第6章凸轮--习题及答案(全)
凸轮练习题及答案

凸轮练习题及答案凸轮是机械工程中常用的一种机构,它能够将旋转运动转化为直线运动,广泛应用于各种机械设备中。
为了提高学生对凸轮的理解和运用能力,下面将介绍一些凸轮练习题及其答案。
第一题:求凸轮的基本参数已知凸轮的工作半径为50mm,凸轮轴的转速为1000rpm,求凸轮的线速度和加速度。
解答:凸轮的线速度可以通过下式计算:线速度= 2π × 半径× 转速线速度= 2 × 3.14 × 50 × 1000 / 60 = 523.33 mm/s凸轮的加速度可以通过下式计算:加速度 = 4π² × 半径× 转速²加速度= 4 × 3.14² × 50 × (1000 / 60)² = 172,417.03 mm/s²第二题:凸轮的运动曲线已知凸轮的轮廓是一个半径为30mm的圆,凸轮轴的转速为500rpm,求凸轮在60°、120°和180°时的凸点坐标。
解答:凸轮的凸点坐标可以通过下式计算:x = 半径× cos(角度)y = 半径× sin(角度)当角度为60°时:x = 30 × cos(60°) = 15 mmy = 30 × sin(60°) = 25.98 mm当角度为120°时:x = 30 × cos(120°) = -15 mmy = 30 × sin(120°) = 25.98 mm当角度为180°时:x = 30 × cos(180°) = -30 mmy = 30 × sin(180°) = 0 mm第三题:凸轮的运动周期已知凸轮的工作半径为40mm,凸轮轴的转速为800rpm,求凸轮完成一次完整运动所需的时间。
凸轮机构习题解答复习与练习题参考答案

凸轮机构习题解答复习与练习题参考答案一、单项选择题1 B2 A3 C4 D5 B6 A 7.A 8. A 9. C 10 .B 11. C 12. A 13. .B 14. .B 15 .A 16.B 17 .C 18 .B 19 .A 20 .B 21 .B 22 .C其他答案在文后:一、单项选择题(从给出的A 、B 、C 、D 中选一个答案)1 与连杆机构相比,凸轮机构最大的缺点是。
A .惯性力难以平衡B .点、线接触,易磨损C .设计较为复杂D .不能实现间歇运动2 与其他机构相比,凸轮机构最大的优点是。
A .可实现各种预期的运动规律B .便于润滑C .制造方便,易获得较高的精度D .从动件的行程可较大3 盘形凸轮机构的压力角恒等于常数。
A .摆动尖顶推杆B .直动滚子推杆C .摆动平底推杆D .摆动滚子推杆4 对于直动推杆盘形凸轮机构来讲,在其他条件相同的情况下,偏置直动推杆与对心直动推杆相比,两者在推程段最大压力角的关系为关系。
A .偏置比对心大B .对心比偏置大C .一样大D .不一定5 既不会产生柔性冲击也不会产生刚性冲击,可用于高速场合。
A .等速运动规律B .摆线运动规律(正弦加速度运动规律)C .等加速等减速运动规律D .简谐运动规律(余弦加速度运动规律)6 对心直动尖顶推杆盘形凸轮机构的推程压力角超过许用值时,可采用措施来解决。
A .增大基圆半径B .改用滚子推杆C .改变凸轮转向D .改为偏置直动尖顶推杆7.()从动杆的行程不能太大。
A. 盘形凸轮机构B. 移动凸轮机构C. 圆柱凸轮机构8.()对于较复杂的凸轮轮廓曲线,也能准确地获得所需要的运动规律。
A 尖顶式从动杆 B. 滚子式从动杆 C. 平底式从动杆9.()可使从动杆得到较大的行程。
A. 盘形凸轮机构 B 移动凸轮机构 C. 圆柱凸轮机构10.()的摩擦阻力较小,传力能力大。
A 尖顶式从动杆 B. 滚子式从动杆 C 平底式从动杆11. ()的磨损较小,适用于没有内凹槽凸轮轮廓曲线的高速凸轮机构。
精密机械设计基础第6章习题答案

习题讲解
题6-8 凸轮机构的从动件
运动规律如图6-14所示。
要
求绘制对心尖底从动件盘
形凸轮轮廓,基圆半径b r =
22mm ,凸轮转向为逆时针。
试问:
1)在升程段,轮廓上哪点压力角最大? 数值是多少?
2)在升程如许用压力角[]α=25︒,问允许基圆半径最小值是多少?
1) 由
(1)
α
2)
凸轮机构的最大压力角应小于许用压力角[α],代入[α] r bmin = [ds/d φ] /tan[α] = 13.66 mm
错误做法:
r bmin
= [ds/dφ] /tan[α] – S k = 13.66 – 10 = 3.66
题6-9如图6-10所示偏置直动尖底从动件凸轮机构。
从动件运动规律为10(1co s )s ϕ=⨯-mm ,凸轮基圆b r =
50mm ,偏距e =30mm ,凸轮转向为逆时针。
试计算:当凸轮转角ϕ=60︒时,与从动件相接触的凸轮轮廓A 点的坐标。
解析法设计凸轮轮廓
1)
=10(1-cos60°)
2) 求03ta 3A δδδδ=︒=︒=︒
3) 求A 点向径
()mm e S e b A 08.543045222222=+=++-=γγ
⎩⎨
⎧=︒=∴mm A A A 08.5483.56γδ点坐标。
机械原理第2、3、4、6章课后答案西北工业大学(第七版)

