电磁炉原理图和工作原理

合集下载

全面讲解电磁炉的工作原理(修正排版)

全面讲解电磁炉的工作原理(修正排版)

全面讲解电磁炉的工作原理(修正排版)最详细电磁炉原理讲解、原理简介电磁炉是应用电磁感应加热原理,利用电流通过线圈产生磁场,该磁场的磁力线通过铁质锅底部的磁条形成闭合回路时会产生无数小涡流,使铁质锅体的铁分子高速动动产生热量,然后加热锅中的食物。

、电磁炉的原理方块图三、电磁炉工作原理说明1.主回路图中桥整DB1将工频(50HZ 电流变成直流电流,L1为扼流圈,L2是电磁线圈,IGBT 由控制电路发出的矩形脉冲驱动,IGBT 导通时,流过L2的电流迅速增加。

IGBT 截止时, L2、C12发生串联谐振,IGBT 的C 极对地产生高压脉冲。

当该脉冲降至为零时,驱动脉冲 再次加到IGBT 上使之导通。

上述过程周而复始,最终产生 25KHZ 左右的主频电磁波,使 陶瓷板上放置的铁质锅底感应出涡流并使锅发热。

串联谐振的频率取之L2、C12的参数。

C11为电源滤波电容,CNR 伪压敏电阻(突波吸收器)。

当 AC 电源电压因故突然升 在时,即瞬间短路,使保险丝迅速熔断,以保护电路。

2.副电源223开关电源式主板共有+5V, +18V 两种稳压回路,其中桥式整流后的+18V 供IGBT 的驱动 回路和-220VCNRI10D4nK \2UIIF7275VA CC51DA/Z50VACwI cia [127UF/13C]DVaCFGA29h12O H30 恥 30L4]l"3V ■"!a z O4rTC8n?io7IEceo104.EC13IWUF J KVrcn^□BWVDCDei2SA/4OTVD21 FR107ca'JvT1ECU 4.7ufiQ5fl/ *~4037™I 生 閱ssD11FR107供主控IC LM339和风扇驱动回路使用,由三端稳压电路稳压后的 +5V供主控MCU 使用。

3.冷却风扇主控IC发出风扇驱动信号(FAN,使风扇持续转动,吸入外冷空气至机体内,再从机体后侧排出热空气,以达到机内散热目的,避免零件因高温工作环境造成损坏故障。

电磁炉原理图和工作原理

电磁炉原理图和工作原理

电磁炉原理图和工作原理Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT目录一、简介电磁加热原理458系列简介二、原理分析特殊零件简介2.1.1 LM339集成电路 IGBT电路方框图主回路原理分析振荡电路IGBT激励电路PWM脉宽调控电路同步电路加热开关控制VAC检测电路电流检测电路VCE检测电路浪涌电压监测电路过零检测锅底温度监测电路 IGBT温度监测电路散热系统主电源辅助电源报警电路三、故障维修故障代码表主板检测标准故障案例故障现象1一、简介电磁加热原理电磁灶是一种利用电磁感应原理将电能转换为热能的厨房电器。

在电磁灶内部,由整流电路将50/60Hz的交流电压变成直流电压,再经过控制电路将直流电压转换成频率为20-40KHz的高频电压,高速变化的电流流过线圈会产生高速变化的磁场,当磁场内的磁力线通过金属器皿(导磁又导电材料)底部金属体内产生无数的小涡流,使器皿本身自行高速发热,然后再加热器皿内的东西。

458系列简介458系列是由建安电子技术开发制造厂设计开发的新一代电磁炉,界面有LED发光二极管显示模式、LED数码显示模式、LCD液晶显示模式、VFD莹光显示模式机种。

操作功能有加热火力调节、自动恒温设定、定时关机、预约开/关机、预置操作模式、自动泡茶、自动煮饭、自动煲粥、自动煲汤及煎、炸、烤、火锅等料理功能机种。

额定加热功率有700~3000W的不同机种,功率调节范围为额定功率的85%,并且在全电压范围内功率自动恒定。

200~240V机种电压使用范围为160~260V, 100~120V机种电压使用范围为90~135V。

全系列机种均适用于50、60Hz的电压频率。

使用环境温度为-23℃~45℃。

电控功能有锅具超温保护、锅具干烧保护、锅具传感器开/短路保护、2小时不按键(忘记关机) 保护、IGBT温度限制、IGBT温度过高保护、低温环境工作模式、IGBT测温传感器开/短路保护、高低电压保护、浪涌电压保护、VCE抑制、VCE过高保护、过零检测、小物检测、锅具材质检测。

电磁炉原理图和工作原理讲解

电磁炉原理图和工作原理讲解

目录一、简介1.1 电磁加热原理1.2 458系列简介二、原理分析2.1 特殊零件简介2.1.1 LM339集成电路2.1.2 IGBT2.2 电路方框图2.3 主回路原理分析2.4 振荡电路2.5 IGBT激励电路2.6 PWM脉宽调控电路2.7 同步电路2.8 加热开关控制2.9 VAC检测电路2.10 电流检测电路2.11 VCE检测电路2.12 浪涌电压监测电路2.13 过零检测2.14 锅底温度监测电路温度监测电路 IGBT2.152.16 散热系统2.17 主电源2.18辅助电源2.19 报警电路三、故障维修3.1 故障代码表3.2 主板检测标准3.2.1主板检测表3.2.2主板测试不合格对策3.3 故障案例3.3.1 故障现象1一、简介1.1 电磁加热原理电磁灶是一种利用电磁感应原理将电能转换为热能的厨房电器。

在电磁灶内部,由整流电路将50/60Hz的交流电压变成直流电压,再经过控制电路将直流电压转换成频率为20-40KHz的高频电压,高速变化的电流流过线圈会产生高速变化的磁场,当磁场内的磁力线通过金属器皿(导磁又导电材料)底部金属使器皿本身自行高速发热,体内产生无数的小涡流,然后再加热器皿内的东西。

1.2 458系列简介458系列是由建安电子技术开发制造厂设计开发的新一代电磁炉,界面有LED发光二极管显示模式、LED数码显示模式、LCD液晶显示模式、VFD莹光显示模式机种。

