安徽省近五年中考数学试卷知识点分析与总结
2023安徽省中考数学核心考点总结
2023安徽省中考数学核心考点总结安徽省中考数学核心考点总结1.平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
2.完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
3.一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
4. 一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。
5.一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
6.分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。
7.分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊。
8.最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。
9.特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。
10.象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。
11.平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同;直线平行于Y轴,点的横坐标仍照旧。
12.对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反, Y 轴对称,x前面添负号;原点对称记,横纵坐标变符号。
13.自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。
14.函数图像的移动规律: 若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。
安徽省数学中考考点总结总结归纳
安徽省数学中考考点总结安徽省数学中考考点总结数学起源于人类早期的生产活动,并能应用实际问题。
从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。
今天在这给大家整理了一些安徽省数学中考考点总结,我们一起来看看吧!安徽省数学中考考点总结考点1:确定事件和随机事件考核要求:(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。
考点2:事件发生的可能性大小,事件的概率考核要求:(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。
注意:(1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。
考点3:等可能试验中事件的概率问题及概率计算考核要求(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;(2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。
注意:(1)计算前要先确定是否为可能事件;(2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整。
考点4:数据整理与统计图表考核要求:(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。
安徽省近五年中考数学试卷知识点分析与总结
安徽省近五年中考数学试卷知识点分析与总结数学作为中考的必考科目,对于考生来说是一个重要的考察点。
掌握数学的知识点和解题技巧能够有效提升考试成绩。
本文将对安徽省近五年数学中考试卷的知识点进行分析,并总结出一些备考策略。
一、整数运算在近五年的数学中考试卷中,整数运算是一个经常出现的知识点。
这一部分主要包括整数的加减乘除法、正数与负数的相互关系等内容。
学生在备考时要熟练掌握整数运算的基本法则,尤其是负数的加减法以及乘除法的规则。
二、比例与百分数比例与百分数是近五年中考试卷中的另一个重要知识点。
考生需要了解比例的定义、常见问题的解决方法,掌握百分数与小数之间的转换关系。
备考时,可通过大量的例题来练习比例与百分数的计算,提高解题速度和准确度。
三、图形的性质与计算数学中考试卷中图形的性质与计算也是一个常见的知识点。
这一部分主要涉及直角三角形、平行四边形、梯形等各类多边形的性质与计算方法。
备考时,需要掌握各类多边形的面积计算公式,了解各类多边形的性质与判定方法,通过大量的练习来提高解题能力。
四、方程与不等式方程与不等式是中考数学试卷中的另一个重要知识点。
考生需要熟练掌握一元一次方程、一元一次不等式的解法,特别是带绝对值符号的方程与不等式的解法。
备考时,可以通过大量的练习来加深对方程与不等式解法的理解,熟练掌握解题技巧。
五、函数与图像函数与图像是数学中考试卷中的重要知识点之一。
考生需要了解函数的定义、性质以及函数图像的特点与表示方法。
备考时,可以通过绘制函数图像、分析函数的变化趋势等方式来加深对函数与图像的理解。
六、统计与概率统计与概率是中考数学试卷中的另一个常见知识点。
考生需要了解统计中的频数、频率、平均数等概念,掌握概率计算的方法。
备考时,可以通过实际生活中的统计问题来加强对统计与概率的理解,提高解题能力。
综上所述,安徽省近五年中考数学试卷的知识点主要包括整数运算、比例与百分数、图形的性质与计算、方程与不等式、函数与图像以及统计与概率等内容。
202X安徽省中考数学核心考点总结
千里之行,始于足下。
202X安徽省中考数学核心考点总结安徽省中考数学核心考点总结首先,我们需要了解202X安徽省中考数学考试的特点。
根据历年的考试情况分析,202X年的安徽省中考数学试卷主要以基础知识为主,注重对学生的基本能力和运算能力的考查。
因此,掌握好基础知识和运算技巧是取得好成绩的关键。
下面,我将根据历年的考试情况和习题的分析,总结出202X安徽省中考数学核心考点。
一、整数的加减乘除运算整数的基础运算是数学学习的基础,也是安徽省中考数学的常见考点。
要掌握整数的加减乘除运算规则,包括同符号数相加减、异符号数相加减、乘法的运算法则、除法的运算法则等。
此外,特殊情况的处理也是重点,比如0的处理、零的处理等。
二、分数的加减乘除运算分数的运算是数学中的重要知识点,也是安徽省中考数学中的重点考点。
要熟练掌握分数的加减乘除运算规则,包括分数的通分、分数的整数部分运算、分数的约分等。
此外,要注意特殊情况的处理,比如零的处理、分数在运算中的化简等。
三、计算器的应用计算器的使用是安徽省中考数学中的常见考点。
要熟练掌握计算器的基本操作,包括加减乘除运算、括号的运用、开方运算、百分数运算、倒数运算等。
在使用计算器过程中,要注意对结果的合理估算和正确取舍。
四、几何的基本概念第1页/共2页锲而不舍,金石可镂。
几何的基本概念也是安徽省中考数学中的常见考点。
要熟练掌握点、线、面的基本概念,包括点的表示方法、线段的表示方法、角的表示方法等。
此外,要了解一些基本的几何公式,比如周长的计算公式、面积的计算公式等。
五、平面图形的性质和判断平面图形的性质和判断是安徽省中考数学中的重点考点。
要掌握各种平面图形的性质和判定方法,包括等边三角形的性质、等腰三角形的性质、直角三角形的性质等。
在判断题目中的图形形状时,要善于使用图形的性质和判断方法,准确判断出图形的特点。
六、函数和方程的应用函数和方程的应用也是安徽省中考数学中的常见考点。
要熟练掌握函数和方程的基本概念,包括函数的定义、函数的性质、方程的定义、方程的解等。
202X安徽省中考数学核心考点总结
202X安徽省中考数学核心考点总结202X年安徽省中考数学核心考点总结一、整数与分数(120分)1. 整数运算与性质(16分):- 四则运算法则(包括整数加、减、乘、除)- 整数的乘方2. 分数运算与性质(28分):- 四则运算法则(包括分数加、减、乘、除)- 分数的比大小和化简- 分数的乘方3. 定比定差数列(16分):- 定比数列概念及计算- 定差数列概念及计算4. 历年真题重点:- 整数与分数的混合运算- 分数的约分与化简二、代数初步(60分)1. 代数式与等式(25分):- 代数式的基本概念和计算- 代数方程与方程的解第1页/共4页- 解方程的原则和方法2. 数量关系初步(35分):- 由具体问题进行代数建模- 列方程和解方程应用于实际问题 - 解方程的实际意义三、数与图初步(60分)1. 数据的处理(30分):- 数据的收集、整理、描述和分析 - 统计图表的读取和分析- 数据的概率与预测2. 坐标图与相交线(30分):- 坐标系概念及其应用- 坐标图与曲线的特征- 相交线的概念及其性质四、平面图形初步(80分)1. 二维图形的认识(35分):- 八大基本图形的特征和性质- 图形的分类和构造- 图形的投影和旋转2. 周长和面积计算(45分):- 图形的周长计算- 四边形面积、三角形面积的计算 - 复杂图形的面积计算五、立体图形初步(80分)1. 立体图形的认识(35分):- 几何体的分类及特征- 立体体积的计算2. 空间位置与视图(45分):- 点、线、面的关系与性质- 立体图形的展开图和视图识别六、几何变换初步(100分)1. 平移、旋转、翻折(30分):- 几何变换的概念及性质- 平移、旋转、翻折的实际应用2. 对称和相等确定(30分):- 对称图形的特征和性质- 合同图形的判定3. 平行与垂直(20分):- 直线的平行与垂直- 图形的对称性与平行性4. 图形的相似与比例(20分):- 图形的相似性质及应用- 图形的比例关系第3页/共4页七、方程应用(80分)1. 规律推理与方程(30分):- 数列的特征和规律- 图形的规律与特征方程2. 方程应用(50分):- 问题的方程建模和解方程- 方程在实际问题中的意义和应用总结:以上是202X年安徽省中考数学的核心考点汇总,包括整数与分数、代数初步、数与图初步、平面图形初步、立体图形初步、几何变换初步和方程应用等七个模块。
安徽中考数学知识点_数学知识点总结
安徽中考数学知识点_数学知识点总结安徽中考数学知识点_数学知识点总结数学,这是我们初中必学的科目,更是主科之一,在中考时所占的比重也很大,因此学生们一定要学好数学知识。
下面小编为大家带来安徽中考数学知识点,希望对您有所帮助!安徽中考数学知识点二元一次方程组1、定义:含有两个未知数,并且未知项的次数是1的整式方程叫做二元一次方程。
2、二元一次方程组的解法(1)代入法由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。
(2)因式分解法在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。