第二章 机构的结构分析题2-11 图a 所示为一简易冲床的初拟设计方案。
设计者的思路是:动力由齿轮1输入,使轴A 连续回转;而固装在轴A 上的凸轮2与杠杆3组成的凸轮机构使冲头4上下运动,以达到冲压的目的。
试绘出其机构运动简图(各尺寸由图上量取),分析是否能实现设计意图,并提出修改方案。
解:1)取比例尺,绘制机构运动简图。
(图2-11a)2)要分析是否能实现设计意图,首先要计算机构的自由度。
尽管此机构有4个活动件,但齿轮1和凸轮2是固装在轴A 上,只能作为一个活动件,故 3=n 3=l p 1=h p01423323=-⨯-⨯=--=h l p p n F原动件数不等于自由度数,此简易冲床不能运动,即不能实现设计意图。
分析:因构件3、4与机架5和运动副B 、C 、D 组成不能运动的刚性桁架。
故需增加构件的自由度。
3)提出修改方案:可以在机构的适当位置增加一个活动构件和一个低副,或用一个高副来代替一个低副。
(1) 在构件3、4之间加一连杆及一个转动副(图2-11b)。
(2) 在构件3、4之间加一滑块及一个移动副(图2-11c)。
(3) 在构件3、4之间加一滚子(局部自由度)及一个平面高副(图2-11d)。
11(c)题2-11(d)5364(a)5325215436426(b)321讨论:增加机构自由度的方法一般是在适当位置上添加一个构件(相当于增加3个自由度)和1个低副(相当于引入2个约束),如图2-1(b )(c )所示,这样就相当于给机构增加了一个自由度。
用一个高副代替一个低副也可以增加机构自由度,如图2-1(d )所示。
题2-12 图a 所示为一小型压力机。
图上,齿轮1与偏心轮1’为同一构件,绕固定轴心O 连续转动。
在齿轮5上开有凸轮轮凹槽,摆杆4上的滚子6嵌在凹槽中,从而使摆杆4绕C 轴上下摆动。
同时,又通过偏心轮1’、连杆2、滑杆3使C 轴上下移动。
最后通过在摆杆4的叉槽中的滑块7和铰链G 使冲头8实现冲压运动。
机械设计专升本章节练习题(含答案)——凸轮机构

第5章凸轮机构1.从动件的运动规律:等速,等加速等减速,余弦加速度,正弦加速度2.动力特性:刚性冲击,柔性冲击3.设计原理:反转法,比例尺,等分基圆,偏置从动件压力角与自锁条件4.基本参数:基圆半径,滚子半径,平底尺寸【思考题】5-1 凸轮机构的应用场合是什么?凸轮机构的组成是什么?通常用什么办法保证凸轮与从动件之间的接触?5-2 凸轮机构分成哪几类?凸轮机构有什么特点?5-3 为什么滚子从动件是最常用的从动件型式?5-4 凸轮机构从动件的常用运动规律有那些?各有什么特点?5-5 图解法绘制凸轮轮廓的原理是什么?为什么要采用这种原理?5-6 什么情况下要用解析法设计凸轮的轮廓?5-7 设计凸轮应注意那些问题?5-8 从现有的机器上找出两个凸轮机构应用实例,分析其类型和运动规律?A级能力训练题1.在凸轮机构的几种基本的从动件运动规律中,运动规律使凸轮机构产生刚性冲击,运动规律产生柔性冲击,运动规律则没有冲击。
2.在凸轮机构的各种常用的推杆运动规律中,只宜用于低速的情况,宜用于中速,但不宜用于高速的情况,而可在高速下应用。
3.设计滚子推杆盘形凸轮轮廓线时,若发现凸轮轮廓线有变尖现象,则在尺寸参数的改变上应采取的措施是或。
4.移动从动件盘形凸轮机构,当从动件运动规律一定时,欲同时降低升程的压力角,可采用的措施是。
若只降低升程的压力角,可采用方法。
5.凸轮的基圆半径是从到的最短距离。
6.设计直动滚子推杆盘形凸轮机构的工作廓线时,发现压力角超过了许用值,且廓线出现变尖现象,此时应采用的措施是__________________________________________。
7.与其他机构相比,凸轮机构的最大优点是。
(1)便于润滑(2)可实现客种预期的运动规律(3)从动件的行程可较大(4)制造方便,易获得较高的精度8.凸轮的基圆半径越小,则凸轮机构的压力角,而凸轮机构的尺寸。
(1)增大(2)减小(3)不变(4)增大或减小9.设计凸轮廓线对,若减小凸轮的基圆半径r b,则凸轮廓线曲率半径将。
机械设计专升本章节练习题(含答案)——凸轮机构