操作功能有加热火力调节、自动恒温设定、定时关机、预约开/关机、预置操作模式、自动泡茶、自动煮饭、自动煲粥、自动煲汤及煎、炸、烤、火锅等料理功能机种。

额定加热功率有700~3000W 的不同机种,功率调节范围为额定功率的85%,并且在全电压范围内功率自动恒定。

200~240V机种电压使用范围为160~260V, 100~120V机种电压使用范围为90~135V。

全系列机种均适用于50、60Hz的电压频率。

使用环境温度为-23℃~45℃。

半桥大功率电磁炉工作原理

半桥大功率电磁炉工作原理

工作原理一.整机方框图:见附页二.原理图(见附页)三.各方框图原理阐述,以上原理图为例说明1).滤波部分:这单元电路包括X滤波电容C1~C3和共模电感L1,此三个元件组成星式滤波器,用以滤除电源线中的杂波和抑制本机的有害杂波通过电源线向电力电源中传导。

这部分电路对于功率不大,要求很低的场合,电路设计合理的电路板可以省略。

2).整流部分:这单元电路包括整流桥DB1,扼流圈L1,高频滤波电容C8,这部分电路的作用就是把交流电整流成直流电,然后经过电容电感的滤波作用,给后级能量转换提供电源。

3).能量转换:这单元电路包括两个IGBT(上桥IG1和下桥IG2),高频吸收电容C5,C6,阻尼电阻R11,R12,谐振电容C7,C9,电磁线圈;其工作原理为:两个IGBT依次导通,让电源电流在电磁线圈中形成交变电流而产生交变磁场,此磁场会对放置在线圈上面的锅具产生强大的感应电流而使锅具自身发热。

两个IGBT的作用就是依次轮流导通而使线圈中产生交变电流,高频吸收电容的作用为吸收IGBT关断时产生的尖峰电压,保护IGBT免受尖峰电压损坏,阻尼电阻的作用是防止高频吸收电容与电磁线圈产生谐振而损坏IGBT,谐振电容的作用是配合电磁线圈工作在谐振状态,完成IGBT的软开关,减少IGBT开关损耗。

1.4).IGBT推动与IGBT过流保护:此单元电路包括IGBT驱动模块U4,U5,及其周边元件IGBT_UCE 电压检测二极管D11、D12,具体请见附页说明书,驱动模块完成对IGBT的驱动和IGBT过流信号的检测。

5):半桥驱动波形发生器:此单元电路包括H_F03A,E18,E19。

此模块主要产生半桥驱动信号,并经OUTA,OUTB输出相互错开的驱动信号,E18的作用用于驱动信号的稳定度滤波,当发生驱动信号抖动厉害或驱动信号不稳定时,检查此电容,E19为内部比较器参考电压滤波,此参考电压为稳定5.1V。

半桥模块各引脚功能如下:1.INA:反馈信号输入A。

全面讲解电磁炉的工作原理(修正排版)

全面讲解电磁炉的工作原理(修正排版)

最详细电磁炉原理讲解一、原理简介电磁炉是应用电磁感应加热原理,利用电流通过线圈产生磁场,该磁场的磁力线通过铁质锅底部的磁条形成闭合回路时会产生无数小涡流,使铁质锅体的铁分子高速动动产生热量,然后加热锅中的食物。

二、电磁炉的原理方块图三、电磁炉工作原理说明1.主回路图中桥整DB1将工频(50HZ)电流变成直流电流,L1为扼流圈,L2是电磁线圈,IGBT 由控制电路发出的矩形脉冲驱动,IGBT导通时,流过L2的电流迅速增加。

IGBT截止时,L2、C12发生串联谐振,IGBT的C极对地产生高压脉冲。

当该脉冲降至为零时,驱动脉冲再次加到IGBT上使之导通。

上述过程周而复始,最终产生25KHZ左右的主频电磁波,使陶瓷板上放置的铁质锅底感应出涡流并使锅发热。

串联谐振的频率取之L2、C12的参数。

C11为电源滤波电容,CNR1为压敏电阻(突波吸收器)。

当AC电源电压因故突然升在时,即瞬间短路,使保险丝迅速熔断,以保护电路。

2.副电源开关电源式主板共有+5V,+18V两种稳压回路,其中桥式整流后的+18V供IGBT的驱动回路和供主控IC LM339和风扇驱动回路使用,由三端稳压电路稳压后的+5V供主控MCU使用。

3.冷却风扇主控IC发出风扇驱动信号(FAN),使风扇持续转动,吸入外冷空气至机体内,再从机体后侧排出热空气,以达到机内散热目的,避免零件因高温工作环境造成损坏故障。

当风扇停转或散热不良,IGBT表贴热敏电阻将超温信号传送到CPU,停止加热,实现保护。

通电瞬间CPU 会发出一个风扇检测信号,以后整机正常运行时CPU发出风扇驱动信号使其工作。

4.定温控制及过热保护电路该电路主要功能为依据置于陶板下方的热敏电阻(RT1)和IGBT上的热敏电阻(负温度系数)探测温度而改变电阻的一随温度变化的电压单位传送至主控IC(CPU),CPU经A/D转后对照温度设定值比较而做出运行或停止运行信号。

5.灯板排线引脚功能(1)12V电压,触摸供电用。

电磁炉工作原理分析与讲解(多图教程)

电磁炉工作原理分析与讲解(多图教程)

电磁炉工作原理分析与讲解(多图教程)电磁炉基本原理介绍1.电磁炉加热和工作原理简介;2.电磁炉主要元件介绍;3.电磁炉电路各模块原理讲解;1.电磁炉加热和工作原理简介1.1电磁炉加热和工作原理简介;1.2 电磁炉原理方框图;1.3 LC振荡电路;1.1电磁炉加热和工作原理简介1.2 电磁炉原理方框图1.3 LC振荡电路示意图2.电磁炉主要元件介绍2.1 QF808单片机简介;2.2 RS2007M整流桥介绍;2.3 LM339集成电路介绍;2.4 IGBT简介;2.5 74HC164移位寄存器介绍;2.1 QF808单片机简介QF808为前锋和台湾中颖共同研发的一款单片机,存储器大小为64K bits ROM,里面集成5个比较器,6通道8位ADC转换,2个8位定时计数器,8位高速PWM脉冲输出,内部频率复合放大器,在线振荡时钟电路,在线看门狗定时器,采用低电压复位;2.2 RS2007M整流桥介绍;电压输入范围为50到1000V,承受电流最大为20A;特点为输出电流大,抗大电流冲击能力强,能承受较高的峰值反向电压;2.3 LM339集成电路介绍LM339内置四个翻转电压为6mV的电压比较器,当电压比较器输入端电压正向时(+输入端电压高于-入输端电压), 置于LM339内部控制输出端的三极管截止, 此时输出端相当于开路; 当电压比较器输入端电压反向时(-输入端电压高于+输入端电压), 置于LM339内部控制输出端的三极管导通, 将比较器外部接入输出端的电压拉低,此时输出端为0V。

