等温输油管道

合集下载

油气储运基础知识——管道之一-2

油气储运基础知识——管道之一-2

油气储运系统主要包括:油气集输系统234长距离输油管道系统油气的储存与装卸1长距离输气管道系统5油气运输的经济规律一、概述管道概况二、全球油气管道概况三、中国石油油气管网概况四、中国石油油气储存设施概况五、中国石化油气管网概况六、站场流程及主要设备长输管道是长距离输油管道的简称,它是指流量大,管径大,运距长的自成体系的管道系统。

可简单地表示为:首站收油计量加压加热中间站收油加压加热末站收油计量发油站场流程长输原油管道概况长输原油管道概况对于密闭输油而言,为了保证管道的安全运行,各输油站设有事故泻压罐。

管道系统主要设备为了保证管道正常运行,全线设有有效的通讯系统,以调度指挥生产。

多采用微波通讯或光纤通讯。

管道系统主要设备输油站及主要设施简介泵机组:泵机组的组合形式有两种:串联和并联串联泵机组管道系统主要设备长输原油管道概况长输原油管道概况并联泵机组管道系统主要设备加热炉:三、管道系统主要设备加热方式有两种:直接加热:间接加热:炉火热量原油炉火中间介质热量原油热量(导热油、热媒等)管道系统主要设备长输原油管道概况间接加热系统清管器收发系统:清管是保证输油管道能够长期在高输量下安全运转的基本措施之一,基本任务有两个:输油前清除遗留在管内的机械杂质等堆积物;输油过程中清除管内壁上的石蜡、油砂等沉积物。

管道系统主要设备输油站及主要设施简介输油站及主要设施简介输油站及主要设施简介计量及标定装置长输原油管道概况1、原油管道首站一般能够实现哪些功能?2、原油管道中间站一般能实现哪些功能?3、离心泵的连接方式有哪两种?其特点是什么?4、何谓收、发球筒?其功能是什么?如何进行收发作业?5、管输原油的加热方式有哪两种?思考什么叫等温输油管道?所谓等温输油管道,即输送轻质成品油或低凝点原油的长输管道。

沿线不需要加热,油品从首站进入管道,输经一定距离后,管内油温就会等于管道埋深处地地温。

即指那些在输送过程中油温保持不变的管道。

中国石油大学华东输油管道设计与管理储运25

中国石油大学华东输油管道设计与管理储运25


0

H* sc 1

H sc1
7
结 论:
① c 站停运后,其前面一站(c-1站)的进站压力上升。停运站 愈靠近末站( c 越大),其前面一站的进站压力变化愈大。
② 利用同样的方法,我们可以得出结论:c 站停运后,其前面 各站的进站压力均上升。距停运站越远,变化幅度越小。
③ 出站压力的变化
H* dc 1
10
此处如果c+1站的出站压力用进站压力和泵站扬程表示, 将无法分析其变化趋势。这是因为:
H* dc 1

H* sc 1

H
* c

hc
Q

,H
* sc
1

,H
* c

,H
* dc
1
?
11
4、全线水力坡降线的变化
根据输量变化和各站进出站压力的变化趋势可以画出沿线 各站的水力坡降线的变化情况。作图时应注意以下几点:
① 某站停运后,输量下降,因而水力坡降变小,水力坡降 线变平,但停运站前后水力坡降仍然相同,即水力坡降 线平行。
② 停运站前各站的进出站压力升高,因而停运站前各站的水 力坡降线的起点和终点均比原来高(且出站压力升高幅度 比进站压力大),且距停运站越近,高得越多。
③ 停运站后各站的进出站压力下降,因此停运站后各站间 的水力坡降线的起点和终点均比原来低(且出站压力下 降幅度比进站压力小) ,且距停运站越近,低得越多。
② c站停运后,c站后面各站的进站压力均下降,且距停运站 愈远,其变化幅度愈小。
③ 出站压力的变化
H* dc1

f (Lc1 Lc )Q*2m

(Zc2

等温输油管道参数确定

等温输油管道参数确定
1. 计算流量 以设计任务书中给定的最大输量作为依据。通常,
设计任务书给出的是管道全年完成的质量输送量。
工艺计算中需用体积流量,其换算公式为:
G Q 350 24 3600
从当地气象资料中获取
2. 计算温度
以管道埋深或敷设处年最冷月平均地温作为计算温度。
3. 管道埋深
①高寒地区的管道通常以冻土层的厚度确定;
②高地下水位地区管道通常以地下水位的深度确定;
③一般地区的管道通常为1.0~1.5m,最低不小于0.8m。
标准密度
4.油品密度
根据20℃时油品密度按下式换算成计算温度下的密度
t 20 t 20
式中: t、 20 ——温度为t℃及20℃时的油品密度,kg/m3; kg/(m3· ℃ )。 ——温度系数,
ε=2e/d
7.经济流速
经济流速是综合考虑管道的建设投资、费用运行、技术 水平等多方面因素而选择的合适的被输送介质在管道中的流 动速度。
8. 管径
根据输量和经济流速确定,见式:
d
4Q

式中: d—管道内直径,m; Q—管道的计算输量,m3/s;
v—油品在管道中的流速,m/s。
9. 管道纵断面图 在直角坐标上表示管道长度与沿线高程变化的图
6. 管材
① 管子类型
按照制管方法不同,钢管可分为无缝钢管和有缝钢管(焊
接钢管)。有缝钢管又可分为直缝钢管和螺旋缝钢管。
② 管材承压
管道的管材、直径、壁厚、承压等参数之间的关系见式:
PD 2
③ 管壁粗糙度
管道的粗糙程度一般用绝对粗糙度表示,符号e。 绝对粗糙度与管径的比值称为相对粗糙度,符号ε。
形称为管道纵断面图。