(3)配方法将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。
(4)韦达定理法通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。
(5)消常数项法当方程组的两个方程都缺一次项时,可用消去常数项的方法解。
解一元二次方程解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
1、直接开平方法:用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m.直接开平方法就是平方的逆运算.通常用根号表示其运算结果.2、配方法通过配成完全平方式的方法,得到一元二次方程的根的方法。
这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
(1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)(2)系数化1:将二次项系数化为1(3)移项:将常数项移到等号右侧(4)配方:等号左右两边同时加上一次项系数一半的平方(5)变形:将等号左边的代数式写成完全平方形式(6)开方:左右同时开平方(7)求解:整理即可得到原方程的根3、公式法公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
2024年安徽省中考数学试卷(附答案解析)
2024年安徽省中考数学试卷(附答案解析)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)﹣5的绝对值是()A.5B.﹣5C.D.﹣【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选:A.2.(4分)据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为()A.0.944×107B.9.44×106C.9.44×107D.94.4×106【解答】解:944万=9440000=9.44×106,故选:B.3.(4分)某几何体的三视图如图所示,则该几何体为()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:根据三视图进行观察,下半部分是圆柱,上半部分是圆锥,故选:D.4.(4分)下列计算正确的是()A.a3+a3=a6B.a6÷a3=a2C.(﹣a)2=a2D.=a【分析】利用合并同类项法则,同底数幂除法法则,幂的乘方,二次根式逐项判断即可.【解答】解:A、a3+a3=2a3,故A选项错误;B、a6÷a3=a3,故B选项错误;C、(﹣a)2=a2,故C选项正确;D、,故D选项错误;故选:C.5.(4分)若扇形AOB的半径为6,∠AOB=120°,则的长为()A.2πB.3πC.4πD.6π【分析】利用弧长计算公式计算即可.【解答】解:=,故选:C.【点评】本题考查了弧长的计算,掌握弧长计算公式是解题的关键.6.(4分)已知反比例函数y=(k≠0)与一次函数y=2﹣x的图象的一个交点的横坐标为3,则k的值为()A.﹣3B.﹣1C.1D.3【分析】将x=3代入一次函数中,求得y=﹣1,再将(3,﹣1)代入反比例函数中,求得k的值.【解答】解:将x=3代入y=2﹣x中,得:y=﹣1,将(3,﹣1)代入y=中,得:k=﹣3,故选:A.【点评】本题考查了反比例函数与一次函数的交点问题,将交点横坐标代入解析式中是解题的关键.7.(4分)如图,在Rt△ABC中,AC=BC=2,点D在AB的延长线上,且CD=AB,则BD的长是()A.B.C.2﹣2D.【分析】由等腰直角三角形的性质可得AB=2,AH=BH=CH=,由勾股定理可求DH的长,即可求解.【解答】解:如图,过点C作CH⊥AB于H,∵AC=BC=2,∠ACB=90°,CH⊥AB,∴AB=2,AH=BH=CH=,∵CD=AB=2,∴DH===,∴DB=﹣,故选:B.【点评】本题考查了等腰直角三角形的性质,勾股定理,掌握等腰直角三角形的性质是解题的关键.8.(4分)已知实数a,b满足a﹣b+1=0,0<a+b+1<1,则下列判断正确的是()A.﹣<a<0B.<b<1C.﹣2<2a+4b<1D.﹣1<4a+2b<0【分析】由a﹣b+1=0得出b=a+1,代入0<a+b+1<1可得﹣1<a<﹣,再求0<b<,分别代入选项判断即可.【解答】解:∵a﹣b+1=0,∴b=a+1,∵0<a+b+1<1,∴0<a+a+1+1<1,即0<2a+2<1∴﹣1<a<﹣,故选项A错误,不合题意.∵b=a+1,﹣1<a<﹣,∴0<b<,故选项B错误,不合题意.由﹣1<a<﹣得,﹣2<2a<﹣1,﹣4<4a<﹣2,由0<b<得,0<4b<2,0<2b<1,∴﹣2<2a+4b<1,故选项C正确,符合题意.∴﹣4<4a+2b<﹣1,选项D错误,不合题意.故选:C.【点评】本题主要考查了解一元一次不等式,掌握解一元一次不等式是解题关键.9.(4分)在凸五边形ABCDE中,AB=AE,BC=DE,F是CD的中点.下列条件中,不能推出AF与CD一定垂直的是()A.∠ABC=∠AED B.∠BAF=∠EAF C.∠BCF=∠EDF D.∠ABD=∠AEC【分析】将每个选项的条件分别作为已知条件,结合题干,通过证三角形全等,再看能否证明AF⊥CD 即可【解答】选项A:连接AC、AD,∵AB=AE,∠ABC=∠AED,BC=DE,∴△ABC≌△AED(SAS),∴AC=AD,∵F是AD的中点,∴AF⊥CD,所以选项A不合题意;选项B:连接BF、EF,∵AB=AE,∠BAF=∠EAF,AF=AF,∴△ABF≌△AEF(SAS),∴∠AFB=∠AFE,BF=EF,∴△BFC≌△EFD(SSS),∴∠BFC=∠EFD,∴∠BFC+∠AFB=∠EFD+∠AFE,即∠AFC=∠AFD=90°,∴AF⊥CD,所以选项B不合题意;选项C:思路与选项B大致相同,先证△BFC≌△EFD(SAS),再证△ABF≌△AEF(SSS),∴∠BFC+∠AFB=∠EFD+∠AFE,即∠AFC=∠AFD=90°,∴AF⊥CD,所以选项C不合题意;选项D的条件无法证出全等,故证不出AF⊥CD,所以选项D符合题意.故答案选:D.【点评】本题主要考查全等三角形的判定和性质,熟练掌握全等三角形的相关知识是解题关键.10.(4分)如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=2,BD是边AC上的高.点E,F分别在边AB,BC上(不与端点重合),且DE⊥DF.设AE=x,四边形DEBF的面积为y,则y关于x的函数图象为()A.B.C.D.【分析】过D作DH⊥AB于H,求出AC==2,BD==;可得CD==AE•DH=x×==,AD=AC﹣CD=,故DH==,从而S△ADEx,S△BDE=BE•DE=(4﹣x)×=﹣x;证明△BDE∽△CDF,可得=()2==S△BDE=(﹣x)=﹣x,从而y=S△ABC﹣S△ADE﹣S△CDF=﹣x+,观,故S△CDF察各选项可知,A符合题意.【解答】解:过D作DH⊥AB于H,如图:∵∠ABC=90°,AB=4,BC=2,∴AC==2,∵BD是边AC上的高,∴BD===;∴CD ==,AD =AC ﹣CD =,∴DH ===,∴S △ADE =AE •DH =x ×=x ,S △BDE =BE •DE =(4﹣x )×=﹣x ;∵∠BDE =90°﹣∠BDF =∠CDF ,∠DBE =90°﹣∠CBD =∠C ,∴△BDE ∽△CDF ,∴=()2=()2=,∴S △CDF =S △BDE =(﹣x )=﹣x ,∴y =S △ABC ﹣S △ADE ﹣S △CDF =×2×4﹣x ﹣(﹣x )=﹣x +,∵﹣<0,∴y 随x 的增大而减小,且y 与x 的函数图象为线段(不含端点),观察各选项图象可知,A 符合题意;故选:A .【点评】本题考查动点问题的函数图象,涉及相似三角形判定与性质,勾股定理及应用,面积法等,解题的关键是求出y 与x 的函数关系式.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)若分式有意义,则实数x 的取值范围是.【分析】根据分式分母不为0进行计算即可.【解答】解:∵分式有意义,∴x ﹣4≠0,∴x ≠4,故答案为:x ≠4.12.(5分)我国古代数学家张衡将圆周率取值为,祖冲之给出圆周率的一种分数形式的近似值为.比较大小:(填“>”或“<”).【解答】解:()2=10,()2=,∵10,∴,故答案为:>.13.(5分)不透明的袋中装有大小质地完全相同的4个球,其中1个黄球、1个白球和2个红球.从袋中任取2个球,恰为2个红球的概率是.【分析】先画出树状图,再根据树状图求概率.【解答】解:由图可知,共有12种可能的结果,其中2个红球的结果出现2次,∴P=,故答案为:.14.(5分)如图,现有正方形纸片ABCD,点E,F分别在边AB,BC上.沿垂直于EF的直线折叠得到折痕MN,点B,C分别落在正方形所在平面内的点B′,C′处,然后还原.(1)若点N在边CD上,且∠BEF=α,则∠C′NM=(用含α的式子表示);(2)再沿垂直于MN的直线折叠得到折痕GH,点G,H分别在边CD,AD上,点D落在正方形所在平面内的点D′处,然后还原.若点D′在线段B′C′上,且四边形EFGH是正方形,AE=4,EB=8,MN与GH的交点为P,则PH的长为3.【解答】解:(1)∵MN⊥EF,∠BEF=α,∴∠EMN=90°﹣α,∵CD∥AB,∴∠CNM=∠EMN=90°﹣α,∴∠C′NM=∠CNM=90°﹣α.故答案为:90°﹣α.(2)如图,设PH与NC'交于点G',∵四边形ABCD和四边形EFGH是正方形,∴∠A=∠D=∠GHE=90°,GH=EH,∴∠AHE+∠GHD=∠AHE+∠AEH=90°∴∠GHD=∠AEH,∴△EAH≌△HDG(AAS)同理可证△EAH≌△HDG≌△GCF≌△FBE,∴DH=CG=AE=4,DG=EB=8,∴GH==4,∵MN⊥GH,且∠C′NM=∠CNM,∴MN垂直平分GG',即PG=PG'=GG',且NG=NG',∵四边形CBMN沿MN折叠,∴CN=C'N,∴CN﹣NG=C'N﹣NG',即C'G'=CG=4,∵△GDH沿GH折叠得到△GD'H,∴GD'=GD=8,∵∠HC'G'=∠HD'G=90°,∴C'G'∥D'G,∴==,∴HG'=GG'=HG=2,又∵PG'=GG'=,∴PH=PG'+HG'=3.故答案为:3.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解方程:x2﹣2x=3.【分析】利用因式分解解方程.【解答】解:x2﹣2x=3,x2﹣2x﹣3=0,(x﹣3)(x+1)=0,∴x1=3,x2=﹣1.16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy,格点(网格线的交点)A,B,C,D的坐标分别为(7,8),(2,8),(10,4),(5,4).