临床循证研究方法学(第五讲科学估算样本量)

合集下载

样本量估计 ppt课件

样本量估计  ppt课件

ppt课件
18
小结
样本量的估算方法很多,不同的统计检验 方法使用的计算公式也不一样,一般影响 样本量的因素比较多:研究事件的发生率、 研究因素的有效率、设定检验的第Ⅰ类错 误概率α、设定检验的第Ⅱ类错误概率β、 了解由样本推断总体的一些信息、处理组 间差别σ的估计。
ppt课件
19

样本量估算的影响因素
样本量的估算方法很多,不同的统计检验 方法使用的计算公式也不一样,一般影响 样本量的因素比较多:
研究事件的发生率:研究事件预期出现的 结局(疾病或死亡),疾病发生率越高, 所需的样本量越小,反之就要越大。
ppt课件
4
样本量估算的影响因素
研究因素的有效率:有效率越高,即实验组和 对照组比较数值差异越大,样本量就可以越小, 小样本就可以达到统计学的显著性,反之就要 越大。
抽样调查估计总体均数的样本含量公式为:
N u 2
式中:δ为容许的误差,即允许样本和总体 的最大容许误差为多少。 为总体标准差。
ppt课件
14
单样本与已知总体检验时样本量的估计
样本均数与总体均数的比较,估计的样本 量计算公式为:
N


u
u
设定检验的第Ⅰ类错误概率α,即检验水准或显 著性。即假设检验第一类错误出现的概率。为 假阳性错误出现的概率。α越小,所需的样本量 越大,反之就要越小。α水平由研究者根据具体 情况决定,通常α取0.05或0.01。
ppt课件
5
样本量估算的影响因素
设定检验的第Ⅱ类错误概率β,或检验效能1-β 。 检验效能又称把握度,为1-β,即假设检验第二 类错误出现的概率,为假阴性错误出现的概率。 即在特定的α水准下,若总体参数之间确实存在 着差别,此时该次实验能发现此差别的概率。 检验效能即避免假阴性的能力,β越小,检验效 能越高,所需的样本量越大,反之就要越小。β 水平由研究者具情决定,通常取β为0.2,0.1或 0.05。即1-β=0.8,0.1或0.95,也就是说把握 度为80%,90%或95%。

临床试验样本量的估算

临床试验样本量的估算

临床试验样本量的估算样本量的估计涉及诸多参数的确定,最难得到的就是预期的或者已知的效应大小(计数资料的率差、计量资料的均数差值),方差(计量资料)或合并的率(计数资料各组的合并率),一般需通过预试验或者查阅历史资料和文献获得,不过很多时候很难得到或者可靠性较差。

因此样本量估计有些时候不是想做就能做的。

SFDA的规定主要是从安全性的角度出发,保证能发现多少的不良反应率;统计的计算主要是从power出发,保证有多少把握能做出显著来。

但是中国的国情?有多少厂家愿意多做?建议方案里这么写:从安全性角度出发,按照SFDA××规定,完成100对有效病例,再考虑到脱落原因,再扩大20%,即120对,240例。

或者:本研究为随机双盲、安慰剂平行对照试验,只有显示试验药优于安慰剂时才可认为试验药有效,根据预试验结果,试验组和对照组的有效率分别为65.0%和42.9%,则每个治疗组中能接受评价的病人样本数必须达到114例(总共228例),这样才能在单侧显著性水平为5%、检验功效为90%的情况下证明试验组疗效优于对照组。

假设因调整意向性治疗人群而丢失病例达10%,则需要纳入病人的总样本例数为250例。

非劣性试验(α=0.05,β=0.2)时:计数资料:平均有效率(P)等效标准(δ)N=公式:N=12.365×P(1-P)/δ2计量资料:共同标准差(S)等效标准(δ)N=公式:N=12.365× (S/δ)2等效性试验(α=0.05,β=0.2)时:计数资料:平均有效率(P)等效标准(δ)N=公式:N=17.127×P(1-P)/δ2计量资料:共同标准差(S)等效标准(δ)N=公式:N=17.127× (S/δ)2上述公式的说明:1) 该公式源于郑青山教授发表的文献。