等温输送管道实验指导说明书

等温输送管道实验指导说明书

等温输送管道使用指导书山东中石大石仪科技有限公司SHANDONG SHIYI SCIENCE AND TECHNOLOGY CO.LTD.OF U.P.C地址:山东省东营市北二路271号邮编:257061电话:+86(0546)8391238 8393829 8392766传真:+86(0546)8397706Web : E-mail: shiyi@“等温输油管路”实验指导书一、实验目的(1) 学习和掌握测定管路特性曲线、用图解法求管路与泵站联合工作时的工作点的方法;(2) 熟悉“泵到泵”密闭输送工艺运行时输油管路各站协调工作的情况;(3) 观察管道发生异常工况或突然事故时(如某泵站突然停电等)全线运行参数的变化,学会根据运行参数变化,分析事故原因、事故发生地点及应采取的处理措施,在实验中加以验证;(4) 观察翻越点后的流动状态,分析影响翻越点的因素和消除翻越点的措施,在实验中加以验证;(5) 学习和掌握清管球的收、发操作,观察清管球在管道中的运动状况; (6) 了解计算机数据采集系统的组成及运行情况。

二、实验原理在密闭输送的多泵站等温输油管道系统中,泵站和管道组成一个统一的水力系统,管道所消耗的能量(包括摩阻损失、高程差、站内局部摩阻和终点所要求的剩余压力)等于泵站所提供的能量,二者必然保持能量供需的平衡关系。

全线的能量供需平衡关系式如下:221Z Q m sZ ()()m m s H N A BQ fLQ Z Z Nh H --+-=+-++式中:Q ──管道的工作流量,m 3/s ;N ──全线运行的泵站数;f ──单位流量的水力坡降;H s1──管道首站进站压头,m 液柱; H sZ ──管道终点剩余压头,m 液柱;L ──管道总长度,m ;Z Q 、Z Z ──管道起、终点高程,m ; h m ──每个泵站的站内损失,m 液柱。

根据上述能量平衡方程,可以确定管道的输量和各个站的进出站压力,分析事故工况时运行参数的变化趋势。

输油管道设计与管理知识

输油管道设计与管理知识

第一章1、原油及成品油的运输有公路、铁路、水运和管道输送这四种方式。

2、管道运输的特点:①运输量大;②管道大部分埋设于地下,占地少,受地形地物的限制少,可以缩短运输距离;③密闭安全,能够长期连续稳定运行;④便于管理,易于实现远程集中监控;⑤能耗少,运费低;⑥适于大量、单向、定点运输石油等流体货物。

3、输油管道一般按按输送距离和经营方式分为两类:一类属于企业内部(短输管道);另一类是长距离输油管道。

4、输油管道按所书油品的种类可分为原油管道与成品油管道两种。

原油管道是将油品生产的原油输送至炼厂、港口或铁路转运站,具有管径大、输量大、运输距离长、分输点少的特点。

成品油管道从炼厂将各种油品送至油库或转运站,具有输送品种多、批量多、分输点多的特点,多采用顺序输送。

5、长距离输油管有输油站和线路两大部分及辅助系统设施组成。

6、首站:输油管起点有起点输油站,也称首站,主要组成部分是油罐区、输油泵房和油品计量装置;它的任务是收集原油或石油产品,经计量后向下一站输送。

末站:输油管的终点,有较多的油罐和准确的计量系统;任务:接受来油和向用油单位供油。

7、长距离输油管道上每隔一定距离设有截断阀(作用:一旦发生事故可以及时截断管道内流体,限制油品大量泄漏,防止事故扩大和便于抢修),输油管道截断阀的间距一般不超过32km。

8、长输管道的发展趋势有以下特点:①建设高压力、大口径的大型输油管道,管道建设向极低、海洋延伸;②采用高强度、高韧性、可焊性良好的管材;③高度自动化;④不断采用新技术;⑤应用现代安全管理体系和安全技术,持续改进管道系统的安全;⑥重视管道建设的前期工作。

9、大型长距离输油管道建设要认真遵守以下程序:(1)根据资源条件和国民经济长期规划、地区规划、行业规划的要求,对拟建的输油管道进行可行性研究,并在可行性研究的基础上编制和审定设计任务书。