第5章凸轮机构1.从动件的运动规律:等速,等加速等减速,余弦加速度,正弦加速度2.动力特性:刚性冲击,柔性冲击3.设计原理:反转法,比例尺,等分基圆,偏置从动件压力角与自锁条件4.基本参数:基圆半径,滚子半径,平底尺寸【思考题】5-1 凸轮机构的应用场合是什么?凸轮机构的组成是什么?通常用什么办法保证凸轮与从动件之间的接触?5-2 凸轮机构分成哪几类?凸轮机构有什么特点?5-3 为什么滚子从动件是最常用的从动件型式?5-4 凸轮机构从动件的常用运动规律有那些?各有什么特点?5-5 图解法绘制凸轮轮廓的原理是什么?为什么要采用这种原理?5-6 什么情况下要用解析法设计凸轮的轮廓?5-7 设计凸轮应注意那些问题?5-8 从现有的机器上找出两个凸轮机构应用实例,分析其类型和运动规律?A级能力训练题1.在凸轮机构的几种基本的从动件运动规律中,运动规律使凸轮机构产生刚性冲击,运动规律产生柔性冲击,运动规律则没有冲击。
2.在凸轮机构的各种常用的推杆运动规律中,只宜用于低速的情况,宜用于中速,但不宜用于高速的情况,而可在高速下应用。
3.设计滚子推杆盘形凸轮轮廓线时,若发现凸轮轮廓线有变尖现象,则在尺寸参数的改变上应采取的措施是或。
4.移动从动件盘形凸轮机构,当从动件运动规律一定时,欲同时降低升程的压力角,可采用的措施是。
若只降低升程的压力角,可采用方法。
5.凸轮的基圆半径是从到的最短距离。
6.设计直动滚子推杆盘形凸轮机构的工作廓线时,发现压力角超过了许用值,且廓线出现变尖现象,此时应采用的措施是__________________________________________。
7.与其他机构相比,凸轮机构的最大优点是。
(1)便于润滑(2)可实现客种预期的运动规律(3)从动件的行程可较大(4)制造方便,易获得较高的精度8.凸轮的基圆半径越小,则凸轮机构的压力角,而凸轮机构的尺寸。
(1)增大(2)减小(3)不变(4)增大或减小9.设计凸轮廓线对,若减小凸轮的基圆半径r b,则凸轮廓线曲率半径将。
凸轮机构习题解答复习与练习题参考答案

凸轮机构习题解答复习与练习题参考答案一、单项选择题1 B2 A3 C4 D5 B6 A 7.A 8. A 9. C 10 .B 11. C 12. A 13. .B 14. .B 15 .A 16.B 17 .C 18 .B 19 .A 20 .B 21 .B 22 .C其他答案在文后:一、单项选择题(从给出的A 、B 、C 、D 中选一个答案)1 与连杆机构相比,凸轮机构最大的缺点是。
A .惯性力难以平衡B .点、线接触,易磨损C .设计较为复杂D .不能实现间歇运动2 与其他机构相比,凸轮机构最大的优点是。
A .可实现各种预期的运动规律B .便于润滑C .制造方便,易获得较高的精度D .从动件的行程可较大3 盘形凸轮机构的压力角恒等于常数。
A .摆动尖顶推杆B .直动滚子推杆C .摆动平底推杆D .摆动滚子推杆4 对于直动推杆盘形凸轮机构来讲,在其他条件相同的情况下,偏置直动推杆与对心直动推杆相比,两者在推程段最大压力角的关系为关系。
A .偏置比对心大B .对心比偏置大C .一样大D .不一定5 既不会产生柔性冲击也不会产生刚性冲击,可用于高速场合。
A .等速运动规律B .摆线运动规律(正弦加速度运动规律)C .等加速等减速运动规律D .简谐运动规律(余弦加速度运动规律)6 对心直动尖顶推杆盘形凸轮机构的推程压力角超过许用值时,可采用措施来解决。
A .增大基圆半径B .改用滚子推杆C .改变凸轮转向D .改为偏置直动尖顶推杆7.()从动杆的行程不能太大。
A. 盘形凸轮机构B. 移动凸轮机构C. 圆柱凸轮机构8.()对于较复杂的凸轮轮廓曲线,也能准确地获得所需要的运动规律。
A 尖顶式从动杆 B. 滚子式从动杆 C. 平底式从动杆9.()可使从动杆得到较大的行程。
A. 盘形凸轮机构 B 移动凸轮机构 C. 圆柱凸轮机构10.()的摩擦阻力较小,传力能力大。
A 尖顶式从动杆 B. 滚子式从动杆 C 平底式从动杆11. ()的磨损较小,适用于没有内凹槽凸轮轮廓曲线的高速凸轮机构。
机械原理第6章 凸轮机构及其设计