2) N 是每组的估算例数N1=N2,N1 和N2 分别为试验药和参比药的例数;3) P 是平均有效率,4) S 是估计的共同标准差,5) δ 是等效标准。

临床研究中的样本量估算:临床试验

临床研究中的样本量估算:临床试验

临床研究中的样本量估算:临床试验在临床研究领域,样本量估算无疑是临床试验设计中至关重要的一环。

它不仅关系到研究结果的可靠性和有效性,还直接影响到研究的成本、时间和可行性。

通俗来讲,样本量估算就是要回答“我们需要多少研究对象才能得出有意义的结论”这个关键问题。

为什么样本量估算如此重要呢?想象一下,如果样本量过小,就好像只从大海中舀了一小杯水来判断海水的成分,结果很可能因为随机性太大而不准确,甚至得出错误的结论。

相反,如果样本量过大,虽然能增加结果的可靠性,但会造成资源的浪费,研究时间延长,成本大幅增加。

所以,找到一个恰到好处的样本量,是每个临床试验设计者都必须面对的挑战。

那么,如何进行样本量估算呢?这可不是拍脑袋就能决定的,而是需要综合考虑多个因素。

首先要考虑的是研究的主要目的和假设。

比如,是要比较两种治疗方法的疗效差异,还是要评估某种药物的安全性?不同的研究目的和假设会对样本量产生不同的要求。

假设我们要比较一种新药物和传统药物治疗某种疾病的效果。

我们的假设是新药物的疗效优于传统药物。

为了能够有足够的把握检测出这种差异,我们需要根据预期的疗效差异大小来确定样本量。

如果预期的差异很小,那么就需要更多的样本才能检测到这种细微的差别;如果预期的差异较大,相对来说所需的样本量就会少一些。

其次,效应大小也是一个关键因素。

效应大小反映了研究中所关注的变量之间的差异程度。

比如,在药物疗效研究中,效应大小可以是新药物和传统药物在治愈率、症状改善程度等方面的差异。

一般来说,效应大小越大,所需的样本量就越小;效应大小越小,所需的样本量就越大。

再者,检验水准和检验效能也不能忽视。

检验水准通常设定为005,它表示在假设检验中,当原假设为真时,错误地拒绝原假设的概率。

而检验效能则是在给定的效应大小和样本量的情况下,正确拒绝原假设的概率,一般要求检验效能不低于 80%。

简单来说,检验水准和检验效能就像是天平的两端,我们需要在它们之间找到一个平衡,以确定合适的样本量。

临床试验样本量的估算

临床试验样本量的估算

临床试验样本量的估算样本量的估计涉及诸多参数的确定,最难得到的就是预期的或者已知的效应大小(计数资料的率差、计量资料的均数差值),方差(计量资料)或合并的率(计数资料各组的合并率),一般需通过预试验或者查阅历史资料和文献获得,不过很多时候很难得到或者可靠性较差。

因此样本量估计有些时候不是想做就能做的。

SFDA的规定主要是从安全性的角度出发,保证能发现多少的不良反应率;统计的计算主要是从power出发,保证有多少把握能做出显著来。

但是中国的国情有多少厂家愿意多做建议方案里这么写:从安全性角度出发,按照SFDA××规定,完成100对有效病例,再考虑到脱落原因,再扩大20%,即120对,240例。

或者:本研究为随机双盲、安慰剂平行对照试验,只有显示试验药优于安慰剂时才可认为试验药有效,根据预试验结果,试验组和对照组的有效率分别为%和%,则每个治疗组中能接受评价的病人样本数必须达到114例(总共228例),这样才能在单侧显著性水平为5%、检验功效为90%的情况下证明试验组疗效优于对照组。

假设因调整意向性治疗人群而丢失病例达10%,则需要纳入病人的总样本例数为250例。

非劣性试验(α=,β=)时:计数资料:平均有效率(P)等效标准(δ)N=公式:N=×P(1-P)/δ2计量资料:共同标准差(S)等效标准(δ)N=公式:N=× (S/δ)2等效性试验(α=,β=)时:计数资料:平均有效率(P)等效标准(δ)N=公式:N=×P(1-P)/δ2计量资料:共同标准差(S)等效标准(δ)N=公式:N=× (S/δ)2上述公式的说明:1) 该公式源于郑青山教授发表的文献。

2) N 是每组的估算例数N1=N2,N1 和N2 分别为试验药和参比药的例数;3) P 是平均有效率,4) S 是估计的共同标准差,5) δ 是等效标准。

6) 通常都规定α=,β=(把握度80%)上述计算的例数若少于国家规定的例数,按规定为准;多于国家规定的则以计算值为准。

临床试验样本量的估算[精品文档]

临床试验样本量的估算[精品文档]

临床试验样本量的估算样本量的估计涉及诸多参数的确定,最难得到的就是预期的或者已知的效应大小(计数资料的率差、计量资料的均数差值),方差(计量资料)或合并的率(计数资料各组的合并率),一般需通过预试验或者查阅历史资料和文献获得,不过很多时候很难得到或者可靠性较差。

因此样本量估计有些时候不是想做就能做的。

SFDA的规定主要是从安全性的角度出发,保证能发现多少的不良反应率;统计的计算主要是从power出发,保证有多少把握能做出显著来。

但是中国的国情?有多少厂家愿意多做?建议方案里这么写:从安全性角度出发,按照SFDA××规定,完成100对有效病例,再考虑到脱落原因,再扩大20%,即120对,240例。

或者:本研究为随机双盲、安慰剂平行对照试验,只有显示试验药优于安慰剂时才可认为试验药有效,根据预试验结果,试验组和对照组的有效率分别为65.0%和42.9%,则每个治疗组中能接受评价的病人样本数必须达到114例(总共228例),这样才能在单侧显著性水平为5%、检验功效为90%的情况下证明试验组疗效优于对照组。

假设因调整意向性治疗人群而丢失病例达10%,则需要纳入病人的总样本例数为250例。

非劣性试验(α=0.05,β=0.2)时:计数资料:平均有效率(P)等效标准(δ)N=公式:N=12.365×P(1-P)/δ2计量资料:共同标准差(S)等效标准(δ)N=公式:N=12.365× (S/δ)2等效性试验(α=0.05,β=0.2)时:计数资料:平均有效率(P)等效标准(δ)N=公式:N=17.127×P(1-P)/δ2计量资料:共同标准差(S)等效标准(δ)N=公式:N=17.127× (S/δ)2上述公式的说明:1) 该公式源于郑青山教授发表的文献。

2) N 是每组的估算例数N1=N2,N1 和N2 分别为试验药和参比药的例数;3) P 是平均有效率,4) S 是估计的共同标准差,5) δ 是等效标准。

临床试验样本量的估算

临床试验样本量的估算

临床试验样本量的估算样本量的估计涉及诸多参数的确定,最难得到的就是预期的或者已知的效应大小(计数资料的率差、计量资料的均数差值),方差(计量资料)或合并的率(计数资料各组的合并率),一般需通过预试验或者查阅历史资料和文献获得,不过很多时候很难得到或者可靠性较差。

