组数为组,则列方程组为、、、、4、方程组的解的情况是、一组解、二组解、无解、无数组解5、二元一次方程组的解满足方程-2=5,那么的值为
2、已知甲、乙两数的和为13,乙数比甲数少5,则甲数是________,乙数是________.3、已知-3+12+|2+5-12|=0,则=_____,=_____。
4、如果方程组与方程=-1有公共解,则=________.5、10江西某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,设购买了甲种票张,乙种票张,由此可列出方程组¬¬¬¬¬.6、已知,,则=
相关文档
最新文档