2.4 IBGT简介绝缘栅双极晶体管(Iusulated Gate Bipolar Transistor)简称IGBT,是一种集BJT的大电流密度和MOSFET等电压激励场控型器件优点于一体的高压高速大功率器件;IGBT有三个电极,分别称为栅极G(也叫控制极或门极) 、集电极C(亦称漏极)及发射极E(也称源极),将场效应管作为推动管,大功率达林顿管作为输出级就构成了IGBT开关管;2.5 74HC164移位寄存器介绍74HC164为8位移位寄存器,现有电磁炉的面板显示项目较多,对单片机端口要求叫多,而现有单片机端口有限,为了达到显示电路的控制,现需要采用移位寄存器来扩展控制口;74HC164是8为串行输入并行输出单向移位寄存器;A,B为串行码输入端,MR为清零输入端,CLJ为时钟脉冲的输入端,IC随着时钟脉冲上升沿的到来,A,B相与后状态依次由Q0移向Q7;如下图:3.电磁炉电路各模块原理讲解3.1 EMC防护电路和整流电路3.2 高频谐振电路3.3 驱动电路3.4 同步电路及反压保护电路3.5 温度检测电路3.6 高低电压监测电路3.7 电压浪涌保护电路3.8 电流浪涌保护电路3.9 电流检测电路3.10 风扇电路蜂鸣器电路3.11 电源电路3.12 按键电路3.13 显示电路3.1 EMC防护电路和整流电路FUSE1为保险管,其规格为15A/250V,此款电磁的最高功率为2100W,AC220V其工作的最大电流为9.6A,正常状态下,不会超过保险管的正常值。

电磁炉原理

电磁炉原理

一原理简介原理简介电磁炉是应用电磁感应加热原理,利用电流通过线圈产生磁场,该磁场的磁力线通过铁质锅底部的磁条形成闭合回路时会产生无数小涡流,使铁质锅体的铁分子高速运动产生热量,然后加热锅中的食物•、电磁炉的原理方块图三磁炉工作原理说明1、主回路图中整流桥 BI 将工频(50HZ )电压变成脉动直流电压, L1为扼流圈,L2是电磁线圈,IGBT由控制电路发出的矩形脉冲驱动, IGBT 导通时,流过L2的电流迅速增加。

IGBT 截止时,L2、C21发生串联谐振,IGBT 的C 极对地产生高压脉冲。

当该脉冲降至为零时,驱动脉冲再次加到 IGBT 上使之导通。

上述过程周而复始,最终产25KHZ 左右的主频电磁波,使陶瓷板上放置的铁质锅底感应出涡流并使锅发热。

串联谐振的频率取之 L2、C21的参数。

C5为电源滤波电容。

CNR1为压敏电阻(突波吸收器),当AC 电源电压因故突然升高时,瞬间 短路,使保险丝迅速熔断,以保护电路。

2、副电源开关电源提供有+5V , +18V 两种稳压回路,其中桥式整流后的 比较IC LM339和风扇驱动回路使用,由三端稳压电路稳压后的+ 18V 供IGBT 的驱动回路,同步 +5V 供主控MCU 使用。

IN^007FJDQOOIC43、冷却风扇当电源接通时主控IC 发出风扇驱动信号(FAN ),使风扇持续转动,吸入外冷空气至机体内, 再从机体后侧排出热空气,以达至机内散热目的,避免零件因高温工作环境造成损坏故障。

当风 扇停转或散热不良,IGBT 表贴热敏电阻将超温信号传送到 CPU ,停止加热,实现保护。

通电瞬 间CPU 会发出一个风扇检测信号,以后整机正常运行时CPU 发出风扇驱动信号使其工作。

4、定温控制及过热保护电路感测温度而改变电阻的一随温度变化的电压单位传送至主控 照温度设定值比较而作出运行或停止运行信号5、主控IC ( CPU )主要功能18脚主控IC 主要功能如下:(1) 电源ON/OFF 切换控制 (2) 加热火力/定温温度控制 (3) 各种自动功能的控制 (4) 无负载检知及自动关机 (5) 按键功能输入检知 (6) 机内温升过高保护 (7) 锅具检知 (8) 炉面过热告知 (9) 散热风扇控制 (10)各种面板显示的控制< IGAg>C12 104J该电路主要功能为依据置于陶板下方的热敏电阻(RT1)和IGBT 上的热敏电阻(负温度系数) IC ( CPU ),CPU 经A/D 转换后对TOP^TEMPI IGBTT-TEMP16、负载电流检知电路该电路中T2 (互感器)串接在 DB (桥式整流器)前的线路上,因此 T2二次侧的AC 电压可反映输入电流的变化,此 AC 电压再经D13、D14、D15、D5全波整流为DC 电压,该电压经分压后直 接送CPU 的AD 转换后,CPU 根据转换后的AD 值判断电流大小经软件计算功率并控制PWM 输出大小来控制功率及检知负载7、驱动电路该电路将来自脉宽调整电路输出的脉冲信号放大到足以驱动 IGBT 开启和关闭的信号强度, 输入脉冲宽度愈宽IGBT 开启时间愈长。

电磁炉 电控原理图

电磁炉 电控原理图

第一节 电磁炉的工作原理电磁炉主要是利用电磁感应原理,电流经过线盘产生变化磁场,磁场感应到炉面上的铁质锅具底部产生涡流,从而产生大量的热能,直接令锅具底部迅速发热,进而加热锅内食物。