因此样本量估计有些时候不是想做就能做的。

SFDA的规定主要是从安全性的角度出发,保证能发现多少的不良反应率;统计的计算主要是从power出发,保证有多少把握能做出显著来。

但是中国的国情?有多少厂家愿意多做?建议方案里这么写:从安全性角度出发,按照SFDA XX规定,完成100对有效病例,再考虑到脱落原因,再扩大20%,即120对,240例。

或者:本研究为随机双盲、安慰剂平行对照试验,只有显示试验药优于安慰剂时才可认为试验药有效,根据预试验结果,试验组和对照组的有效率分别为65.0%和42.9%,贝S每个治疗组中能接受评价的病人样本数必须达到114例(总共228例),这样才能在单侧显著性水平为5%、检验功效为90%的情况下证明试验组疗效优于对照组。

假设因调整意向性治疗人群而丢失病例达10%,则需要纳入病人的总样本例数为250例。

非劣性试验(a =0.05, (3 =0.2)时:计数资料:平均有效率(P)等效标准(S)N=公式:N=12.365X P(1-P)/ 52计量资料:共同标准差(S)等效标准(5)N=公式:N=12.365X (S/ 5 )2等效性试验(a =0.05, (3 =0.2)时:计数资料:平均有效率(P)等效标准(5)N=公式:N=17.127X P(1-P)/ 5 2计量资料:共同标准差(S)等效标准(5)N=公式:N=17.127X (S/ 5 )2上述公式的说明:1)该公式源于郑青山教授发表的文献。

2)N是每组的估算例数N仁N2 , N1和N2分别为试验药和参比药的例数;3)P是平均有效率,4) S是估计的共同标准差,5) 8是等效标准。

临床试验样本量的估算

临床试验样本量的估算

临床试验样本量的估算样本量的估计涉及诸多参数的确定,最难得到的就是预期的或者已知的效应大小(计数资料的率差、计量资料的均数差值),方差(计量资料)或合并的率(计数资料各组的合并率),一般需通过预试验或者查阅历史资料和文献获得,不过很多时候很难得到或者可靠性较差。

因此样本量估计有些时候不是想做就能做的。

SFDA的规定主要是从安全性的角度出发,保证能发现多少的不良反应率;统计的计算主要是从power出发,保证有多少把握能做出显著来。

但是中国的国情?有多少厂家愿意多做?建议方案里这么写:从安全性角度出发,按照SFDA××规定,完成100对有效病例,再考虑到脱落原因,再扩大20%,即120对,240例。

或者:本研究为随机双盲、安慰剂平行对照试验,只有显示试验药优于安慰剂时才可认为试验药有效,根据预试验结果,试验组和对照组的有效率分别为65.0%和42.9%,则每个治疗组中能接受评价的病人样本数必须达到114例(总共228例),这样才能在单侧显著性水平为5%、检验功效为90%的情况下证明试验组疗效优于对照组。

假设因调整意向性治疗人群而丢失病例达10%,则需要纳入病人的总样本例数为250例。

非劣性试验(α=0.05,β=0.2)时:计数资料:平均有效率(P)等效标准(δ)N=公式:N=12.365×P(1-P)/δ2计量资料:共同标准差(S)等效标准(δ)N=公式:N=12.365× (S/δ)2等效性试验(α=0.05,β=0.2)时:计数资料:平均有效率(P)等效标准(δ)N=公式:N=17.127×P(1-P)/δ2计量资料:共同标准差(S)等效标准(δ)N=公式:N=17.127× (S/δ)2上述公式的说明:1) 该公式源于郑青山教授发表的文献。

2) N 是每组的估算例数N1=N2,N1 和N2 分别为试验药和参比药的例数;3) P 是平均有效率,4) S 是估计的共同标准差,5) δ 是等效标准。

临床试验样本量的估算

临床试验样本量的估算

临床试验样本量的估算????? 样本量的估计涉及诸多参数的确定,最难得到的就是预期的或者已知的效应大小(计数资料的率差、计量资料的均数差值),方差(计量资料)或合并的率(计数资料各组的合并率),一般需通过预试验或者查阅历史资料和文献获得,不过很多时候很难得到或者可靠性较差。

因此样本量估计有些时候不是想做就能做的。

SFDA的规定主要是从安全性的角度出发,保证能发现多少的不良反应率;统计的计算主要是从power出发,保证有多少把握能做出显着来。

但是中国的国情?有多少厂家愿意多做?建议方案里这么写:?????? 从安全性角度出发,按照SFDA××规定,完成100对有效病例,再考虑到脱落原因,再扩大20%,即120对,240例。

或者:本研究为随机双盲、安慰剂平行对照试验,只有显示试验药优于安慰剂时才可认为试验药有效,根据预试验结果,试验组和对照组的有效率分别为65.0%和42.9%,则每个治疗组中能接受评价的病人样本数必须达到114例(总共228例),这样才能在单侧显着性水平为5%、检验功效为90%的情况下证明试验组疗效优于对照组。

?假设因调整意向性治疗人群而丢失病例达10%,则需要纳入病人的总样本例数为250例。

非劣性试验(α=0.05,β=0.2)时:计数资料:平均有效率(P)等效标准(δ)N=公式:N=12.365×P(1-P)/δ2计量资料:共同标准差(S)等效标准(δ)N=公式:N=12.365× (S/δ)2等效性试验(α=0.05,β=0.2)时:计数资料:平均有效率(P)等效标准(δ)N=公式:N=17.127×P(1-P)/δ2计量资料:共同标准差(S)等效标准(δ)N=公式:N=17.127× (S/δ)2上述公式的说明:1) 该公式源于郑青山教授发表的文献。