(1)以点D为旋转中心,将△ABC旋转180°得到△A1B1C1,画出△A1B1C1;(2)直接写出以B,C1,B1,C为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E,使得射线AE平分∠BAC,写出点E的坐标.【解答】解:(1)如图,画出△A1B1C1;(2)以B,C1,B1,C为顶点的四边形的面积=10×8﹣2××2×4﹣2××4×8=40;(3)如图,点E即为所求(答案不唯一),点E的坐标(6,6).四、(本大题共2小题,每小题8分,满分16分)17.(8分)乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地,采用新技术种植A ,B 两种农作物.种植这两种农作物每公顷所需人数和投入资金如下表:农作物品种每公顷所需人数每公顷所需投入资金(万元)A 48B39已知农作物种植人员共24位,且每人只参与一种农作物种植,投入资金共60万元,问A ,B 这两种农作物的种植面积各多少公顷?【解答】解:设A 种农作物的种植面积是x 公顷,B 种农作物的种植面积是y 公顷,根据题意得:,解得:.答:A 种农作物的种植面积是3公顷,B 种农作物的种植面积是4公顷.18.(8分)数学兴趣小组开展探究活动,研究了“正整数N 能否表示为x 2﹣y 2(x ,y 均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N 奇数4的倍数表示结果1=12﹣023=22﹣125=32﹣227=42﹣329=52﹣42…4=22﹣028=32﹣1212=42﹣2216=52﹣3220=62﹣42…一般结论2n ﹣1=n 2﹣(n ﹣1)24n =按上表规律,完成下列问题:(ⅰ)24=()2﹣()2;(ⅱ)4n =;(2)兴趣小组还猜测:像2,6,10,14,…这些形如4n ﹣2(n 为正整数)的正整数N 不能表示为x 2﹣y 2(x ,y 均为自然数).师生一起研讨,分析过程如下:假设4n ﹣2=x 2﹣y 2,其中x ,y 均为自然数.分下列三种情形分析:①若x,y均为偶数,设x=2k,y=2m,其中k,m均为自然数,则x2﹣y2=(2k)2﹣(2m)2=4(k2﹣m2)为4的倍数.而4n﹣2不是4的倍数,矛盾.故x,y不可能均为偶数.②若x,y均为奇数,设x=2k+1,y=2m+1,其中k,m均为自然数,则x2﹣y2=(2k+1)2﹣(2m+1)2=为4的倍数.而4n﹣2不是4的倍数,矛盾.故x,y不可能均为奇数.③若x,y一个是奇数一个是偶数,则x2﹣y2为奇数.而4n﹣2是偶数,矛盾.故x,y不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【分析】(1)(i)由所给数据可推出24=4×6=(6+1)2﹣(6﹣1)2=72﹣52;(ii)结合第一问推导数据发现规律:4n=4•n=(n+1)2﹣(n﹣1)2;(2)利用平方差公式因式分解即可得到答案.【解答】解:(1)(i)4=4×1=(1+1)2﹣(1﹣1)2,8=4×2=(2+1)2﹣(2﹣1)2,12=4×3=(3+1)2﹣(3﹣1)2,20=4×5=(5+1)2﹣(5﹣1)2,24=4×6=(6+1)2﹣(6﹣1)2=72﹣52,......4n=4•n=(n+1)2﹣(n﹣1)2.故答案为:7,5;(ii)由(1)推导的规律可知4n=4•n=(n+1)2﹣(n﹣1)2.故答案为:(n+1)2﹣(n﹣1)2.(3)(2k+1)2﹣(2m+1)2=(2k+1+2m+1)(2k+1﹣2m﹣1)=4(k2﹣m2+k﹣m).故答案为:4(k2﹣m2+k﹣m).五、(本大题共2小题,每小题10分,满分20分)19.(10分)科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B处发出,经水面点E折射到池底点A处.已知BE与水平线的夹角α=36.9°,点B到水面的距离BC=1.20m,点A处水深为1.20m,到池壁的水平距离AD=2.50m.点B,C,D在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求的值(精确到0.1).参考数据:sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75.【分析】根据题意得出,∠CEB=α=36.9°,EH=1.20m,从而求出CE,AH,AE的长,分别求出sinβ和sinγ的值,得出结果.【解答】解:过点E作EH⊥AD于点H,由题意可知,∠CEB=α=36.9°,EH=1.20m,∴(m),AH=AD﹣CE=2.50﹣1.60=0.90(m),∴=1.50(m),∴,∵=cosα=0.80,∴.【点评】本题考查了解直角三角形的应用,理解题意得出线段长度是解题的关键.20.(10分)如图,⊙O是△ABC的外接圆,D是直径AB上一点,∠ACD的平分线交AB于点E,交⊙O 于另一点F,FA=FE.(1)求证:CD⊥AB;(2)设FM⊥AB,垂足为M,若OM=OE=1,求AC的长.【分析】(1)证明∠CEB+∠DCE=∠BCE+∠ACE=∠ACB=90°,即可得到∠CDE=90°,由此得出CD⊥AB;(2)求出AB和BC的长,即可求出AC的长.【解答】(1)证明:∵FA=FE,∴∠FAE=∠AEF,∵∠FAE与∠BCE都是所对的圆周角,∴∠FAE=∠BCE,∵∠AEF=∠CEB,∴∠CEB=∠BCE,∵CE平分∠ACD,∴∠ACE=∠DCE∵AB是直径,∴∠ACB=90°,∴∠CEB+∠DCE=∠BCE+∠ACE=∠ACB=90°,∴∠CDE=90°,∴CD⊥AB;(2)解:由(1)知,∠BEC=∠BCE,∴BE=BC,∵AF=EF,FM⊥AB,∴MA=ME=2,AE=4,∴圆的半径OA=OB=AE﹣OE=3,∴BC=BE=OB﹣OE=2,在△ABC中,AB=6,BC=2,∠ACB=90°,∴.【点评】本题考查了圆周角定理,勾股定理,垂径定理等,掌握定理并综合运用是解题的关键.六、(本题满分12分)21.(12分)综合与实践【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x(单位:cm)表示.将所收集的样本数据进行如下分组:组别A B C D Ex 3.5≤x<4.5 4.5≤x<5.5 5.5≤x<6.5 6.5≤x<7.57.5≤x≤8.5整理样本数据,并绘制甲、乙两园样本数据的频数分布直方图,部分信息如下:任务1求图1中a的值.【数据分析与运用】任务2A,B,C,D,E五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3下列结论一定正确的是(填正确结论的序号).①两园样本数据的中位数均在C组;②两园样本数据的众数均在C组;③两园样本数据的最大数与最小数的差相等.任务4结合市场情况,将C,D两组的柑橘认定为一级,B组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由.根据所给信息,请完成以上所有任务.【分析】(1)用200分别减去其它各组的频数可得a的值;(2)根据加权平均数公式计算即可;(3)分别根据中位数、众数和极差的定义解答即可;(4)根据统计图数据判断即可.【解答】解:(1)由题意得,a=200﹣(15+70+50+25)=40;(2)(15×4+50×5+70×6+50×7+15×8)=6,故乙园样本数据的平均数为6;(3)由统计图可知,两园样本数据的中位数均在C组,故①正确;甲园的众数在B组,乙园的众数在C组,故②结论错误;两园样本数据的最大数与最小数的差不一定相等,故③结论错误;故答案为:①;(4)乙园的柑橘品质更优,理由如下:由样本数据频数分布直方图可得,乙园一级柑橘所占比例大于甲园,因此可以认为乙园的柑橘品质更优.【点评】本题考查频数分布直方图,样本估计总体,频数分布表,加权平均数、中位数、众数以及极差,解题的关键是读懂图象信息,属于中考常考题型.七、(本题满分12分)22.(12分)如图1,▱ABCD的对角线AC与BD交于点O,点M,N分别在边AD,BC上,且AM=CN.点E,F分别是BD与AN,CM的交点.(1)求证:OE=OF;(2)连接BM交AC于点H,连接HE,HF.(ⅰ)如图2,若HE∥AB,求证:HF∥AD;(ⅱ)如图3,若▱ABCD为菱形,且MD=2AM,∠EHF=60°,求的值.【分析】(1)证明△AOE≌△COF(ASA),即可得到OE=OF;(2)(i)证明△HOF∽△AOD,即可得到HF∥AD;(ii)先求出OA=2OH,OB=5OE,即可得到的值.【解答】(1)证明:∵▱ABCD,∴AD∥BC,OA=OC,∴AM∥CN,∵AM=CN,∴四边形AMCN是平行四边形,∴AN∥CM,∴∠OAE=∠OCF,在△AOE与△COF中,,∴△AOE≌△COF(ASA),∴OE=OF;(2)(i)证明:∵HE∥AB,∴,∵OB=OD,OE=OF,∴,∵∠HOF=∠AOD,∴△HOF∽△AOD,∴∠OHF=∠OAD,∴HF∥AD;(ii)解:∵▱ABCD为菱形,∴AC⊥BD,∵OE=OF,∠EHF=60°,∴∠EHO=∠FHO=30°,∴,∵AM∥BC,MD=2AM,∴=,即HC=3AH,∴OA+OH=3(OA﹣OH),∴OA=2OH,∵BN∥AD,MD=2AM,AM=CN,∴,即3BE=2ED,∴3(OB﹣OE)=2(OB+OE),∴OB=5OE,∴,∴的值是.【点评】本题考查了平行四边形的性质与判定,相似三角形的性质与判定,全等三角形的性质与判定等,综合运用性质与判定方法是解题的关键.八、(本题满分14分)23.(14分)已知抛物线y=﹣x2+bx(b为常数)的顶点横坐标比抛物线y=﹣x2+2x的顶点横坐标大1.(1)求b的值;(2)点A(x1,y1)在抛物线y=﹣x2+2x上,点B(x1+t,y1+h)在抛物线y=﹣x2+bx上.(ⅰ)若h=3t,且x1≥0,t>0,求h的值;(ⅱ)若x1=t﹣1,求h的最大值.【分析】(1)求出抛物线y=﹣x2+bx的顶点横坐标为,y=﹣x2+2x的顶点横坐标为1,根据题意列方程,即可求出b的值;(2)先求出h=﹣t2﹣2x1t+2x1+4t,(i)列方程即可求出h的值;(ii)求出h关于t的方程,配顶点式求出h最大值.【解答】解:(1)∵抛物线y=﹣x2+bx的顶点横坐标为,y=﹣x2+2x的顶点横坐标为1,∴,∴b=4;(2)∵点A(x1,y1)在抛物线y=﹣x2+2x上,∴,∵B(x1+t,y1+h)在抛物线y=﹣x2+4x上,∴,t),∴h=﹣t2﹣2x1t+2x1+4t,(i)∵h=3t,∴3t=﹣t2﹣2x1t+2x1+4t,∴t(t+2x1)=t+2x1,∵x1≥0,t>0,∴t+2x1>0,∴t=1,∴h=3;(ii)将x1=t﹣1代入h=﹣t2﹣2x1t+2x1+4t,∴h=﹣3t2+8t﹣2,,∵﹣3<0,∴当,即时,h取最大值.。
(word完整版)安徽省中考数学知识点总结,推荐文档