工作结构图电路原理图(见附图1)★ 交流电输入部分市电220V 经接插件L1、N1接入电路。

电路开始通电。

由于电磁炉工作电流较大,接插件N1、L1和保险管两端引脚焊接必须牢固,目的是避免接触不良。

电磁炉的保险丝是个保护装置,在更换的过程中要选用同型号的更换。

(过小电流不够过、易熔断。

过大保护失去作用)。

所以16A/250V的保险丝不能随意改动或代换(更不能直接短路)。

RZ1是压敏电阻,作用是为了防止市电输入电压过高而损坏电磁炉,其外型像瓷片电容(蓝色)。

压敏电阻标注一般为10D561K或10D471K,其最大允许使用电压为300V(AC),当电压超出其范围时,就会被炸裂。

在维修过程中,更换时,要选合适的型号对号入座。

压敏电阻是并联在电路中的,它对电压比较敏感(达到一定的异常高的电压),在正常工作电压的时候它相当于绝缘体,在电压异常大的时候电阻阻值瞬间变的很小,电流经过压敏电阻回流到前端,拉端保险丝,如果电压比较大时间比较长自身也瞬间击穿,保护了后端电路.L1、N1之间有电容C1,该电容既能防止电磁炉工作产生的高频干扰脉冲窜入市电网干扰其他电器,又防止市电网的干扰脉冲窜入电磁炉电路影响其工作。

该电容的容量通常为2uF—5 uF。

如图所示★大电流整流滤波输出部分市电经过桥式整流器BG1(桥堆)整流出来再经过L1、C4滤波后输出300V 直流电,为线盘高频振荡供电。

BG1是个大电流高耐压器件,其规格为20A800V。

当其烧坏后,不能随意用其它整流器代替。

一定要用同型号或比它更大电流高耐压的整流器(外观、管脚、接口相同)替换。

L1扼流圈、C4电容组成倒L型滤波电路。

作用是把整流出来的直流脉动成分滤去,使输出波形更加平滑。

当C4、8uF/400V(DC)电容击穿短路时,保险丝会烧断,整流器也会因电流过大而烧坏。

美的电磁炉工作原理和结构(图)

美的电磁炉工作原理和结构(图)

美的电磁炉工作原理和结构(图)第一节电磁炉工作原理电磁炉主要是利用电磁感应原理将电能转换为热能的厨房电器,当电磁炉在正常工作时,由整流电路将50Hz的交流电压变成直流电压,再经过控制电路将直流电压转换成频率为20-40KHz的高频电压,电磁炉线圈盘上就会产生交变磁场在锅具底部反复切割变化,使锅具底部产生环状电流(涡流),并利用小电阻大电流的短路热效应产生热量直接使锅底迅速发热,然后再加热器具内的东西。

这种振荡生热的加热方式,能减少热量传递的中间环节,大大提高制热效率。

电磁炉的电控工作原理方框图如下:第二节电磁炉的型号和货号表示方法一、电磁炉的型号表示方法M——Midea C——电磁炉1.就陶瓷板而言:P——表示陶瓷板的面为平面A——表示陶瓷板的面为凹面2.就显示方式而言:V——表示VFD显示。

即荧光彩色显示(高档系列)C——表示LCD显示。

即蓝屏液晶显示(中档系列)S——表示数码显示。

即数码管显示(中档系列)空缺——表示无显示功能。

(低档系列)3.就陶瓷面板形状而言:Y——表示面板为圆形(Y:yuan 圆)F——表示面板为方形(F:fang 方)4.功率说明:由两位数组成,数据×100即得电磁炉的最大功率。

如:08——表示最大功率为800W;16——表示最大功率为1600W5.设备区分码:A、B、C、D 用于区分同一系列中不同电磁炉注:新产品PSF系列产品为尽早上市,暂时使用老品PSD的认证,因此该系列产品保留PSD的编码。

编码示例:MC——PVF20A M——MIDEA;C——电磁炉;P——平面陶瓷板;V——VFD显示方式;F——方形陶瓷面板;20——最大功率为2000W;A——A型号;二、电磁炉的货号表示方法第三节电磁炉的主要部件介绍及功能美的电磁炉主要由以下部件构成:1、电源线2、风扇3、线圈盘 4、变压器 5、热敏电阻 6、陶瓷板 7、底坐 8、上盖、9、电控板下面分别讲述各零部件的功能及特点:1、电源线:功能:是将外部市电引进电磁炉,由于电磁炉的耗电量比较大,所以要求电源线的过电流能力比较强,如果线芯的直径太小,电源线将会发热,长期使用外皮会变硬,甚至烧毁。

电磁炉原理图和工作原理

电磁炉原理图和工作原理

目录一、简介1.1 电磁加热原理1.2 458系列简介二、原理分析2.1 特殊零件简介2.1.1一、简介1.1 电磁加热原理电磁灶是一种利用电磁感应原理将电能转换为热能的厨房电器。

在电磁灶内部,由整流电路将50/60Hz的交流电压变成直流电压,再经过控制电路将直流电压转换成频率为20-40KHz的高频电压,高速变化的电流流过线圈会产生高速变化的磁场,当磁场内的磁力线通过金属器皿(导磁又导电材料)底部金属体内产生无数的小涡流,使器皿本身自行高速发热,然后再加热器皿内的东西。

1.2 458系列简介458系列是由建安电子技术开发制造厂设计开发的新一代电磁炉,界面有LED发光二极管显示模式、LED数码显示模式、LCD液晶显示模式、VFD莹光显示模式机种。

操作功能有加热火力调节、自动恒温设定、定时关机、预约开/关机、预置操作模式、自动泡茶、自动煮饭、自动煲粥、自动煲汤及煎、炸、烤、火锅等料理功能机种。

额定加热功率有700~3000W的不同机种,功率调节范围为额定功率的85%,并且在全电压范围内功率自动恒定。

200~240V机种电压使用范围为160~260V, 100~120V机种电压使用范围为90~135V。

全系列机种均适用于50、60Hz的电压频率。

使用环境温度为-23℃~45℃。

电控功能有锅具超温保护、锅具干烧保护、锅具传感器开/短路保护、2小时不按键(忘记关机) 保护、IGBT温度限制、IGBT温度过高保护、低温环境工作模式、IGBT测温传感器开/短路保护、高低电压保护、浪涌电压保护、VCE抑制、VCE过高保护、过零检测、小物检测、锅具材质检测。

