复变函数习题答案第4章习题详解
复变函数与积分变换中国石油大学华东崔俭春张高民第四章答案
z z
n
解 : 设 z = r (cos θ + i sin θ ) , 则 zn = ( ) = cos 2nθ + i sin 2nθ , 因 为 lim cos 2nθ ,
n
z z
n →∞
lim sin 2nθ 都不存在,所以 lim z n 不存在,由定理 4.1 知,数列 { zn } 不收敛.
解:① a = b 时,由于函数
处处解析,可以在此圆内展开成 z 的幂级数.
1 1 1 ' 1 1 ' = =( ) = ⋅( ) 2 ( z − a )( z − b) ( z − a ) a−z a 1− z a
=
1 z zn 1 1 n 1 n ⋅ (1 + + " + n + ")' = ⋅ ( + " + n z n −1 + ") = 2 + " + n +1 z n −1 + " , z < a . a a a a a a a a 1 (a ≠ 0, b ≠ 0) 的 奇 点 为 z1 = a, z2 = b , 因 此 它 在 ( z − a )( z − b)
2
2
sin 2 z =
1 − cos 2 z 1 (2 z ) 2 (2 z ) 2 n = (1 − 1 + + " + (−1) n +1 + ") 2 2 2! (2n)!
2n (2 z ) 2 n +1 (2 z ) = + " + (−1) + " , z < +∞ . 2 × 2! 2 × (2n)!
复变函数课后习题答案(全)
精心整理页脚内容习题一答案1. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)i i i --(3)131i i i--(4)8214i i i -+-解:(1)1323213iz i -==+, 因此:32Re , Im 1313z z ==-,(2)3(1)(2)1310i i iz i i i -+===---,因此,31Re , Im 1010z z =-=,(3)133335122i i iz i i i --=-=-+=-, 因此,35Re , Im 32z z ==-,(4)82141413z i i i i i i =-+-=-+-=-+ 因此,Re 1, Im 3z z =-=,2. 将下列复数化为三角表达式和指数表达式: (1)i (2)13i -+(3)(sin cos )r i θθ+(4)(cos sin )r i θθ-(5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)13i -+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin2sin cos 222i i θθθθθ-+=+精心整理页脚内容3. 求下列各式的值: (1)5(3)i -(2)100100(1)(1)i i ++-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+--(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5)3i (6)1i +解:(1)5(3)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+--(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- (5)3i 3cossin22i ππ=+(6)1i +2(cossin )44i ππ=+ 4. 设121, 3,2iz z i +==-试用三角形式表示12z z 与12z z解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,5. 解下列方程: (1)5()1z i +=(2)440 (0)z a a +=>解:(1)51,z i +=由此2551k i z i ei π=-=-,(0,1,2,3,4)k =(2)4444(cos sin )za a i ππ=-=+11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:精心整理页脚内容(1), (1), (1), (1)2222a a a a i i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+则2x y z x y+≤≤+证明:首先,显然有22z x y x y =+≤+;其次,因222,x y x y +≥固此有2222()(),x y x y +≥+从而222x y z x y +=+≥。
复变函数第四章答案
102复变函数作业12 复数项级数 幂级数1. 下列数列是否收敛?如果收敛,求出它们的极限:{}n a (1)(2);1i1in n a n +=-i 12nn a -⎛⎫=+ ⎪⎝⎭(3) (4);(5).i(1)1nn a n =-++i /2en n a π-=i /21e n n a nπ-=解 (1),,即收敛于.1i0i 110i in n n a n→∞++=−−−→=---lim 1n n a →∞=-{}n a 1-(2),,即收敛于0.i|0|102nnn n a --→∞-=+=−−−→1i lim 02nn -→+∞+⎛⎫= ⎪⎝⎭{}n a (3)因的实部不收敛,虚部收敛于零,所以不收敛.n a (1)n-11n +{}n a (4),与均不存在(分为奇数与偶数cos isin 22n n n a ππ=-lim cos 2n n π→∞lim sin 2n n π→∞n 便知),所以不收敛.{}n a (5),即收敛于零.i /2i /2111|0|||e 0,lim e 0n n n n n a a n nn ππ--→∞-===→={}n a 2. 下列级数是否收敛? 是否是绝对收敛?(1);(2);(3);(4).2111i n n n +∞=+∑1i)2nn n n ∞=+∑1(35i)!n n n ∞=+∑/21(1i)2cosi n n n n ∞=+∑解 (1)原式=,显然发散,而收敛.故原级数发1111i (1)n n n n n ∞∞==+-⋅∑∑11n n ∞=∑11(1)n n n ∞=-∑散.(2)分离的实部和虚部很困难,但由于,当(1i)2n n n +(1i)2nnn n n +=时,因为n →∞.1→<103所以级数收敛,即原级数是绝对收敛的.(1i)2n n n+∑(3)同上,由于,当时,,所以/2(35i)34!!nn n n +=n →∞(1)/2/23434/0(1)!!n n n n +→+级数收敛,所以原级数绝对收敛.1(35i)!nn n ∞=+∑(4)因为,而收敛,所以收敛,/2(1i)1222cosi ch e e e n n n n n n n -+==<+11e n n ∞=∑1(1i)!nn n ∞=+∑即原级数绝对收敛,3. 判别下列级数的绝对收敛性与收敛性:(1);(2);(3) (4).1i nn n∞=∑2i ln nn n ∞=∑0(65i)8nnn ∞=+∑0cosi 2nn n∞=∑解 (1)一般项,而,i 11cos isin cos isin2222nn n n n n n ππππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭11cos 2n n n π∞==∑,为收敛的交错级数,所以收敛. 但11(1)2k k k ∞=-∑11111sin (1)221k n k n n k π∞∞-===--∑∑1i nn n ∞=∑,发散,故条件收敛.i 1n n n ≥1i nn n ∞=∑1i n n n∞=∑(2)一般项,而,i 1cos isin lnn ln 22n n n n ππ⎛⎫=+⎪⎝⎭2111cos (1)ln 2ln(2)k n k n nk π∞∞===-∑∑为收敛的交错级数,所以收敛. 但2111sin (1)ln 2ln(21)kn k n n k π∞∞===-+∑∑2i ln n n n∞=∑,发散,故条件收敛.i 11(2)ln ln n n n n n =≥≥2i ln nn n ∞=∑2i ln n n n ∞=∑(3)一般项,其公比的绝对值,所以(65i)65i 888nn n +⎛⎫=+ ⎪⎝⎭65i 88+65i 188+=<104绝对收敛. 因而也收敛.1(65i)8nnn∞=+∑(4)一般项不趋于0(当时)(因为cosi1e e1e112222222en nn nn nn-+⎛⎫⎛⎫=⋅=+⎪ ⎪⎝⎭⎝⎭n→∞对所有成立),所以级数发散.1e1112222e2n n⎛⎫⎛⎫+>⎪ ⎪⎝⎭⎝⎭n1cosi2nnn∞=∑4. 求下列幂级数的收敛半径(1)(为正整数);(2);1npnzn∞=∑p21(!)nnnnzn∞=∑(3);(4);(1i)n nnz∞=+∑i/1e n nnzπ∞=∑(5);(6).1icosh(1)nnzn∞=⎛⎫-⎪⎝⎭∑1ln innzn∞=⎛⎫⎪⎝⎭∑解(1)一般项系数,即,所11()pn pC nn==→→∞lim1n→∞=以收敛半径.1R=(2),所以收211||||(!)111,,10e0||||111nnn nn nnn nC Cn nCn C C n nn→∞+++⎛⎫===⋅+−−−→⋅=⎪+⎝⎭⎛⎫+⎪⎝⎭敛半径.R=(3),收敛半径.(1i)|1i|nnnC=+=+==R=(4),收敛半径.i/e1,1nnnCπ===1R=(5),收敛i/i/11lim cos||i1111cosh(e e)cos,lim112||1lim cosnn n nnnnnC nCn n Cn→∞-+→∞→∞⎛⎫+==+====⎪⎝⎭半径.1R=si nga 105(6),即1110()(ln i )|ln i |ln i2n C n n n n π====→→∞+,收敛半径.0n =R =+∞5. 求下列幂级数的收敛半径:(1); (2).121121(i)2n n nn n z ∞--=--∑(1)1i (1)nn n n z n ∞+=⎛⎫- ⎪⎝⎭∑解 (1)因为,按函数项级数定义,有,2121211(21)2()1lim lim ()2(21)2n n n n n n n nn z f z z f z n z ++-+→∞→∞+==-当时,级数才绝对收敛,所以. 于是,级数的收敛半径2112z <z <R =(2)因为10,|1|1;1lim ,|1| 1.n n n n z z z n+→∞-≤-⎧=⎨∞->⎩所以,当时级数绝对收敛,于是,级数的收敛半径为.11z -≤1R =评注 这两个级数都是缺项级数,因此不能直接套用公式,要用类似实数项级数的达朗贝尔比值法求或用柯西根值法求.6. 求出下列级数的和函数.(1); (2).(1)nn n z∞=+∑11(21)nn n z ∞-=-∑解 先求收敛半径,再求和函数(1),故收敛半径.由逐项积分的性质,得12limlim 11n n n n c n c n +→∞→∞+==+1R =.10(1)d 1z nn n n zn z z z z∞∞+==+==-∑∑⎰所以,,21(1)1(1)nn z n z z z ∞='⎛⎫+== ⎪--⎝⎭∑1z <106(2),收敛半径.1121lim lim 221n n n n nc c ++→∞-==-12R =1111111111(21)22(2)nn n n n n n n n n n n zzzz z ∞∞∞∞∞-----=====-=-=--∑∑∑∑∑.11112121(12)(1)2z z z z z ⎛⎫⎛⎫=-=⋅< ⎪ ⎪----⎝⎭⎝⎭7. 幂级数能否在收敛而在发散?2(2)nn C z ∞=-∑0z =3z =答 不能.由Abel 定理,在收敛的幂级数必在圆域0z =2(2)n n C z ∞=-∑内处处收敛,而在圆域内,所以幂级数不|2||02|2z -<-=3z =|2|2z -<0(2)n n n C z ∞=-∑能在收敛而在发散.0z =3z =8. 设级数收敛,而发散,证明的收敛半径为1.0nn C∞=∑0||nn C∞=∑0n n n C z ∞=∑证 级数收敛,相当于幂级数在处收敛. 于是由阿贝尔(Abel )定nn C∞=∑0nnn C z∞=∑1z =理,对于满足的,级数必绝对收敛.从而该级数的收敛半径.但若||1z <z 0nnn C z∞=∑1R ≥时,幂级数在收敛圆内绝对收敛,特别地在处也绝对收敛,1R >0n n n C z ∞=∑||z R <1()z R =<即收敛,这显然与已知矛盾. 故幂级数的收敛半径.1||nn C∞=∑0n n n C z ∞=∑1R =复变函数作业13 幂级数的和函数 泰勒级数1. 把下列各函数展开成的幂级数,并指出它们的收敛半径:z (1); (2); (3)(4);311z+221(1)z +2cos z sinh z (5); (6); (7);(8).cosh z 22e sin z z 1ez z -1sin1x-107解 (1)由易知,,收敛半径01(1)(||1)1n nn z z z ∞==-<+∑331(1)(||1)1n n n z z z ∞==-<+∑.1R =(2)由两边求导得,所以01(1)1n n n z z ∞==-+∑1211(1)(||1)(1)n n n nz z z ∞-=-=-<+∑,收敛半径.12(1)2211(1)(||1)(1)n n n nz z z ∞--==-<+∑1R =(3)由得,收敛半径20(1)cos (||)(2)!n n n z z z n ∞=-=<+∞∑240(1)cos (||)(2)!n n n z z z n ∞=-=<+∞∑.R =+∞(4)由及得1e (||)!zn n z z n ∞==<+∞∑e e sinh 2z zz --=21000111(1)1(1)1sinh 2!!2(!)(21)n n n n n k n n n k z z z z z n n n k ∞∞∞∞-====⎛⎫---=-== ⎪-⎝⎭∑∑∑∑,收敛半径.(||)z <+∞R =+∞(5)同上面(4),,20011(1)1cosh (e e )(||)22(!)(2)!n z z n kn n z z z z n k ∞∞-==+-=+==<+∞∑∑收敛半径.(也可直接由结果4)经过两边求得得到).R =+∞(6)由得2222222i i (1+i)(1i)11e sin e (e e )(e e )2i 2iz z z z z z z --=⋅-=-222220001(1i)(1i)(1i)(1i)e sin 2i !!2i(!)n n n n z n n nn n n z z z zn n n ∞∞∞===⎡⎤+-+--=-=⎢⎥⎣⎦∑∑∑而(1i)(1i)cos isincos isin 4444n n n n n n n n ππππ⎛⎫⎛⎫+--=+-- ⎪ ⎪⎝⎭⎝⎭sin4n n π=故g ni r108,收敛半径.220e sin |)z n z z ∞==<+∞R =+∞(7)由两边求导得:两边再求导得:011n n z z ∞==-∑1211(1)n n nz z ∞-==-∑,两边再求导得,... ... (23)22!