中考数学知识点大全1、一元二次方程根的情况:y=ax2 +bx+c △=b2-4ac当△>0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相同的实数根;当△<0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫他的对角线。
③平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
多边形:①N边形的内角和等于(N-2)180度②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平均数:对于N个数X1,X2…X N,我们把(X1+X2+…+X N)/N叫做这个N个数的算术平均数,记为X加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc 如果ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:若a/b=c/d=…=m/n(b+d+…+n≠0),则(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。
安徽省中考数学知识点总结
初中数学高考知识点大全1、一元二次方程根的情况:y=ax2 +bx+c△=b2-4ac当△>0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相同的实数根;当△<0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫他的对角线。
③平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
多边形:①N边形的内角和等于(N-2)180度②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平均数:对于N个数X1,X2…X N,我们把(X1+X2+…+X N)/N叫做这个N个数的算术平均数,记为X加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。
安徽省2024年中考数学试卷(解析版)
2024年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2024•安徽)(﹣2)×3的结果是()A.﹣5 B.1C.﹣6 D.6考点:有理数的乘法.分析:依据两数相乘同号得正,异号得负,再把肯定值相乘,可得答案.解答:解:原式=﹣2×3=﹣6.故选:C.点评:本题考查了有理数的乘法,先确定积的符号,再进行肯定值的运算.2.(4分)(2024•安徽)x2•x3=()A.x5B.x6C.x8D.x9考点:同底数幂的乘法.分析:依据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n计算即可.解答:解:x2•x3=x2+3=x5.故选A.点评:主要考查同底数幂的乘法的性质,娴熟驾驭性质是解题的关键.3.(4分)(2024•安徽)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.考点:简洁几何体的三视图.分析:俯视图是从物体上面看所得到的图形.解答:解:从几何体的上面看俯视图是,故选:D.点评:本题考查了几何体的三种视图,驾驭定义是关键.留意全部的看到的棱都应表现在三视图中.4.(4分)(2024•安徽)下列四个多项式中,能因式分解的是()A.a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y考点:因式分解的意义.分析:依据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解答:解:A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B、是完全平方公式的形式,故B能分解因式;故选:B.点评:本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是解题关键.5.(4分)(2024•安徽)某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()棉花纤维长度x频数0≤x<8 18≤x<16 216≤x<24 824≤x<32 632≤x<40 3A.0.8 B.0.7 C.0.4 D.0.2考点:频数(率)分布表.分析:求得在8≤x<32这个范围的频数,依据频率的计算公式即可求解.解答:解:在8≤x<32这个范围的频数是:2+8+6=16,则在8≤x<32这个范围的频率是:=0.8.故选A.点评:本题考查了频数分布表,用到的学问点是:频率=频数÷总数.6.(4分)(2024•安徽)设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.8考点:估算无理数的大小.分析:首先得出<<,进而求出的取值范围,即可得出n的值.解答:解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.点评:此题主要考查了估算无理数,得出<<是解题关键.7.(4分)(2024•安徽)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6C.﹣2或6 D.﹣2或30考点:代数式求值.分析:方程两边同时乘以2,再化出2x2﹣4x求值.解答:解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.点评:本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.8.(4分)(2024•安徽)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A 点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4D.5考点:翻折变换(折叠问题).分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,依据中点的定义可得BD=3,在Rt△ABC 中,依据勾股定理可得关于x的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2++32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.9.(4分)(2024•安徽)如图,矩形ABCD中,AB=3,BC=4,动点P从A点动身,按A→B→C的方向在AB和BC上移动,记P A=x,点D到直线P A的距离为y,则y关于x的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,依据同角的余角相等求出∠APB=∠P AD,再利用相像三角形的列出比例式整理得到y与x的关系式,从而得解.解答:解:①点P在AB上时,0≤x≤3,点D 到AP 的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠P AD+∠BAP=90°,∴∠APB=∠P AD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴=,即=,∴y=,纵观各选项,只有B选项图形符合.故选B.点评:本题考查了动点问题函数图象,主要利用了相像三角形的判定与性质,难点在于依据点P的位置分两种状况探讨.10.(4分)(2024•安徽)如图,正方形ABCD的对角线BD长为2,若直线l满意:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()A.1B.2C.3D.4考点:正方形的性质.分析:连接AC与BD相交于O,依据正方形的性质求出OD=,然后依据点到直线的距离和平行线间的距离相等解答.解答:解:如图,连接AC与BD相交于O,∵正方形ABCD的对角线BD长为2,∴OD=,∴直线l∥AC并且到D的距离为,同理,在点D的另一侧还有一条直线满意条件,故共有2条直线l.故选B.点评:本题考查了正方形的性质,主要利用了正方形的对角线相互垂直平分,点D到O的距离小于是本题的关键.czsx二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2024•安徽)据报载,2024年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为 2.5×107.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的肯定值与小数点移动的位数相同.当原数肯定值>1时,n是正数;当原数的肯定值<1时,n是负数.解答:解:将25000000用科学记数法表示为2.5×107户.故答案为:2.5×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(5分)(2024•安徽)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=a(1+x)2.考点:依据实际问题列二次函数关系式.分析:由一月份新产品的研发资金为a元,依据题意可以得到2月份研发资金为a×(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.解答:解:∵一月份新产品的研发资金为a元,2月份起,每月新产品的研发资金与上月相比增长率都是x,∴2月份研发资金为a×(1+x),∴三月份的研发资金为y=a×(1+x)×(1+x)=a(1+x)2.故填空答案:a(1+x)2.点评:此题主要考查了依据实际问题二次函数列解析式,此题是平均增长率的问题,可以用公式a(1±x)2=b来解题.13.(5分)(2024•安徽)方程=3的解是x=6.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:4x﹣12=3x﹣6,解得:x=6,经检验x=6是分式方程的解.故答案为:6.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程肯定留意要验根.14.(5分)(2024•安徽)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中肯定成立的是①②④.(把全部正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.考点:平行四边形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.