458系列虽然机种较多,且功能复杂,但不同的机种其主控电路原理一样,区别只是零件参数的差异及CPU程序不同而己。

电路的各项测控主要由一块8位4K内存的单片机组成,外围线路简单且零件极少,并设有故障报警功能,故电路可靠性高,维修容易,维修时根据故障报警指示,对应检修相关单元电路,大部分均可轻易解决。

商用电磁炉电气原理图

商用电磁炉电气原理图

H60-HJ013-A6
嵌入式凹面电磁炉线控款
单头平面电磁炉
线控嵌入式平面电磁炉
线控嵌入式平面电磁炉
第2页共2页
电磁炉原理图电磁炉工作原理图商用电磁炉商用电磁炉原理商用电磁炉机芯商用电磁炉维修商用火锅电磁炉赛米控商用电磁炉
商用电磁炉电气原理图
◆电气原理图:
5KW 台式炉外部接线规格是 6mm,空气开关要安装 30A 带漏电检测的。
◆旋扭型和磁控型使用说明:
1.把电源线插入合适的插座并听到 Di 一声响,现时电磁炉处于待机状态。请把适用锅具放置电磁炉微晶板 中央。 2.每次上电旋扭必须按逆时针方向复零后才可顺时针开机。磁控款机型拨动磁控开关开机。 3.3500W 机型共有 6 档:0 档:关机、1 档:600W、 2 档:1500W、3 档:2300W、 4 档:3000W、5 档: 3500W 4.5000W 机型共有 6 档:0 档:关机、1 档:800W 、 2 档:2500W、 3 档:3500W 4 档:4000W、5 档: 5000W 5.当无人操作 4 小时电磁炉会自动关机。 6.烹饪结束后请拔下电源插头。
◆商用电磁炉:
H35D-P3A
H35D-P3X
H50-HJ013-P5A
H50-HJ013-P5X
H50-HJ013-A5X
第1页共2页
H80 平汤炉
商用电磁炉电气原理图
H80 大炒炉菜
H50-HJ013-P5CK
HJ-5000P+5Байду номын сангаас00A、HJ-3500P+3500A
H50-HJ013-A5CK

电磁炉原理图和工作原理与维修(全)

电磁炉原理图和工作原理与维修(全)

电磁炉原理图和工作原理与维修目录一、简介 (2)1.1 电磁加热原理 (2)1.2 458系列简介 (2)二、原理分析 (2)2.1 特殊零件简介 (2)2.2 电路方框图 (4)2.3 主回路原理分析 (5)2.4 振荡电路 (6)2.5 IGBT激励电路 (7)2.6 PWM脉宽调控电路 (7)2.7 同步电路 (7)2.8 加热开关控制 (8)2.9 V AC检测电路 (8)2.10 电流检测电路 (9)2.11 VCE检测电路 (9)2.12 浪涌电压监测电路 (10)2.13 过零检测 (10)2.14 锅底温度监测电路 (11)2.15 IGBT温度监测电路 (11)2.16 散热系统 (12)2.17 主电源 (12)2.18辅助电源 (12)2.19 报警电路 (13)三、故障维修 (13)3.1故障代码 (13)3.2 主板检测标准 (13)3.3 故障案例 (15)一、简介1.1 电磁加热原理电磁灶是一种利用电磁感应原理将电能转换为热能的厨房电器。

在电磁灶内部,由整流电路将50/60Hz的交流电压变成直流电压,再经过控制电路将直流电压转换成频率为20-40KHz的高频电压,高速变化的电流流过线圈会产生高速变化的磁场,当磁场内的磁力线通过金属器皿(导磁又导电材料)底部金属体内产生无数的小涡流,使器皿本身自行高速发热,然后再加热器皿内的东西。

1.2 458系列简介458系列是由建安电子技术开发制造厂设计开发的新一代电磁炉,界面有LED发光二极管显示模式、LED数码显示模式、LCD液晶显示模式、VFD莹光显示模式机种。

操作功能有加热火力调节、自动恒温设定、定时关机、预约开/关机、预置操作模式、自动泡茶、自动煮饭、自动煲粥、自动煲汤及煎、炸、烤、火锅等料理功能机种。

额定加热功率有700~3000W的不同机种,功率调节范围为额定功率的85%,并且在全电压范围内功率自动恒定。

200~240V机种电压使用范围为160~260V, 100~120V机种电压使用范围为90~135V。

电磁炉原理图和工作原理精编

电磁炉原理图和工作原理精编

电磁炉原理图和工作原理精编Document number:WTT-LKK-GBB-08921-EIGG-22986目录一、简介电磁加热原理458系列简介二、原理分析特殊零件简介2.1.1 LM339集成电路 IGBT电路方框图主回路原理分析振荡电路IGBT激励电路PWM脉宽调控电路同步电路加热开关控制VAC检测电路电流检测电路VCE检测电路浪涌电压监测电路过零检测锅底温度监测电路 IGBT温度监测电路散热系统主电源辅助电源报警电路三、故障维修故障代码表主板检测标准主板检测表主板测试不合格对策故障案例故障现象1一、简介电磁加热原理电磁灶是一种利用电磁感应原理将电能转换为热能的厨房电器。

在电磁灶内部,由整流电路将50/60Hz的交流电压变成直流电压,再经过控制电路将直流电压转换成频率为20-40KHz的高频电压,高速变化的电流流过线圈会产生高速变化的磁场,当磁场内的磁力线通过金属器皿(导磁又导电材料)底部金属体内产生无数的小涡流,使器皿本身自行高速发热,然后再加热器皿内的东西。

458系列简介458系列是由建安电子技术开发制造厂设计开发的新一代电磁炉,界面有LED发光二极管显示模式、LED数码显示模式、LCD液晶显示模式、VFD莹光显示模式机种。