优点: 1)从动件可以实现复杂运动规律。 2)结构简单、紧凑,能准确实现预期运动,运动特性好。 3)性能稳定,故障少,维护保养方便。 4)设计简单。 缺点: 凸轮与从动件为高副接触,易于磨损。由于凸轮的轮廓 曲线通常都比较复杂,因而加工比较困难。
2.凸轮机构的分类
盘形凸轮(图6-1)
(1)按凸轮的e and follo wer displacement(凸轮转角 与从动件的位移)
Fig.6-10 Motion of the follower(凸轮机构运动循环图)
6.2 从动件的运动规律及其设计
1.从动件的基本运动规律
(1)多项式类运动规律
1)一次多项式运动规律。
移动凸轮(图6-2)
圆柱凸轮(图6-3) 尖底从动件
(2)按从动件的形状分类
(图6-4)
滚子从动件
平底从动件
曲底从动件
(3)按从动件的运动形式分类
(图6-4、图6-5)
直动从动件 摆动从动件 力封闭方式(图6-6) 形封闭方式(图6-7)
(4)按凸轮与从动件维持高副接触的方式分类
Fig.6-2 Translating cam mechanisms(移动凸轮机构)
1.凸轮机构的相对运动原理
如图6-19a所示,在直动尖底从动件盘形凸轮机构中,当凸轮 以等角速度ω作逆时针方向转动时,从动件作往复直线移动。设 想给整个凸轮机构加上一个绕凸轮回转中心O的反向转动,使反 转角速度等于凸轮的角速度,即反转角速度为-ω。此时,凸轮 将静止不动,而从动件一方面随导路绕O点以角速度-ω转动,分 别占据B′1、B′2,同时又沿其导路方向作相对移动,分别占据B1、 B2等位置。因此,从动件尖底导路的反转和从动件相对导路移动 的复合运动轨迹,便形成了凸轮的轮廓曲线,这就是凸轮机构的 相对运动原理,也称反转法原理
第6章凸轮--习题及答案(全)

− sin ϕ ⎤ ⎡ x ' ⎤ ⎢ ⎥ cos ϕ ⎥ ⎦ ⎣ y '⎦
⎡ x ' ⎤ ⎡ a − l cos(ψ 0 + ψ ) ⎤ ⎥ ⎢ y '⎥ = ⎢l sin(ψ + ψ ) ⎣ ⎦ 0 ⎣ ⎦ 对于推摆式,图 a) , ⎡ x ' ⎤ ⎡ a − l cos(ψ 0 + ψ ) ⎤ ⎢ y '⎥ = ⎢ −l sin(ψ + ψ ) ⎥ ⎣ ⎦ ⎣ 0 ⎦
o
解:根据题意,做出从动件的位移曲线,如图所示。 其中, µ s = 0.0005m/mm , µϕ = 5.7 /mm
o
凸轮一转所需时间
t = 4.5s
凸轮角速度
ω = 360o /4.5=80deg/s=1.396rad/s
计算 B、C、D、E 点的凸轮转角,B 点处的转角 ϕ B = 360 ×
(2)回程的位移方程式为
⎧ ⎡ ⎛ 2π ⎞ ⎤ T 1 sin ⎜ ' T ⎟ ⎥ Φ 0 + Φ s ≤ ϕ ≤ 360o ⎪ψ = ψ max ⋅ ⎢1 − ' + ⎨ ⎝ Φ0 ⎠⎦ ⎣ Φ 0 2π ⎪ T = ϕ − ( Φ0 + Φs ) ⎩
代入数值得:
⎡ ϕ − 240o 1 ⎤ ⎛ 360o 360o o⎞ ψ = 30 × ⎢1 − + sin ϕ − × 240 ⎥ ⎜ ⎟ o 120o 2π 120o ⎝ 120 ⎠⎦ ⎣ ϕ − 240o 30o = 30o − + sin 3ϕ 240o ≤ ϕ ≤ 360o 4 2π
o
o
r0 =
h = 14.89mm ϕCD tgα max
机械设计基础课后答案(陶平)

第2章 习题2-5 计算题2-5图所示各机构的自由度。
并指出图中的复合铰、局部自由度和虚约束。
ABCDE解答:a) n=7; Pl=10; Ph=0,F=3´7-2 ´10 = 1 C 处存在复合铰链b) n=7; Pl=10; Ph=0,F=3´7-2 ´10 = 1BDECAc) n=3; Pl=3; Ph=2,F=3´ 3 -2 ´3-2 = 1 D处存在局部自由度,d) n=4; Pl=5; Ph=1,F=3´ 4 -2 ´5-1 = 1A BCDEFGG'HA BDCEFGHIJe) n=6; Pl=8; Ph=1,F=3´ 6 -2 ´8-1 = 1 B处存在局部自由度,G或G'处存在虚约束,f) n=9; Pl=12; Ph=2,F=3´9 -2 ´12-2 = 1 C处存在局部自由度,I处存在复合铰链,第3章 习 题3-3 题3-3图所示铰链四杆机构中,已知 BC=100mm , CD=70mm , AD=60mm ,AD 为机架。
试问:(1)若此机构为曲柄摇杆机构,且AB 为曲柄,求AB 的最大值; (2)若此机构为双曲柄机构,求AB 最小值; (3)若此机构为双摇杆机构,求AB 的取值范围。
解:(1)根据题意:AB 为最短杆,且满足杆长之和条件,即:AB+ BC ≤CD+ AD ,得:AB ≤30mm ,AB 杆最大值为30 mm 。
(2)若此机构为双曲柄机构,那么AD 一定为最短杆,即: AD+ BC ≤CD+ AB ,得:AB ≥90mm ,AB 杆最小值为90 mm 。
(3)若此机构为双摇杆机构,则可判定该机构不满足杆长之和条件, 分三种情况讨论:其一:AB 是最短杆,则有:AB+ BC >CD+ AD ,得:60>AB >30;D题3-3图其二:AB不是最短杆也不是最长杆,则AD为最短杆,有:AD+ BC>AB+ CD,得:90>AB>60;其三:AB是最长杆,则有:AD+ AB>BC+ CD,得:AB>110,又为了满足该机构能成为一个四杆机构,需保证:AB<BC+ CD+ AD=230,即230>AB>110。
机械设计基础课后习题答案第三版课后答案(1-18章全)完整版(可编辑)