(2)根据批准的设计任务书,按初步设计(或扩大初步设计)、施工图两个阶段进行设计。

输油管道设计与管理23

输油管道设计与管理23
i
F
Lf 由图可知:水力坡降线不一定先与管路上的最高点相 切,所以翻越点不一定是管路上的最高点,而是靠近 线路终点的某个高点。
⑵解析法
在线路上选若干个高点进行计算,一般选最高点及最高点 之后的高点(为什么?)进行计算。计算方法有两种: ① 计算从起点到高点 j 所需的总压头Hj , 并与从起点到终
3、翻越点后的流动状态
管道上存在翻越点时,翻越点后的管内液流将有剩余能量。 如果不采用措施利用和消耗这部分能量,翻越点后管内将 出现不满流。不满流的存在将使管道出现两相流动,而且 当流速突然变化时会增大水击压力。对于顺序输送的管道 还会增大混油。
措施 : (1) 在翻越点后采用小管径:使流速增大,消耗
2、翻越点的确定
翻越点的确定可用图解法和解析法。 ⑴ 图解法 在管道纵断面图右上角作水力坡降线的直角三角形,将 水力坡降线向下平移,如果水力坡降线与终点相交之前 首先与某高点F相切,则F点即为翻越点。
8
在管道纵断面图右上角作水力坡降线的 直角三角形,将水力坡降线向下平移,
水F相力切坡,降等F线点温与即输终为点翻油相越管交点道之。前的首工先艺与高计点算
里程(km)
0
高程(m)
0
2
3
4
5
26
55
64
76.4
83
94Biblioteka 12264.2已知:全线为水力光滑区,油品计算粘度ν=4.2×10-6m2/s, 首站泵站特性方程:H=370.5-3055Q1.75 中间站泵站特性方程:H=516.7-4250Q1.75 (Q:m3/s)
首站进站压力:Hs1=20米油柱,站内局部阻力忽略不计。
ba
称H动d水压ix力。它Z是x 管,路为沿在力a点线为e液任点流0一的,,点剩水管需余力线压要坡能降内重,线的新

输油管道设计与管理第六课

输油管道设计与管理第六课
费用现值随管径的变化趋势选择下一个应计算的管径方案, 转 ②; ⑦ 按所选方案的管径、泵机组型号及组合、泵站数等,计算工 作点参数(流量、泵站扬程、水力坡降); ⑧ 在纵断面图上布置泵站; ⑨ 泵站及管道系统各种工况的校核和调整。
服务理念中的“点点” ◆理解多一点 真情浓一点 ◆学习勤一点 品质高一点 ◆理由少一点 效率高一点 ◆处理问题灵活点 工作过程用心点 ◆对待同事宽容点 互相协作快乐点
第四节 等温输油管道设计方案的技术经济比较
任何技术方案(包括管道设计、不同的技术措施等)都必 须经过详细的技术经济分析。输油管道在设计中会遇到各种各 样的方案对比问题,其中最主要的也是直接关系到输油管道总 投资和安全经济输油的是管道的总体方案。总体方案的主要内 容之一是根据设计任务书规定的所输油品的性质和输量,确定 出管道的直径、工作压力和泵站数。为了完成某一给定的输油 任务,有若干方案可供选择。可采用口径 大泵站数少的方案, 也可以采用口径小泵站数多的方案。前者初始投资大,但年运 行费用小;后者初始投资小,而年运行费用大。何者为最优方 案,这就需要根据技术经济的基本原理,结合管道所处的经济 环境进 行分析、评价和决策,确定出最终方案。
以华东原油管网为例,华东管网担负胜利和中原油田的原 油外输任务。该管网由东黄线、东黄复线、东辛线(2 条)、东临线(2条)、濮临线、临沧线、临济线、鲁宁 线和中洛线组成,总外输能力7100万吨/年,而这两个油田 的原油产量最高时约为3800万吨/年,去掉油田内部消耗, 实际外输量不到3500万吨/年,管网的平均利用率只有49%, 某些管道不得不靠降凝剂和正反输维持运行,造成人力、 物力和财力的极大浪费以及设备的大量闲置。
对一项管道工程进行经济评价,评价指标很多,较常 用的有内部收益率、净现值、费用现值、投资回收期和 输油成本等,在进行方案比较时,多用费用现值。这里 重点介绍用费用现值的计算方法,其他的评价指标将在 储运工程经济中介绍。