(1)(1)n n n n z z ∞-==--∑(1)1(1)!(1)(2)[(2)](1)n k k n k k n n n n k z z ∞--=--=-----∑ 即11(1)(2)[(2)](1)(1)!k n k n k z n n n n k z z k ∞+=-----=--∑(1)(2)(3)[(1)](1)!n n k n n n n k z k ∞=-----=-∑ 1 (||1)(1,2,3,)1n n k n z z k k ∞=-⎛⎫=<= ⎪-⎝⎭∑ 故100011(1)(1)e1!1!(1)!kzk k kn z kk k k n k n z z zk k z k z k ∞∞∞∞-====-⎛⎫--⎛⎫=== ⎪ ⎪---⎝⎭⎝⎭∑∑∑∑111(1)1(||1)1!kn nn k n z z k k ∞==⎡-⎤⎛⎫-=+=<⎢⎥ ⎪-⎝⎭⎣⎦∑∑收敛半径.1R =(8)由结合,的1sin sin 1sin1cos cos1sin 1111z z z z z z z ⎛⎫=+=+⋅ ⎪----⎝⎭cos z sin z 展开式,令()0(1),2 cos ,(2)!0,2 1 kkk j k j k z z k j k αα∞=⎧-=⎪==⎨⎪=+⎩∑当时;当时,0,1,2,k = ()00,2 sin ,(1),2 1 (21)!k kk j k j k z z j k k ββ∞==⎧⎪==-⎨=+⎪+⎩∑当时;当时,0,1,2,k = 可知1092cos 111kk k z z z z α∞=⎛⎫=+ ⎪--⎝⎭∑ 2111nk k n k n z k α∞∞==-⎛⎫=+⋅ ⎪-⎝⎭∑∑22111nn k n k n z k α∞==⎧-⎫⎛⎫=+⎨⎬ ⎪-⎝⎭⎩⎭∑∑而221(1), 0,(0,1,2,)(2)!k kk k k αα+-=== 222111121n nk k k k n n k k αα⎡⎤⎢⎥⎣⎦==--⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭∑∑211(1),(2,3,)21(2)!n k k n n k k ⎡⎤⎢⎣⎦=-⎛⎫-== ⎪-⎝⎭∑ 所以2211(1)cos 1 (||1)211(2)!n k nn k n z z z k z k ⎡⎤⎢⎥∞⎣⎦==⎧⎫-⎛⎫-⎪⎪=+<⎨⎬ ⎪--⎝⎭⎪⎪⎩⎭∑∑类似地111sin 111kn k k k k n k n z z z k z z ββ∞∞∞===-⎛⎫⎛⎫== ⎪ ⎪---⎝⎭⎝⎭∑∑∑1111n n k n k n z k β∞==⎧-⎫⎛⎫=⎨⎬ ⎪-⎝⎭⎩⎭∑∑12101(1),(||1)2(21)!n k nn k n z z k k -⎡⎤⎢⎥∞⎣⎦==⎧⎫-⎛⎫-⎪⎪=<⎨⎬ ⎪+⎝⎭⎪⎪⎩⎭∑∑故122211(1)sin sin1sin1211(2)!n k n n k n z k z k -⎡⎤⎢⎥∞⎣⎦==⎧⎫-⎛⎫-⎪⎪=+⎨⎬ ⎪--⎝⎭⎪⎪⎩⎭∑∑12101(1)cos1,(||1)2(21)!n k n n k n z z k k -⎡⎤⎢⎥∞⎣⎦==⎧⎫-⎛⎫-⎪⎪+<⎨⎬ ⎪+⎝⎭⎪⎪⎩⎭∑∑收敛半径.1R =2. 求下列各函数在指定点处的泰勒展开式,并指出它们的收敛半径:0z (1); (2);01,11z z z -=+0,2(1)(2)zz z z =++110(3); (4)021,1z z =-01,1i 43z z=+-(5);(6).0tan ,4z z π=0arc tan ,0z z =解 (1)11111212z z z z --=⋅-++201(1)(1)22nn n z z ∞=--=-∑,半径.110(1)(1)2n n n n z ∞++=-=-∑11|1|22z z ⎛-⎫<-< ⎪⎝⎭不2R =(2)21(1)(2)21z z z z z =-++++111122231143z z =---++当,即时,214z -<|2|4z -<01(1)(2)2414nnn n z z ∞=-=--+∑当,即时,213z -<|2|3z -<01(1)(2)2313nnn n z z ∞=-=--+∑故当时,上面两展开式同时成立,即有|2|3z -<001(1)1(1)(2)(2)(1)(2)2433n n nnn n n n z z z z z ∞∞==--=---++∑∑ 211021(1)(2)43n n n n z ∞++=⎛⎫=--- ⎪⎝⎭∑收敛半径.3R =(3)由111111(1)z z z ==-=-+-+0(1) (|1|1)n n z z ∞=-++<∑两边求导得,半径.12111(1) (|1|1)n n n z z z z ∞-='⎛⎫=-=++< ⎪⎝⎭∑1R =(4)1143(13i)3[(1i)]z z =----+11313i 1[(1i)]13iz =⋅---+-111013[(1i)]13i 13i nnn z ∞=⎛⎫=-+ ⎪--⎝⎭∑这里或3[(1i)]113iz -+<-|13i ||(1i)|3z --+<=R =(5)用公式求;()0()!n n f z C n =0:tan 14n C C π==;214(tan )sec 2,24z z C ππ='===;2244(tan )2sec tan4,2442!z z C πππ=''====,;得244(tan )2sec tan sec 16444z z ππππ=⎛⎫'''=+= ⎪⎝⎭31683!3C ==438tan 1224434z z z z πππ⎛⎫⎛⎫⎛⎫=+-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭函数有距最近的奇点,其距离就是收敛半径,即. 上面sin tan cos z z z =4π2π4πR 4R π=展开式成立的范围为. 注意,由tan z 44z ππ-<sin 44tan cos 44z z z ππππ⎛⎫-+ ⎪⎝⎭==⎛⎫-+ ⎪⎝⎭sin cos 44cos sin 44z z z z ππππ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭结合与的展开式用幂级数的除法可得到一般展开式,这里从略.sin z cos z (6)由,两边积分即得221(arctan )(1)(||1)1n n n z z z z ∞='==-<+∑,半径21(1)arctan (||1)21n n n z z z n ∞+=-=<+∑1R =3. 将函数展成z 的幂级数(至项).2()3sin 2z f z z ⎛⎫=+ ⎪⎝⎭5z112解 (1)用直接展开法,,,,2()3sin 2z f z z ⎛⎫=+ ⎪⎝⎭(0)0f =2()sin 3cos 2z f z z z z ⎛⎫'=++ ⎪⎝⎭(0)3f '=,,2()2cos 2sin sin 2z f z z z z z ''=--(0)0f ''=,,2()3sin cos 2z f z z z z '''=--(0)0f '''=,,2(4)()3sin 4cos sin 2z fz z z z z =--+(4)(0)0f =,,2(5)()7cos 5sin cos 2z fz z z z z =-++(5)(0)7f =-所以,=,.()f z 2573sin 325!z z z z ⎛⎫+=-+ ⎪⎝⎭ z <+∞(2)用间接展开法. 因为,而()f z =23sin sin 2z z +213511sin (1)3!5!(21)!n nz z z z z n +=-+-+-++所以 213511()3(1)3!5!(21)!n nz f z z z z n +⎛⎫=-+--+ ⎪+⎝⎭,.2213511(1)23!5!(21)!n nz z z z z n +⎛⎫+-+-+-+ ⎪+⎝⎭5735!z z =-+ z <+∞4. 求在的泰勒展开式(到项)并指出其收敛半径.()In(1e )zf z -=+0z =4z 解 用直接展开法求,;,;()In(1e )z f z -=+(0)In2f =1()1e z f z -'=+1(0)2f '=-,;,;2e ()(1e )z z f z ''=+21(0)2f ''=3e (1e )()(1e )z z zf z -'''=+(0)0f '''=113,.2(4)4e (14e e )(1e )z z z z f-+=+(4)31(0)2f =-所以.2423111In(1e )In222! 24! 2z z z z -+=-+-+ 由于在时没有定义,所以其奇点为1e ln(1e )ln ezz z-⎛⎫++= ⎪⎝⎭10ze +=.离的最近一个奇点为,其距离为,故收敛半径(21)i(0,1,)k z k k π=+=± 0z =i k z π=π.R π=5. 将函数在中展开为泰勒级数(到项)21()1f z z=+1z -<4(1)z -解 只能用直接展开法,,,,21()1f z z =+1(1)2f =222()(1)z f z z -'=+1(1)2f '=-,,,,22326()(1)z f z z -+''=+1(1)2f ''=3242424()(1)z z f z z -'''=+(1)0f '''=,.4(4)2524240120()(1)z z fz z -+=+(4)(1)3f =-所以 ,.21()1f z z =+241113(1)(1)(1)2244!z z z =--+---+ 1z -<6. 展开为的幂级数.21()(2)f z z =-(1)z -解 因为,所以可利用22211111(2)[3(1)]93z z z --⎡⎤==+⎢⎥++-⎣⎦114式,于是2(1)1(1)(1)(1)2!!nmz z z mz m m m m m n n +=++-++--+ 23223111(1)(1)1223234(2)932! 33! 3z z z z ⎡⎤---=-⋅+⋅-⋅⋅+⎢⎥+⎣⎦,.2312(1)(1)4(1)193327z z z ⎡⎤---=-+-+⎢⎥⎣⎦13z -<7. 求的麦克劳林级数.()e In(1)zf z z =+解 因为2311e 1,(||).2!3!!nzz z z z z n =+++++<+∞ 231In(1)(1),|| 1.23nn z z z z z z n-+=-+++-+< 所以2323()12!3!23z z z z f z z z ⎛⎫⎛⎫=++++-++ ⎪⎪⎝⎭⎝⎭,.2351132340z z z z =++++ 100(1)(1)()!kn n k z k n k ∞∞+==⎛⎫-= ⎪+-⎝⎭∑∑1z <因为,是奇点,所以确定.1z =-1R =评注 当被积函数可以分解为几个已知展开式的函数地乘积时,可以采用此种方法.乘积项的确定一般用柯西乘积确定.缺点是不易写出幂级数通项,所以一般只写出展开式的前四至五项.8. 分别将和展为的麦克劳林级数.e cos zz e sin zz z 解 用组合法求解. 因为和均在复平面上解析,利用欧拉公式,得e sin zz e cos zz115(1i)e cos ie sin e (cos isin )e z z z zz z z z ++=+=[cos(/4)isin(/4)]ππ+=0cos isin44nn n n z ππ∞=⎛⎫=+ ⎪⎝⎭同理(1)e cos ie sin e (cos isin )ezzz i zz z z z --=-=0cos isin44nn n n z ππ∞=⎛⎫=- ⎪⎝⎭两式相加除2得 ;e cos cos 4!nz nn n z z n π∞==∑两式相减除2i 得 0e sin sin 4!nznn n z z n π∞==⋅∑复变函数作业14 洛朗级数1. 把下列各函数在指定的圆环域内展开成罗朗级数:(1);21,1||2(1)(2)z z z <<+-(2);;21,0||1(1)z z z <<-0|1|1z <-<(3);;1,0|1|1(1)(2)z z z <-<--1|2|z <-<+∞(4),;11e z-1||z <<+∞(5),在以为中心的圆环域内;21(i)z z -i (6),在的去邻域内;1sin1z-1z =(7).(1)(2),3||4,4||(3)(4)z z z z z z --<<<<+∞--解 (1)222111121(1)(2)525151z z z z z z =--+--++116222111112111110551112z z z z z =--⋅⋅-⋅⋅-++2220001111(1)21(1)10255n n n n n nn n n z z z z z∞∞∞===--=--⋅-⋅∑∑∑.2122000111(1)2(1),(1||2)10255n nn n n n n n n z z z z∞∞∞++===--=---<<∑∑∑(2)当时,由两边求导得0||1z <<111n n z z ∞==-∑1211(||1)(1)n n nz z z ∞-==<-∑所以.22211111(2)(1)(1)n nn n nz n z z z z z ∞∞-==-=⋅==+--∑∑当时0|1|1z <-<011(1)(1)11n n n z z z ∞===--+-∑从而222111(1)(1)(1)(1)n n n z z z z z ∞-==⋅=--=--∑2(1)(1)nnn z ∞=---∑(3)111(1)(2)21z z z z =-----当时,,所以0|1|1z <-<011(1)21(1)n n z z z ∞=-==-----∑0111(1)(1)(1)(2)1nnn n z z z z z ∞∞==--=--=-----∑∑当时,1|2|z <-<+∞11711111212z z z =⋅=--+-1001(1)(1)2(2)(2)n nnn n n z z z ∞∞+==--=---∑∑从而1110111(1)(1)(1)(2)2(2)(2)n n n n n n z z z z z +∞∞++==--=-=-----∑∑(4)当时,1||z <<+∞.011111111n n z z z z z∞==-⋅=-=--∑12311111n n zz z z ∞+=⎛⎫-=-+++ ⎪⎝⎭∑ 于是231123232311111111111e12!3!zz z z z z z z z z -⎛⎫⎛⎫⎛⎫=-+++++++-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭234111111112!3!4!z z z z=---++ (5)此题中,以为中心的圆环域有两个:与.i 0|i |1z <-<1|i |z <-<+∞当时,0|i |1z <-<01111i i (i)i i i i 1in n n z z z z ∞===⋅=----++∑两边求导得,于是11211i (i)n n n n z z ∞+-==-∑12211i (i)(i)n n n n z z z ∞+-==--∑当时,1|i |z <-<+∞111i i 1iz z z =⋅=-+-1001(1)i (1)i (i)(i)n n n n n n n z z z ∞∞+==--=---∑∑两边求导得118,于是2201(1)(1)i (i)n n n n n z z ∞+=-+=-∑2301(1)(1)i (i)(i)n nn n n z z z ∞+=-+=--∑(6)当时,即在的去心邻域内:0|1|z <-<+∞1z =21011(1)1sin sin 11(21)!