分析:分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF (ASA),得出对应线段之间关系进而得出答案.解答:解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDE,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故答案为:①②④.点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质等学问,得出△AEF≌△DME是解题关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2024•安徽)计算:﹣|﹣3|﹣(﹣π)0+2024.考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用平方根定义化简,其次项利用肯定值的代数意义化简,第三项利用零指数幂法则计算,计算即可得到结果.解答:解:原式=5﹣3﹣1+2024=2024.点评:此题考查了实数的运算,娴熟驾驭运算法则是解本题的关键.16.(8分)(2024•安徽)视察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…依据上述规律解决下列问题:(1)完成第四个等式:92﹣4×42=17;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.考点:规律型:数字的改变类;完全平方公式.分析:由①②③三个等式可得,被减数是从3起先连续奇数的平方,减数是从1起先连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.解答:解:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=2(2n+1)﹣1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=2(2n+1)﹣1=4n+2﹣1=4n+1.左边=右边∴(2n+1)2﹣4n2=2(2n+1)﹣1.点评:此题考查数字的改变规律,找出数字之间的运算规律,利用规律解决问题.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2024•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相像比不为1.考点:作图—相像变换;作图-平移变换.分析:(1)利用平移的性质得出对应点位置,进而得出答案;(2)利用相像图形的性质,将各边扩大2倍,进而得出答案.解答:解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求.点评:此题主要考查了相像变换和平移变换,得出变换后图形对应点位置是解题关键.18.(8分)(2024•安徽)如图,在同一平面内,两条平行高速马路l1和l2间有一条“Z”型道路连通,其中AB段与高速马路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速马路间的距离(结果保留根号).考点:解直角三角形的应用.分析:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,依据三角函数求得BE,在Rt△BCF中,依据三角函数求得BF,在Rt△DFG中,依据三角函数求得FG,再依据EG=BE+BF+FG即可求解.解答:解:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,BE=AB•sin30°=20×=10km,在Rt△BCF中,BF=BC÷cos30°=10÷=km,CF=BF•sin30°=×=km,DF=CD﹣CF=(30﹣)km,在Rt△DFG中,FG=DF•sin30°=(30﹣)×=(15﹣)km,∴EG=BE+BF+FG=(25+5)km.故两高速马路间的距离为(25+5)km.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2024•安徽)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.考点:垂径定理;勾股定理;圆周角定理;相像三角形的判定与性质.专题:计算题.分析:由OE⊥AB得到∠OEF=90°,再依据圆周角定理由OC为小圆的直径得到∠OFC=90°,则可证明Rt△OEF∽Rt△OFC,然后利用相像比可计算出⊙O的半径OC=9;接着在Rt△OCF中,依据勾股定理可计算出C=3,由于OF⊥CD,依据垂径定理得CF=DF,所以CD=2CF=6.解答:解:∵OE⊥AB,∴∠OEF=90°,∵OC为小圆的直径,∴∠OFC=90°,而∠EOF=∠FOC,∴Rt△OEF∽Rt△OFC,∴OE:OF=OF:OC,即4:6=6:OC,∴⊙O的半径OC=9;在Rt△OCF中,OF=6,OC=9,∴CF==3,∵OF⊥CD,∴CF=DF,∴CD=2CF=6.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、圆周角定理和相像三角形的判定与性质.20.(10分)(2024•安徽)2024年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2024年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2024年处理的这两种垃圾数量与2024年相比没有改变,就要多支付垃圾处理费8800元.(1)该企业2024年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业安排2024年将上述两种垃圾处理总量削减到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2024年该企业最少须要支付这两种垃圾处理费共多少元?考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,依据等量关系式:餐厨垃圾处理费25元/吨×餐厨垃圾吨数+建筑垃圾处理费16元/吨×建筑垃圾吨数=总费用,列方程.(2)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,须要支付这两种垃圾处理费共a元,先求出x的范围,由于a的值随x的增大而增大,所以当x=60时,a值最小,代入求解.解答:解:(1)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,依据题意,得,解得.答:该企业2024年处理的餐厨垃圾80吨,建筑垃圾200吨;(2)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,须要支付这两种垃圾处理费共a元,依据题意得,,解得x≥60.a=100x+30y=100x+30(240﹣x)=70x+7200,由于a的值随x的增大而增大,所以当x=60时,a值最小,最小值=70×60+7200=11400(元).答:2024年该企业最少须要支付这两种垃圾处理费共11400元.点评:本题主要考查了二元一次方程组及一元一次不等式的应用,找准等量关系正确的列出方程是解决本题的关键;六、(本题满分12分)21.(12分)(2024•安徽)如图,管中放置着三根同样的绳子AA1、BB1、CC1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A、B、C三个绳头中随机选两个打一个结,再从右端A1、B1、C1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.考点:列表法与树状图法.专题:计算题.分析:(1)三根绳子选择一根,求出所求概率即可;(2)列表得出全部等可能的状况数,找出这三根绳子能连结成一根长绳的状况数,即可求出所求概率.解答:解:(1)三种等可能的状况数,则恰好选中绳子AA1的概率是;(2)列表如下:A B CA1(A,A1)(B,A1)(C,A1)B1(A,B1)(B,B1)(C,B1)C1(A,C1)(B,C1)(C,C1)全部等可能的状况有9种,其中这三根绳子能连结成一根长绳的状况有6种,则P==.点评:此题考查了列表法与树状图法,用到的学问点为:概率=所求状况数与总状况数之比.七、(本题满分12分)22.(12分)(2024•安徽)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A (1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.考点:二次函数的性质;二次函数的最值.专题:新定义.分析:(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.(2)由y1的图象经过点A(1,1)可以求出m的值,然后依据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题.解答:解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2(x﹣3)2+4.∵2>0,∴该二次函数图象的开口向上.当a=3,h=3,k=4时,二次函数的关系式为y=3(x﹣3)2+4.∵3>0,∴该二次函数图象的开口向上.∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.(2)∵y1的图象经过点A(1,1),∴2×12﹣4×m×1+2m2+1=1.整理得:m2﹣2m+1=0.解得:m1=m2=1.∴y1=2x2﹣4x+3=2(x﹣1)2+1.∴y1+y2=2x2﹣4x+3+ax2+bx+5=(a+2)x2+(b﹣4)x+8∵y1+y2与y1为“同簇二次函数”,∴y1+y2=(a+2)(x﹣1)2+1=(a+2)x2﹣2(a+2)x+(a+2)+1.其中a+2>0,即a>﹣2.∴.解得:.∴函数y2的表达式为:y2=5x2﹣10x+5.∴y2=5x2﹣10x+5=5(x﹣1)2.∴函数y2的图象的对称轴为x=1.∵5>0,∴函数y2的图象开口向上.①当0≤x≤1时,∵函数y2的图象开口向上,∴y2随x的增大而减小.∴当x=0时,y2取最大值,最大值为5(0﹣1)2=5.②当1<x≤3时,∵函数y2的图象开口向上,∴y2随x的增大而增大.∴当x=3时,y2取最大值,最大值为5(3﹣1)2=20.综上所述:当0≤x≤3时,y2的最大值为20.点评:本题考查了求二次函数表达式以及二次函数一般式与顶点式之间相互转化,考查了二次函数的性质(开口方向、增减性),考查了分类探讨的思想,考查了阅读理解实力.而对新定义的正确理解和分类探讨是解决其次小题的关键.八、(本题满分14分)23.