机械设计基础课后习题答案第三版课后答案(1-18章全) 完整版机械设计基础课后习题答案第三版高等教育出版社目录第1章机械设计概述1第2章摩擦、磨损及润滑概述 3第3章平面机构的结构分析12第4章平面连杆机构16第5章凸轮机构 36第6章间歇运动机构46第7章螺纹连接与螺旋传动48第8章带传动60第9章链传动73第10章齿轮传动80第11章蜗杆传动112第12章齿轮系124第13章机械传动设计131第14章轴和轴毂连接133第15章轴承138第16章其他常用零、部件152第17章机械的平衡与调速156第18章机械设计CAD简介163机械设计概述机械设计过程通常分为哪几个阶段?各阶段的主要内容是什么?答:机械设计过程通常可分为以下几个阶段:1.产品规划主要工作是提出设计任务和明确设计要求。
2.方案设计在满足设计任务书中设计具体要求的前提下,由设计人员构思出多种可行方案并进行分析比较,从中优选出一种功能满足要求、工作性能可靠、结构设计可靠、结构设计可行、成本低廉的方案。
3.技术设计完成总体设计、部件设计、零件设计等。
4.制造及试验制造出样机、试用、修改、鉴定。
常见的失效形式有哪几种?答:断裂,过量变形,表面失效,破坏正常工作条件引起的失效等几种。
什么叫工作能力?计算准则是如何得出的?答:工作能力为指零件在一定的工作条件下抵抗可能出现的失效的能力。
对于载荷而言称为承载能力。
根据不同的失效原因建立起来的工作能力判定条件。
标准化的重要意义是什么?答:标准化的重要意义可使零件、部件的种类减少,简化生产管理过程,降低成本,保证产品的质量,缩短生产周期。
第2章摩擦、磨损及润滑概述按摩擦副表面间的润滑状态,摩擦可分为哪几类?各有何特点?答:摩擦副可分为四类:干摩擦、液体摩擦、边界摩擦和混合摩擦。
干摩擦的特点是两物体间无任何润滑剂和保护膜,摩擦系数及摩擦阻力最大,磨损最严重,在接触区内出现了粘着和梨刨现象。
液体摩擦的特点是两摩擦表面不直接接触,被液体油膜完全隔开,摩擦系数极小,摩擦是在液体的分子间进行的,称为液体润滑。
第6章 凸轮机构

2021/5/27
31
解
(1) r0D/2rTe2m 0 m
(2)理论廓线如图示
(3) sma x ma2x e2r2e2
ma xD /2err 32
hsmax1.23m 5 m
2021/5/27
32
(4) Φ 1 8a0rcrc 2 om 2s a[h x2 ()/2 (r m)a]x
1.8 66 15
hO1CO1A6m 0 ( m 不变)
C 0( 不变)
h DO 1O 2(Rrr)2r03.1 6m 6 m
Darc(tO O a1O nD )2.320
2021/5/27
28
2. 如图所示凸轮机构中,凸轮为一偏心圆盘,圆盘半径R=80mm, 圆盘几何中心O到 回转中心A的距离OA=30mm,偏距e=15mm,平 底与导路间的夹角β=45°,凸轮 以等角速度w=1 rad/s逆时针回转。
2021/5/27
11
A0
ψ0
-ω
B1
ψ1
A1
B2
B0
B 1 1 B 2
ψ2
A2
2
O
ω
()s()
2021/5/27
12
凸轮机构基本尺寸的设计
基圆半径的设计 滚子半径的设计 平底长度的设计 偏距的设计
2021/5/27
13
基圆半径的设计
凸轮基圆半径
ds e
r0
(d s)2 e2 tan
最小基圆半径
αC和sD 、αD有无改变?如有改变,计算
其数值。
(a)
(b)
2021/5/27
26
解
(1)图(a)
r0O1A30mm
凸轮机构及其设计习题及答案.