操作功能有加热火力调节、自动恒温设定、定时关机、预约开/关机、预置操作模式、自动泡茶、自动煮饭、自动煲粥、自动煲汤及煎、炸、烤、火锅等料理功能机种。

额定加热功率有700~3000W的不同机种,功率调节范围为额定功率的85%,并且在全电压范围内功率自动恒定。

200~240V 机种电压使用范围为160~260V, 100~120V机种电压使用范围为90~135V。

全系列机种均适用于50、60Hz的电压频率。

使用环境温度为-23℃~45℃。

电控功能有锅具超温保护、锅具干烧保护、锅具传感器开/短路保护、2小时不按键(忘记关机) 保护、IGBT温度限制、IGBT温度过高保护、低温环境工作模式、IGBT测温传感器开/短路保护、高低电压保护、浪涌电压保护、VCE抑制、VCE过高保护、过零检测、小物检测、锅具材质检测。

全面讲解电磁炉的工作原理(修正排版)

全面讲解电磁炉的工作原理(修正排版)

全面讲解电磁炉的工作原理(修正排版)最详细电磁炉原理讲解一、原理简介电磁炉是应用电磁感应加热原理,利用电流通过线圈产生磁场,该磁场的磁力线通过铁质锅底部的磁条形成闭合回路时会产生无数小涡流,使铁质锅体的铁分子高速动动产生热量,然后加热锅中的食物。

二、电磁炉的原理方块图220V/50Hz 输入熔断器平衡滤波 1:3000 互感器桥式整流扼流圈电磁线盘(LC回路) IGBT 过欠压检测功率检测浪涌检测锅具材质检测同步检测调整反压抑制驱动回路闭环振荡回路主控整 18V至风扇 5V到CPU PWM输出至风机至蜂鸣CPU 控制面板炉面温度检测 IGBT过热保护电压变换流 18V至驱动三、电磁炉工作原理说明1.主回路图中桥整DB1将工频(50HZ)电流变成直流电流,L1为扼流圈,L2是电磁线圈,IGBT由控制电路发出的矩形脉冲驱动,IGBT导通时,流过L2的电流迅速增加。

IGBT截止时,L2、C12发生串联谐振,IGBT的C极对地产生高压脉冲。

当该脉冲降至为零时,驱动脉冲再次加到IGBT上使之导通。

上述过程周而复始,最终产生25KHZ左右的主频电磁波,使陶瓷板上放置的铁质锅底感应出涡流并使锅发热。

串联谐振的频率取之L2、C12的参数。

C11为电源滤波电容,CNR1为压敏电阻(突波吸收器)。

当AC电源电压因故突然升在时,即瞬间短路,使保险丝迅速熔断,以保护电路。

2.副电源开关电源式主板共有+5V,+18V两种稳压回路,其中桥式整流后的+18V供IGBT的驱动回路和供主控IC LM339和风扇驱动回路使用,由三端稳压电路稳压后的+5V供主控MCU使用。

3.冷却风扇主控IC发出风扇驱动信号(FAN),使风扇持续转动,吸入外冷空气至机体内,再从机体后侧排出热空气,以达到机内散热目的,避免零件因高温工作环境造成损坏故障。

当风扇停转或散热不良,IGBT表贴热敏电阻将超温信号传送到CPU,停止加热,实现保护。

通电瞬间CPU会发出一个风扇检测信号,以后整机正常运行时CPU发出风扇驱动信号使其工作。

尚朋堂电磁炉原理图解及检修方法

尚朋堂电磁炉原理图解及检修方法

电磁炉原理图解一、电磁炉系统框图图(1)如图(1)所示高频电磁炉原理方框图。

它是由EMI滤波电路、电源回路、主回路、单片机控制电路和保护电路等单元电路组成。

它的工作原理是,首先将220V交流电转换为直流电压,再通过励磁线圈加到IGBT上,IGBT受驱动信号的控制而导通截止,再励磁线圈中有频率为20KHZ—50KHZ的电流流过,励磁线圈的周围将产生高频磁场,若此时有铁锅至于炉台上在锅底内会有涡流产生,此时涡流克服锅体内阻流动时,将电能转换成热能,作为烹饪的热源如图(2)。

图(2)二、部分电路简要说明1、EMI滤波电路当AC电压加入时,可能会有干扰串入,影响电磁炉工作,加上电磁炉在工作时,本身会产生杂讯及干扰信号会有电源回路而影响到外界的电器装置,故有EMI 滤波电路来防止此干扰。

2、主回路如(图1)所示,IGBT是受矩形脉冲驱动的,当IGBT导通时,流过励磁线圈的电流迅速增加,当IGBT截止时,(L/C)回路发生谐振,IGBT的集电极产生脉冲高压,当此高压降至接近0是(励磁线圈中的电流正在反向减小)驱动脉冲再次加到IGBT的基极,使IGBT再次到通。

驱动矩形脉冲信号的宽度决定了电磁炉负荷电流的大小。

3、同步电路同步电路严密监视主回路的工作状况,当IGBT电压下降接近0V时,输出一个触发脉冲强行使IGBT导通,是振荡电路开始下一个周期的震荡。

这样可以避免励磁线圈中的电流瞬间变化太大,保护了关键部件IGBT。

4、振荡电路振荡电路输出矩形脉冲。

正常工作时该矩形脉冲的上升沿时刻受同步电路的强制控制,以确保与主回路LC谐振电路同步,而矩形脉冲的宽度受电流负反馈电路的控制。

5、电流负反馈电路符合电流的反馈信号和单片机输出的PWM信号相比较形成电流负反馈的输出,这样可限制负荷电流不至于过高。

改变PWM的占空比就可以控制负荷电流的大小。

6、过压保护电路该电路严密监视市电上尖峰干扰和IGBT集电极的电压,一旦电压过高立刻关断驱动信号保护关键部件IGBT。

电磁炉原理图和工作原理

电磁炉原理图和工作原理

电磁炉原理图和工作原理电磁炉是一种新颖的电热器具,其在工作时不使用明火,而采用电磁感应原理进行热量生成,从而取代了传统的明火燃烧方式,其具有灵活、高效、安全的特点。