(14分)(2024•安徽)如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)①∠MPN=60°;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,推断四边形OMGN是否为特别四边形?并说明理由.考点:四边形综合题.分析:(1)①运用∠MPN=180°﹣∠BPM﹣∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解,(2)连接OE,由△OMA≌△ONE证明,(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.,解答:解:(1)①∵四边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°又∴PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°,∴∠MPN=180°﹣∠BPM﹣∠NPC=180°﹣60°﹣60°=60°,故答案为;60°.②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN 于点K,MP+PN=MG+GH+HP+PL+LK+KN∵正六边形ABCDEF中,PM∥AB,作PN∥CD,∵∠AMG=∠BPH=∠CPL=∠DNK=60°,∴GM=AM,HL=BP,PL=PM,NK=ND,∵AM=BP,PC=DN,∴MG+HP+PL+KN=a,GH=LK=a,∴MP+PN=MG+GH+HP+PL+LK+KN=3a.(2)如图2,连接OE,∵四边形ABCDEF是正六边形,AB∥MP,PN∥DC,∴AM=BP=EN,又∵∠MAO=∠NOE=60°,OA=OE,在△ONE和△OMA中,∴△OMA≌△ONE(SAS)∴OM=ON.(3)如图3,连接OE,由(2)得,△OMA≌△ONE∴∠MOA=∠EON,∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形,∴∠AFE=∠AOE=120°,∴∠MON=120°,∴∠GON=60°,∵∠GON=60°﹣∠EON,∠DON=60°﹣∠EON,∴∠GOE=∠DON,∵OD=OE,∠ODN=∠OEG,在△GOE和∠DON中,∴△GOE≌△NOD(ASA),∴ON=OG,又∵∠GON=60°,∴△ONG是等边三角形,∴ON=NG,又∵OM=ON,∠MOG=60°,∴△MOG是等边三角形,∴MG=GO=MO,∴MO=ON=NG=MG,∴四边形MONG是菱形.点评:本题主要考查了四边形的综合题,解题的关键是恰当的作出协助线,依据三角形全等找出相等的线段.- 21 -。
(完整word版)安徽省中考数学知识点总结
初中数学高考知识点大全1、一元二次方程根的情况:y=ax2 +bx+c△=b2-4ac当△>0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相同的实数根;当△<0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫他的对角线。
③平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
多边形:①N边形的内角和等于(N-2)180度②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平均数:对于N个数X1,X2…X N,我们把(X1+X2+…+X N)/N叫做这个N个数的算术平均数,记为X加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。
安徽中考数学试卷真题分析
安徽中考数学试卷真题分析近年来,随着中学教育的普及和提高,安徽中考数学试卷也逐渐变得更加全面和有挑战性。
本篇文章旨在对安徽中考数学试卷的真题进行深入分析,以帮助考生更好地了解试卷的特点和命题思路。
一、选择题分析安徽中考数学试卷的选择题通常涵盖了数学的各个知识点,考察内容全面。
其中,题目难度逐渐增加,既有基础的计算题,也有需要思考和推理的综合应用题。
在解答选择题时,考生需要仔细审题,理清思路,提高解题效率。
下面我们以一道选择题为例进行分析:1. 已知正方形ABCD的边长为4cm,点E是边AD的中点,连接BE并延长交边CD于点F,则△BEF的面积是()。
A. 2cm²B. 2√2 cm²C. 3cm²D. 3√2 cm²分析:根据题意,我们可以通过多种方法来求解△BEF的面积。
一种方法是计算三角形△BEF的底边EF和高线BF的长度,然后应用面积公式计算面积。
另一种方法是观察到三角形△BEF为等边三角形,直接应用等边三角形的面积公式计算面积。
通过仔细思考和计算,我们可以得出答案是B. 2√2 cm²。
这道题目考察了正方形的性质和等边三角形的面积计算方法,既考查了基本知识的掌握,又考察了学生的运算和推理能力。
二、填空题分析填空题是安徽中考数学试卷中的常见题型,通常考察的是对某一知识点的理解和应用能力。
在解答填空题时,考生需要首先明确填空的要求和条件,然后根据所学的知识点进行求解。
下面我们以一道填空题为例进行分析:2. 设函数y = log3 x,则不等式3^(y+1) < 9的解集为________。
分析:根据不等式的定义,我们可以将不等式3^(y+1) < 9转化为指数形式,得到3^(y+1) < 3^2。
由指数函数的性质可知,当底数相同时,指数相等时,底数的大小关系与指数的大小关系是一致的。
因此,我们可以将不等式转化为y+1 < 2。
安徽近五年中考数学试卷分析
4
图形中线段最值问题
图形中线段最值问题
二次函数的图像与性质满足条件的线存在型问题特殊三角形、外接圆
11
5
求立方根
解不等式
求立方根
科学计数法
定义域
12
5
因式分解
因式分解
圆的相关计算(求角度)
根据题意列函数关系式
因式分解
13
5
圆的相关计算(求弧长)
圆的相关计算(求弧长)
数的规律
解分式方程
平行四边形、三角形面积
分式应用
21
12
统计与概率
概率
反比例函数和几何综合
概率
统计、概率
22
12
待定系数法、配方法
二次函数和几何综合
二次函数解决实际问题(矩形面积问题)
二次函数(用待定系数法求函数表达式)
分段函数、应用
23
14
几何图形探究与证明
几何图形探究与证明
几何图形探究与证明
几何图形探究与证明
几何概念证明
18
8
尺规作图(轴对称和图形平移)
图形规律探究
解直角三角形的应用
解直角三角形的应用
规律、正六边形、平移、点的坐标
19
10
查找规律
解直角三角形的应用
概率
与圆相关的计算(求半径、弦长)
解直角三角形的应用
20
10
圆和四边形的结合计算
反比例函数和几何综合
与圆相关的计算(求线段长度、线段最值)
方程与不等式解决实际问题)
14
5
几何折叠
几何图形推理
代数式推理
几何图形推理
几何折叠
15
安徽中考数学概念总结归纳
安徽中考数学概念总结归纳数学是一门非常重要的学科,也是中考的必考科目之一。
在数学学习中,理解和掌握各种数学概念是至关重要的。
本文将对安徽中考数学常见概念进行总结归纳,帮助同学们更好地备考。
一、整数与有理数整数是由正整数、负整数和0组成的集合,用Z表示。
有理数是整数和分数的总称,用Q表示。
整数和有理数的比较、四则运算和约分等操作是中考中的常见考点。
1. 整数的比较整数的比较常用的方法是绝对值法和符号法。
对于两个整数a和b,若a>b,则a所对应的数比b大;若a<b,则a所对应的数比b小;若a=b,则a所对应的数和b相等。
2. 四则运算整数的四则运算包括加法、减法、乘法和除法。
加法和乘法满足交换律和结合律,减法和除法满足相反数的性质。
在进行加减乘除时,需要注意符号的运算规则和运算顺序。
3. 约分对于有理数的运算,常常需要将结果化简为最简形式。
约分就是将一个分数的分子和分母同时除以它们的最大公约数,得到的分数即为最简形式。
二、代数式与方程式代数式是由数字、字母和运算符号组成的式子,它表示了某些数的关系。
方程式是由代数式构成的等式,其中含有一个或多个未知数。
1. 代数式的加减运算在代数式的加减运算中,只能合并同类项。
同类项是具有相同字母和相同指数的项。
对于代数式的加法,可以将同类项合并得到简化式子;对于代数式的减法,可以通过加负数的方式转化为加法运算。
2. 代数式的乘法与除法代数式的乘法与除法遵循分配率和约分原则。
在进行代数式的乘法运算时,要注意各项之间的乘法运算和指数运算;在进行代数式的除法运算时,要将除法转化为乘法运算并进行约分。
3. 一元一次方程式一元一次方程式是形如ax+b=0的方程,其中a和b为已知系数,x 为未知数。
解一元一次方程式的方法主要有等式两边加减法、等式两边乘除法和移项等。
三、平面几何与空间几何平面几何是研究平面图形的性质和变换的学科,而空间几何则是研究空间图形的性质和变换的学科。
安徽省近五年中考数学试题分析
安徽省近六年中考数学试题分析——2013年中考辅导讲座安徽省中考数学试题总体上坚持稳中求变,变中求新,下面结合近6年我省中考数学试题,试谈我的管窥之见.一、试卷形式和内容时间120分钟,总分150分.考试内容为数与代数、空间与图形、统计与概率三个部分,数与代数约占50%、空间与图形约占38%、统计与概率约占12%.10道选择题,4题填空,9个大题共23题.涉及知识点188个,其中数与代数60个;空间与图形108个;统计与概率20个.了解、理解、掌握层次的知识点186个,运用层次的知识点2个.二、考点透视(一)近五年三种题型的考点分布:1.选择题2.填空题3.解答题(二)考点分析1.数与代数(1)数与式本部分属于基础题,约占20分,主要考概念与计算.实数、数轴、相反数、绝对值、倒数、算术平方根这些概念要很好掌握.从上表可以看出:科学记数法除2009年没考外,其余四年每年都考;化简求值2010年、2011年连续两年都在15题中出现;因式分解几乎年年都考,2008年第2题,2009年第12题,2010年第15题,2011年第11题中均考了因式分解,对于数与式不要钻偏题、怪题.(2)方程与不等式安徽卷对方程的考查多以列方程解应用题形式出现.近五年也是年年都考.如2007年18题,2008年第17题,2009年第19题,2010年第19题,2011年16题都是考列方程解应用题.而对不等式的考查则以直接考解不等式(组)题型为主,如2008年第15题和2010年第12题均直接考解不等式组,五年均未出现过列不等式组的应用问题.当然方程与不等式有时在函数题里也有所体现.(3)函数中考对函数的考查属重头戏,2008年考了35分,2009年考了23分,2010年考了28分,2011年考了30分.一次函数是初中学习的第一个函数,其基础性和重要性不言而喻,各地中考对一次函数都十分关注,既有客观题,也有解答题.连续三年都考了从函数(分段函数)图象中获取信息解决问题的题目,如2008年23题,2009年23题,2010年第10题.