(1)n n n z z n z ∞+=-=-=---+-∑(7)(1)(2)621(3)(4)43z z z z z z --=+-----当时,3||4z <<(1)(2)612113(3)(4)4114z z z z z z z--=------0031211324n n n n n n z z z ∞∞===--∑∑211311232nnn n n n z z ∞∞++===--∑∑当时,4||z <<+∞(1)(2)6121143(3)(4)11z z z z z z z z--=+-⋅----006121143n n n nn n z z z z ∞∞===+-∑∑211111(3223)n n nn z ∞--==+⋅-⋅∑2. 将在内展为洛朗级数.1()e 1zf z z=-01z <-<+∞解 在,内01z <-<+∞1(1)11e e 11z z z z +-=--2e 111(1)(1)(1)12!!nz z z z n ⎡⎤=-+-+-++-+⎢⎥-⎣⎦.1111e 1(1)(1)12!!n z z z n -⎡⎤=-++-++-+⎢⎥-⎣⎦3. 求出使洛朗级数收敛的圆环域.其中(2)nnn c z +∞=-∞-∑119,,,01c =1!n n c n n =111|2n c n-=+++ 1,2,n = 解 要将洛朗级数分为正幂部分和负幂部分和负幂部分两个幂级数,分别求出它们的收敛半径,然后确定使洛朗级数收敛 的圆环域..(2)nn n c z ∞=-∞-∑1111!1(2)12)2n nnn n n z z n n ∞∞-==⎛⎫=+++-++- ⎪⎝⎭∑∑ 其中的收敛半径为1111(2)2nn z n ∞-=⎛⎫=+++- ⎪⎝⎭∑ .11112lim lim 1111121n n n n c n R c n →∞→∞+++===+++++ 的收敛半径为.1!2)nn n n z n ∞=-∑11lim lim 1e nn n n n c R c n →∞→∞+⎛⎫==+= ⎪⎝⎭所以,由,得收敛圆环域为111r R ==12e z <-<4. 在内,将展成洛朗级数.01z <-<+∞()sin 1zf z z =-解 .sinsin 111z z z z ⎛⎫=+ ⎪--⎝⎭11sin1cos cos1sin 11z z =+--而 ,2011cos (1)(1)12!n nn z z n ∞-==---∑(21)011sin (1)(1)1(21)!n n n z z n ∞-+==---+∑故 23cos1sin1cos1sinsin1112! (1)3! (1)z z z z z =+--+---- 2sin1(1)(2)! (1)nn n z +--21cos1(1)(21)! (1)nn n z ++-++-5. 如果为正向圆周,求积分的值. 设为:C ||3z =()d Cf z z ⎰A ()f z (1);(2);(3)(4)1(2)z z +2(1)z z z++21(1)z z +(1)(2)zz z ++120解 (1).当时,1111(2)22z z z z ⎛⎫=-- ⎪++⎝⎭2||z <<+∞.11112(2)221z z z z z=-⋅+=++11320(1)21212n n n n z z z z -∞+=---+=++∑ 由此可见展开式中项的系数,而且圆周在内,所以由公式1z10C -=||3z =2||z <<+∞1()d 2i 0Cf z z C π-==⎰A (2)当时,1||z <<+∞221111111(1)11z z z z z z z z z+=+⋅=+⋅=+++2211111z z z z ⎛⎫+-+- ⎪⎝⎭展开式中项的系数,而且圆周在内,所以由公式1z11C -=||3z =1||z <<+∞1()d 2i 2iCf z z C ππ-==⎰A (3)当时,1||z <<+∞.10011(1)(1)1n nn n n n z z z z∞∞+==--==+∑∑两边求导得,于是,2201(1)(1)(1)n n n n z z ∞+=-+=+∑2301(1)(1)(1||)(1)n n n n z z z z ∞+=-+=<<+∞+∑展开式中项的系数,由公式1z10C -=1()d 2i 0C f z z C π-==⎰A (4)(当时)21(1)(2)21z z z z z =-++++2||z <<+∞2222411111z z z z z z ⎛⎫⎛⎫=-+---+- ⎪ ⎪⎝⎭⎝⎭ 213z z=-+ 展开式中项的系数,而且圆周在内,由公式1z11C -=||3z =2||z <<+∞1()d 2i 2iCf z z C ππ-==⎰A121复变函数作业15 第4章综合练习1.命题“复数项级数与都发散,则级数和也发散”1nn α∞=∑1nn β∞=∑1()nn n aβ∞=±∑1n n n αβ∞=∑是否成立?为什么?解 不成立. 因为运算可以消除使级数发散的因素.例如,,,则和都发散,但21i n n n α=+21in n n β=+-1n n α∞=∑1n n β∞=∑和都收敛.若令,则2112i ()n n n n n αβ∞∞==+=∑∑241111n n n n n n αβ∞∞==⎡⎤=-+⎢⎥⎣⎦∑∑21i n n n β=-也收敛.2112i()n n n n n αβ∞∞==-=∑∑2. 下列数列是否收敛?如果收敛,求出其极限.(1);(2);(3);(4).1i 2nn a +⎛⎫= ⎪⎝⎭1chi n a n n =0i 2kn n k a =⎛⎫= ⎪⎝⎭∑1i 22en n a π⎛⎫-+ ⎪⎝⎭=解 先化为复数形式,然后考察时,极限是否存在.n →∞(1)因为,.所以cos isin 44nnn a ππ⎤⎫+=⎥⎪⎭⎦cos isin 44n n ππ⎛⎫+ ⎪⎝⎭lim 0n n a →∞=数列收敛,极限为0.{}n a (2)因为,所以数列收敛,极限为0i i 1e e 1cos ,lim 02n n n n n a n a n n-→∞+=⋅=={}n a (3)因为,当时,所以数列收敛,极限为.0i 2knn k a =⎛⎫= ⎪⎝⎭∑n →∞22i n a →-{}n a 22i -(4),当时.所以数列收敛,11cos isin 2222n a n n ππ⎛⎫⎛⎫=--+-- ⎪ ⎪⎝⎭⎝⎭n →∞i n a →-{}n a 极限为i-3. 判断下列级是否收敛? 是绝对收敛还是条件收敛?(1);(2);(3);(4).0(3)!n n i n ∞=∑1!n n n n ∞=∑/1e !i n n n π∞=∑115i 2nn ∞=+⎛⎫⎪⎝⎭∑n122解(1)因为,而当,,所以收敛,(3i)3!!n n n n ≤n →∞1133/0(1)!!n n n n ++→+0(3)!nn i n ∞=∑原级绝对收敛.(2)因为,所以原级数收敛.1(1)!!1/1(1)en n n n n n ++=<+(3)因为,,1cos isin n n n n ππα⎛⎫=+ ⎪⎝⎭1111cos i sin n n n n nn n ππα∞∞∞====+∑∑∑两个级数不能保证原级数收敛.所以原级数发散.(4)因为,不趋于零(当时),所以原级发散.nn α=lim n αn →∞4. 求幂级数的收敛半径.21(i)1sin n n n n z n -∞→∞⎛⎫-+⋅ ⎪⎝⎭∑解 因为含有幂次,用根值法n c n (等价无穷小)n n 1lim 1sin nn n -→∞⎛⎫=+ ⎪⎝⎭,所以,收敛半径.(1)11lim 1e n n n ⋅--→∞⎛⎫=+= ⎪⎝⎭e R =5. 证明:如果存在(),下列三个幂级数有相同的收敛半径:1limn n nC C +→∞≠∞11,,.1n n n n n n C C z z nC z n +-+∑∑∑证设,则由,易知,1lim()n n n C l C +→∞=≠∞11||n n n n C C l l C C ++-≤-1lim ||()n n nCl C +→∞=≠∞记.||l ρ=(1)的收敛半径.n n C z ∑11R ρ=(2)一般项系数(项系数),于是11n n C z n ++∑nz 1n nC a n-=123,即,由公式得其收敛半径.11||||11n n nn C n n Cαα+-=⋅→⋅+ρρ=1lim n n nαρα+→∞=21R ρ=(3)一般项系数于是,1n n nC z -∑1(1),n n n C β+=+121||211n n nn C n n C βρρβ++++=⋅→⋅=+即,收敛半径.1limn n nβρβ+→∞=31R ρ=故三个幂级数有相同的收敛半径.6. 如果级数在它的收敛圆的圆周上一点处绝对收敛,证明它在收敛圆所围的nnn C z∞=∑0z 闭区域上绝对收敛.证设级数在收敛圆周上一点处绝对收敛(为收敛半径),则nnn C z∞=∑||z R =0z R 收敛且. 于是对收敛圆所围成的闭区域上任一点,都有00||n n n C z∞=∑0||z R =||z R ≤z 0||||||||||n n n nn n n n C z C Z C R C z =≤=由比较判别法得收敛,即在上绝对收敛.0||nn n C z∞=∑0n n n C z ∞=∑||z R ≤7. 求幂级数的收敛半径.[2(1)]n n nn z∞→+-∑解 用比值法和极值法都不能求得R ,故用柯西-哈达玛法,lim[2(1)]3n n →∞+-=所以,收敛半径.13R =8. 求幂级数的收敛半径.10,0)i nn nn z a b a b ∞=>>+∑解 用根值法221/21()n n nn a b +124因为 ,,所以{}{}221/21/2max ,()2max ,nn n n a b ab a b ≤+≤lim 1n →∞=.{}221/2lim()max ,n n n n a b a b →∞+=于是,级数的收敛半径为.{}max ,R a b =9. 求下列级数的和函数(1);(2).111(1)n n n nz∞--=-∑20(1)(2)!nnn z n ∞=-∑解 (1),收敛半径.由逐项积分性质,得11limlim 1n n n n c n c n+→∞→∞+==1R =.111(1)d (1)1z nn n n n n z nz z z z∞∞-==-=-=+∑∑⎰所以.1211(1)11(1)nn n z nzz z z ∞-='⎛⎫-==⋅< ⎪++⎝⎭∑(2). 故收敛半径.11limlim 0(21)(22)n n n c c n n +→∞==++R =∞设级数和函数, 进行逐项求导,得20()(1)(2)!nnn z f z n ∞==-∑,,所以有 ,211()(1)(21)!n nn z f z n -∞='=--∑221()(1)(22)!n nn z f z n -∞=''=--∑()()f z f z ''=-即有微分方程 .解得 待定.()()0f z f z ''+=()cos sin ,,f z A z B z A B =+因为,得,200(0)(1)1(2)!nn n z z f A n ∞==⎡⎤==-=⎢⎥⎣⎦∑1A =得B =0,21010(0)(sin cos )(1)0(21)!n nz n z z f z B z n -∞===⎡⎤'=-+=-=⎢⎥-⎣⎦∑故 .20()(1)cos (2)!nnn z f z z n ∞==-=∑12510. 证明级数,沿实轴绝对收敛.222222221(1)(1)nz z z z z z z ++++++++ 证 若,级数绝对收敛.0z =若,取任意不为零实数时,有. 所以,级数收敛. 由于0z ≠2111z <+201(1)nn z ∞=+∑也是实数,因而也收敛.2z 220(1)nn z z ∞=+∑11. 将分别展为和的泰勒级数.1()23f z z =-z 1z -解 即分别取和.于是00z =01z =(1)222111122123312/3333z z z z ⎡⎤-==-+++⎢⎥--⎣⎦,,即 .232323412223333z z z =----- 1023n n n n z ∞+==-∑213z <32z <(2),, 即 .112312(1)z z =----0[2(1)]n n z ∞==--∑2(1)1z -<112z -<12. 将展为的幂级数,,为不相等的复数.1()f z z b=-()z a -a b 解 先在中构造出的因式再展开()f z ()z a -1111()/()z b b a z a b a -=⋅-----211z a z a b a b a b a ⎡⎤---⎛⎫⎛⎫=+++⎢⎥ ⎪ ⎪---⎝⎭⎝⎭⎢⎥⎣⎦,.101()()nn n z a b a ∞+==---∑1z a b a -<-13. 将在下列圆环域内展为洛朗级数:1()(1)(2)f z z z =--(1); (2); (3); (4).12z <<2z <<+∞011z <-<11z <-<+∞解 ,11()21f z z z =---126(1)在内,,,12z <<11z <12z<故 .1111()21/211/f z z z z =-⋅---0011122n nn n z z z ∞∞==⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭∑∑1100112n n n n n z z∞∞++===--∑∑(2)在内,,,故2z <<+∞11z <21z<.0011121211()12/11/n nn n f z z z z z z z z z ∞∞==⎛⎫⎛⎫=⋅-=- ⎪ ⎪--⎝⎭⎝⎭∑∑1021n n n z ∞+=-=∑(3)在内011z <-<1111()211(1)1f z z z z z -=-=------01(1)1n n z z ∞==----∑ .211(1)(1)(1)1n z z z z =----------- (4)在内,,11z <-<+∞111z <-11111()(1)11111/(1)1f z z z z z z =-=⋅-------- 23111111(1)(1)(1)1n z z z z z =+++++------ 23111(1)(1)(1)nz z z =++++--- 第四章习题课教与学参考例1 证明:0,||1,||1lim 1,1.||1,1nn a a a a a a →∞<⎧⎪∞>⎪=⎨=⎪⎪=≠⎩不不不证 令,其中,则i e(cos isin )r r θαθθ==+||,arg r αθα==127.(cos isin )n n r n n αθθ=+(1)当时,非负实数. 从而,即||1α<1,lim 0nn r r →∞<=|0|0()n nr n α-=→→∞.lim 0n n α→∞=(2)当时,,由1)的结论,从而有.