本文将介绍电磁炉的原理图和工作原理。

电磁炉原理图:电磁炉一般由发热盘、电子控制器、温度传感器、电源部分等构成。

其中,发热盘是电磁炉的核心部分,其内部装有电磁线圈和铁芯。

电磁线圈周围包覆着隔热材料,用以减少热量散失。

电子控制器负责调节电磁线圈的加热功率,以及控制电磁炉的开关机等功能。

温度传感器则用于实时检测热量变化,以保持设定的温度。

电磁炉的工作原理:电磁炉的工作原理基于电磁感应现象。

简单来说,电磁炉的发热盘中的电磁线圈会随着电流的通过而产生磁场。

当通过线圈中的电流改变时,磁场也会随之改变。

这种变化会产生涡流,从而产生了磁阻力。

磁阻力本身就是一种电阻,会转化为热能,最终产生热量。

这就是电磁炉产生热量的基本原理。

电磁炉与传统燃气炉的比较:首先,电磁炉没有火焰。

这就意味着它没有燃氧,不会产生有毒气体,从而更安全。

另外,也没有明火,不会烫伤手指,对于有小孩的家庭尤其的重要。

其次,电磁炉的加热速度更快,可以更快地将热量传输给食物,从而更快地完成烹饪任务。

再就是它的发热盘可以进行精准的温度调节,可以根据食物不同的需求,精确地调整温度。

最后,电磁炉不会产生尘埃和烟雾,很容易清洁,非常适合忙碌的家庭。

总结:电磁炉的原理图和工作原理非常简单,但是,它的应用确实变革了整个厨房家电市场。

相对于传统的燃气炉,电磁炉更加安全,高效,环保。

不失为现代家庭烹饪必备之物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁炉原理图和工作原理公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-目录一、简介电磁加热原理458系列简介二、原理分析特殊零件简介2.1.1 LM339集成电路IGBT一、简介电磁加热原理电磁灶是一种利用电磁感应原理将电能转换为热能的厨房电器。

在电磁灶内部,由整流电路将50/60Hz的交流电压变成直流电压,再经过控制电路将直流电压转换成频率为20-40KHz的高频电压,高速变化的电流流过线圈会产生高速变化的磁场,当磁场内的磁力线通过金属器皿(导磁又导电材料)底部金属体内产生无数的小涡流,使器皿本身自行高速发热,然后再加热器皿内的东西。

458系列简介458系列是由建安电子技术开发制造厂设计开发的新一代电磁炉,界面有LED发光二极管显示模式、LED数码显示模式、LCD液晶显示模式、VFD莹光显示模式机种。

操作功能有加热火力调节、自动恒温设定、定时关机、预约开/关机、预置操作模式、自动泡茶、自动煮饭、自动煲粥、自动煲汤及煎、炸、烤、火锅等料理功能机种。

额定加热功率有700~3000W的不同机种,功率调节范围为额定功率的85%,并且在全电压范围内功率自动恒定。

200~240V机种电压使用范围为160~260V, 100~120V机种电压使用范围为90~135V。

全系列机种均适用于50、60Hz的电压频率。

使用环境温度为-23℃~45℃。

电控功能有锅具超温保护、锅具干烧保护、锅具传感器开/短路保护、2小时不按键(忘记关机) 保护、IGBT温度限制、IGBT温度过高保护、低温环境工作模式、IGBT测温传感器开/短路保护、高低电压保护、浪涌电压保护、VCE抑制、VCE过高保护、过零检测、小物检测、锅具材质检测。

458系列虽然机种较多,且功能复杂,但不同的机种其主控电路原理一样,区别只是零件参数的差异及CPU程序不同而己。

电路的各项测控主要由一块8位4K内存的单片机组成,外围线路简单且零件极少,并设有故障报警功能,故电路可靠性高,维修容易,维修时根据故障报警指示,对应检修相关单元电路,大部分均可轻易解决。

二、原理分析特殊零件简介2.1.1 LM339集成电路LM339内置四个翻转电压为6mV的电压比较器,当电压比较器输入端电压正向时(+输入端电压高于-入输端电压), 置于LM339内部控制输出端的三极管截止, 此时输出端相当于开路; 当电压比较器输入端电压反向时(-输入端电压高于+输入端电压), 置于LM339内部控制输出端的三极管导通, 将比较器外部接入输出端的电压拉低,此时输出端为0V。

2.1.2 IGBT绝缘栅双极晶体管(Iusulated Gate Bipolar Transistor)简称IGBT,是一种集BJT的大电流密度和MOSFET等电压激励场控型器件优点于一体的高压、高速大功率器件。

目前有用不同材料及工艺制作的IGBT, 但它们均可被看作是一个MOSFET输入跟随一个双极型晶体管放大的复合结构。

IGBT有三个电极(见上图), 分别称为栅极G(也叫控制极或门极) 、集电极C(亦称漏极) 及发射极E(也称源极) 。

从IGBT的下述特点中可看出, 它克服了功率MOSFET的一个致命缺陷, 就是于高压大电流工作时, 导通电阻大, 器件发热严重, 输出效率下降。

IGBT的特点:1.电流密度大, 是MOSFET的数十倍。

2.输入阻抗高, 栅驱动功率极小, 驱动电路简单。

3.低导通电阻。

在给定芯片尺寸和BVceo下, 其导通电阻Rce(on) 不大于MOSFET的Rds(on) 的10%。

4.击穿电压高, 安全工作区大, 在瞬态功率较高时不会受损坏。

5.开关速度快, 关断时间短,耐压1kV~的约、600V级的约, 约为GTR的10%,接近于功率MOSFET, 开关频率直达100KHz, 开关损耗仅为GTR的30%。

IGBT将场控型器件的优点与GTR的大电流低导通电阻特性集于一体, 是极佳的高速高压半导体功率器件。

目前458系列因应不同机种采了不同规格的IGBT,它们的参数如下:(1)SGW25N120----西门子公司出品,耐压1200V,电流容量25℃时46A,100℃时25A,内部不带阻尼二极管,所以应用时须配套6A/1200V以上的快速恢复二极管(D11)使用,该IGBT配套6A/1200V以上的快速恢复二极管(D11)后可代用SKW25N120。

(2)SKW25N120----西门子公司出品,耐压1200V,电流容量25℃时46A,100℃时25A,内部带阻尼二极管,该IGBT可代用SGW25N120,代用时将原配套SGW25N120的D11快速恢复二极管拆除不装。