反比例函数多以填空、选择、简答题为主.如2008年第7题,2009年未考反比例函数,2010年第17题,2011年21题.对反比例函数的复习难度不宜过大,要注意反比例函数的增减性.二次函数常以压轴题形式出现,重点考查函数图象和性质、确定函数解析式和求函数的最值.如2007年第23题,2008年第14题和21题,2009年第14题和23题,2010年第7题和22题,2011年第23题都考查了二次函数,一般都是一题客观题一题解答题,题型较稳定,客观题重在考图象和性质,主观题作为区分度题,重在考确定函数解析式和求函数的最值,放在后三题中.2.空间与图形(1)平行线的性质和判定三年都有考查,多以选择填空为主,难度不大.如2007年第7题,2008年第12题,2009年第2题,2010年第3题.(2)三角形的边角性质多以基础题为主.解直角三角形问题,近几年考查的都是涉及测量的应用问题,难度不大,如2007年第19题;2008年第16题;2009年13题;2010年16题;2011年第19题,年年都考,要引起重视.全等和相似三角形也是考查的重头戏,多以解答题形式出现.如2008年第20题考相似、22题与全等有关;2009年第22题考相似;2010年第20题考全等、第23题考相似;2011年第22题考相似、23题考全等.从题号偏后也可看其难度和重要性,估计2012年将延续下去,一题全等、一题相似的可能性非常大.(3)四边形多以特殊四边形为主,每年都考,有时综合在三角形中进行考查.如2007年第10题;2008年第20题;2009年第19、20题;2010年第20题;2011年第6、9、10、23题.(4)三视图近五年每年都考,主要以填空、选择题形式出现.如2007年第14题;2008年第6题;2009年第5题;2010年第5题;2011年第3题,千万不可忽视.(5)圆多以客观题为主,题型相对稳定,分值未超过10分,基本是以圆的基本性质为主,如垂径定理,圆心角、圆周角、弧、弦关系,五年都未涉及直线与圆的关系、圆与圆的关系、圆的切线.除2009年16题考了证明题外,其它四年题型均为选择题或填空题,没考解答题,题目主要是求与圆有关的角、弧长、弦长等.但今年考纲关于圆的要求有所提高,其中掌握层次中就列了5项:圆的性质;切线与过切点的半径之间的关系;切线的判定;弧长及扇形面积的计算;圆锥的侧面积和全面积的计算.这些变化要引起我们注意.3.统计与概率从五年中考来看,本考点每年2至3题,客观题和解答题各一题.要提高对统计与概率的重视,因为这部分知识与生活息息相关,在生活中应用较为广泛.统计2008年考的是折线统计图,2009年考的是条形统计图,2010年考的是折线统计图,2011年考的又是条形统计图,轮换着考.概率多数以选择题出现,如2008年第8题;2009年第6题;2011年第5题,有时也有大题出现,如2008年第19题; 2010年第21题.复习时,重点放在对概率意义的理解和概率的求解方法上,特别是用树状图法求概率.三、九大亮点1.“9+1”现象和14题现象“9+1”现象即10道选择题总有一题较难,题号一般排在后三题中的一题.难点多数集中在几何与函数上. 如2007—2009年连续三年考查几何,涉及知识点为圆内接正多边形、等腰三角形、三角形内切圆等;2010、2011年连续两年考函数,其中2010年考函数图象的识别,2011年考分段函数. “14题现象”即填空题第4题较难,2007年考的是三视图,2008年和2009年考的是二次函数,2010年考的是等腰三角形,2011年考的是定义运算,每年都在不断翻新.2.部分考题源于教材例如:2011年19题是沪科版九年级上P.114例5改编而成,2010安徽中考数学13题是沪科版九年级下P.29例1改编而成,2010安徽中考数学19题是沪科版八年级下P.37页例2改编而成,2009年考题20题是由沪科版九年级上P.120页课题学习“问题出在哪里”改编而成.2008年第8题火车显示屏概率题源于九(下)课本106页《阅读与欣赏》中的例2等.3.网格中图形的变换问题每年出现近五年试卷中几乎每年都考网格中图形的变换问题.如2007年16题是网格中图形变换问题;2008年18题是网格中点对称变换问题;2009年18题也是网格中的图形变换问题;2010年18题还是网格中的图形变换问题;2011年17题仍是网格中的图形变换问题.题目侧重考查在网格中图形的平移、对称、旋转和位似作图等.4.动态几何受到青睐如2007年22题动点问题;2008年22题动点问题;2011年22题图形的旋转.动点问题主要有单动点和双动点;动形问题主要有图形的平移、翻折和旋转.这类问题对学生的分类讨论、动静转化、操作探究等能力要求较高,近年受到热捧.5.规律探究题高频出现规律探究问题是根据已知条件或所提供的若干个特例,通过观察、类比、归纳,揭示和发现题目所蕴含的本质规律和特征.如2007年21题;2008年18题;2009年17题;2010年第9题;2011年18题.该类题侧重考查学生从特殊到一般的探究能力,题目形式涉及形(如2007年21题)和数(如2009年17题;2010年第9题);静(如2007年21题)与动(如2008年18题;2011年18题).虽形式不断变化,但题型基本集中在探索结论型上.6.近四年都考查了增长率问题如2007年18题秸秆合理利用量的增长率;2008年第17题石油价格增长率问题;2009年第7题GDP 增长率;2010年第19题房价降价率问题.增长率的考查总是以列方程解应用题的形式呈现,体现了数学为经济服务的思想.7.重视初高中知识衔接点的考查中考是高中录取新生的主要依据,与高中数学知识有密切联系的二次函数、三角函数、三视图、概率等应是考试的重点.如2007的23题,2008年的14、21题,2009年的14、23题,2010年的7、22题,2011年的23题都与二次函数有关;2007年19题,2008年16题,2010年16题,2011年19题都是解直角三角形的应用;2007年17题,2008年8、19题,2009年第6题,2010年21题,2011年第5题都是概率计算等等.8.反映社会热点问题的应用题比重较大如2008年考了3题选择和5道解答题共64分应用题,2009年考了3题选择2题填空4题解答题计58分,2010年有3题选择题、4道解答题是应用题,共50分.9.压轴题关注几何和函数2007年是涉及函数的开放题;2008年是涉及函数的应用题;2009年是涉及函数的应用题;2010年是涉及几何的开放题;2011年则是几何与函数的综合题.几何侧重三角形、四边形,函数侧重一次函数和二次函数.四、两点建议(一)关注课标现已颁布的《义务教育数学课程标准(2011年版)》对原《课程标准》内容做了一些重要修订,这些无疑是中考复习关注的热点.1.删除的主要内容:(1)数与代数领域:能对含有较大数字的信息作出合理的解释与推断;了解有效数字的概念;能够根据具体问题中的数量关系,列出一元一次不等式组解决简单的问题.(2)图与几何领域:关于梯形、等腰梯形的相关要求;探索并了解圆与圆的位置关系;关于影子、视点、视角、盲区等内容,以及对雪花曲线和莫比乌斯带等图形的欣赏等;关于镜面对称的要求;等腰梯形的性质和判定定理.(3)统计与概率领域:会计算极差;会画频数折线图.观察近五年安徽卷,有效数字、列不等式组解应用题、圆与圆的位置关系、等腰梯形的性质和判定定理等都没有考,这些也正是2011年版《数学课程标准》中删除的内容.2.增加的内容:增加的内容包括两个部分,一个是必学内容,一个是选学内容.(1)增加的必学内容主要有:①数与代数:知道∣a∣的含义(这里 a 表示有理数);最简二次根式和最简分式的概念;能进行简单的整式乘法运算(一次式与二次式相乘);能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等;会利用待定系数法确定一次函数的解析表达式.②图形与几何:会比较线段的大小,理解线段的和、差,以及线段中点的意义;了解平行于同一条直线的两条直线平行;会按照边长的关系和角的大小对三角形进行分类;了解并证明圆内接四边形的对角互补;了解正多边形的概念及正多边形与圆的关系;过一点作已知直线的垂线;已知一直角边和斜边作直角三角形;作三角形的外接圆、内切圆;作圆的内接正方形和正六边形.③统计与概率:能用计算器处理较为复杂的数据;理解平均数的意义,能计算中位数、众数.(2)增加的选学内容主要有:①数与代数:能解简单的三元一次方程组;了解一元二次方程的根与系数的关系;知道给定不共线三点的坐标可以确定一个二次函数.②图形与几何:了解相似三角形判定定理的证明;探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧;探索并证明切线长定理:过圆外一点所画的圆的两条切线的长相等.《课程标准》明确指出选学内容不作考试要求.(二)关注考纲《2012年安徽省初中毕业学业考试纲要》对考试内容和考试目标要求进行了详细阐述,从考试目标要求上看,考点主要集中在A、B、C层次,D 层次只有2处作了要求.例如“图形与变换”单元中“12.图形的旋转”条目里第(7)条“用轴对称、平移和旋转的组合进行图案设计”属于D层次,安徽省中考数学试卷2007年第16题、2008年考的第18题、2009年的第18题、2010年考的第18题、2011年考的第17题均考了这类题型,每年都考,成为中考解答题常客.离中考已不到20天,在这短暂的时间里希望同学们做到:查——带着考纲查漏补缺练——带着目的进行练习纠——带着错题进行反思看——带着问题回归教材总——带着题型总结方法预祝同学们在2013年中考中取得优异成绩!。
2024年中考数学试卷分析报告安徽
2024年中考数学试卷分析报告安徽一、试卷整体难度分析2024年中考数学试卷在整体上具有一定的难度,涵盖了基本的数学知识和能力要求。
试卷中的题目有些需要深入思考和运用多个解题方法,而有些则较为简单直观。
下面将以各个题型分析试卷中的难点和易点。
二、选择题分析选择题在试卷中占了较大比例,主要考察了学生对基本概念和运算的掌握。
1. 二次函数与一次函数混合题这是本次试卷中的一道较难的选择题。
题目要求通过分析二次函数与一次函数的性质,求解函数转折点的坐标和函数值等内容。
解答过程中需要灵活运用函数相关的知识,对函数的图象和性质有一定的理解。
此题可以帮助学生巩固二次函数与一次函数的知识,提高解题能力。
2. 直接比例与反比例的辨析本题目从实际生活中的情景出发,考察学生对于直接比例与反比例关系的辨析能力。
通过观察实际情境中两个量的变化情况,学生需要判断两个量之间是直接比例还是反比例,进而选择正确的答案。
此题旨在培养学生的实际问题解决能力,培养学生的观察力和分析能力。
三、计算题分析计算题在试卷中也占有一定的比例,主要考察学生的计算能力和运算技巧。
1. 平行四边形的面积计算这是本次试卷中的一道较难的计算题。
题目要求计算给定平行四边形的面积,考察学生对平行四边形性质的理解和计算面积的能力。
解答过程中需要正确地运用计算面积的公式,并注意计算中的单位换算和运算符号。
此题旨在培养学生的计算思维和准确性。