2) N 是每组的估算例数N1=N2,N1 和N2 分别为试验药和参比药的例数;3) P 是平均有效率,4) S 是估计的共同标准差,5) δ 是等效标准。

临床试验样本量的估算

临床试验样本量的估算

临床试验样本量的估算样本量的估计涉及诸多参数的确定,最难得到的就是预期的或者已知的效应大小(计数资料的率差、计量资料的均数差值),方差(计量资料)或合并的率(计数资料各组的合并率),一般需通过预试验或者查阅历史资料和文献获得,不过很多时候很难得到或者可靠性较差。

因此样本量估计有些时候不是想做就能做的。

SFDA的规定主要是从安全性的角度出发,保证能发现多少的不良反应率;统计的计算主要是从power出发,保证有多少把握能做出显著来。

但是中国的国情?有多少厂家愿意多做?建议方案里这么写:从安全性角度出发,按照SFDA××规定,完成100对有效病例,再考虑到脱落原因,再扩大20%,即120对,240例。

或者:本研究为随机双盲、安慰剂平行对照试验,只有显示试验药优于安慰剂时才可认为试验药有效,根据预试验结果,试验组和对照组的有效率分别为65.0%和42.9%,则每个治疗组中能接受评价的病人样本数必须达到114例(总共228例),这样才能在单侧显著性水平为5%、检验功效为90%的情况下证明试验组疗效优于对照组。

假设因调整意向性治疗人群而丢失病例达10%,则需要纳入病人的总样本例数为250例。

非劣性试验(α=0.05,β=0.2)时:计数资料:平均有效率(P)等效标准(δ)N=公式:N=12.365×P(1-P)/δ2计量资料:共同标准差(S)等效标准(δ)N=公式:N=12.365× (S/δ)2等效性试验(α=0.05,β=0.2)时:计数资料:平均有效率(P)等效标准(δ)N=公式:N=17.127×P(1-P)/δ2计量资料:共同标准差(S)等效标准(δ)N=公式:N=17.127× (S/δ)2上述公式的说明:1) 该公式源于郑青山教授发表的文献。