(3)GT40Q321----东芝公司出品,耐压1200V,电流容量25℃时42A,100℃时23A, 内部带阻尼二极管, 该IGBT可代用SGW25N120、SKW25N120, 代用SGW25N120时请将原配套该IGBT的D11快速恢复二极管拆除不装。

(4)GT40T101----东芝公司出品,耐压1500V,电流容量25℃时80A,100℃时40A,内部不带阻尼二极管,所以应用时须配套15A/1500V以上的快速恢复二极管(D11)使用,该IGBT配套6A/1200V以上的快速恢复二极管(D11)后可代用SGW25N120、SKW25N120、GT40Q321, 配套15A/1500V以上的快速恢复二极管(D11)后可代用GT40T301。

(5)GT40T301----东芝公司出品,耐压1500V,电流容量25℃时80A,100℃时40A, 内部带阻尼二极管, 该IGBT可代用SGW25N120、SKW25N120、GT40Q321、GT40T101, 代用SGW25N120和GT40T101时请将原配套该IGBT的D11快速恢复二极管拆除不装。

(6)GT60M303 ----东芝公司出品,耐压900V,电流容量25℃时120A,100℃时60A, 内部带阻尼二极管。

电路方框图主回路原理分析时间t1~t2时当开关脉冲加至Q1的G极时,Q1饱和导通,电流i1从电源流过L1,由于线圈感抗不允许电流突变.所以在t1~t2时间i1随线性上升,在t2时脉冲结束,Q1截止,同样由于感抗作用,i1不能立即变0,于是向C3充电,产生充电电流i2,在t3时间,C3电荷充满,电流变0,这时L1的磁场能量全部转为C3的电场能量,在电容两端出现左负右正,幅度达到峰值电压,在Q1的CE极间出现的电压实际为逆程脉冲峰压+电源电压,在t3~t4时间,C3通过L1放电完毕,i3达到最大值,电容两端电压消失,这时电容中的电能又全部转为L1中的磁能,因感抗作用,i3不能立即变0,于是L1两端电动势反向,即L1两端电位左正右负,由于阻尼管D11的存在,C3不能继续反向充电,而是经过C2、D11回流,形成电流i4,在t4时间,第二个脉冲开始到来,但这时Q1的UE为正,UC为负,处于反偏状态,所以Q1不能导通,待i4减小到0,L1中的磁能放完,即到t5时Q1才开始第二次导通,产生i5以后又重复i1~i4过程,因此在L1上就产生了和开关脉冲f(20KHz~30KHz)相同的交流电流。

t4~t5的i4是阻尼管D11的导通电流,在高频电流一个电流周期里,t2~t3的i2是线盘磁能对电容C3的充电电流,t3~t4的i3是逆程脉冲峰压通过L1放电的电流,t4~t5的i4是L1两端电动势反向时, 因D11的存在令C3不能继续反向充电, 而经过C2、D11回流所形成的阻尼电流,Q1的导通电流实际上是i1。

Q1的VCE电压变化:在静态时,UC为输入电源经过整流后的直流电源,t1~t2,Q1饱和导通,UC接近地电位,t4~t5,阻尼管D11导通,UC为负压(电压为阻尼二极管的顺向压降),t2~t4,也就是LC自由振荡的半个周期,UC上出现峰值电压,在t3时UC达到最大值。

以上分析证实两个问题:一是在高频电流的一个周期里,只有i1是电源供给L的能量,所以i1的大小就决定加热功率的大小,同时脉冲宽度越大,t1~t2的时间就越长,i1就越大,反之亦然,所以要调节加热功率,只需要调节脉冲的宽度;二是LC 自由振荡的半周期时间是出现峰值电压的时间,亦是Q1的截止时间,也是开关脉冲没有到达的时间,这个时间关系是不能错位的,如峰值脉冲还没有消失,而开关脉冲己提前到来,就会出现很大的导通电流使Q1烧坏,因此必须使开关脉冲的前沿与峰值脉冲后沿相同步。

振荡电路(1)当G点有Vi输入时、V7 OFF时(V7=0V), V5等于D12与D13的顺向压降, 而当V6<V5之后,V7由OFF转态为ON,V5亦上升至Vi, 而V6则由R56、R54向C5充电。

(2)当V6>V5时,V7转态为OFF,V5亦降至D12与D13的顺向压降, 而V6则由C5经R54、D29放电。

(3)V6放电至小于V5时, 又重复(1) 形成振荡。

“G点输入的电压越高, V7处于ON的时间越长, 电磁炉的加热功率越大,反之越小”。

IGBT激励电路振荡电路输出幅度约的脉冲信号,此电压不能直接控制IGBT(Q1)的饱和导通及截止,所以必须通过激励电路将信号放大才行,该电路工作过程如下:(1) V8 OFF时(V8=0V),V8<V9,V10为高,Q8和Q3 导通、Q9和Q10截止,Q1的G 极为0V,Q1截止。

(2) V8 ON时(V8=,V8>V9,V10为低,Q8和Q3截止、Q9和Q10导通,+22V通过R71、Q10加至Q1的G极,Q1导通。

PWM脉宽调控电路CPU输出PWM脉冲到由R6、C33、R16组成的积分电路, PWM脉冲宽度越宽,C33的电压越高,C20的电压也跟着升高,送到振荡电路(G点)的控制电压随着C20的升高而升高, 而G点输入的电压越高, V7处于ON的时间越长, 电磁炉的加热功率越大,反之越小。

“CPU通过控制PWM脉冲的宽与窄, 控制送至振荡电路G的加热功率控制电压,控制了IGBT导通时间的长短,结果控制了加热功率的大小”。

同步电路R78、R51分压产生V3,R74+R75、R52分压产生V4, 在高频电流的一个周期里,在t2~t4时间 (图1),由于C3两端电压为左负右正,所以V3<V4,V5OFF(V5=0V) 振荡电路V6>V5,V7 OFF(V7=0V),振荡没有输出,也就没有开关脉冲加至Q1的G极,保证了Q1在t2~t4时间不会导通, 在t4~t6时间,C3电容两端电压消失, V3>V4, V5上升,振荡有输出,有开关脉冲加至Q1的G极。

以上动作过程,保证了加到Q1 G极上的开关脉冲前沿与Q1上产生的VCE脉冲后沿相同步。

相关文档
最新文档