2. 分数的运算和化简这道题目要求学生对分数的加法和乘法进行计算,并且对结果进行化简。
通过此题,考察学生对分数加法和乘法的掌握情况,以及对分数化简的熟练程度。
同时,此题也要求学生注意运算过程中的细节和精度,培养学生的计算准确性和思考能力。
四、解答题分析解答题主要考察学生综合运用数学知识解决实际问题的能力。
1. 运动员训练问题这是一道综合应用题,要求学生通过已知数据求解出运动员的平均速度。
通过此题,考察学生对速度、时间、距离之间的关系和计算的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年安徽中考数学分析1、试题结构今年中考的数学试卷试题结构与往年相同,继续保持了中考命题思路的连续性与稳定性。
具体情况如下表:表一第2题,第11题,第12题,第15题都是直接考查学生的运算能力,涉及实数的计算,整式的运算,分式的运算,二次根式的计算和不等式的运算。
第3题,第13题,第20题是考查学生简单的几何推理能力和几何运算能力。
第16题,第19题题干给出了参考数据,主要考查学生引用参考数据及估算的能力。
第4、6、10、16、19、21、22题,要求学生能够分析问题,建立恰当有效的数学模型,进而解决问题。
本套试题涉及到实际应用的试题约有54分,占36%。
注重培养学生的创新意识,发展学生的探究能力。
本套试卷的第9、14、18、20、23题都具有一定的探究性和挑战性,有利于考查学生的创新意识和探究能力,同时也使试卷具有恰当的区分度,符合中考试题具有部分选拔功能的要求其中第15题,第16题,第17题分别考查分式的运算,解直角三角形的应用,一次函数与反比例函数解析式,都属于基础知识的考查,大部分学生都能得满分。
第15题有部分同学由于计算不认真而失分,第16题有部分同学审题时没注意到参考数据()而失分,第17题有些同学不理解关于轴对称点的特征而失分,反映出这部分学生的基础知识掌握不牢固。
第18题主要考查图形变换。
将初中所学的三种全等变换(旋转、平移与轴对称)放在同一问题中考查,是一道绝妙的好题。
大部分学生能解答出(1)问,不能解答出(2)问,此题得分不理想,说明了学生的动手操作能力较差,探索、发现、描述的能力不足。
第19题主要考查一元二次方程的应用。
要求学生理解平均降低率的含义,能建立恰当的方程模型,在求解时要充分注意应用参考数据(),在第(2)问中要求学生会正确进行估算。
本题部分学生由于解题不够规范而导致失分,也有一些学生不能建立恰当的方程模型来求解,说明这部分学生的数学应用能力不足。
第20题有多种证明方法,大多数学生都能给出证明,但书写时有部分学生条理不清楚,而导致部分失分。
说明部分学生思维混乱,缺乏思维的逻辑性和严密性。
第21题考查具体情境中随机事件概率的计算,以时事“上海世博会门票”为背景,突出了知识与生活的密切联系。
对于第(1)问列举所有可能结果,学生有多种解决方法,可以用枚举法,可以用二元一次不定方程求正整数解来解,也可以用不等式来求解,是一道考查学生应用能力的好题。
本题学生得分良好。
第22题着重考查函数知识。
涉及到“一次函数中k的含义”,“求二次函数的解析式”,“用配方法求二次函数的顶点、对称轴”,“讨论函数的增减性”等。
这些知识对学生后续的高中学习十分有用,为初中升高中进行了有效衔接第23题是试卷的压轴题,主要考查相似三角形的有关概念和性质,突出了对学生能力的考查。
第(1)问由相似比切入,第(2)问让学生给出特例并加以说明,第(3)问则在特例的基础上要求学生用反证法证明其不存在,由浅入深,逐步引导,步步深入。
本题要求学生有一定的阅读理解能力、自主学习能力、探究能力和逻辑推理能力,是整卷中难度最大的一题,区分度较好,优秀学生能在这一题充分展示自己的数学才华,起到了较好的“选拔”作用。
2011年安徽中考数学试卷分析2011年安徽省中考数学试卷满分为150分,考试时间为120分钟.共8大题,23个小题。
第一题为选择题(共10小题),第二题为填空题(共4小题),第三到八题为解答题(共9小题).试卷的基本结构如下:二、题型细分1、选择题C.试题考点1. 难试题的起步较低,坡度不大,以基础性试题为主,难度较大的试题只有最后两道题(第9、10题).2. 考点设置规律性比较强:主要集中在基本定义、基本运算、简单综合应用方面,这也是我们在设计题型时要借鉴学习的一个重要方面.D.题干和选项:1. 题干的语言表述比较简洁明了.2. 选项的设置均为学生在解题时容易出现错误结果的选项,干扰性比较强.对教学工作的启示:1.设置题干要简洁明确,逻辑要合理,脉络要清晰.2.难易度把握要适当,按照由易到难的顺序,以考查基础知识为主,以适量的中等题目,难题以1到2题为宜.3.考查知识点不宜太集中,应均匀分布.4.选项设置方面:四个选项应保持长度相等,或两两一致.选项的内容要为学生易错易混淆选项.2、填空题考点设置知识面比较广:主要集中在不同知识点的简单综合运算、应用方面.D.题干和填空内容:1. 题干的语言表述简洁,使学生对题意的把握表述明确.2. 所要填空的内容均需通过一定的计算才能得出.对教学工作的启示:1. 注意语言的规范化,设置题干要简洁明确,逻辑要合理,脉络要清晰.2. 抓纲扣本,把握知识的考查深度.这样才能做到有的放矢,事半功倍.3. 重视基础知识和基本技能三、解答题考点设置规律性比较强、知识面广泛:主要集中在计算,简单的综合应用,能力考查方面,方式由计算求值到简单证明到综合应用到实际问题的考查再到能力提升的出题顺序.这也是我们在设计题型时要借鉴学习的一个重要方面.D.题干:1. 题干的语言表述简洁、详尽,使学生对题意的把握表述明确.2. 加强计算训练,提高计算的准确率.3. 主动尝试从数学的角度运用所学的数学知识方法来解决问题,体会数学的应用价值.要让学生自主思考,自主探索,自己发现问题,这样学生会逐渐养成自觉思考、直觉探索的习惯.总结:第15、16小题分别考查了分式的化简求值、一元一次方程或一元二次方程组的应用,第17小题考查了图形的平移、位似,第18小题考查了学生的阅读理解、抽象思维等方面.第19小题考查了解直角三角形的应用,第20小题考查了统计并要求学生给予分析原因,加强了学生的抽象概括能力和决策判断能力.第22题是几何图形的旋转问题,在旋转中找角的度数,线段之间的关系,题目没有突破常规,但是延续了学生在解数学题中的思维难点,让学生“够一够能抓到”,命题思路较好,是一道好的几何题.第23题,是在一个基本的几何图形的框架下考查了全等三角形及二次函数问题,是一道代数与几何结合的好题,在思考此题时只要学生审题充分就不会失分.对教学工作的启示:1.设置题干要简洁明确,逻辑要合理,脉络要清晰.2.难易度把握要适当,计算题方面以考查基本计算能力为主,综合应用方面由易道难的顺序出题,压轴题目以一题为宜,尽量不出偏题和怪题.3.考查知识点要广泛,以课本重难点内容、考点内容为主,在这部分不宜考查单一知识点,以综合能力的考查为主.总结:值得一思的是今年考查知识点偏重几何部分(代数:几何:概率=4:5:1),凸显学生的逻辑思维能力是一个特点,其中第9、10、22题的第(3)问有一定的区分度。
另外,今年中考数学的阅读理解题能较好地考查学生阅读理解能力与日常生活体验,同时又能考查学生获取信息后的抽象概括能力、建模能力、决策判断能力,是一大亮点。
如第12、14、18、20题.本次试题背景考生较熟悉,容易入手,但问题设置有创新、有变化是今年命题的又一大特点.2012年安徽中考数学试卷分析一、试题特征1、试卷结构科学合理:试卷没有超出《安徽省2012年中考(数学)纲要》的要求,试题设置有一定的梯度,选择题和填空题除了最后一题较灵活之外,其它都是常见的常规试题,解答题的前两题也都是最基础的化简计算和解方程。
整张试卷中“数与代数”约占50﹪,“空间与图形”约占37.4﹪,“统计与概率”约占12.6﹪.均接近于前几年中考各部分所占比例的平均值。
2、注重了基础知识和能力的考查:试卷中对于方程及其应用、整式和分式的化简、圆、解直角三角形、全等图形变换、统计以及函数等中考重要知识,考查的都很基础,对于大部分考生来说,没有思维障碍,应该比较得心应手。
对于有一定灵活性的解答题,也都设置了多个问题,由易到难,使学生能够分步入手去做,让不同层次的学生都能发挥自己的水平。
3、注重思想方法,关注初高中衔接:试卷除了对于函数思想、方程思想、数形结合思想等都有必要的考查外,特别对分类思想考查的比较多,如试卷的第10、17(2)、21(3)都要考虑到两种或三种情况,考生有时不一定会考虑的那么全面,在这方面常有丢分现象。
这些数学思想也是学好高中数学的基础,尤其是高一的第一学期,对于函数和分类思想的重要,体现的尤为明显。
4、试题很新颖:试卷中对于不等式、反比例函数、二次函数、解三角形、相似形的考查,有些题目没有直接呈现需要考查的知识点,而是将它们渗透在其它问题中,需要考生在解答时能灵活应用这些知识来解决问题,如果想到的话问题很容易就解决,如果思维不能拓展延伸的话,对于考生来说就变成永远的遗憾了。
如试卷的第14、21(2)(3)、23(3)题。
二、试题考察的主要内容①“数与代数”中涉及的内容和方法:数的表示,整式的运算,因式分解,根式、分式的运算,一次、二次、反比例函数的图象和性质,一元二次方程的解法等。
涉及的数学思想和方法有方程与不等式,方程与函数,归纳法等。
②“空间与图形”中涉及的内容和方法:特殊图形(角、等腰三角形、直角三角形、四边形、圆)等的识别和特征;图形的运动,视图,三角函数,图形与坐标,全等图形的应用,简单推理证明。
相似形的考查③“统计与概率”中的内容和方法:简单概率的计算及统计数据的处理及其应用。
本套数学试题在去年过于简单的基础上进行了较好的调整,全面地考察了数学思维活动中理应表现的诸如:符号感,信息交流能力,文字表达能力,空间想象力,应用能力等。
综合运用了选择、填空、计算(求解)、证明、应用、阅读分析、探索、开放等题型的功能,较好地考察了学生创新意识和自主探究能力。
三、学生中考中失分点及失分原因这份试卷对学生来说应该是感觉比较平和,能使学生以平静的心态自然进入考试状态,有利于学生将自己的数学能力正常发挥出来。
这份试卷中有部分试题有一定的区分度,例如第10题需要求学生有一定的耐心去阅读理解,在画图中操作摸索思路,分析推理尤为重要,理解并找出解决问题的方法。
又如第17题(2)21(2)学生不容易准确找出两个变量的关系,从而找不到解决问题的切入点第14题中①②两个结论很容易判断,而③④两个结论得出合理的推理不易。
而第23题中的(1)比较容易得分,而第23(2)、(3)两小题难度较大,学生不易理清思路,找出合理解决问题的途径,以及对答案作出合理分析和取舍。
其次在阅卷过程中学生在答题时还存在以下问题导致出现失分。
1、基本概念不清。
如第15题将化简与因式分解混淆,又如22(3)此题考查了相似三角形的判定与性质、三角形中位线的性质、等腰三角形的性质以及圆周角定理等知识.此题综合性较强,难度较大,注意数形结合思想与整体思想的应用.但是本题对概念的理解提出了很高的要求,很多人找不到证明垂直的思路,对圆周角概念、圆的确定方法知识点掌握不透彻。