浅析等温输油管道运行工况分析与调节

浅析等温输油管道运行工况分析与调节

浅析等温输油管道运行工况分析与调节输送轻质油或轻质低凝点原油的长输管道沿线不需要加热,这就要求等温输油管道进行输送工作。

管道的运行工况对油品输送、工艺设计、技术经济和安全运行产生巨大影响。

本文就等温输油管道的运行工况分析与调节的方法展开研究,为妥善解决沿线管内流体的能量消耗和能量供应这对主要矛盾提供重要依据,达到安全、经济地完成输送任务的目的。

标签:等温输油管道;输送工作;工况分析与调节1 泵站停运的工况变化设全长为L的“密闭输送”运行的等温输油管道上有N个泵站,正常流量为Q。

由于中间第c站停运,流量降为Q*[1]。

如忽略站内摩阻,由此时全线的压降平衡可求得当有意外事故突然发生,即某中间站突然停運,短时间内管线全程的运行参数会有强烈波动,不稳定。

以上公式适用于在管线流体平衡后的稳定工况下使用。

由图和计算公式可知,某中间站停运后流量减少;停运站前的各站进出站压力均上升;停运站后各站的进出站压力均下降。

此时某些站的进出站压力的变化可能超出允许范围,故必须进行调节。

2 干线漏油后的工况变化假设一条输油管道上共有N个泵站,在第C+1站的进站处漏油量为q。

漏油前,全线流量为Q;漏油以后,漏点前的流量为Q*,漏点后的流量为Q*-q。

漏油后全线流量不相等,可从漏点处将全线分为前后两段,压降平衡公式为:干线漏油后,漏点前面的流量变大,漏点后面流量减小。

漏油后,漏点后面各站的进、出站压力都下降。

因此,距漏点越近的站,压力下降的幅度越大。

3 输油管道的调节在正常输送的条件下,全线基本处于稳定运行状态。

当管道内输量变化时,管道内的能量供求就发生了变化。

为了维持管道的稳定运行,就需要对管道系统进行调节。

输油管道的调节是通过改变管道的能量供应或改变管道的能量消耗,使之在给定输量的条件下达到新的能量供需平衡。

3.1 改变泵站工作特性改变泵站工作特性是通过将能量供给进行改变实现的对输油管道的调节。

3.1.1 改变运行的泵站数或泵机组数这种方法可以在较大范围内调整全线的压力供应,适用于输量波动较大的情况。

等温输油管道

等温输油管道

作业内容:拟建一条长690公里,年输量为600万吨的轻质油管线。

已知原始资料:①管路埋深1.5米处的月平均地温:②油品密度ρ20=867.5kg/m3③油品的粘温特性:④可选用的离心泵型号规格:(P24)或按照最新的泵机组样本进行选择(网上搜索或图书馆查阅相关手册)。

⑤首站进口压头取ΔH1=45m,站内摩阻取15m。

⑥管材选用见P64和附录一、附录二。

⑦线路高程:设计要求:(提示:先采用手算,步骤熟悉后再采用电算。

作业本中要体现手算过程。

)1)合理选择泵型号和泵站的组合方式,并查有关资料作所选型号的泵在输此油品时特性数据的换算;2)选取合适的管径,计算壁厚并取整,然后计算管道的承压能力和对应的允许最大出站压头;3)取管道的当量绝对粗糙度e=0.03mm,计算所需的泵站数;4)将计算的泵站数取大化整,然后提出三项经济可行的措施使输量保持不变,并对每种措施作相应的计算(双号学生选作)。

5)将计算的泵站数取小化整,分别计算所需副管的长度(管径与主管相同)、大一个等级的变径管长度、大两个等级的变径管长度,并进行管材耗量的比较(单号学生选作)6)校核:夏季高温时和冬季低温时各站的进、出站压力,并调整站址;7)设副管敷设在首站出口位置,求第一站间动水压头Hx的表达式,并检查全线动水压头和静水压头;8)求管道系统的最大和最小输量及相应的电机的总输出功率。

计算分析过程:1. 计算年平均地温C t t t t o cp 5.1312/)6.85.133.188.201.218.194.179.143.109.553.6(12/)...(01202010=+++++++++++=+++=故有 平均地温t=13.5℃ 2.计算油品密度根据20℃时油品密度按下式换算成计算温度下的密度。

式中 t ρ、20ρ——温度为t ℃及20℃时油品密度,3/m Kg ; ε——温度系数,ε=1.825-0.00131520ρ,)/(3C m Kg O • 已知油品密度:ρ20 =867.5kg/m 3 即ε=1.825-0.001315×867.5=0.6842375 3.计算年平均温度下油品的粘度。

等温输油管道的工艺计算

等温输油管道的工艺计算
对于长输管道,常采用H=a-bq2-m的形式,其中a、b为常数, 可根据泵特性数据由最小二乘法求得;m与流态有关;q 为单泵排量。采用上式描述泵特性,与实测值的最大偏差 ≯2%。
2、用最小二乘法回归泵特性方程
这里只介绍用最小二乘法进行一元线性回归的方法。但它并不 仅仅适用于一元线性方程,对于那些经过变量代换能够变为一 元线性方程的非线性方程,该方法同样适用。 设有几组实验数据,(x1, y1),(x2, y2),……(xn, yn),它们之间 的关系可以用线性方程y=A+Bx表示,由于实验数据不可能完 全落在直线上,故它们之间存在误差。xi点的实测值yi与计算 值的偏差为:di=yi-(A+Bxi)。
输油泵站的工作特性
如果把各点的偏差加起来,其大小就能反应出该直线与实验点 的逼近程度。但我们不能将各点的偏差直接用求代数和的方法 相加,因为各点的偏差有正有负,求代数和会正负抵消,不能 反应实际偏差的大小,所以我们取各点偏差的平方和:
我们的目的是要从一组直线中选择一条到各点偏差的平方和 为最小的直线,即确定参数A、B的值,使S最小。
多级(高压)泵:排量较小,又称为并联泵; 单级(低压)泵:排量大,扬程低,又称为串联泵。
输油泵站的工作特性
一般来说,输油泵站上均采用单一的并联泵或串联泵,很 少串并联泵混合使用,有时可能在大功率并联泵或串联泵 前串联低扬程大排量的给油泵,以提高主泵的进泵压力。
串联泵具有排量大、扬程低、效率高的特点。我国20世纪 80年代研制的KS型串联泵比并联泵效率高10%左右,而国 外生产的串联泵比国内多数管道采用的并联泵效率高出 18%左右。
等温输油管道的工艺计算
ቤተ መጻሕፍቲ ባይዱ
输油管道工艺计算目的: 1.妥善解决沿线管内流体的能量消耗和能量供应这对主要矛盾;