05凸轮机构及其设计1.凸轮机构中的压力角是和所夹的锐角。
2.凸轮机构中�使凸轮与从动件保持接触的方法有和两种。
3.在回程过程中�对凸轮机构的压力角加以限制的原因是。
4.在推程过程中�对凸轮机构的压力角加以限制的原因是。
5.在直动滚子从动件盘形凸轮机构中�凸轮的理论廓线与实际廓线间的关系是。
6.凸轮机构中�从动件根据其端部结构型式�一般有、、等三种型式。
7.设计滚子从动件盘形凸轮机构时�滚子中心的轨迹称为凸轮的廓线�与滚子相包络的凸轮廓线称为廓线。
8.盘形凸轮的基圆半径是上距凸轮转动中心的最小向径。
9.根据图示的dd 2 s��2�运动线图�可判断从动件的推程运动是_________________________________�从动件的回程运动是____________________________________________。
10.从动件作等速运动的凸轮机构中�其位移线图是线�速度线图是线。
11.当初步设计直动尖顶从动件盘形凸轮机构中发现有自锁现象时�可采用、、等办法来解决。
12.在设计滚子从动件盘形凸轮轮廓曲线中�若出现时�会发生从动件运动失真现象。
此时�可采用方法避免从动件的运动失真。
13.用图解法设计滚子从动件盘形凸轮轮廓时�在由理论轮廓曲线求实际轮廓曲线的过程中�若实际轮廓曲线出现尖点或交叉现象�则与的选择有关。
14.在设计滚子从动件盘形凸轮机构时�选择滚子半径的条件是。
15.在偏置直动从动件盘形凸轮机构中�当凸轮逆时针方向转动时�为减小机构压力角�应使从动件导路位置偏置于凸轮回转中心的侧。
16.平底从动件盘形凸轮机构中�凸轮基圆半径应由来决定。
17.凸轮的基圆半径越小�则凸轮机构的压力角越�而凸轮机构的尺寸越。
18.凸轮基圆半径的选择�需考虑到、�以及凸轮的实际廓线是否出现变尖和失真等因素。
19.当发现直动从动件盘形凸轮机构的压力角过大时�可采取��等措施加以改进�当采用滚子从动件时�如发现凸轮实际廓线造成从动件运动规律失真�则应采取�等措施加以避免。
杨可桢《机械设计基础》(第6版)笔记和课后习题详解(间歇运动机构)

第6章间歇运动机构6.1 复习笔记【通关提要】本章主要介绍了棘轮机构、槽轮机构、不完全齿轮机构和凸轮间歇运动机构这四种间歇运动机构的基本原理和特点。
学习时需要牢记特点和相关计算公式。
本章多以判断题和简答题的形式出现,但是在考研中本章出现的几率较小,复习时需酌情删减内容,重点记忆。
【重点难点归纳】一、棘轮机构、槽轮机构、不完全齿轮机构三种间歇运动机构原理比较(见表6-1-1)表6-1-1 三种间歇运动机构原理比较二、棘轮机构(见表6-1-2)表6-1-2 棘轮机构图6-1-1 棘爪受力分析三、槽轮机构(见表6-1-3)表6-1-3 槽轮机构四、不完全齿轮机构(见表6-1-4)表6-1-4 不完全齿轮机构五、凸轮间歇运动机构1.形式凸轮间歇运动机构通常有两种形式:圆柱形凸轮间歇运动机构和蜗杆形凸轮间歇运动机构。
2.优点运转可靠、传动平稳、定位精度高,适用于高速传动,转盘可以实现任何运动规律,转盘转动与停歇时间的比值可以通过改变凸轮推程运动角来得到。
6.2 课后习题详解6-1 已知一棘轮机构,棘轮模数m=5mm,齿数z=12,试确定机构的几何尺寸并画出棘轮的齿形。
解:顶圆直径D=m z=5×12mm=60mm齿高h=0.75m=0.75×5mm=3.75mm齿顶厚a=m=5mm齿槽夹角θ=60°棘爪长度L=2πm=2π×5mm=31.4mm棘轮的齿形如图6-2-1所示。
图6-2-16-2 已知槽轮的槽数z=6,拨盘的圆销数K=1,转速n1=60r/min,求槽轮的运动时间t m和静止时间t s。
解:槽轮机构的运动特性系数:τ=t m/t=2φ1/(2π)=(z-2)/(2z)=1/3。
拨盘转速n1=60r/min,故拨盘转1转所用的时间为1s。
槽轮的运动时间:t m=τt=1/3s。
槽轮的静止时间:t s=t-t m=2/3s。
(完整版)凸轮机构习题答案

(完整版)凸轮机构习题答案1、在图示机构运动简图中,作出基圆,标出其基圆半径二及推杆的行程h.
(写出作图步骤)
图所示为一偏置尖底直动从动件盘形凸轮机构,已知凸轮为一以C为中心的
圆盘,圆盘半径R=30mm,偏心距6=10巾巾,从动件偏距E=10mm,转向如图所
示。
试用图解法求出(按1: 1的比例作图求解)
(1)凸轮的基圆半径rb和从动件的升程h;
⑵凸轮机构的推程角3、回程角6、远休止角b和近休止角T;t h s s
图示凸轮机构,要求:
(1)写出该凸轮机构的名称;
(2)画出凸轮的基圆,偏距圆;
(3)图示位置时从动件的位移$、压力角a
1、如图所示为一偏置滚子从动件盘形凸轮机构,凸轮的实际廓线为一个圆,圆心为01,凸轮的转动中心为。
(1)画出基圆、偏距圆;
⑵画出从动件在图示位置时的压力角。
和位移s。
(不必作文字说明,但必须保留作图线)。
3、图为一偏置滚子直动从动件盘形凸轮机构,试在图上绘出:
(1)、偏距圆;(2)、基圆;(3)、图示位置从动件位移及压力角;
(4)、滚子在C点接触时凸轮的转角.。
电子精密机械设计习题答案