2) N 是每组的估算例数N1=N2,N1 和N2 分别为试验药和参比药的例数;3) P 是平均有效率,4) S 是估计的共同标准差,5) δ 是等效标准。

临床研究中样本容量估算的常用方法与策略

临床研究中样本容量估算的常用方法与策略

临床研究中样本容量估算的常用方法与策略在临床研究中,样本容量的估算是非常重要的一步。

样本容量的大小直接影响到研究结果的可靠性和推广性。

因此,科研人员需要了解并掌握常用的样本容量估算方法和策略,以确保研究的科学性和可信度。

一、样本容量估算的意义样本容量估算是指通过科学的方法确定研究所需的样本数量。

样本容量的大小直接影响到研究结果的统计学意义和推广性。

如果样本容量过小,可能导致统计结果不具有代表性,无法反映总体的真实情况。

而如果样本容量过大,不仅会浪费研究资源,还可能导致研究结果的误差增大。

因此,合理估算样本容量是保证研究结果科学可靠的前提。

二、常用的样本容量估算方法1. 参数估计法参数估计法是根据已知的总体参数进行样本容量的估算。

在临床研究中,常用的参数估计法有均值估计法和比例估计法。

均值估计法适用于需要估计总体均值的研究问题。

研究人员需要确定研究所需的置信水平、置信区间宽度和总体标准差等参数,然后根据这些参数进行样本容量的计算。

比例估计法适用于需要估计总体比例的研究问题。

研究人员需要确定研究所需的置信水平、置信区间宽度和总体比例等参数,然后根据这些参数进行样本容量的计算。

2. 功效分析法功效分析法是根据研究的效应大小进行样本容量的估算。

在临床研究中,研究人员常常希望通过研究来检验某种治疗方法的有效性。

功效分析法可以帮助研究人员确定所需的样本容量,以达到检验治疗方法有效性的目的。

功效分析法需要确定研究所需的显著性水平、效应大小和统计功效等参数。

根据这些参数进行样本容量的计算,以保证研究具有足够的统计功效。

三、样本容量估算的策略1. 充分了解研究问题在进行样本容量估算之前,研究人员需要充分了解研究问题的背景和目的。

只有对研究问题有清晰的认识,才能选择合适的样本容量估算方法和策略。

2. 合理选择参数值样本容量估算中,参数值的选择直接影响到样本容量的计算结果。

研究人员需要根据已有的研究数据或者专家意见,合理选择参数值。

临床试验样本量的估算

临床试验样本量的估算

临床试验样本量(d e)估算样本量(de)估计涉及诸多参数(de)确定,最难得到(de)就是预期(de)或者已知(de)效应大小(计数资料(de)率差、计量资料(de)均数差值),方差(计量资料)或合并(de)率(计数资料各组(de)合并率),一般需通过预试验或者查阅历史资料和文献获得,不过很多时候很难得到或者可靠性较差.因此样本量估计有些时候不是想做就能做(de).SFDA(de)规定主要是从安全性(de)角度出发,保证能发现多少(de)不良反应率;统计(de)计算主要是从power出发,保证有多少把握能做出显着来.但是中国(de)国情有多少厂家愿意多做建议方案里这么写:从安全性角度出发,按照SFDA××规定,完成100对有效病例,再考虑到脱落原因,再扩大20%,即120对,240例.或者:本研究为随机双盲、安慰剂平行对照试验,只有显示试验药优于安慰剂时才可认为试验药有效,根据预试验结果,试验组和对照组(de)有效率分别为%和%,则每个治疗组中能接受评价(de)病人样本数必须达到114例(总共228例),这样才能在单侧显着性水平为5%、检验功效为90%(de)情况下证明试验组疗效优于对照组.假设因调整意向性治疗人群而丢失病例达10%,则需要纳入病人(de)总样本例数为250例.非劣性试验(α=,β=)时:计数资料:平均有效率(P)等效标准(δ)N=公式:N=×P(1-P)/δ2计量资料:共同标准差(S)等效标准(δ)N=公式:N=× (S/δ)2等效性试验(α=,β=)时:计数资料:平均有效率(P)等效标准(δ)N=公式:N=×P(1-P)/δ2计量资料:共同标准差(S)等效标准(δ)N=公式:N=× (S/δ)2上述公式(de)说明:1) 该公式源于郑青山教授发表(de)文献.2) N 是每组(de)估算例数N1=N2,N1 和N2 分别为试验药和参比药(de)例数;3) P 是平均有效率,4) S 是估计(de)共同标准差,5) δ 是等效标准.6) 通常都规定α=,β=(把握度80%)上述计算(de)例数若少于国家规定(de)例数,按规定为准;多于国家规定(de)则以计算值为准.具体规定(de)最小样本量如下:II期,试验组100例;III期,试验组300例;随机对照临床验证(如3类化药)试验组100例.IV期,2000例.疫苗和避孕药与上述要求不同.例1:某新药拟进行II 期临床试验,与阳性药按1:1 (de)比例安排例数,考察新药临床治愈率不差于阳性药.根据以往(de)疗效和统计学(de)一般要求,取α=,β=,等效标准δ=,平均有效率P=,每组需要多少病例由公式计算得,N=×/=88(例)以上88 例低于我国最低例数(100 例)(de)规定,故新药至少取100 例进行试验.如上例作等效性分析,则得,N=×/=122(例).例2:某利尿新药拟进行II 期临床试验,与阳性药按1:1 (de)比例安排例数,考察24h 新药利尿量不差于阳性药.根据以往(de)疗效和统计学(de)一般要求,取α=,β=,等效标准δ=60 ml,已知两组共同标准差S=180 ml,每组需要多少病例由公式得,N=× (180/60)2=111 例.故本次试验新药和阳性药(de)例数均不少于111 例.如上例作等效性分析,则得,N=×(180/60)2=154(例). [s:11]临床试验研究中,无论是实验组还是对照组都需要有一定数量(de)受试对象.这是因为同一种实验处理在不同(de)受试对象身上表现出(de)实验效应是存在着变异(de).仅凭一次实验观测结果或单个受试者所表现出来(de)实验效应说明不了什么问题.必须通过一定数量(de)重复观测才能把研究总体真实(de)客观规律性显示出来,并且可以对抽样误差做出客观地估计.一般说来重复观测次数越多,抽样误差越小,观测结果(de)可信度越高.一定数量(de)重复还可起到部分抵消混杂因素影响(de)作用,增强组间(de)可比性.但重复观测次数越多(即样本含量越大)试验所要消耗(de)人力、物力、财力和时间越多,可能会使试验研究成为不可能.而且,样本含量过大还会增加控制试验观测条件(de)难度,有可能引入非随机误差,给观测结果带来偏性(bias).所以在实验设计中落实重复原则(de)一个重要问题就是如何科学合理确定样本含量.由于在各对比组例数相等时进行统计推断效能最高,因此多数情况下都是按各组样本含量相等来估计.但在个别情况下,也可能要求各组样本含量按一定比例来估计.1 与样本含量估计有关(de)几个统计学参数在估计样本含量之前,首先要对以下几个统计学参数加以确定或作出估计.规定有专业意义(de)差值δ,即所比较(de)两总体参数值相差多大以上才有专业意义.δ是根据试验目(de)人为规定(de),但必须有一定专业依据.习惯上把δ称为分辨力或区分度.δ值越小表示对二个总体参数差别(de)区分度越强,因而所需样本含量也越大.确定作统计推断时允许犯Ⅰ类错误(“弃真”(de)错误)(de)概率α,即当对比(de)双方总体参数值没有差到δ.但根据抽样观测结果错误地得出二者有差别(de)推断结论(de)可能性,α确定(de)越小,所需样本含量越大.在确定α时还要注意明确是单侧检验(de)α,还是双侧检验(de)α.在同样大小(de)α条件下;双侧检验要比单侧检验需要更大(de)样本含量.提出所期望(de)检验效能power,用1-β表示.β为允许犯Ⅱ类错误(“取伪”(de)错误)(de)概率.检验效能就是推断结论不犯Ⅱ类错误(de)概率1-β称把握度.即当对比双方总体参数值间差值确实达到δ以上时,根据抽样观测结果在规定(de)α水准上能正确地作出有差别(de)推断结论(de)可能性.在科研设计中常把1-β定为或.一般来说1-β不宜低于,否则可能出现非真实(de)阴性推断结论.给出总体标准差σ或总体率π(de)估计值.它们分别反映计量数据和计数数据(de)变异程度.一般是根据前人经验或文献报道作出估计.如果没有前人经验或文献报道作为依据,可通过预实验取得样本(de)标准差s或样本率P分别作为σ和π(de)估计值.σ(de)估计值越大,π(de)估计值越接近,所需样本含量越大.在对以上统计学参数作出规定或估计(de)前提下,就可以根据不同(de)推断内容选用相应(de)公式计算出所需样本含量.由于在同样(de)要求和条件下完全随机设计(成组设计)所需样本含量最大,故一般都要按完全随机设计作出样本含量(de)估计.2 常用(de)估计样本含量(de)方法两样本均数比较时样本含量估计方法(1)两样本例数要求相等时可按下列公式估算每组需观察(de)例数n.n=2[(α+β)σ/δ]^2 (公式1)式中δ为要求(de)区分度,σ为总体标准差或其估计值s,α、β分别是对应于α和β(de)u值,可由t界值表,自由度υ=∞-行查出来,α有单侧、双侧之分,β只取单侧值.例1,某医师研究一种降低高血脂患者胆固醇药物(de)临床疗效,以安慰剂作对照.事前规定试验组与对照组相比,平均多降低 mmol/L以上,才有推广应用价值.而且由有关文献中查到高血脂患者胆固醇值(de)标准差为 mmol/L,若要求犯Ⅰ类错误(de)(de)概率不超过5%,犯Ⅱ类错误(de)概率不超过10%,且要两组例数相等则每组各需观察多少例本例δ= mmol/L,σ= mmol/L,α=,β=,1-β=,查t界值表自由度为∞一行得单侧=,=,代入公式(1)n=2[+×]^2=44故要达到上述要求,两组至少各需观察44例.(2)两样本例数要求呈一定比例(n2/n1=c)时,可按下列公式求出n1,再按比例求出n2=cn1.n1=[(α+β)σ/δ]^2(1+C)/C (公式2)例2 对例1资料如一切要求都维持不变,但要求试验组与对照组(de)例数呈2∶1比例(即C=2),问两组各需观察多少例n1=[+×]^2×(1+2)/2 =33(例)(对照组所需例数)n2=2×33=66(例)(试验组所需例数.)两组共需观察99例多于两组例数相等时达到同样要求时两组所需观察(de)总例数2×44=88.配对设计计量资料样本含量(对子数)估计方法配对设计包括异体配对、自身配对、自身前后配对及交叉设计(de)自身对照,均可按下列公式进行样本含量估计.n=[(α+β)σd/δ]^2 (公式3)式中δ、α、β(de)含义同前,σd为每对差值(de)总体标准差或其估计值sd.例3 某医院采用自身前后配对设计方案研究某治疗矽肺药物能否有效地增加矽肺患者(de)尿矽排出量.事前规定服药后尿矽排出量平均增加 mmol/L以上方能认为有效,根据预试验得到矽肺患者服药后尿矽排出量增加值(de)标准差 sd=mmol/L,现在要求推断时犯Ⅰ类错误(de)概率控制在以下(单侧),犯Ⅱ类错误(de)概率控制在以下,问需观察多少例矽肺病人本例δ= mmol/L, sd= mmol/L,α=,β=.1-β=,单侧=,=,代入公式(3)得到.n=[+×89/]^2=54(例)故可认为如该药确实能达到平均增加尿矽排出量在 mmol/L以上,则只需观察54例病人就能有90%(de)把握,按照α=(de)检验水准得出该药有增加矽肺病人尿矽作用(de)正确结论.样本均数与总体均数比较时样本含量估计方法可按下式估算所需样本含量n.n=[(α+β)σ/δ]^2 (公式4)例4已知血吸虫病人血红蛋白平均含量为90g/L,标准差为25g/L,现欲观察呋喃丙胺治疗后能否使血红蛋白增加,事先规定血红蛋白增加10g/L以上才能认为有效,推断结论犯Ⅰ类错误(de)概率α(双侧)不得超过,犯Ⅱ类错误(de)概率β不得超过,问需观察多少例病人本例δ=10g/L,σ=25g/L,=(双侧),=代入公式(4)得:n=[+×25/10]^2=66(例)故如果呋喃丙胺确实能使血吸虫病人血红蛋白平均含量增加10g/L以上,则只需观察66例就可以有90%(de)把握在α=检验水准上得出有增加血吸虫病人血红蛋白平均含量(de)结论.。