||1α>11α<1lim 0nn α→∞⎛⎫= ⎪⎝⎭lim n n α→∞=∞(3)当时易知.1α=1,lim 1n nn αα→∞==(4)当时,.因与||1,1αα=≠1,cos isin (0)nr n n αθθθ==+≠lim cos n n θ→∞均不存在,所以不存在.lim sin n n θ→∞lim n n α→∞例2 下列说法是否正确?为什么?(1)每一个幂级数在它的收敛圆周上处处收敛;(2)每一个幂级数的和函数在收敛圆内可能有奇点;(3)每一个在点连续的函数一定可以在的邻域内展开成泰勒级数.0z 0z 答 (1)不正确. 幂级数在收敛圆内的点处收敛而且绝对收敛,而在收敛圆周上可能处处收敛(如),也可能处处发散(如),还可能既有收敛点也有发散点(如211n n z n ∞=∑1nn z ∞=∑).11nn z n∞=∑(2)不正确. 和函数在收敛圆内是解析函数,在收敛圆周上至少有一个奇点.(3)不正确. 在点解析的函数才一定可以在的邻域内展开成泰勒级数. 在点连0z 0z 0z 续的函数(更进一步在点可导的函数)不一定能在的邻域内展开成泰勒级数,例如0z 0z 在的邻域内就不能展开成泰勒级数.2()||f z z =00z =例3 如果的收敛半径为,证明的收敛半径.[提示:nnn C z∞=∑R 0(Re )n nn C z∞=∑R ≥]|(Re )|||||n n n n C z C z ≤128证 由的收敛半径为可知,对收敛圆内任一点,不但收nnn C z∞=∑R ||z R <0z 0n n n C z∞=∑敛而且绝对收敛,即收敛. 又||nn n C z∞=∑0000|(Re )||Re |||||||||n n n nn n n n C z C z C z C z =≤=结合比较判别法可得收敛,即绝对收敛,因而也是收敛的. 这00|(Re )|nnn C z∞=∑0(Re )nn n C z ∞=∑样幂级数在内任一点收敛(而且是绝对收敛的),它的收敛半径R.(Re )nnn C z∞=∑||z R <≥例4 为什么在区域内解析且在区间取实数值的函数展开成的幂||z R <(,)R R -()f z z 级数时,展开式的系数都是实数?答因为当在上取实数值且可导时其导数()f z (,)R R -在上为实数值(只需让沿实轴趋于零便知),这样()()()limz f z z f z f z z∆→+∆-'=∆(,)R R -z ∆依次下去可知当在内解析(当然在上有各阶导数),在上取实()f z ||z R <(,)R R -(,)R R -数值时在上取实数值,特别地()()(0,1,2,)n fz n = (,)R R -为实数,即展开式的系数都是实数.()(0)/!(0,1,2,)n n f n C n == 例5 函数能否在圆环域内展开成罗朗级数?为什么?1tan z ⎛⎫⎪⎝⎭0||(0)z R R <<<<+∞答 不能. 由罗朗定理,能否在内展开成罗朗级数等价于能1tan z ⎛⎫⎪⎝⎭0||z R <<1tan z ⎛⎫⎪⎝⎭否在内解析. 而以的点为奇点,0||z R <<1tan z ⎛⎫⎪⎝⎭1cos 0z ⎛⎫= ⎪⎝⎭1(0,1,2,)2k z k k ππ==±±+且,所以在任何圆环域内都有的奇点. 在lim 0k k z →∞=0||(0)z R R <<<<+∞1tan z ⎛⎫⎪⎝⎭1tan z ⎛⎫⎪⎝⎭129内不解析,从而在其内不能展开成罗朗级数.0||z R <<例6 若,与都收敛, 证明级数绝对收敛.Re()0n α≥1nn α∞=∑21nn α∞=∑21nn α∞=∑证 因为,若收敛,则也收敛,从而也收敛. 但是i n n n a b α=+na∑21nn α∞=∑221()n n n ab ∞=-∑,22221112()nnnn n n n a a b α∞∞∞===--=∑∑∑所以, 级数收敛.21n n α∞=∑例7 讨论级数的敛散性.1()n n n zz ∞+=-∑解 讨论级数的部分和.11()1n k k n n k S zz z -+==-=-∑当时,,故级数收敛于1;当时,,故级数发散1z <lim 1n n S →∞=--1z =lim 0n n S →∞=0;当时,不唯一,故级数收敛于;1z =-lim n n S →∞当,且时,即时,.1z =1z ≠i e (0)z θθ=≠cos isin nz n n θθ+因为和的极限都不存在,所以不存在,级数发散;cos n θsin n θlim n n S →∞当时,级数显然发散.1z >例8 求下列幂级数的收敛半径:(1); (2)(p 为正整数);!1n n z∞=∑0p nn nz ∞=∑(3); (4),1!n n n n n ∞=∑20(1)n nn q z q ∞=<∑(5)21223211111223232323n nn n n n z z z z z --+++++++⋅⋅ng130解(1)因为,所以,收敛半径.1,!,0,!kk nck n=⎧=⎨≠⎩11R=(2)因为.所以,收敛半径.1/1/lim()lim()1p n n pn n nn n→∞→∞===1R=(3)因为.所以,收敛半径.1(1)!!1lim/lim(1)1enn nn nn n nn n n+→∞→∞+⎛⎫==⎪++⎝⎭eR=(4)因为,所以,收敛半径2(1)21lim lim0nnnn nqqq++→∞→∞==R=+∞(5)因为,,所以2121123n nc--=2123n n nc=⋅,.于是,收敛半/(21)(1)/(21)2lim lim1/(23)n n n nn n---→+∞→∞=⋅=limn→+∞=径.R=例9 求下列级数收敛半径,并写出收敛圆周:(1)(p为正整数);(2);1(i)npnzn∞=-∑1(1i)n nnz∞=+∑(3)(4).[3(1)](1)n n nnz∞=+--∑2(1)(2)!nnnzn∞=-∑解先求收敛半径,再据题写出收敛圆周(1)因为,所以,收敛半径,收敛圆周为.1lim lim11pnn nnc nc n+→∞→∞⎛⎫==⎪+⎝⎭1R=i1z-=(2)因为,所以,收敛半径.写出收敛圆周为1lim lim1inn nncc+→∞→∞=+=R=z=(3)因为是振荡的,所以由柯西-哈达玛法[3(1)]n nnc=+-,收敛半径.收敛圆周为.n n4=14R=114z-=。
第四章 级数(答案)
复变函数练习题 第四章 级数系 专业 班 姓名 学号§1 复数项级数 §2 幂级数23521242211(1)1(1)sin ()3!5!(21)!(1)cos 1()2!4!2!1()2!!n n n n nn zz z z z zz z z z z z n z z z z z n z z e z z n +=+++++<--=-+-++<+∞+-=-+-++<+∞=+++++<+∞L L L L L L L L 一些重要的级数一、选择题:1.下列级数中绝对收敛的是 [ ](A)11(1)n in n ∞=+∑ (B)1(1)[]2n n n i n ∞=-+∑ (C) 2ln n n i n ∞=∑ (D)1(1)2n n n n i ∞=-∑ 2.若幂级数nn n c z∞=∑在12z i =+处收敛,那么该级数在2z =处的敛散性为 [ ](A )绝对收敛 (B )条件收敛 (C )发散 (D )不能确定()122i Abel +=>,由定理易得3.幂级数10(1)1n n n z n ∞+=-+∑在||1z <内的和函数为 [ ] (A) ln(1)z + (B )ln(1)z - (C ) 1ln1z + (D ) 1ln 1z- '100'110000(1)1(1)11(1)(1)1=ln(1)111n n n nn n n n z z n n n n z z n z z z dz dz z n n z∞∞+==∞∞++==⎧⎫⎛⎫-=-=⎪⎪⎪++⎪⎪⎝⎭⎨⎬⎛⎫⎪⎪--==+ ⎪⎪⎪+++⎝⎭⎩⎭∑∑∑∑⎰⎰ 二、填空题:1.设(1)2nn i α-=+,则lim n n α→∞= 0 。
2.设幂级数nn n c z ∞=∑的收敛半径为R ,那么幂级数0(21)n n n n c z ∞=-∑的收敛半径为2R 3.幂级数!nn n n z n ∞=∑的收敛半径是 e 。
复变函数习题及答案解析(东南大学版)
第1章 复数与复变函数1.1 复数及复平面1-1若1||1,n nz z z ω==+(n 是正整数),则(). (A )Re()0ω=(B )Im()0ω=(C )arg()0ω=(D )arg()πω=解由||1z =知1z z=,因此1n n n n z z z z+=+为实数,故Im()0ω=. 选(B )||1z =时n z =1/.n n z z =1-23311()()22n n--+=(). (A )(1)2n -(B )1(1)2n --(C )2 (D )2-解2i π3e =2i π3e =知,等式中两项皆为1. 选(C )1-3i |(1e )|n θ+=().(A )2cos2n nθ(B )2sin2n nθ(C )/222(1cos )n n θ+(D )/222(1sin )n n θ+解i 222|1e |(1cos )sin 2(1cos )θθθθ+=++=+故i /22|(1e )|2(1cos ).n nn θθ+=+选(C )本题容易错选(A)项,因为2(1+2cos )4cos 2θθ=得i |1e |θ+=2cos .2θ错在cos 2θ应加上绝对值.1-442max{|i |||1}z z z +≤=(). (A(BC(D )2 解由4242|i |||||2,z z z z +≤+≤而当i4e z π=时,πi4i π2422e 1,i ie 1,|i |2z z z z ==-==-+=,故最大值为2.选(D )用不等式确定最大值是常用方法. 1-5对任意复数12,z z ,证明不等式121212||||||||||||.z z z z z z -≤±≤+证1121212*********|||()|||||||||||||||||z z z z z z z z z z z z z z z -=+-≤+-=+=+-≤++故1212||||||z z z z -≤+,同理2112||||||z z z z -≤+ 即121212||||||||z z z z z z -+≤-≤+ 也就是1212||||||||.z z z z -≤+证2(代数法)设i (1,2)k k k z x y k =+= 则只要证222121122||||2||||||z z z z z z +≤++即只要证1212x x y y +≤1) 只要证2222212121122()()()x x y y x y x y +≤++ 此不等式等价于22221221112220x y x y x y x y +-≥由于,k k x y 皆是实数,上式左边是完全平方式,故此不等式成立,也就是1212||||||z z z z +≤+成立,以下同证1.证3(三角法).设12i i 1122e ,e ,z r z r θθ==则2221211221122||(cos cos )(sin sin )z z r r r r θθθθ+=+++222212*********cos()2r r r r r r r r θθ=+-≤+ 21212()(||||)r r z z =+=+即1212||||||z z z z +≤+成立,以下同证1.1-6 当1||≤z 时,求||α+nz 的最大与最小值,n 是正整数,a 是复常数. 解1(代数法).由1-5题知.||1||||||||||||αα+≤+≤+≤-a z z z z n n n我们知道,当1||=nz ,且向量n z 与α夹角为0°时右边不等式等号成立.故||α+nz 的最大值是.||1α+对左边不等式,要分情况讨论.(1)若1||>α,则.1||||||||-≥-≥+αααnnz z 等号当,1||=z 且nz 与α方向相反时成立.这时最小值是.1||-α(2)若1||≤α,则由0||≥+αn z ,当α-=nz 时等号成立,最小值为0.总之,不论α为何复数,|1|+nz 的最大值是||1α+;而当1||>α时,最小值为1||-α.当1||≤α时,最小值为0.解2 (几何法).我们仅就1||>α加以证明.由1||≤z 知1||≤nz 。
《复变函数》第四章习题全解钟玉泉版
第四章 解析函数的幂级数表示法(一)1.解:(1)其部分和数列 14151311()414121(4--++-++++-=n i n S n由交错级数收敛性判别及极限运算法则知n n S 4lim ∞→存在,设为l S n n =∞→4lim ,又有,0241,0142414→+-=→+=++n a n i a n n由此得知l S n n =∞→lim ,因此级数收敛,但非绝对收敛.(2)∑∑∑∞=∞=∞=≤=+111!)34(!1!)53(n nn nn n n bn n i ,可知原级数绝对收敛.(3)由于1226251251limlim>=+=+=∞→∞→i i a nnn nn n ,故原级数发散.2.解:(1)11limlim1=+==∞→+∞→n n c c R n n n n(2)212lim lim 1=+==∞→+∞→n nc c R n n n n(3)01lim lim1==∞→∞→nc R n nnn3.证明:(1)如果∞≠=+∞→λnn n c c 1lim,则∞≠=+∞→λnn n c c 1lim,则级数的收敛半径为⎪⎩⎪⎨⎧∞+==+∞→n n n c cR 1lim 1λ 00=≠λλ(2)由(1)可证其收敛半径为R .(3)由(1)可证其收敛半径为R .4.证明:因为∑∑∞=∞==n nn n n n Rc zc 收敛,而当R z ≤时, ∑∑∞=∞=≤n nn n nn Rc zc ,因此级数在R z ≤上绝对收敛且一致收敛. 5.解:(1)因为1<u 时,∑∞=-=+0)1(11n nnuu,所以当1<z ba 时,有∑∞=-=+=+0)()1(1)1(11n nnz ba bz b a b baz(2)因为∑∞=+∞<=,!n nz z n ze ,而 2ze在z 平面解析,所以∑∞=+∞<=2)(,!2n nzz n ze逐项积分得 )()12(!00122+∞<+=⎰∑∞=+z n n zdz e zn n z(3)因为∑∑∞=∞=++-=+-=2012)!12()1()!12()1(1sin n nnn n nn zn zzzz如果1sin lim=→zz z ,则0=z 为可去奇点,可补充定义被积函数1)0(=f ,于是上式收敛范围为+∞<z ,合于逐项积分条件,所以 ⎰⎰∑∑∞=∞=++∞<++-=+-=zzn n n nn nz i n n zdz n zdz zz 0000122)()!2)(12()1()!12()1(sin(4))()!2()2()1(21)!2()2()1(212122cos 1sin 02122+∞<-=--=-=∑∑∞=-∞=z n z n z zz n nn n nn(5)因为2()()(1),(0)(1)!n f z z f n -=-=+从而()(1),(||1)nn of z n zz ∞==+<∑6.