7.滚珠丝杠副为什么要预紧?有哪些预紧方法?各有什么优缺点?如何确定预紧力的大小?
解:
(1)对于双螺母结构,对其施加一定的预紧力,可消除轴向间隙,以提高滚珠丝杠副的轴向刚度和传动精度。
(2)预紧方法及其优缺点:
1)调整双螺母轴向相对位置;
2)调整双螺母的相对角度。
典型的结构方案:
(2)各种运动状态满足的条件
1)工件向前滑移
2)工件向后滑移
3)工件腾空跳跃
11如何确定振动料斗的螺旋升角、振动方向角、支撑弹簧倾角?
解:
(1)料槽螺旋升角 的确定
向后滑移条件为:
由以上两式知,B、C值随 变化,又知 ,所要使工件向前滑移比向后滑移容易,就要使B、C差尽量大,即B/C之比尽量大。最大许可的升角 应在B=C条件下确定。
1)垫片式;2)螺纹式;3)弹簧式;4)齿差式
齿差式结构特点:无螺钉连接,刚性好,精度高,调整装配较困难。
(3)确定预紧力
图中,施加预紧力F0,产生预变形δ0。在轴向载荷F作用下,螺母A变形增加了δ,而螺母B变形量减少了δ,故有
第6章习题
1、旋转支撑分为哪几种类型,其特点如何?试分析对比。
解:
按摩擦性质,旋转支撑分五类:
2)莫尔条纹的运动与光栅运动具有对应关系
当两块光栅中的一块沿着垂直于刻线方向移动时,莫尔条纹就沿着夹角θ的平分线方向移动。
光栅反向移动,莫尔条纹也反向移动。可见,通过某固定点的光栅线条数与通过该点的莫尔条纹线数相同。
3)平均光栅误差作用
由于莫尔条纹由光栅的许多刻线共同形成,所以光电接收元件接收到的信号,是整个刻线区域的综合信号。
第8章习题
1、试述产生爬行的原因、过程以及消除爬行的途径。
机械原理第三版部分答案魏兵、喻全余