临床试验样本量的估算

临床试验样本量的估算

临床试验样本量的估算样本量的估计涉及诸多参数的确定,最难得到的就是预期的或者已知的效应大小(计数资料的率差、计量资料的均数差值),方差(计量资料)或合并的率(计数资料各组的合并率),一般需通过预试验或者查阅历史资料和文献获得,不过很多时候很难得到或者可靠性较差。

因此样本量估计有些时候不是想做就能做的。

SFDA的规定主要是从安全性的角度出发,保证能发现多少的不良反应率;统计的计算主要是从power出发,保证有多少把握能做出显著来。

但是中国的国情?有多少厂家愿意多做?建议方案里这么写:从安全性角度出发,按照SFDA××规定,完成100对有效病例,再考虑到脱落原因,再扩大20%,即120对,240例。

或者:本研究为随机双盲、安慰剂平行对照试验,只有显示试验药优于安慰剂时才可认为试验药有效,根据预试验结果,试验组和对照组的有效率分别为65.0%和42.9%,则每个治疗组中能接受评价的病人样本数必须达到114例(总共228例),这样才能在单侧显著性水平为5%、检验功效为90%的情况下证明试验组疗效优于对照组。

假设因调整意向性治疗人群而丢失病例达10%,则需要纳入病人的总样本例数为250例。

非劣性试验(α=0.05,β=0.2)时:计数资料:平均有效率(P)等效标准(δ)N=公式:N=12.365×P(1-P)/δ2计量资料:共同标准差(S)等效标准(δ)N=公式:N=12.365× (S/δ)2等效性试验(α=0.05,β=0.2)时:计数资料:平均有效率(P)等效标准(δ)N=公式:N=17.127×P(1-P)/δ2计量资料:共同标准差(S)等效标准(δ)N=公式:N=17.127× (S/δ)2上述公式的说明:1) 该公式源于郑青山教授发表的文献。