2.5等温输油管道运行工况分析与调节解析

2.5等温输油管道运行工况分析与调节解析

11
4、全线水力坡降线的变化
根据输量变化和各站进出站压力的变化趋势可以画出沿线 各站的水力坡降线的变化情况。作图时应注意以下几点: ① 某站停运后,输量下降,因而水力坡降变小,水力坡降 线变平,但停运站前后水力坡降仍然相同,即水力坡降 线平行。 ② 停运站前各站的进出站压力升高,因而停运站前各站的水 力坡降线的起点和终点均比原来高(且出站压力升高幅度 比进站压力大),且距停运站越近,高得越多。 ③ 停运站后各站的进出站压力下降,因此停运站后各站间 的水力坡降线的起点和终点均比原来低 ( 且出站压力下 降幅度比进站压力小) ,且距停运站越近,低得越多。
两式相减得:
* H sc H sc (c 1)B fLc (Q*2m Q2m ) 0
2018/10/7
输油管道设计与管理
20
即: 又
* H sc H sc
也就是说漏点前面一站的进站压力下降。
* * * H dc H sc Hc
* * Q ,Hc* ,H sc ,Hdc
Z Hsz (n 1)hc
两式相减得:
[(n 1)B fL](Q2m Q* ) A BQ2m hc Hc hc 0
0
2 m
Q2m Q*
即:
2018/10/7
Q Q
输油管道设计与管理
6
2、c 站前面各站进出站压力的变化
先来讨论c站前面一站即c-1站的情况。为此,从首站进口到 c-1 站进口列能量平衡方程: c 站停运前:
* 2 m 2 m f ( L L ) Q ( Zz Zc1 ) Hsz (n c)hc H sc ( n c )( A BQ ) c * 1 *

管道输送工艺课程设计---等温输送输油管道工艺设计

管道输送工艺课程设计---等温输送输油管道工艺设计

重庆科技学院《管道输送工艺》课程设计报告学院:_石油与天然气工程学院_ 专业班级: 学生姓名: 学号: 设计地点(单位) K704 设计题目: 等温输送输油管道工艺设计完成日期: 2012 年 12 月31 日指导教师评语:成绩(五级记分制):指导教师(签字):目录1 绪论 (1)2 工艺设计说明书 (2)2.1设计依据 (2)2.1.1设计原则 (2)2.2工程概况 (2)2.2.1线路基本概况 (2)2.2.2管道设计 (2)2.2.3设计原始数据及参数 (3)2.3参数的选择 (3)2.3.1温度参数 (3)2.3.2计算年平均地温,冬季和夏季地温下的密度 (3)2.3.3计算年平均,冬季和夏季地温下油品的粘度 (4)2.4工艺计算说明 (4)2.5泵站数的确定及站址确定 (4)2.6校核计算说明 (5)3 工艺设计计算书 (6)3.1经济流速计算管径及最大承压能力 (6)3.2计算雷诺数,判断流态 (7)3.3确定工作泵的台数以及组合情况 (8)3.4电动机选择 (8)3.5计算水力坡降和压头损失,确定泵站数 (9)3.5站场布置 (11)3.6判断全线是否存在翻越点 (12)3.7夏季最高温和冬季最低温时进、出站压力 (13)4 总结 (15)参考文献 (16)1 绪论等温输油管道内存在一个能量的供应和消耗的平衡问题。

输油管道的工艺计算就是要妥善解决沿线管内流体的能量消耗和能量供应之间的平衡。

其主要目的是根据设计任务书规定的输送油品的性质,输量及线路情况,由工艺计算来确定管道的总体方案的主要参数:管径,泵站数及其位置等。

具体说来,在设计过程中要通过工艺计算,确定管径、选泵、确定泵机组数、确定泵站和加热站数及其沿线站场位置的最优组合方案,并为管道采用的控制和保护措施提供设计参数。

本设计主要内容包括:由经济流速确定经济管径,确定所使用管材,确定其泵站数,并校合各进出站压力和沿线的压力分布是否满足要求,并为管道采用的控制和保护措施提供设计参数,提出调整,控制运行参数的措施。

输油管道设计与管理第五课1

输油管道设计与管理第五课1

n/( H c − hc )
其中h 为站内损失。 其中 c为站内损失。 如果考虑首站给油泵的扬程 △Hs1和管道终点或翻越点所需 则全线所需泵站数为: 的余压△Hsz ,则全线所需泵站数为:
n = (iL+ ∆Z + ∆HsZ − ∆Hs1 ) /(Hc − hc )
H f = iLf + Z f − ZQ
显然有
Hf > H
7
1、翻越点的定义 、
如果使一定数量的液体通过线路上的某高点所需的压头 比输送到终点所需的压头大, 比输送到终点所需的压头大,且在所有高点中该高点所 需的压头最大,那么此高点就称为翻越点。 需的压头最大,那么此高点就称为翻越点。 根据该定义有: 根据该定义有:
na ( Hc − hc ) = i( L − x) + i f x + ∆Z + ∆HsZ − ∆Hs1
18
等温输油管道的工艺计算
n − na x1 = ( H c − hc ) i (1 − ω )
同理可得变径管长度为: 同理可得变径管长度为:
x2 =
n − na i (1 − Ω )
( H c − hc )
4.计算流量 计算流量
设计时年输油时间按350天(8400小时)计算。 天 小时) 设计时年输油时间按 小时 计算。
2
5.管道纵断面图与水力坡降线 管道纵断面图与水力坡降线
在直角坐标上表示管道长度与沿线高程变化的图形称为管 道纵断面图。 道纵断面图。 横坐标:表示管道的实际长度,即管道的里程,常用比例 横坐标:表示管道的实际长度,即管道的里程, 为1:10000到1:100000。 : 到 : 。 纵坐标:表示管道的海拔高度,即管道的高程, 纵坐标:表示管道的海拔高度,即管道的高程,常用比例 为1:500到1:1000。 : 到 : 。 管道的水力坡降线是管内流体的能量压头(忽略动能压头 管道的水力坡降线是管内流体的能量压头 忽略动能压头) 忽略动能压头 沿管道长度的变化曲线。 沿管道长度的变化曲线。 等温输油管道的水力坡降线是斜率为 的直线。 等温输油管道的水力坡降线是斜率为 i 的直线。

