六年级数学教案:认识分数的本质

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级数学教案:认识分数的本质

从数学发展史看,分数产生于人类的测量活动,而且人类认识分数是从认识分数单位开始的。

⑴测量一张三人沙发的长度,如果没有现成的尺子,可以自选一个度量单位,如用一条领带的长为度量单位进行测量,测得三人沙发的长恰好等于这条领带长的2倍,即

三人沙发的长=领带的长2=2(领带的长)。

量=度量单位量数。

⑵测量一张单人沙发的长度,发现它还不足一条领带的长。怎么办呢?办法是缩小度量单位。把这条领带对折两次,即以这条领带长度的四分之一()为度量单位时,单人沙发的长恰好等于它的3倍,即

单人沙发的长=领带的长的3=(领带的长)

量=度量单位量数。

在测量单人沙发时,我们用到了比自然数1更小的度量单位(把自然数1平均分成4份,表示其中的一份的数是)。

这里,分数和表示不同的长度(量),其中,是分数单位,表示3个,或的3倍。

所以,用分数单位度量一个量时,所得的结果一般是用分数表示的。也可以说,分数是由量与分数单位(度量单位)的倍比关系产生的。分数单位的重要性可见一斑。

想一想:已知用1为单位度量三人沙发的长时,量数是2,沙发的长是多少?那么用为单位度量这张三人沙发的长,量数是几?这张三人沙发的长度是几分之几?如果用为单位去度量这张三人沙发的长呢?

下面的表格,同样可以表征上述数学问题:

三人沙发的长度

度量单位

量数

1

2

下面双重刻度的线段,也可以表征上述的数学问题:

经过上述作业,能充分体验量、度量单位、量数三者的基本关系:量=度量单位量数;同时,还会发现:2==。

再想一想:用为单位去度量一张双人沙发的长,如果所得的量数是6,那么这张双人沙发的长度可以用什么分数表示?

上面这个数学问题,用线段图表征如下:

二、分数产生的现实背景之二--分物

⑴用自然数1表示1个物体,把它平均分成若干份,表示其中一份的数,叫做分数单位。

⑵用自然数1表示由许多物体组成的一个整体时,把它平均分成若干份,表示其中一份的数,也是分数单位吗?

把8个饼平均分成4份,其中每份都有2个饼。

如果把2(部分量)作为度量单位,去度量8(整体)时,量数是4;也就是说,8是2的4倍。

如果把8作为单位1,去度量2时,量数是;这个分数描述的是同一个量中整体与部分的倍比关系,它本身不是一个量,当然也就不具有充当分数单位的资格。

所以,同一个分数,具有两种不同的意义:一可以用来表示一个量,当它表示量时,它还是计量的单位(分数单位);二是可以用来表示量数,即表示两个量(整体与部分)的倍比关系。事实上任何分数都具有这两种意义。

笼统地,把单位1平均分成若干份,表示其中一份的数,叫做分数单位。这个定义的科学性是值得商榷的。

⑶如果把9个饼平均分给4个人,每人分得几个饼?

这个实际问题通常被抽象为下面的数学问题:

9平均分成4份,每份多少?

解法一:因为1平均分成4份,其中一份是;所以,9平均分成4份,每份是9个,即。算法如下:

94=9(14)

=9

=。

解法二:94=2......1,

14=,

2+=2,

所以,94=2。

上述两种算法,都涉及到一个基本的运算:

14=

量量数=度量单位。

在教材中,是通过图形的直观操作得到结果的,但缺乏对操作过程的内涵抽象与概括,使学生不能看到分数与除法之间的本质联系。因此,学生的思维只能停留在经验的层面,他们的理论思维得不到应有的培养和发展。

值得指出的是,当我们把实际问题中的4个人抽象成4份的时候,其中4的意义,从表示量(人数)变换成表示量数(份数)了。

当我们掌握了比的概念后,上述的实际问题还可以抽象成下面的数学问题:

9与4的比的比值是多少?其中9与4的实际意义都没有改变,它们分别表示两个不同的量。

解:9︰4=︰1=。

回到实际问题的情境,解释比值的实际意义,即表示每个人分得个饼。

从这个例子,也许可以领略到一点产生比的概念的必要性。

三、分数产生的现实背景之三--比较

两个量的比较有两种图式:一是两个量的差比关系(第一学段学习的内容);二是两个量的倍比关系(第二学段学习的内容)。

⑴一束鲜花,其中5朵白花,10朵红花。

如果以白花的朵数为基准量进行比较,那么红花的朵数是白花的2倍;如果以红花的朵数为基准量进行比较,那么白花的朵数是红花的。这里,2和都是量数,都表示两个量的倍比关系。

上述量与量数之间的对应关系,也可以用下面的线段图直观表示:

测量中的量、度量单位与量数之间的基本关系,可以衍变为在比较中的量、基准量、量数之间的数量关系,即

量=基准量量数。

⑵按下面的两种方法配制橙汁饮料:

A.4杯纯橙汁、3杯矿泉水;

B.5杯纯橙汁、4杯矿泉水。

A、B两种橙汁饮料,哪种更甜一些?

解决这类实际问题一般都有下列两种思维图式:

①求每杯水平均掺入几杯纯橙汁,掺入纯橙汗较多的饮料更甜一些。根据这种思维图式,以水的杯数为基准量,求纯橙汁的杯数是水的几倍。因此,从实际问题抽象出的数学问题是:比较分数与的大小。

解法一:=,=。

因为>,所以>。这个结果说明A种橙汁饮料更甜一些。

解法二:>1.33,=1.25。

因为1.33>1.25,所以>。

②求每杯纯橙汁平均掺入几杯水,掺入水较少的饮料更甜一些。根据这种思维图式,以纯橙汁的杯数为基准量,求水的杯数是纯橙汁的几倍。因此,从实际问题抽象出的数学问题是,比较分数与的大小。

解答这个数学问题也有类似于①中的两种方法,结果是<,说明A种饮料掺入的水较少,因此更甜一些。

综上,从分数产生的三种现实背景,可以清楚地看到分数产生于量的倍比关系。分数概念的核心是量、度量单位(基准量)与量数的基本关系,即量=度量单位(基准量)量数。

因此,分数具有两种不同的意义:

1.分数可以表示量。表示量的分数,它或者是分数单位,或者是分数单位的整数倍。

2.分数可以表示量数。量数是以一个量为基准量去度量另一个量所得的结果,它是描述两个量倍比关系的一个数(自然数或分数)。

两个量的倍比关系又有下面四种类型:

①一个量中整体与部分的倍比关系;

相关文档
最新文档