解:因为23451 (2)624120zz zzzze =++++++2345ln(1) (2)345z z zzzz+=-+-++所以23453452ln(1)()()2345234zz z zzzzzzze z +=-+-++-+-++ 345455()()...24661224z z z z z z -++-++523...(1)23403z z z z z =++++<7.解:(1) sin sin[(1)1]sin(1)cos1cos(1)sin 1z z z z =-+=-+-=212(1)(1)cos1(1)sin (1)(21)!(2)!n nn n n z z n n ∞∞+==---+-+∑∑=01sin(1)(1),|1|!2kk k z z k π∞=+--<+∞∑(2)21112111-+⋅-=+-z z z z ,再由公式)1()1(110<-=+∑∞=z zzn nn(3)22)21(11]1)1[(4152-++-=+-z z z z z ,结合)1()1(11022<-=+∑∞=z zzn nn(4)由于3z 的支点为∞,0,沿负实轴)0,(-∞割开平面,则指定分支就在11<-z内单值解析, 3133)]1(1[1-+⋅=z z ,再利用二项式展开.8.解:(1)∑∑∞=∞=-=-=-01)1(24222!)1!()1(2n n n n zn zzn zz ez ,故为4级零点.(2)∑∞=+-++⋅-=-+16312633)6()12()1(6)6(sin 6n nn nz z n zz z z)!7!51(6615+-=zz故为15级零点.9.证明:因为0z 为)(z f 的m 阶零点+-+-=++1010)()()(m m m m z z a z z a z f 又因为0z 为)(z g 的n 阶零点,+-+-=++1010)()()(n n n b z z b z z b z g 如果n m >,则])([)()()(010 +-+-=++z z b b z z z g z f n n n 故0z 为)()(z g z f +的n 阶零点.如果m n >,同理可得0z 为)()(z g z f +的m 阶零点.如果n m =,当0≠+m m b a 时, 0z 为)()(z g z f +的m 阶零点; 当0=+m m b a 时,零点0z 的阶数大于n .+-++-=+++++10110))(()()()(n m n m n m n m n m z z b a b a z z b a z g z f 故0z 为)()(z g z f 的n m +阶零点.+-++-+-=++-)()()()()(01010z z a a z z b b z z z f z g m m n n mn由此可见如果m n >,则0z 为)(/)(z g z f 的m n -阶零点, 如果n m >,则0z 为)(/)(z g z f 的n m -阶零点, 如果n m =,则0z 为)(/)(z g z f 的可去奇点.10.证明:利用定理4.17,因0z 为解析函数)(z f 的至少n 级零点,则有 n m z g z z z f m ≥-=)()()(0 其中0!)()(0)(0≠=m z fz g m .同理 )()()(00z z z z nϕϕ-=,其中0!)()(00≠=n z z nϕϕ,则本题得证.11.解:(1)不存在 (2)不存在 (3)不存在 (4)存在12.证明:因为)(z f 在0z 点解析,由泰勒定理),:()(!)()(0000)(D K R z z K z z z n z fz f nn n ⊂<-∈-=∑∞=再由题设 ,2,1,0)(0)(==n z fn ,则)(),()(0D K z z f z f ⊂∈=由唯一性定理得 )(),()(0D z z f z f ∈≡.13.证明:(反证法)假设)(0z f 是)(z f 在D 内的最小值,因0)(0≠z f ,则)(10z f是)(1z f 在D 内的最大值, )(z f 为解析函数,由最大模原理,)(1z f 在D 内恒为常数,与题设矛盾,故)(0z f 不可能是)(z f 在D 内的最小值.14.证明:(反证法)设)(z f 在D 内处处不为零,则由最小,最大模原理,在D 内)(z f 既不能达到最小值,也不能达到最大值.而题设)(z f 在闭域D 上连续,故)(z f 在闭域D 上有最大值M 和最小值m ,而由上所述,这些都只能在边界C 上达到,但题设)(z f 在C 上为常数,故 C z mz f M ∈==)(再由最大,最小模原理,D z m M z f m ∈=<<)(,即D z mz f ∈=)(由上, )(z f 在闭域D 上恒为常数,由第二章习题(一)6(3)知, )(z f 在D 内必为常数,矛盾.(二)1.证明:由于级数∑∞=1)(n n z f 收敛于)(z f ,故)(,0εεN ∃>∀,当N n >及一切E z ∈,有Mz f z s n ε<-)()(.由题设)(,)(+∞<<M M z g 推得ε<-)()()()(z g z f z g z s n 故得证.2.证明:该级数的部分和n n n n z z z z z z z s =-++-+=-)()()(12 显然,对任何)1(<z z ,有0)(lim =∞→z s n n .另一方面,对于任何固定的n ,取121<=nz ,有21=nz,因而nz 不可能任意小,这就证得级数在圆1<z 内非一致收敛.3.证明:(1) n n n v v v v v +≤+++=121σ,两边取极限 ++≤=∞→n n n v v 1lim σδ(2) 1!!2!!2122-=++++≤++++=-znnzen zzz n zzz e)!!21(!!2112++++≤++++=--n zz z n zzz en nzznez n zz z =++++≤)!1( (3)因为在0||1z <<内任意一点z ,11!nzn n z e ∞=-=∑ 所以3213|1|||||2213||||zz z z z e -≤++-≤117||(1)||244z z ++=另一方面:321||||13|1|||||||||2224413zzzz z e z z z z -≥+-≥--=-4.证明:由柯西不等式||,n nMa ρ≤当||z ρ<时,01|||()|||||,||n n z f z a a z Mz ρ∞=-≤≤-∑因此 |()f z |0000|()||||()|f z a a a f z a =-+≥--000000||||||||||||||||a a Mz a Ma Ma z a Mρρρρ+≥->---+=0||a -0||a =0故()f z 在00||||||a z a Mρ<+上无零点.5.证明:因为2201()2i f re d πθθπ⎰=201()()2i i f re f re d πθθθπ⋅⎰=201()()2nin nin n n n n a r ea r ed πθθθπ∞∞-==⋅∑∑⎰对任意自然数,m k 若m k ≠,则20ik im eed πθθθ-⋅⎰=2()()021|()i k m i k m d k m ieeπθθπθ--==-⎰因此,根据逐项可积公式即得:222222011222|||()|||nni n i d d n n f r r ra e a ππθθθππ∞===∑⎰⎰6.证明:取,r R >则对一切正整数k n >时,()1||!()!|(0)|||||2nk k kz rk f z k M r fdz zrπ+=≤≤⎰于是由r 的任意性知对一切k n >均有()(0)k f =0故()f z 0nnnk c z ==∑,即()f z 是一个至多n 次的多项式或常数.7.证明:(1)设0z 是)(z f 的m 阶零点,于是在0z 的某邻域K 内)0()()()(1010≠+-+-=++m m m mm c z z c z z c z f取)0(,δδδ<'<',于是在区域),(0δ''z N 内)0()()()(1010≠+-+-=++m m m mm c z z c z z c z f一致收敛,逐项积分可得ζζζζζd z c z c d f zz zz m m mm ])()([)(001010 +-+-=⎰⎰++⎰⎰+-+-=++zz m m zz mm d z c d z c 01010)()(ζζζζ+-++-+=+++20110)(2)(1m m m m z z m c z z m c令 +-++-+=+++20110)(2)(1)(m m m m z z m c z z m c z F故0z 是)(z F 的1+m 阶零点. (2)设⎰=zz d f z 1)()(ζζϕ,作函数⎰-=zz d f z z F 1)()()(ζζϕ,则⎰⎰⎰=-=zz z z zz d f d f d f z F 011)()()()(ζζζζζζ由(1)知0z 是)(z F 的1+m 阶零点,故 ⎰-01z )( )(z d f z ζζϕ以0z 为1+m 阶零点.8.证明:设),(),()(1y x iv y x u z f += )0,()0,()(2x iv x u z f +=依唯一性定理,在L 上有)()(1z f z f =,而L 每一点都是L 的极限点,而且)(),(,21z f z f G L ⊂都在G 内解析,由唯一性定理有)()(21z f z f =.9.证明:(反证法)设存在这样的周线C ,D C I ⊂)(,且有一复数A ,使得A z f =)(,在C 内部)(C I 有无穷多个根,即0)(=-A z f 在C 内部)(C I 有无穷多个零点,必存在零点列{}D z z n ∈→0,从而由唯一性定理,)()(D z A z f ∈≡,与题设矛盾.10.证明:由最大模原理)(max )(z f r M rz <=,显然)(r M 是单调上升函数,若存在21r r <,使得)()(21r M r M =,即在2r z <内存在点θi e r z 11=使得)()(21r M z f =,即在内点达到最大模,由最大模原理知)(z f 恒为常数.。
史济怀《复变函数》第四章若干习题解答,4.1节
史济怀《复变函数》第四章若⼲习题解答,4.1节可能是因为当年本科学的是微积分,级数部分讲的不多,现在这部分习题做起来真的很困难,有不少题⽬想了很长时间,现在在这⾥练⼀练,做个记录.4.设0<α<π2,arg z n ≤α,∀n ∈N.证明级数∑z n ,∑Re z n ,∑|z n |有相同的敛散性.证明 假设∑z n 收敛,显然∑Re z n 也收敛,来证明∑|z n |也收敛.因为|z n |Re z n =1cos θn ≤1cos α所以∑|z n |收敛.再假设∑Re z n 收敛,则有前⾯的过程可得∑|z n |收敛,进⼀步∑z n 也收敛.上⾯的论述说明了三个级数同时收敛.⾃然也就同时发散.5.设Re z n ≥0,∀n ∈N,证明若∑z n ,∑z 2n 都收敛,则∑|z n |2也收敛.证明 设z n =r n e i θn ,θn ∈−π2,π2,由∑z n 收敛可以知道∑r n cos θn 也收敛,⽽他是正项级数,因⽽∑r 2n cos 2θn 也收敛;再根据∑z 2n 收敛知如下级数收敛∑r 2n cos2θn =∑r 2n cos 2θn −sin 2θn 收敛,因此∑r 2n sin 2θn 也收敛,相加即得∑r 2n =∑|z n |2收敛.11.证明∑∞n =1(−1)n −11n −z 在C ∖N 上内闭⼀致收敛.证明 任取紧集K ⊂C ∖N,我们来证明级数在K 上⼀致收敛.任取z 0∈K,存在充分⼩的邻域B 0=B (z 0,r 0)⊂C ∖N,来证级数在B 0上⼀致收敛.如果令z =x +iy ,则(−1)n −11n −z =(−1)n −1n −x n 2−2nx −|z |2+i (−1)n −1y n 2−2nx −|z |2根据函数项级数的Dirchlet 判别法可以知道上⾯的级数的实部和虚部均在B 0中⼀致收敛.所以∑(−1)n −11n −z 也在B 0中⼀致收敛.当z 0遍历K 时可得到K 的⽆限开覆盖B,由K 的紧性知道可从B 中取出有限个B k ,(k =1,2,⋯,n )覆盖住K,⽽级数在每个B k 上⼀致收敛,所以在∪n k =1B k 上⼀致收敛,也在K 上⼀致收敛.由K 的任意性,所以原来的级数在C ∖N 中内闭⼀致收敛.12.设∑f n (z )是区域D 中的全纯函数项级数,设∑Re f n (z )在D 中内闭⼀致收敛,则∑Im f n (z )在D 上或者内闭⼀致收敛,或者在D 上处处发散.证明 还没想出来!以解决!利⽤Schwarz 积分公式可以证明||[]()Processing math: 100%。
复变函数第4章
《复变函数》(第四版) 第4章
第19页
[证]
因
cn
z0n收
敛,
则
lim
n
cn
z0n
0,
n0
则存在M使对所有的n有 | cnz0n | M
如果
|
z
||
z0
|,
则
|z| | z0 |
q
1,
而
n
|
cnzn
||
cn z0n
|
z z0
Mq n
2024/4/4
《复变函数》(第四版) 第4章
第20页
n
|
i )n 2
5 (cos
2
i sin )n
2 5
n
cos(n
)
i
sin(
n
)
|n |
n1
n1
2 n
5
收敛.
(公比 |q | < 1)
∴ 原级数绝对收敛.
2024/4/4
《复变函数》(第四版) 第4章
第12页
解: 3)
|n |
(1 i)n ( 2 )n cos in
( 2)n ( 2 )n cos in
1 2
| z |2
2024/4/4
《复变函数》(第四版) 第4章
第35页
当 1 | z |2 1, 即| z | 2时, 原级数绝对收敛. 2
当 1 | z |2 1, 即| z | 2时, 原级数发散. 2
故 原级数收敛半径 R 2.
注: 求形如 n z2n 或 n z2n1 (n 0 )
1 chn
en
2 en
2 en
而
复变函数课后习题答案(全)(2020年7月整理).pdf
为复数。
解:首先,由复数的三角不等式有 zn + a zn + a 1+ a ,
在上面两个不等式都取等号时 zn + a 达到最大,为此,需要取 z n
与 a 同向且 zn = 1,即 z n 应为 a 的单位化向量,由此, zn = a , a
z=n a a
8.试用 z1, z2 , z3 来表述使这三个点共线的条件。
解:要使三点共线,那么用向量表示时, z2 − z1 与 z3 − z1应平行,因而二
者应同向或反向,即幅角应相差 0 或 的整数倍,再由复数的除法运算规
则知 Arg z2 − z1 应为 0 或 的整数倍,至此得到: z3 − z1
z1,
z2 ,
z3
三个点共线的条件是
z2 z3
− −
z1 z1
为实数。
(1) z = (1+ i)t
(2) z = acost + ibsint
解:只需化为实参数方程即可。
(3) z = t + i t
(1) x = t, y = t ,因而表示直线 y = x
(2) x = a cos t, y
=
b
sin
t
,因而表示椭圆
x a
2 2
+
y2 b2
=1
(3) x = t, y = 1 ,因而表示双曲线 xy = 1 t
结论得证。
13.函数 w = 1 把 z 平面上的曲线 x = 1和 x2 + y2 = 4 分别映成 w 平面中 z
的什么曲线?