大作业一等温输油管道的工艺计算

大作业一等温输油管道的工艺计算

大作业一:等温输油管道的工艺计算(下周三交,用A4纸做) 某油田与炼油厂间的输油管道:任务输送量:G =300万吨/年;
油品在25℃和30℃运动粘度分别为: 油品在20℃时的密度是840kg/m3 管道沿线的地形情况如下表:
泵性能参数如下:
管道埋地铺设,管中心埋深1.2米,管道埋深处常年月平均地温为:14.2℃ 管道采用16Mn 钢的螺旋焊钢管,设计最大承压5.5MPa 。

完成下列各项: (1)进行设计计算基础资料的整理; (2)计算管道总压降; (3)作图法布置泵站;
(4)根据站址计算全线各进、出站压力,检查动、静水压力,校核管道强度。

6262
3025910/;1610/νm s νm s --=⨯=⨯。

等温输油管道的工艺计算与运行管理论文

等温输油管道的工艺计算与运行管理论文

等温输油管道的工艺计算与运行管理摘要:管道输送是原油、成品油及天然气长距离运输的主要方式。

一般通过工艺计算确定输油参数。

等温输油管道的工艺计算已作为其他各种管道输送方式的计算基础,等温输油管道的工艺计算包括有:水力计算和管道厚度计算。

本文涉及的工艺计算是使用已给定了主要的工艺设计参数,利用相关公式通过水力计算以及其他计算方法确定本次工艺计算所需要的参数:泵站数、站址、以及各站进、出站压力。

等温输油管道在正常工作时,全管线基本处于运行参数相对最佳的稳定运行状态,当有时有计划的调整参数或者一些突发事故原因,都会可能引起运行工况的变化。

不论是正常工况变化还是事故工矿变化,都要加以控制调节。

在本论文中运行管理部分主要分析了某中间站停运后的工况变化和干线漏油后的工况变化,以及输油泵与管路系统的调节。

关键词:等温输油管道;工艺计算;工况变化;水力计算;运行管理。

Process calculation of isothermal oil pipeline and operationmanagementAbstract:Pipeline transportation of crude oil,the main form of long-distance transportation of refined oil and natural gas.The oil parameters are generally determined through process calculation.Process calculation of the temperature pipeline process calculation as calculated on the basis of various other pipeline,isothermal pipeline include:hydraulic calculation and pipe thickness calculation.Process calculations involved in this paper has identified the main process design parameters,using the relevant formula by hydraulic calculation and other calculation methods to determine the process calculation parameters:the number of pumping stations, station site,as well as the station into the station pressure.During the isothermal pipeline is normal operation,the whole pipeline in the basic operating parameters relative steady state, when sometimes there are plans to adjust the parameters or some unexpected cause of the accident will cause changes in operating condition.Both normal operating conditions change, and accident,industrial change,must be controlled to adjust.In this paper mainly analyzes the operating conditions change after the oil spill of the operating conditions change in a middle station outage and trunk,and the regulation of the pump and piping systems. Keywords:Isothermal oil pipeline;Process calculation;Operating conditions change; Hydraulic calculation;Operation and management.1绪论 (3)1.1国内外发展情况 (3)1.2课题解析及主要内容 (3)1.3课题研究的目的以及其意义 (4)2工艺计算基础 (5)2.1工艺计算资料 (5)2.1.1油品的密度 (5)2.1.2油品粘度 (5)2.1.3地温与计算温度 (5)2.2计算流量 (6)2.3管道纵断面图 (6)2.4翻越点和计算长度 (6)2.4.1翻越点和计算长度 (7)2.4.2计算长度 (7)2.5泵站数的确定 (7)2.6站址确定 (7)3等温输油管道的工艺计算 (9)4等温输油管道的运行管理 (21)4.1某中间站停运后的工况变化 (21)4.2干线漏油后的工况变化 (23)4.3输油管道的调节 (25)4.4改变泵站工作特性 (25)4.4.1改变运行的泵站数或泵机组数 (25)4.4.2泵机组调速 (25)4.4.3换用(切削)离心泵的叶轮直径 (26)4.5改变管道工作特性 (26)4.6输油管道的调节原则 (26)5结论 (27)参考文献 (28)致谢...............................................................................................................错误!未定义书签。

西安石油大学——输油管道设计复习资料

西安石油大学——输油管道设计复习资料
1) 流态划分和输油管道的常见流态 A. 层流:Re<2000 B. 过渡流:2000<Re<3000
L V2 D 2g
C. 紊流水力光滑区:3000<Re<Re1 D. 紊流水力摩擦区:Re1<Re<Re2 E. 紊流完全粗糙区:Re>Re2 其中,紊流区零界雷诺数 Re1 和 Re2 分别用下式计算:
4
深处的土壤温度。
3) 对于顺序输送的管道会增大混油。 计算长度 管路起点与翻越点之间的距离称为管路的计算长度。 1) 不存在翻越点:
H iL (Z Z ZQ )
2) 存在翻越点: H H F iLF (Z F ZQ ) 三. 泵站数的确定
H iL Z
原则:该压头要充分利用管路的强度,并使泵在高效区工作。
2
相对粗糙度 2e/D。规定:无缝钢管:0.06mm;直缝钢管:0.054mm;螺旋焊缝 钢管:DN=250~350 时取 0.125mm,DN>400 时取 0.1mm。 3) 水力摩阻系数的计算 水力光滑区: 0.3164 / Re0.25
e 68 混合摩擦区: 0.11( )0.25 d Re