2) N 是每组的估算例数N1=N2,N1 和N2 分别为试验药和参比药的例数;3) P 是平均有效率,4) S 是估计的共同标准差,5) δ 是等效标准。

临床试验样本量的估算

临床试验样本量的估算

临床试验样本量的估算样本量的估计涉及诸多参数的确定,最难得到的就是预期的或者已知的效应大小(计数资料的率差、计量资料的均数差值),方差(计量资料)或合并的率(计数资料各组的合并率),一般需通过预试验或者查阅历史资料和文献获得,不过很多时候很难得到或者可靠性较差。

因此样本量估计有些时候不是想做就能做的。

SFDA的规定主要是从安全性的角度出发,保证能发现多少的不良反应率;统计的计算主要是从power出发,保证有多少把握能做出显著来。

但是中国的国情?有多少厂家愿意多做?建议方案里这么写:从安全性角度出发,按照SFDA××规定,完成100对有效病例,再考虑到脱落原因,再扩大20%,即120对,240例。

或者:本研究为随机双盲、安慰剂平行对照试验,只有显示试验药优于安慰剂时才可认为试验药有效,根据预试验结果,试验组和对照组的有效率分别为65.0%和42.9%,则每个治疗组中能接受评价的病人样本数必须达到114例(总共228例),这样才能在单侧显著性水平为5%、检验功效为90%的情况下证明试验组疗效优于对照组。

假设因调整意向性治疗人群而丢失病例达10%,则需要纳入病人的总样本例数为250例。

非劣性试验(α=0.05,β=0.2)时:计数资料:平均有效率(P)等效标准(δ)N=公式:N=12.365×P(1-P)/δ2计量资料:共同标准差(S)等效标准(δ)N=公式:N=12.365× (S/δ)2等效性试验(α=0.05,β=0.2)时:计数资料:平均有效率(P)等效标准(δ)N=公式:N=17.127×P(1-P)/δ2计量资料:共同标准差(S)等效标准(δ)N=公式:N=17.127× (S/δ)2上述公式的说明:1) 该公式源于郑青山教授发表的文献。

2) N 是每组的估算例数N1=N2,N1 和N2 分别为试验药和参比药的例数;3) P 是平均有效率,4) S 是估计的共同标准差,5) δ 是等效标准。

临床试验样本量的估算

临床试验样本量的估算

临床试验样本量的估算样本量的估计涉及诸多参数的确定,最难得到的就是预期的或者已知的效应大小(计数资料的率差、计量资料的均数差值),方差(计量资料)或合并的率(计数资料各组的合并率),一般需通过预试验或者查阅历史资料和文献获得,不过很多时候很难得到或者可靠性较差。

因此样本量估计有些时候不是想做就能做的。

SFDA的规定主要是从安全性的角度出发,保证能发现多少的不良反应率;统计的计算主要是从power出发,保证有多少把握能做出显著来。

但是中国的国情?有多少厂家愿意多做?建议方案里这么写:从安全性角度出发,按照SFDA××规定,完成100对有效病例,再考虑到脱落原因,再扩大20%,即120对,240例。

或者:本研究为随机双盲、安慰剂平行对照试验,只有显示试验药优于安慰剂时才可认为试验药有效,根据预试验结果,试验组和对照组的有效率分别为65.0%和42.9%,则每个治疗组中能接受评价的病人样本数必须达到114例(总共228例),这样才能在单侧显著性水平为5%、检验功效为90%的情况下证明试验组疗效优于对照组。

假设因调整意向性治疗人群而丢失病例达10%,则需要纳入病人的总样本例数为250例。

非劣性试验(α=0.05,β=0.2)时:计数资料:平均有效率(P)等效标准(δ)N=公式:N=12.365×P(1-P)/δ2计量资料:共同标准差(S)等效标准(δ)N=公式:N=12.365× (S/δ)2等效性试验(α=0.05,β=0.2)时:计数资料:平均有效率(P)等效标准(δ)N=公式:N=17.127×P(1-P)/δ2计量资料:共同标准差(S)等效标准(δ)N=公式:N=17.127× (S/δ)2上述公式的说明:1) 该公式源于郑青山教授发表的文献。