解:对于 x = 1,其方程可表示为 z = 1 + yi ,代入映射函数中,得
复变函数习题答案第4章习题详解
复变函数习题答案第4章习题详解第四章习题详解1. 下列数列{}na 是否收敛?如果收敛,求出它们的极限:1) mi nia n -+=11;2) nn i a -⎪⎭⎫ ⎝⎛+=21;3) ()11++-=n ia n n ;4) 2in n e a π-=;5) 21in n e n a π-=。
2. 证明:⎪⎪⎩⎪⎪⎨⎧≠==>∞<=∞→1111110a a a a a a n n ,,,,lim 不存在,3. 判别下列级数的绝对收敛性与收敛性:1) ∑∞=1n n ni ;2)∑∞=2n n n i ln ;3) ()∑∞=+0856n n n i ;4) ∑∞=02n n in cos 。
4. 下列说法是否正确?为什么?1) 每一个幂级数在它的收敛圆周上处处收敛;2) 每一个幂级数的和函数在收敛圆内可能有奇点;3) 每一个在0z 连续的函数一定可以在0z 的邻域内展开成泰勒级数。
5. 幂级数()∑∞=-02n n n z c能否在0=z 收敛而在3=z 发散?6. 求下列幂级数的收敛半径:1)∑∞=1n p n n z (p 为正整数);2) ()∑∞=12n n n z n n !;3) ()∑∞=+01n n n z i ;4) ∑∞=1n n n i z eπ;5) ()∑∞=-⎪⎭⎫ ⎝⎛11n nz n i ch ;6)∑∞=⎪⎭⎫ ⎝⎛1n n in z ln 。
7. 如果∑∞=0n n n z c 的收敛半径为R ,证明()∑∞=0n nnz c Re 的收敛半径R ≥。
[提示:()n n n n z c z c <Re ]8. 证明:如果n n n c c1+∞→lim 存在∞≠,下列三个幂级数有相同的收敛半径∑n n z c ;∑+++111n n z n c ;∑-1n nz nc 。
9. 设级数∑∞=0n n c 收敛,而∑∞=0n n c 发散,证明∑∞=0n nnz c 的收敛半径为1。
复变函数第四版(第四章)
1 n 1) a n 1 e ; n
i
2) a n n cos in
}
[解] 1) 因
1 n 1 a n 1 e 1 cos i sin n n n n 1 1 an 1 cos , bn 1 sin . n n n n lim an 1, lim bn 0
第4章
级数
§4.1 复数项级数 §4.2 幂级数 §4.3 泰勒级数 §4.4 洛朗级数
}
n
n
n
任意给定e>0, 相应地能找到一个正数N(e), 使|an-
a|<e在n>N时成立 则a称为复数列{an}当n时的 §4.1 ,复数项级数
极限, 记作
lim a n a
n
此时也称复数列{an}收敛于a.
(-1) n n n 1
(8i ) 8 , 由正项级数的比值审敛法知 n! n!
故原级数收敛 . 但因 n n
}
§4.2 幂级数
1. 幂级数的概念 设{fn(z)}(n=1,2,...)为一复变函数 序列,其中各项在区域D内有定义.表达式
f
n 1
n
( z ) f1 ( z ) f 2 ( z ) f n ( z ) (4.2.1)
z
n
在圆 |
1
内收敛.
}
再证当
| z |
| z |
1
时, 级数
n0
cn z n
发散. 假设在
n0
圆 收敛. 在圆外再取一点 z1, 使|z1|<|z0|, 那么根据阿
复变函数习题解答(第4章)
p178第四章习题(一)[ 3, 4, 6, 7(4), 10, 12, 13, 14 ]3. 如果lim n→∞ (c n + 1/c n)存在( ≠∞ ),试证下列三个幂级数有相同的收敛半径:(1) ∑n≥ 0c n z n;(2) ∑n≥ 0 (c n/(n + 1))z n + 1;(3) ∑n≥ 0 (n c n)z n– 1.【解】事实上,我们只要证明下面的命题:若∑n≥ 0c n z n的收敛半径为R,则∑n≥ 0 (n c n)z n– 1的收敛半径也为R.从这个命题,就可以得到幂级数(1)的收敛半径与幂级数(2)的收敛半径相同,幂级数(3)的收敛半径与幂级数(1)的收敛半径相同.step1. 当R是正实数或+∞时.若| z | < R,则存在r∈ 使得| z | < r < R.因∑n≥ 0c n z n的收敛半径为R,根据收敛半径定义及Abel定理,知∑n≥ 0 | c n r n |收敛.因| (n c n)z n– 1 | = ( | n/r | · ( | z |/r)n – 1 ) · | c n r n |;而lim n→∞ ( | n/r | · ( | z |/r)n – 1 ) = 0,故∃M > 0使得0 ≤ | n/r | · ( | z |/r)n – 1≤M.所以| (n c n)z n– 1 | ≤M · | c n r n |.由Weierstrass判别法知∑n≥ 0 | (n c n)z n– 1 |收敛,所以∑n≥ 0 (n c n)z n– 1收敛.因此∑n≥ 0 (n c n)z n– 1的收敛半径R1≥R.特别地,若∑n≥ 0c n z n的收敛半径为+∞,则∑n≥ 0 (n c n)z n– 1的收敛半径也为+∞.step2. 当R是非负实数时.对任意的满足R < r < | z |的实数r,根据收敛半径定义,∑n≥ 0c n r n发散.从而∑n≥ 0 | c n r n |发散.当n > r + 1时,| c n r n | = | r/n | · | (n c n)r n– 1 | ≤ | (n c n)r n– 1 |;因此,∑n≥ 0 | (n c n)r n– 1 |发散.由Abel定理,∑n≥ 0 (n c n)z n– 1的收敛半径R1≤r.由r的任意性,得R1≤R.特别地,若∑n≥ 0c n z n的收敛半径为0,则∑n≥ 0 (n c n)z n– 1的收敛半径也为0.step3. 综合step1和step2的结论,当R为正实数时,也有R1 = R.即若∑n≥ 0c n z n的收敛半径为R,则∑n≥ 0 (n c n)z n– 1的收敛半径也为R.[这个证明中,我们没有用到条件lim n→∞ (c n + 1/c n)存在( ≠∞ ),说明该条件是可以去掉的.因为一般的幂级数并不一定满足这个条件,因此去掉这个条件来证明结论是有意义的.]4. 设∑n≥ 0c n z n的收敛半径为R (0 < R < +∞),并且在收敛圆周上一点绝对收敛,试证明这个级数对所有的点z : | z | ≤R为绝对收敛且一致收敛.【解】设z0在收敛圆周上,且∑n≥ 0 | c n z0 n |绝对收敛.那么对于点z : | z | ≤R,都有| z | ≤ | z0|.因此级数∑n≥ 0 | c n z n |收敛,即∑n≥ 0c n z n绝对收敛.而由Weierstrass判别法知知级数∑n≥ 0c n z n对所有的在闭圆| z | ≤R上一致收敛.6. 写出e z ln(1 + z)的幂级数展式至含z5项为止,其中ln(1 + z)|z = 0 = 0.【解】在割去射线L = { z∈ | Im(z) = 0,Re(z) ≤-1}的z平面上,能分出Ln(1 + z)的无穷多个单值解析分支(Ln(1 + z))k = ln| (1 + z) | + i arg(1 + z) + 2kπi ,k∈ .由条件ln(1 + z)|z = 0 = 0,知arg(1) + 2kπ = 0,即k = 0.所以,满足条件的分支为ln(1 + z) = ln| (1 + z) | + i arg(1 + z).因为(ln(1 + z))’= 1/(1 + z) = ∑n≥ 0 (-1)n z n,| z | < 1.∀z : | z | < 1,从沿0到z的曲线逐项积分得ln(1 + z) - ln(1 + z)|z = 0 = ∑n≥ 0 ((-1)n/(n + 1)) z n + 1,| z | < 1;即ln(1 + z)= ∑n≥ 0 ((-1)n/(n + 1)) z n + 1,| z | < 1.因e z= ∑n≥ 0 (1/n!) z n,z∈ ,故∀z : | z | < 1,幂级数∑n≥ 0 (1/n!) z n,∑n≥ 0 ((-1)n/(n + 1)) z n都绝对收敛.故它们的Cauchy乘积收敛于它们的和函数的乘积,所以e z ln(1 + z) = z · (∑n≥ 0 (1/n!) z n)(∑n≥ 0 ((-1)n/(n + 1)) z n),| z | < 1.设e z ln(1 + z) = z ·∑n≥ 0 c n z n,| z | < 1.则c n = ∑0 ≤k≤n(1/k!) · (-1)n -k/(n -k + 1),n∈ .故c0 = 1,c1 = 1/2,c2 = 1/3,c3 = 0,c4 = 3/40,....所以e z ln(1 + z) = z+ (1/2)z2 + (1/3) z3 + (3/40) z5 + ...,| z | < 1.7. 将下列函数按z– 1的幂展开,并指出其收敛范围.(4) z1/3 ( 11/3 = (– 1 + √3 i )/2 ).【解】在割去射线L = { z∈ | Im(z) = 0,Re(z) ≤-1}的z平面上,能分出z1/3的三个单值解析分支( z1/3)k = | z |1/3 · exp((arg(z) + 2kπ)i/3),k = 0, 1, 2.设要展开的分支为z1/3 = | z |1/3 · exp((arg(z) + 2k0π)i/3),0 ≤k0 ≤ 2.因为| 1|1/3 = 1,arg(1) = 0,故exp(2πi/3) = (– 1 + √3 i )/2 = exp(2k0πi/3),所以k0 = 1.即要展开的分支为z1/3 = | z |1/3 · exp((arg(z) + 2π)i/3).因为z1/3 = exp(2πi/3) · | z |1/3 · exp(arg(z)/3 ·i),而主值支(1 + (z– 1))1/3 = | z |1/3 · exp(arg(z)/3 ·i)的展式为(1 + (z– 1))1/3 = ∑n≥ 0 C(1/3, n)(z– 1)n,| z– 1| < 1.所以,要展开的分支z1/3 = exp(arg(z)/3 ·i) ·∑n≥ 0 C(1/3, n)(z– 1)n= ∑n≥ 0 (– 1 + √3 i )/2 ·C(1/3, n)(z– 1)n,| z– 1| < 1.10. 设a为解析函数f(z)的至少n阶零点,又为解析函数ϕ(z)的n阶零点,试证:lim x→a f(z)/ϕ(z) = f(n)(a)/ϕ(n)(a).【解】设f(z)与ϕ(z)在a的某邻域U= { z∈ | | z–a | < R}内的Taylor展式分别为f(z) = ∑k≥ 0 c k (z–a) k,ϕ(z) = ∑k≥ 0 d n (z–a) k,z∈U,因a为f(z)的至少n阶零点,又为ϕ(z)的n阶零点,故当k≤n – 1时,f(k)(a) = ϕ(k)(a) = 0,且ϕ(n)(a) ≠ 0.因∀k∈ ,c k = f(k)(a)/k!,d k = ϕ(k)(a)/k!;故当k≤n – 1时,c k = d k = 0,且d n≠ 0.因此,f(z) = ∑k≥n c k (z–a) k,ϕ(z) = ∑k≥n d k (z–a) k.注意到幂级数c n + c n + 1 z+ c n + 2 z2 + ...以及幂级数d n + d n + 1 z+ d n + 2 z2 + ...都在U 内收敛,设它们的和函数分别为f1(z), ϕ1(z).则f(z) = (z–a)m f1(z),ϕ(z) = (z–a)nϕ1(z) ( z∈U ),且f1(a) = c n,ϕ1(a) = d n ≠ 0.所以,lim x→a f(z)/ϕ(z) = lim x→a f1(z)/ϕ1(z) = f1(a)/ϕ1(a) = c n/d n = f(n)(a)/ϕ(n)(a).12. 设f(z)在区域D内解析;在某一点z0∈D有f(n)(z0) = 0,n = 1, 2, ....试证f(z)在D内必为常数.【解】设U = { z∈ | | z–z0| < R}⊆D,则f(z)在U内能展成(z–z0)的幂级数f(z) = ∑k≥ 0 c k (z–z0) k,其中c k = f(k)(z0)/k!.因为f(k)(z0) = 0,k = 1, 2, ....故c k = 0,k = 1, 2, ....因此f(z)在U内恒为常数c0.由唯一性定理,f(z)在区域D内恒为常数c0.13. (最小模原理)若区域D内不恒为常数的解析函数f(z)在D内的点z0有f(z0) ≠ 0,则| f(z0) |不可能是| f(z) |在区域D内的最小值,试证之.【解】存在z0的邻域U = { z∈ | | z–z0| < R}⊆D,使得f(z)在U内恒不为零.倘若| f(z0) |是| f(z) |在区域D内的最小值,则| f(z0) |是| f(z) |在U内的最小值.那么,| 1/f(z0) |是| 1/f(z) |在U内的最大值.而1/f(z)在U内解析,由最大模原理,1/f(z)在U内恒为常数.故f(z)在U内也恒为常数.由唯一性定理,f(z)在区域D内也恒为常数,这与题目的条件相矛盾.所以| f(z0) |不可能是| f(z) |在区域D内的最小值.14. 设D是周线C的内部,函数f(z)在区域D内解析,在闭域cl(D) = D⋂C上连续,其模| f(z) |在C上为常数.试证:若f(z)不恒等于一个常数,则f(z)在D内至少有一个零点.【解】因f(z)在cl(D)上连续,故| f(z) |在cl(D)有最大值,即存在z0∈cl(D),使得| f(z0) | = max z∈cl(D) | f(z) |.因连续函数f(z)在闭域cl(D)上不恒为常数,故f(z)在D上也不恒为常数.由最大模原理,∀z∈D,有| f(z) | < | f(z0) |.因此z0∈∂D = C.设| f(z) |在C上为常数m,则m = | f(z0) | > 0.(反证法)若f(z)在D内恒不为零,则1/f(z)在D内解析.而在周线C上,| f(z) | = m > 0.故1/f(z)在cl(D)上连续.因1/f(z)在D内不恒为常数,因此1/f(z)也满足f(z)所满足的条件.由最大模原理,对∀z∈D,| 1/f(z) | < 1/m.由此得到m < | f(z) | < m,矛盾.[从本题的证明中可以看出,用最大模原理,可以得到如下结论:设f(z)在区域D 内解析,在cl(D)连续且不恒为常数,若| f(z) |在cl(D)上有最大值,那么| f(z) |在cl(D)上的最大值M必然在D的某个边界点取到,并且在D内总有| f(z) | < M.