运行中反算总传热系数 K 值
K T T GC ln R 0 DLR TZ T0
1) 若 K 减小,如果此时 Q 也减小,站间摩阻 H 增加,则说明管壁结辣 可能比较严重,应采取清蜡措施 2) 若 K 增大,则可能是地下水位上升,或管道覆土被破坏,保温层进 水等 四. 考虑摩阻升温时的轴向温降计算 霍夫温降公式没有考虑摩阻升温对轴向降温的影响,只适用于流速低、温降 大、摩阻热影响较小的情况。 列宾宗温降公式:
TL (T0 b) [TR (T0 b)]e aL
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业内容:拟建一条长690公里,年输量为600万吨的轻质油管线。

已知原始资料:①管路埋深1.5米处的月平均地温:②油品密度ρ20=867.5kg/m3③油品的粘温特性:④可选用的离心泵型号规格:(P24)或按照最新的泵机组样本进行选择(网上搜索或图书馆查阅相关手册)。

⑤首站进口压头取ΔH1=45m,站内摩阻取15m。

⑥管材选用见P64和附录一、附录二。

⑦线路高程:设计要求:(提示:先采用手算,步骤熟悉后再采用电算。

作业本中要体现手算过程。

)1)合理选择泵型号和泵站的组合方式,并查有关资料作所选型号的泵在输此油品时特性数据的换算;2)选取合适的管径,计算壁厚并取整,然后计算管道的承压能力和对应的允许最大出站压头;3)取管道的当量绝对粗糙度e=0.03mm,计算所需的泵站数;4)将计算的泵站数取大化整,然后提出三项经济可行的措施使输量保持不变,并对每种措施作相应的计算(双号学生选作)。

5)将计算的泵站数取小化整,分别计算所需副管的长度(管径与主管相同)、大一个等级的变径管长度、大两个等级的变径管长度,并进行管材耗量的比较(单号学生选作)6)校核:夏季高温时和冬季低温时各站的进、出站压力,并调整站址;7)设副管敷设在首站出口位置,求第一站间动水压头Hx的表达式,并检查全线动水压头和静水压头;8)求管道系统的最大和最小输量及相应的电机的总输出功率。

计算分析过程: 1. 计算年平均地温C t t t t o cp 5.1312/)6.85.133.188.201.218.194.179.143.109.553.6(12/)...(01202010=+++++++++++=+++=故有 平均地温t=13.5℃ 2.计算油品密度根据20℃时油品密度按下式换算成计算温度下的密度。

)20(20--=t t ερρ式中 t ρ、20ρ——温度为t ℃及20℃时油品密度,3/m Kg ; ε——温度系数,ε=1.825-0.00131520ρ,)/(3C m Kg O • 已知油品密度:ρ20 =867.5kg/m 3 即ε=1.825-0.001315×867.5=0.6842375320/95.871)205.13(6842375.05.867)20(m kg t t =-⨯-=--=ερρ 3.计算年平均温度下油品的粘度。

根据油品粘温特性表求出粘温特性方程)(00t t u t e --=νν 及)ln(1101tt t t u νν-=得u=0.0368186s m e e t t u t /100721.208.1526)205.13(0368186.0)(00--⨯---⨯=⨯==νν4.换算流量G-Q根据年输量任务为600万吨求流量:s m h m G Q t /228.0/182.819840095.87110600840010377==⨯⨯=⨯⨯=ρ5.初定流速,计算管径。

初定流速为1.5m/s,则m 43934.05819.182/1.0.0188D =⨯= 6.根据管道规格,选出与D 0 相近的三种管径d 1 、d 2 、d 3 。

选用L360螺旋焊缝钢管,规格为:d 1=457mm; d 2=508mm; d 3=559mm 7. 按任务输量和初定工作压力选泵,确定工作泵的台数以及组合情况。

根据流量Q=0.23s m /3=819.182h m /3,和初定的工作压力6MPa ,确定选DZ250x340x4型输油泵(因为在此流量下该型号输油泵效率相对较高)1台作一个泵站,该型泵的性能参数如图:8.作一个泵站的特性曲线,确定任务输量下泵站提供的扬程C H ,然后据此压头确定计算压力 。

在819.182h m /3,查得H=520m 液柱。

管道压力按下式计算 P=(C H +S H )t ρg式中 C H ——任务输量下单个泵站提供的扬程520m ;S H ——为首站辅助泵的扬程45m 。

求得P=(520+45)*871.95*9.8=4.83MPa ,确定设计压力为6MPa. 冬季:油品密度877.703/m Kg ,管道最大压力P=(C H +S H )t ρg=(520+45)*877.70*9.8=4.86MPa9.求壁厚,并进行强度校核,求出管道的内径。

输油管道的壁厚按下式计算][2σδPD=][σ——许用应力,s ][φσσK =, Mpa ;s σ——最低屈服强度,MPa ;K ——一般站外输油管道系数:K=0.72φ——焊缝系数,0.1=φ[]MPa 2.2593600.172.0=⨯⨯=σ对于以上三种管径求壁厚:d 1=457mm; d 2=508mm; d 3=559mmmm 3.52.259245761=⨯⨯=δ;mm 9.52.259250862=⨯⨯=δ;mm 5.62.259255961=⨯⨯=δ1δ=5.3mm ;2δ =5.9mm ;3δ =6.5mm 。