2) N 是每组的估算例数N1=N2,N1 和N2 分别为试验药和参比药的例数;3) P 是平均有效率,4) S 是估计的共同标准差,5) δ 是等效标准。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
1.1、样本估量的基本条件
在各种临床科研设计方法的样本含量估计中,需要事 先确定的参数有:
1、I型错误率α。即假设检验出假阳性结果的发生概率
2、II型错误率β。即假设检验出假阴性结果的发生概率
3、拟检出的最小效应量(容许误差或差值)δ,一般通 过文献复习或预试验,在设计之初由研究者根据研究 目的和专业知识加以确定。
等的设计,尤其是多组设计时,一般要求各 组间的样本含量相等,只有在某些特殊情况 下才考虑各组的样本含量不相等。
19
➢ 8、校正样本含量——分层整群抽样时 由有些临床研究的抽样单元不是个体研
究对象,而是以一组个体为研究单位(如家 庭、班级、村、工作单位等),整体抽样的 优势在于易于管理 ,能减少沾染和提高依 从性,但同时增大了抽样误差,需要较大样 本量。
单双侧检验等加以灵活运用。 ➢ 假设检验类型不同,样本量也有所变化。如临床试
验中两组率或均数进行比较,检验目的可分为显著 性检验、优效检验、非劣效检验和等价性检验。
12
1.2.样本量估计的注意事项
➢ 1、根据研究目的,严格选择估算样本含量的 方法,如单、双侧不同,估计参数与假设检 验不同,一般假设检验与等价检验不同,样
➢ 3.样本来源的可行性和可及性 特别是考虑有无人力、时间和经费等方
面的限制。
15
➢ 4.容许误差值δ的约定
在计算样本含量之前,一定要明确欲检 测有临床意义的值/差值及其表达方式。
➢ 容许误差值δ既可为置信区间的1/2宽度,
也可以是能检出的有临床意义的差值。
➢ 不能确定δ时,需要敏感性分析,即绘制检
4、总体标准差σ或总体率π。一般通过文献复习或预试 验,亦可作合理的假设得到。
➢ 若终点指标为数值变量时,需要研究者确定总体标准差σ。 ➢ 若终点指标为分类变量时,有时需要研究者确定总体率π。
7
➢ (1)确定I型错误率α
➢ 所有样本含量估计公式中,都需要uα的值,研究者 确定检验水准(α)的大小后,查表得uα值。
➢ 样本量过少:结果不稳定,检验效能过低, 结论缺乏充分依据。
➢ 样本量过大:增加临床研究难度,造成人力、 无力、时间和经济上的浪费,伦理问题,一 些临床意义不大的微弱疗效最终也可能会出 现统计学上的显著差异。
5
➢ 估计样本含量的目的: 在保证某个临床试验/临床研究的结论 具有一定科学性、真实性和可靠性前 提下,确定某研究所需的最小观察样 本量。
➢ β为第二类误差的概率,β值越小,检验效率越高,
所需样本量也就越大,通常β=0.1或β=0.2。一般认
为检验效率不能小于0.7。
9
(3)确定容许误差或差值δ
即有临床意义或研究意义的最小差值。 ➢ 若为数值变量时,δ可为有临床意义的均数差值、
实验前后之差等。 ➢ 若为分类资料, δ可为有临床意义的有效率、患病
3
➢ 为什么要估算样本量? ➢ 理论上,验证某一干预措施与对照之间的差
异,样本量越大,试验结果越接近于真实值, 即结果越可靠。 ➢ 大样本试验还有助于探讨亚组疗效,发现罕 见结局。 ➢ 临床试验报告中有无预先的样本量估计是评 价试验质量的重要依据之一。
4
➢ 试验样本量过小,无论试验结果是否存在差 异,均不能排除因机遇(随机误差)造成的 假阳性或假阴性错误。
17
➢ 6、多指标估算 ➢ 若某研究有多个效应指标,其样本含量估计应
对每个效应指标进行样本量的估计,然后取样 本数量最大者为其研究的样本量。 ➢ 若某研究能区分主要指标和次要指标时,也可 以只对主要指标进行样本含量估计,然后取量 大者为其研究的样本含量。
18
➢ 7.组间例数相等 成组设计的例数,应尽可能采用例数相
本率超过与位于0.3-0.7(0.2-0.8)范围不同,t 检验与u检验不同等。
13
➢ 2、考虑统计方法
➢ 样本量的估计还要与以后将要使用的统计方 法的条件相结合。如单因素分析、相关与回 归、多因素分析等。
➢ 目前样本含量估计的公式计算主要针对单因 素分析,而多因素分析的例数估计请参考有 关书籍
14
率等率之差。
10
➢ (4)确定总体标准差σ或总体率π
➢ 若研究的终点指标为数值变量时,总体标准差σ 为估计样本含量所必须的条件。
➢ 若研究的终点指标为分类变量时,有时,总体率 π为估计样本含量条件。
➢ 若总体标准差σ和总体率π,常常通过文献检索、 预试验或对研究作出合理的假设来获得。
11
➢ 除了基本量估算的基本条件(基本要素)。 ➢ 进一步结合研究目的、指标性质、假设检验类型及
验效能(Power)与样本量间的变换曲线。
16
➢ 5.适当扩大样本量
由于估算的样本含量是能检测出差别的 最小样本量,考虑到受试者可能有不合作者、 中途失访、意外死亡等情况出现,而减少有 效观察对象的例数(失访),因此,应按照 一定失访率适当扩大样本量。
➢ 一般要求在样本量估计值的基础上增加 10%—20%。
临床循证研究的方法学
第五讲 科学估算样本量

(第十七章)科学估算样本量
1 概述 2 基于数值变量资料的样本量估计 3 基于无序分类资料的样本量估计 4 其他常见类型的样本量估计
2
第一节 概述
➢ 样本量(Sample)的估计是临床研究科学设 计的重要内容。
➢ 可重复性原则,是指任何科学研究必须遵守 的原则,其目的是要排除偶然因素的影响, 得出科学的、真实的、规律性的结论。
20
➢ 9、临床试验样本量按规定执行 对于临床试验,特别是新药临床试验样本量
估计必须执行有关规定。例如:
一期 人体药理学研究,受试者为健康志愿者,需要20至30例
二期 探索治疗作用,受试者为患者,试验组和对照组均≧100例
三期 疗效证实试验,受试者为患者,试验组不少于300例 四期 新药上市后监测,受试者为患者,开放试验应在2000例以上
➢ α有单侧与双侧之分,单侧α的uα小于双侧uα值,
所以按单侧计算的样本量小于双侧。 ➢ α越小所需样本量越大,反之越小,一般取α ≤0.05
8
➢ (2)确定II型错误率β
➢ 样本含量计算中,需要uα的值,即研究者确定β大 小后,查表的uα值。
➢ 确定β大小,主要是要确定检验效能(Power),用 1-β表示其概率的大小,检验效能是指总体间确有差 别时,假设检验能发现这种差别的能力大小。
相关文档
最新文档