这时也必然有∂D ≠∅,max z∈cl(D) | f(z) | = max z∈∂D| f(z) |.我们特别强调的是条件“| f(z) |在cl(D)上有最大值”.这点对有界区域D来说,因| f(z) |是紧集cl(D)上的连续函数,因此| f(z) |在cl(D)上总是有最大值的.例如本题中的区域D是周线C的内部,当然就是有界集.但当D是无界区域时,有可能| f(z) |在cl(D)上没有最大值,也有可能∂D = ∅.另外,我们还用到了一个从分析的角度看来是很明显的结论:若f(z)在闭域cl(D)连续且不恒为常数,则f(z)在D上也不恒为常数.]p178第四章习题(二)[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ]1. 设级数∑n≥ 1f n(z)在点集E上一致收敛于f(z),且在E上| g(z) | < M ( M < +∞),则级数∑n≥ 1g(z)f n(z)在E上一致收敛于g(z) ·f(z).试证之.【解】∀ε > 0,∃N∈ +,使得当n > N时,∀z∈E,| ∑ 1 ≤k≤n f k(z) -f(z) | < ε/M.此时,| ∑ 1 ≤k≤n g(z)f k(z) -g(z) ·f(z) | = | g(z) | · | ∑ 1 ≤k≤n f k(z) -f(z) | < M ·ε/M = ε.所以级数∑n≥ 1g(z)f n(z)在E上一致收敛于g(z) ·f(z).2. 试证:在单位圆| z | < 1内,级数z + (z 2–z) + (z 3–z 2) + ... + (z n–z n– 1) + ... 收敛于函数f(z) ≡ 0,但它并不是一致收敛的.【解】当| z | < 1时,| S n(z) | = | ∑ 1 ≤k≤n (z k–z k– 1) | = | z |n → 0 ( n→∞ ).故级数在单位圆| z | < 1内收敛于函数f(z) ≡ 0.而∀n∈ +,在z = (1/2)1/n处,有| ∑n + 1 ≤k≤ 2n (z k–z k– 1) | = | z 2n–z n | = | ( z n)2–z n | = | 1/4 – 1/2 | = 1/4.因此级数在| z | < 1内不是一致收敛的.或取z n= 1 – 1/n,则| S n(z n) – 0 | = ( 1 – 1/n )n→ 1/e ( n→∞ ).因此级数在| z | < 1内不是一致收敛的.3. 试证(1) 如果∑n≥ 1v n(z) = δ绝对收敛,则| δ| ≤∑n≥ 1 | v n(z) |.(2) 对任一复数z,| e z– 1 | ≤ e | z |– 1 ≤ | z | e | z |.(3) 当0 < | z | < 1时,| z |/4 < | e z– 1 | < 7| z |/4.【解】(1) | ∑ 1 ≤k≤n v k(z) | ≤∑ 1 ≤k≤n | v k(z) | ≤∑k≥ 1 | v k(z) |.令n →∞得| δ| ≤∑k≥ 1 | v k(z) |.(2) 对任一复数z,e z– 1 = ∑n≥ 1z n/n!,其中右边的级数绝对收敛.根据(1)我们有| e z– 1| ≤∑n≥ 1 | z n/n! | = ∑n≥ 1 | z | n/n! = e | z |– 1.而e | z | = ∑n≥ 0 | z | n/n! = 1 + ∑n≥ 1 | z | n/n! = 1 + | z | ∑n≥ 1 | z | n – 1/n!≤ 1 + | z | ∑n≥ 1 | z | n – 1/(n – 1)! = 1 + e | z |,即e | z |– 1 ≤ | z | e | z |.(3) 当0 < | z | < 1时,注意到∑n≥ 1 | z | n – 1/n! ≤∑n≥ 1 1/n! = e - 1 < 7/4,因此有e | z |– 1 = | z | ∑n≥ 1 | z | n – 1/n! < 7| z |/4.因e z– 1 = ∑n≥ 1z n/n!,故(e z– 1)/z = ∑n≥ 0z n/(n + 1)! = 1 + ∑n≥ 1z n/(n + 1)!,而| ∑n≥ 1z n/(n + 1)! | ≤∑n≥ 1 | z |n/(n + 1)! ≤∑n≥ 1 1/(n + 1)! = e - 2.所以,| (e z– 1)/z | ≥ 1 - | ∑n≥ 1z n/(n + 1)! | ≥ 1 – (e - 2) = 3 - e > 1/4.故| z |/4 < | e z– 1 |.[注意(2)中e | z |– 1 ≤ | z | e | z |实际上是关于实数| z |的不等式,用数学分析容易得到∀t∈ ,e t≥ 1 + t.令t = – | z |,则e– | z |≥ 1 – | z |,即e | z |– 1 ≤ | z | e | z |.]4. 设f(z) = ∑n≥ 0a n z n (a0≠ 0)的收敛半径R > 0,且M = max | z | ≤ρ| f(z)| ( ρ< R ).试证:在圆| z | < | a0 |ρ/(| a0 | + M)内,f(z)无零点.【解】在Cauchy不等式,| f(n)(0) | ≤n! M/ρ n,故| a n| ≤M/ρ n.若| z | < ρ,| f(z) -a0 | = | ∑n≥ 1a n z n | ≤∑n≥ 1 | a n | | z | n≤∑n≥ 1M/ρ n · | z | n= M ∑n≥ 1 (| z |/ρ)n = M | z |/ρ· 1/(1 - | z |/ρ) = M | z |/(ρ- | z |).当| z | < | a0 |ρ/(| a0 | + M)时,有| z | < ρ,并注意到函数g(t) = t/(ρ-t) = ρ/(ρ-t) - 1在区间(0, ρ)上是严格单调增的,就得到,| f(z) -a0 | ≤M | z |/(ρ- | z |)< M | a0 |ρ/(| a0 | + M) · 1/(ρ- | a0 |ρ/(| a0 | + M))= M | a0 |ρ · 1/(ρM) = | a0 |.故| f(z) | ≥ | a0 | - | f(z) -a0 | > 0,所以,f(z)在圆| z | < | a0 |ρ/(| a0 | + M)内无零点.5. 设在| z | < R内解析的函数f(z)有Taylor展式∑n≥ 0a n z n.试证:当0 ≤ r < R时,(1/(2π))⎰[0, 2π] | f(r e iθ)|2dθ= ∑n≥ 0 | a n |2r2n.【解】当| z | = r时,因为∑n≥ 0a n z n绝对收敛,故∑n≥ 0 | a n | · | z | n收敛.即∑n≥ 0 | a n | ·r n收敛,.故∑n≥ 0a n*(z*) n也绝对收敛.由Cauchy乘积定理,∑n≥ 0 | a n | ·r n与∑n≥ 0 | a n | ·r n的Cauchy乘积∑n≥ 0d n绝对收敛,其中d n = ∑ 0 ≤k≤n | a k | · | a n – k | r n.设∑n≥ 0a n z n的部分和为S n(z),则∑n≥ 0a n*(z*) n的部分和为(S n(z))*,所以∑n≥ 0a n*(z*) n和为( f(z))*,即( f(z))*= ∑n≥ 0a n*(z*) n.由Cauchy乘积定理,∑n≥ 0a n z n与∑n≥ 0a n (z*) n的Cauchy乘积∑n≥ 0c n(z)绝对收敛于f(z) · ( f(z))* = | f(z)|2,其中c n(z) = ∑ 0 ≤k≤n a k z k·a n – k*(z*)n – k.因| c n(z) | = | ∑ 0 ≤k≤n a k z k·a n – k*(z*)n – k | ≤∑ 0 ≤k≤n | a k z k·a n – k*(z*)n – k | = d n,故∑n≥ 0c n(z)在| z | = r上一致收敛于| f(z)|2.设z = r e iθ,把| f(z)|2,c n(z)等都看成θ的函数(θ∈[0, 2π]),那么它们都是连续的.并且,∑n≥ 0c n(z(θ))在[0, 2π]上一致收敛于| f(z(θ))|2.故⎰[0, 2π] | f(z(θ))|2dθ= ∑n≥ 0⎰[0, 2π]c n(z(θ))dθ.因为在| z | = r上有z ·z* = r2,故c n(z) = ∑ 0 ≤k≤n a k z k·a n – k*(z*)n – k = ∑ 0 ≤k≤n a k z k·a n – k*(r2/z)n – k= ∑ 0 ≤k≤n a k z k·a n – k*r2(n – k) ·z k – n = ∑ 0 ≤k≤n (a k a n – k* ·r2(n – k))·z2k – n.故⎰[0, 2π] c n(z(θ)) dθ = ⎰[0, 2π] c n(z(θ)) d(z(θ))/z’(θ)= ⎰[0, 2π] c n(z(θ)) · 1/(r i e iθ)·d(z(θ)) = (1/i)⎰[0, 2π] c n(z(θ)) ·z(θ) –1·d(z(θ))= (1/i)⎰| z | = r c n(z) ·z –1·dz = (1/i)⎰| z | = r(∑ 0 ≤k≤n (a k a n – k* ·r2(n – k))·z2k – n – 1·dz.若n为奇数,则∑ 0 ≤k≤n (a k a n – k* ·r2(n – k))·z2k – n – 1中没有z–1项,因此⎰[0, 2π] c n(z(θ)) dθ = 0.若n为偶数2m,则⎰[0, 2π] c n(z(θ)) dθ= (1/i)⎰| z | = r(∑ 0 ≤k≤ 2m (a k a2m – k* ·r2(2m – k))·z2k –2m – 1·dz= (1/i)⎰| z | = r(a m a2m – m* ·r2(2m – m))·z– 1·dz= (1/i) (2πi) (a m a m*)·r2m = (2π) | a m |2 ·r2m,所以,⎰[0, 2π] | f(r e iθ)|2dθ= (2π) ∑m≥ 0 | a m |2 ·r2m.[这里我们用到了一个想法,把对实变量θ的积分,转化为对复数z的积分,是通过把θ作为积分变量z所在的曲线的参数来实现的.这种办法在后面的章节将会系统地给出.]6. 设f(z)是一个整函数,且假定存在着一个非负整数n,以及两个正数R与M,使当| z | ≥R时,| f(z) | ≤M | z |n.证明:f(z)是一个至多n次的多项式或一常数.【解】取r > R,考虑圆周| z | = r,由Cauchy不等式,当m > n时,| f(m)(0)/m! | ≤M r n/r m,令r → +∞,得f(m)(0) = 0.故f(z)在原点的Taylor展式为f(z) = ∑0 ≤k≤n f(k)(0)/k! ·z k.因此f(z)是一个至多n次的多项式或一常数.7. 设(1)f(z)在邻域K : | z–a | < R内解析,a是f(z)的m阶零点;(2)b≠a,b∈K.问函数F(z) = ⎰[a, z] f(ζ)dζ及函数Φ(z) = ⎰[b, z] f(ζ)dζ在点a的性质如何?(这里的积分路径都假定在K内.)【解】∀z∈K,我们有F’(z) = f(z),Φ’(z) = f(z).因此,F’(a) = ... = F(m )(a) = 0,F(m + 1)(a) ≠ 0,且F(a) = 0,故a是F(z)的m + 1阶零点.也有Φ’(a) = ... = Φ(m )(a) = 0,Φ(m + 1)(a) ≠ 0,但不一定有Φ(a) = 0.因此,a是Φ’(z)的m阶零点.[此题题意不够明确,可能是属于所谓的开放性问题或探究性问题.似乎放在积分部分更合适,当然在这里也可以用幂级数来作.]8. 设(1) 区域D含有实轴的一段L;(2) 函数u(x, y) + i v(x, y)及u(z, 0) + i v(z, 0) (z = x + i y )都在区域D内解析.试证在D内u(x, y) + i v(x, y) ≡u(z, 0) + i v(z, 0).【解】这两个函数在L上的限制都是u(x, 0) + i v(x, 0),因此它们在L上的限制相同.由唯一性定理,这两个函数在区域D内是完全相同的.[思考:究竟u, v是定义那个集合上的函数?]9. 设(1) 函数f(z)在区域D内解析,且不恒为常数;(2) 设C为D内任一周线,cl(I(C)) ⊆D;(3) A为任一复数.试证f(z) = A在C的内部I(C)内只有有限个根.【解】设g(z) = f(z) -A,则g(z)在区域D内解析,且不恒为常数;我们来证明g(z)在I(C)内只有有限个零点.注意到I(C)是有界集,因此cl(I(C))也是有界集,且cl(I(C))是闭集.倘若g(z)在I(C)内有无穷多个零点,那么,根据聚点原理,这些零点构成的集合Z必有聚点.而cl(I(C))是闭集,故Z的聚点仍在cl(I(C))内,因此也在D内.由唯一性定理,g(z)在区域D内为常数,矛盾.故g(z)在I(C)内只有有限个零点,即f(z) = A在C的内部I(C)内只有有限个根.10. 问| e z |在闭圆| z–z0 | ≤ 1上的何处达到最大?并求出最大值.【解】因e z 在圆| z–z0 | < 1内不恒为常数,故| e z |在圆| z–z0 | < 1内无最大值.因此,| e z |在闭圆| z–z0 | ≤ 1上最大值必然在边界| z–z0 | = 1上达到.设z0 = a + i b,a, b∈ .设z–z0 = x + i y,x, y∈ .在| z–z0 | = 1上,x, y满足x2 + y2 = 1.| e z | = | e a + i b · e x + i y | = | e a + i b | · | e x + i y | = e a · e x.故当x = 1时(此时y = 0),| e z |最大,且最大值为e a + 1.因此,| e z |在点z0 + 1处达到最大值,且最大值为e a + 1.11. 设函数f(z)在| z | < R内解析,令M(r) = max | z | = r | f(z) | ( 0 ≤r < R).试证:M(r)在区间[0, R)上是一个上升函数,且若存在r1及r2 (0 ≤r1 < r2 < R),使得M(r1) = M(r2),则f(z)在| z | < R内是常数.【解】只要证明若f(z)在| z | < R内不恒为常数,则M(r)在[0, R)上严格单调增.∀r, s∈[0, R),r < s.若r = 0,则M(r) = | f(0) |.因f(z)在| z | < s内不恒为常数(否则f(z)在| z | < R内恒为常数),由最大模原理,满足| a | < s的点a不是| f(z) |在| z | < s内的最大值点.因此| f(a) |更不是| f(z) |在| z | ≤s上的最大值点.| f(z) |在| z | ≤s上的最大值必然在边界| z | = s上达到.所以M(s) = max | z | = s | f(z) | > | f(a) |.特别地,取a = 0,就有M(s) > | f(a) | = M(r).若r > 0,设a满足| z | = r,| f(a) | = M(r).与前面同样的论证,知M(s) = max | z | = s | f(z) | > | f(a) | = M(r).故M(r)在[0, R)上严格单调增.。