查附录一——国产螺旋缝埋弧焊钢管规格,取大于上述数值的最相近的壁厚,得1δ=5.6mm ;2δ =6.0mm ;3δ =7.0mm 。

求内径:D=d-2δ1D =445.8mm; 2D =496.0mm; 3D =545.0mm 。

校核各管径的壁厚在设计压力下是否满足要求,求输油管所受最大应力δσ2PD=得:1σ=244.82Mpa ;2σ=254Mpa ;3σ=239.57Mpa 。

均小于许用应力:s ][φσσK ==259.2Mpa10.计算流速24DQ V π=得:1V =39.1457.0/14.3/228.042=⨯m/s ; 2V =12.1508.0/14.3/228.042=⨯m/s ; 3V =93.0559.0/14.3/228.042=⨯m/s 。

11. 计算雷诺数,判断流态νπD Q4Re =Re ——雷诺数; Q ——流量,s m /3;D ——管道内径,m ; ν——油品动力粘度,s m /2; 求得第一种管径DN457×5.6的雷诺数Re=19.324621007.204458.014.3228.046=⨯⨯⨯⨯-。

绝对粗糙度e 取0.03mm ,第一临界雷诺数1Re =59.5/78ε==⨯78)8.44503.02(5.591579444。

由3000<Re<1Re 判断流态在水力光滑区。

对于第二种管径DN508×6.0有Re=82.288881007.20496.014.3228.046=⨯⨯⨯⨯- 绝对粗糙度e 取0.03mm ,第一临界雷诺数1Re =59.5/78ε==⨯78)49603.02(5.591784292由3000<Re<1Re 判断流态在水力光滑区。

对于第三种管径DN559×7.0有Re=47.265531007.20545.014.3228.046=⨯⨯⨯⨯- 绝对粗糙度e 取0.03mm ,第一临界雷诺数1Re =59.5/78ε==⨯78)54503.02(5.591987128由3000<Re<1Re 判断流态在水力光滑区。

即有结论流态都在水力光滑区。

12.计算水力坡降和压头损失 水力坡降按下式计算:mm m l D Q L h i --==42νβi ——水力坡降,m/kmβ——水力光滑区取值为0.0246s 2/m ; m ——水力光滑区取值为0.25; L ——管道长度,km 。

压头损失计算: H=iL+Z ∆Z ∆——计算点之间的高差,m 。

75.425.0675.1)1007.20(228.00246.0Di -⨯⨯⨯= 按线路高程表从而算得三种不同管径的水力坡降和压头损失为:km m i /748.54458.0)1007.20(228.00246.075.425.0675.11=⨯⨯⨯=-; km m i /463.3496.0)1007.20(228.00246.075.425.0675.12=⨯⨯⨯=- km m i /213.2545.0)1007.20(228.00246.075.425.0675.13=⨯⨯⨯=- 1H = iL+Z ∆=5.748×696+(17-517)=3500.608m; 2H = iL+Z ∆=3.463×696+(17-517)=1910.248m; 3H = iL+Z ∆=2.213×696+(17-517)=1040.248m;13.在纵断面图上判断是否存在翻越点,确定计算长度L (采用做图法或编程判断),见图。

计算沿程各点需要的能量)(i f H :)(1)()(Z Z iL H i i f i f -+=)(i f L ——计算点与起点之间管道长度,km;i Z ——计算点的标高,m 。

即判断中途是否存在有)(1)()(Z Z iL H i i f i f -+=> iL+Z ∆=H 起点首站压头748.511=-+=Q Z f Z Z L i H作图如下图所示,蓝色各线条分别代表水力坡降分别为1i 、2i 、3i 时的水力坡降线,初步判断没有翻越点。

(km )14.计算输油管道计算长度全线的沿程摩阻损失 ;三种不同管径的沿程压头损失上面已求得,考虑到还有一部分局部阻力损失,将压头损失再乘上1.01作为全线的压头损失。

m H 614.353501.1608.35001=⨯= m H 350.192901.1248.19102=⨯= m H 650.105001.1248.10403=⨯=15.确定全线需要的总压头Z H 。

SZ Z H H H +=SZ H ——末站剩余压力10m 。

350.106010650.1050250.193910350.1929614.354510614.3535321=+==+==+=Z Z Z H H H 16.按D508求泵站数,并化整; 泵站数N :mC Zh H H N -=10.215520350.106084.315520250.193902.715520614.3545321=-==-==-=N N NC H ——任务输量下单个泵站提供的扬程,m ;m h ——泵站内摩阻损失取15m 。

综上三组数据分析,在完成全年输量任务的前提下,考虑管径材料投资,能量耗费,泵站建设方便经济,应取DN508管径设泵站。

17.将泵站数化小,N 取3,敷设副管,主管与副管直径相同。

副管长度计算公式:)1()(1w i N N h H x m C ---=x ——所需副管的长度,km;w ——副管水力坡降与单管主管水力坡降的比值,对于主管与副管直径相同:3.0212175.12===-mw故有km x 175)3.01(463.3384.3)15520(=-⨯-⨯-=18.将泵站数化大,N=4。

相关文档
最新文档