60
50
B C y
BC
18 32
y
50
第5章 平面连杆机构及其设计
B
C A y
BC
18 32
D y
60
95.74
第5章 平面连杆机构及其设计
5-13 设计一曲柄滑块机构,已知滑块的行程s=60mm,偏距 e=20mm,行程速比系数K=1.25,试求:(1)曲柄AB的长度lAB 和连杆BC的长度lBC。(2)若滑块由左向右为工作行程,要使 机构具有急回运动特性,原动曲柄应沿哪个方向转动?(3)以 曲柄为原动件时,在图中标出γmin。(4)以滑块为原动件时, 机构有无死点位置?若有,在图中标出。
VED 0.5827m/s
pБайду номын сангаас
4
VED d
0.5827 0.54
1.0791s-1
pe 22.52mm
e
VE 0.2252m/s
第5章 平面连杆机构及其设计
5-11 如图所示为用 铰链四杆机构控 制的加热炉门启 闭机构,加热时 炉门能关闭紧密, 炉门开启后能处 于水平位置。炉 门上两铰链的中 心距为50mm,与 固定件连接的铰 链点A和D装在yy 轴线上,其相互 位置的尺寸如图 所示,试设计此
7-18 有一对渐开线外啮合标准直齿圆柱齿轮啮合,已知z1=19, z2=42,m=5mm,试求:
(1)两轮的几何尺寸和标准中心距a以及重合度εα; (2)按比例作图,画出理论啮合线N1N2,在其上标出实际啮合线
B1B2,并标出单齿啮合区和双齿啮合区以及节点的位置。
第7章 齿轮机构及其设计
解:(1)两轮的几何尺寸和标准中心距a计算见下表。
B
pb 100mm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习 题
6-6 在摆动从动件盘形凸轮机构中,从动件行程角max 30o
ψ=,0120o Φ=,'0120o Φ=,
从动件推程、回程分别采用等加速等减速和正弦加速度运动规律,试写出摆动从动件在各行程的位移方程式。
解:(1)推程的位移方程式为
()2
0max 02max 0max 00202 022 2ϕψψϕψψψϕϕ⎧⎛⎫Φ⎪=⋅⋅≤≤ ⎪
Φ⎪⎝⎭⎨
Φ⎪
=-Φ-≤≤Φ⎪Φ⎩
代入数值得
()2220230 060120240130-120 60120240o
o o o o
o o o
o ϕϕψϕψϕϕ⎧⎛⎫=⨯⨯=≤≤⎪ ⎪⎪⎝⎭⎨
⎪=⨯-≤≤⎪⎩
(2)回程的位移方程式为
()max 0''0001
21sin 3602o s s T T T πψψϕπ
ϕ⎧⎡⎤⎛⎫=⋅-+
Φ+Φ≤≤⎪⎢⎥ ⎪ΦΦ⎨⎝⎭⎣⎦⎪
=-Φ+Φ⎩
代入数值得:
o 2401360360301sin 240120212012024030 30sin 3 24036042o o o o
o o o o
o o o
o
ϕψϕπϕϕϕπ
⎡⎤⎛⎫-=⨯-+-⨯⎢⎥ ⎪⎝⎭⎣
⎦-=-+≤≤
6-7 图中所示为从动件在推程的部分运动曲线,其0o s Φ≠,'0o
s Φ≠,试根据s 、v 和a 之
间的关系定性的补全该运动曲线,并指出该凸轮机构工作时,何处有刚性冲击?何处有柔性冲击?
解:如图所示。
(1)AB段的位移线图为一条倾斜直线,因此,在这一段应为等速运动规律,速度线图为一条水平直线,其加速度为零。
(2)BC段的加速度线图为一条水平直线。
因此,在这一段应为等加速运动规律,其速度线图为一条倾斜的直线,位移线图为一条下凹的二次曲线。
(3)CD段的速度线图为一条倾斜下降的斜直线。
因此,在这一段应为等减速运动规律,其加速度线图为一条水平直线,位移线图为一条上凸的二次曲线。
该凸轮在工作时,在A处有刚性冲击,B、C、D处有柔性冲击。
6-8 对于图中的凸轮机构,要求:
1)写出该凸轮机构的名称;
2)在图上标出凸轮的合理转向;
3)画出凸轮的基圆;
4)画出从升程开始到图示位置时推杆的位移s,相对应的凸轮转角ϕ,B点的压力角α;5)画出推杆的行程H。
解:1)偏置直动滚子推杆盘形凸轮机构。
2)为使推程压力角较小,凸轮应该顺时针转动。
3)以O 为圆心,以OB 为半径画圆得理论廓线,连结OA 并延长交理论廓线于0B 点,再以转动中心A 为圆心,以0AB 为半径画圆得基圆,其半径为0r 。
4)0B 点即为推杆推程的起点,图示位置时推杆的位移和相应的凸轮转角分别为s ,ϕ,B 点处的压力角0α=。
5)AO 连线与凸轮理论廓线的另一交点1B ,过1B 作偏距圆的切线交基圆于1C 点,因此1B 1C 为行程H 。
6-9 在图示偏置滚子直动从动件盘形凸轮机构中,凸轮1的工作轮廓为圆,其圆心和半径分别为C 和R ,凸轮1沿逆时针方向转动,推动从动件往复移动。
已知:R =100mm ,OC =20mm ,偏距e =10mm ,滚子半径r r =10mm ,试回答: 1)绘出凸轮的理论轮廓;
2)凸轮基圆半径r 0=?从动件行程h =?
3)推程运动角0Φ=?回程运动角'
0Φ=?远休止角s Φ=?近休止角'
s Φ=? 4)从动件推程、回程位移方程式;
5)凸轮机构的最大压力角max α=?最小压力角min α=?又分别在工作轮廓上哪点出现? 6)行程速比系数K =?
6-10 试设计一对心直动尖端从动杆盘形凸轮机构。
已知凸轮以等角速度逆时针回转,从动杆在1秒内等速上升10mm ,0.5秒内静止不动,0.5秒内等速上升6mm ,又2秒静止不动,0.5秒等速下降16mm 。
凸轮机构的最大压力角限制在30o
以下。
解:根据题意,做出从动件的位移曲线,如图所示。
其中,0.0005m/mm s μ=, 5.7/mm o
ϕμ=
凸轮一转所需时间 4.5s t = 凸轮角速度
360/4.5=80deg/s=1.396rad/s o ω=
计算B 、C 、D 、E 点的凸轮转角,B 点处的转角1
360804.5
o B ϕ=⨯
= ,C 点处的转角1.53601204.5o C ϕ=⨯
=,D 点处的转角2
3601604.5o D ϕ=⨯=,E 点处的转角4
3603204.5
o E ϕ=⨯=。
由图可见,升程时,CD 段的倾斜最大。
由于采用对心从动杆,故:
000//ds d ds d V
tg s r r r ϕϕαω
=
≤++ 所以,max
max 0V tg r αω
=
因为CD 段等速运动,故此段:
max
CD
V h
ω
ϕ=
其中,6mm h =,1608040o o o
CD ϕ=-=
若取max 30o
α=,代入后得:
0max
14.89mm CD h
r tg ϕα=
=
这里,取基圆半径为15mm 。
6-11设计尖顶摆动从动件盘形凸轮,已知:凸轮沿顺时针方向等速转动,中心距a=75mm ,
凸轮基圆半径r 0=30mm ,从动件长度l =58mm ,从动件行程角o
max 15ψ=,o 0150Φ=,
o 0s Φ=,'o 0120Φ=;从动件在推程、回程皆采用简谐运动规律,求凸轮理论轮廓和工作
轮廓上各点的坐标值(每隔o
10计算一点),并绘出凸轮轮廓。
题图6-11
解:略。
6-12 图示为一对心直动平底推杆圆盘凸轮机构。
已知:OA=10mm ,R=30mm ,11rad/s ω=,试在图上画出凸轮的基圆,标出图示位置的压力角,凸轮转角δ及推杆位移2s 和速度2v 的表达式。
当o
135δ=时,计算2s 和2v 。
解:如图所示,以O 为圆心,以OB 为半径作圆,即为凸轮的基圆。
基圆半径
0-20mm r R OA ==。
连结O,A点,并向两边延长,分别交与凸轮圆于B,E两点。
延长推杆导路线,交与基圆于F点。
由于推杆在图示位置的速度方向竖直向上,而接触点的法线为AC,这两者平行,所以在图示位置的压力角0α=,图中所示位置凸轮的转角BOF δ=∠。
由基圆沿导路方向向外量至导路与平底的交点可得在图示位置推杆的位移2s ,由图可知()20cos s R OA r πδ=+--,而推杆的速度()21sin v OA πδω=-。
当o
2135δ=时,
()20cos 17.07mm s R OA r πδ=+--= ()21sin 7.07mm/s v OA πδω=-=。