复变函数习题总汇与参考答案
复变函数习题总汇与参考答案第1章 复数与复变函数一、单项选择题1、假设Z 1=〔a, b 〕,Z 2=(c, d),那么Z 1·Z 2=〔C 〕 A 〔ac+bd, a 〕 B (ac-bd, b) C 〔ac-bd, ac+bd 〕 D (ac+bd, bc-ad)2、假设R>0,那么N 〔∞,R 〕={ z :〔D 〕} A |z|<R B 0<|z|<R C R<|z|<+∞ D |z|>R3、假设z=x+iy, 那么y=(D)A B C D4、假设A= ,那么|A|=〔C 〕A 3B 0C 1D 2二、填空题1、假设z=x+iy, w=z 2=u+iv, 那么v=〔 2xy 〕2、复平面上满足Rez=4的点集为〔 {z=x+iy|x=4} 〕3、〔 设E 为点集,假设它是开集,且是连通的,那么E 〕称为区域。
2zz +2z z -iz z 2+iz z 2-)1)(4()1)(4(i i i i +--+4、设z 0=x 0+iy 0, z n =x n +iy n (n=1,2,……),那么{z n }以z o 为极限的充分必要条件是 x n =x 0,且 y n =y 0。
三、计算题1、求复数-1-i 的实部、虚部、模与主辐角。
解:Re(-1-i)=-1 Im(-1-i)=-1 |-1-i|=2、写出复数-i 的三角式。
解:3、写出复数 的代数式。
解:4、求根式 的值。
+∞→n lim +∞→n limππ45|11|arctan ),1(12)1()1(=--+=--∴--=-+-i ary i 在第三象限 ππ23sin 23cos i i +=-i i i i i i i i i i i i i i i 212312121)1()1)(1()1(11--=--+-=⋅-++-+=-+-ii i i -+-11327-解:四、证明题1、证明假设 ,那么a 2+b 2=1。
复变函数习题及答案
第一章习题一、选择题1.设z=3+4i,,则Re z2=( )A.-7 B.9C.16 D.252.arg(2-2i)=()A. B.C. D.3.设0<t≤2,则下列方程中表示圆周的是( )A.z=(1+i)t B.z=e it+2iC.z=t+D.z=2cost+i3sint4.复数方程z=3t+it表示的曲线是()A.直线B.圆周C.椭圆D.双曲线5.复方程所表示的曲线为________.. 直线;.抛物线;.双曲线;.圆二、填空题1. 设点,则其辐角主值arg z (-π<arg)为_______.2.设点, 则其辐角主值arg z (-π<arg)为_______.3.若,则=___________.4.arg(1+i)= .5.复数的模为_____, 幅角主值为_______.6.复数的模为_________,辐角为____________.7.设z=x+iy, 则曲线|z-1|=1的直角坐标方程为.一.选择1.下列集合为无界多连通区域的是()A.0<|z-3i|<1B.Imz>πC.|z+ie|>4D.二、填空1.设,则Imz=______________________。
三、计算题1.解方程z4=.2. 考察函数在处的极限。
复变函数第一章单元测试题一、判断题(正确打√,错误打)1.复数. ( )2.若为纯虚数,则. ( )3.。
()4.在点连续的充分必要条件是在点连续。
()5.参数方程(为实参数)所表示的曲线是抛物线. ( )二、填空题1.若等式成立,则______, _______.2.方程表示的曲线是__________________________.3.方程的根为_________________________________.4.复变函数的实部_________,虚部_________.5.设,,则= _ _____.6.复数的三角表示式为_________________,指数表示式为_________________.三、计算、证明题1.求出复数的模和辐角。
复变函数(4.1.3)--复数项级数
1. 设幂函数()f z a 取ln ()e f z a 的分支,则极限i lim(1)n n nᆴᆴ+=( ).(A )不存在 (B )1 (C )cos1sin1i + (D )e2. 极限2i lim 1n n n n iᆴᆴ+=-( ).(A )12i -+ (B )12i + (C )2i + (D )ᆴ3. 级数i 211e n n n pᆴ=ᆴ的收敛性为( ).(A )通项不趋于0 (B )通项趋于0,发散 (C )绝对收敛 (D )条件收敛4. 级数1i sinn n n ᆴ=ᆴ为( ).(A )通项不趋于0 (B )条件收敛 (C )通项趋于0但发散 (D )绝对收敛5. 级数12sin(i )nn n ᆴ=ᆴ收敛性为( ). (A )绝对收敛 (B )通项不趋于0 (C )通项趋于0但发散 (D )条件收敛参考解答:1. 解 选(C ). lim ln(1)i lim(1)e n i n n n n nᆴᆴ+ᆴᆴ+=而 2i 11ln(1)ln(1)arctan 2i n n n1+=++故 2i 11lim ln(1)lim ln(1)lim i arctan i 2n n n n n n n n nᆴᆴᆴᆴᆴᆴ+=++=故 i lim(1)e cos1sin1.n i n i nᆴᆴ+==+ lim 0n n z ᆴᆴ=的的的的的的的lim ||0n n z ᆴᆴ=.2. 解 选(A). 2i 2i limlim 12i.11i i n n n n n n ᆴᆴᆴᆴ++==-+-- 3. 解 选(D ). 由i2e (i)n n p =,当41n k =+为(0,1,2,),43i k n k ==+L 为i -;42n k =+为1,4(1)n k -=+为1,故此级数可分为两个交错级数:实部为1(1)2k k k ᆴ=-ᆴ;虚部为0(1)21kk k ᆴ=-+ᆴ,均条件收敛.故此级数条件收敛. 的的的的的的的的的的的的的的的的的的的的的的的的的的的的的的. sin ~,n na a a 的的的0的的的的. 4. 解 选(D ). 由i 111sinish sh ~n n n n ==,故级数绝对收敛. sin n 的的的的sin(i)n 的的的sin(i)n 的e n 的的的的的的的的().n ᆴᆴ5. 解 选(A ).e e sin()ish i 2n nin n --==,故此级数绝对收敛.。
复变函数课后习题答案(全)之欧阳法创编
习题一答案2. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+ (2)(1)(2)i i i -- (3)131i i i -- (4)8214i i i -+- 解:(1)1323213i z i -==+, 因此:32Re , Im 1313z z ==-, (2)3(1)(2)1310i i i z i i i -+===---, 因此,31Re , Im 1010z z =-=, (3)133335122i i i z i i i --=-=-+=-, 因此,35Re , Im 32z z ==-, (4)82141413z i i i i i i =-+-=-+-=-+因此,Re 1, Im 3z z =-=,3. 将下列复数化为三角表达式和指数表达式:(1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cos sin 22ii i e πππ=+= (2)1-+23222(cos sin )233i i e πππ=+= (3)(sin cos )r i θθ+()2[cos()sin()]22i r i re πθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 4. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- (5(6)解:(1)5)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- (5= (6=5.设12 ,z z i ==-试用三角形式表示12z z 与12z z 解:12cossin , 2[cos()sin()]4466z i z i ππππ=+=-+-,所以 12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,6. 解下列方程:(1)5()1z i += (2)440 (0)z a a +=> 解:(1)z i += 由此25k iz i e iπ=-=-,(0,1,2,3,4)k=(2)z==11[cos(2)sin(2)]44a k i kππππ=+++,当0,1,2,3k=时,对应的4个根分别为:),1),1),)i i i i+-+---7.证明下列各题:(1)设,z x iy=+则z x y≤≤+证明:首先,显然有z x y=≤+;其次,因222,x y x y+≥固此有2222()(),x y x y+≥+从而z=≥。
复变函数课后答案习题四解答
in ;
n=1 n
n=2 ln n
∑ ∑ 3)
∞ n=1
(6+5i)n 8n
;
4)
∞ n=2
cos in 2n
。
∑ ∑ 解
1)由 in = cos nπ
+ i sin nπ
,
∞
cos nπ 2
与
∞
sin nπ 2
为收敛的交错项实级数,
2
2 n=1 n
n=1 n
∑ ∑ 所以 ∞ in 收敛,但 in = 1 ,故 ∞ in 发散,原级数条件收敛;
n→∞ n
2
= 0, lim 1 sin n→∞ n
nπ 2
=0,
故
α
n
收敛,
lim
n→∞
α
n
=
0
2.证明:
⎧0,
|α |<1,
limα n
n→∞
=
⎪⎪∞, ⎨⎪1,
|α |>1, α = 1,
⎪⎩不存在, |α|=1,α ≠ 1.
3.判断下列级数的绝对收敛性与收敛性:
∑ ∑ 1) ∞ in ;
∞
2)
,而
lim
n→∞
chn 2n
≠
0
,故
∞ n=2
cos in 2n
发散。
4.下列说法是否正确?为什么?
(1)每一个幂级数在它的收敛圆周上处处收敛;
(2)每一个幂级数的和函数在收敛圆内可能有奇点;
(3)每一个在 z0 连续的函数一定可以在 z0 的邻域内展开成 Taylor 级数。
∞
∑ 解(1)不对。如 zn 在收敛圆 z < 1内收敛,但在收敛圆周 z = 1上并不收敛; n=0
复变函数—课后答案习题四解答
习题四解答1.下列数列{}n α是否收敛?如果收敛,求出它们的极限:1)1i 1i n n n α+=−;2)i 1;2nn α−⎛⎞=+⎜⎟⎝⎠3)i (1);1nn n α=−++4);5)i /2n n e πα−=i /21n n e nπα−=解 1)2221i 12i 1i 11n n n n n n n α+−==+−++,又2212lim 1,lim 011n n n nn n→∞→∞−2=−=++n ,故α收敛,lim 1n n α→∞=−2)i 12n ni n θα−−⎞⎛⎞=+=⎜⎟⎟⎝⎠⎠,又lim 0ni n θ−→∞⎞=⎟⎠,故n α收敛,lim 0n n α→∞= 3)由于n α的实部{}(1)n−发散,故nα发散4)由于i /2cosisin 22n n n n e πππα−==−,其实部、虚部数列均发散,故n α发散 5)i /2111cos i sin 22n n n n en n n πππα−==−,知11lim cos 0,lim sin 022n n n n n n ππ→∞→∞==,故n α收敛,lim 0n n α→∞=2.证明:0,||<1,,||>1,lim 1,1,||=1, 1.n n αααααα→∞⎧⎪∞⎪=⎨=⎪⎪≠⎩不存在, 3.判断下列级数的绝对收敛性与收敛性:1)1i n n n ∞=∑; 2)2i ln nn n ∞=∑; 3)1(6+5i)8nn n ∞=∑; 4)2cosi 2nn n ∞=∑。
解 1)由i cosisin 22nn n ππ=+,1cos2n n n π∞=∑与1sin 2n n n π∞=∑为收敛的交错项实级数,所以1i n n n ∞=∑收敛,但i 1n n n =,故1i nn n∞=∑发散,原级数条件收敛;2)与1)采用同样的方法,并利用11(2ln n n n≥≥); 3)因(6+5i)88nnn ⎛⎞=⎜⎜⎝⎠⎟⎟,而18nn ∞=⎛⎞⎜⎟⎜⎟⎝⎠∑收敛,故1(6+5i)8nn n ∞=∑绝对收敛; 4)因,而cosi ch n =n ch lim 02n n n →∞≠,故2cosi 2n n n∞=∑发散。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章习题详解
1.下列数列a是否收敛?如果收敛,求出它们的极限:
n
1)a n 1
1
ni
mi
;
2) a n
n
i
1;
2
3)a
i
n
n1;
n1
4)
ni
2 a n e;
1ni
a n e。
n
5)2
0,a1
2.证明:lim
n a
n
1
,
,
a
a1
1
不存在,a1,a1
3.判别下列级数的绝对收敛性与收敛性:n
i
1)
;n
n1
n
i
2)
;ln n
n2
3)
65i
n
08
n;
4)
n
cos
02
n
in。
4.下列说法是否正确?为什么?
1)每一个幂级数在它的收敛圆周上处处收敛;
1
2)每一个幂级数的和函数在收敛圆内可能有奇点;
3)每一个在z连续的函数一定可以在z
0的邻域内展开成泰勒级数。
5.幂级数
n
c能否在z0收敛而在z3发散?
n z2
n0
6.求下列幂级数的收敛半径:
1)
n1
n
z
p
n
(p为正整数);
2
n!
n
2)z
;
n
nn1
3) 1
n
n iz;
n0
4)
i
n
ez;
n
n1
5)
n1
i
n chz1;
n
nz
6)。
ln in
n1
7.如果
n
c n z的收敛半径为R,证明
n
Re的收敛半径R。
[提示:
c n z
n
n
Re c n zcz]
n
n0n0
8.证明:如果
c
n1
lim存在,下列三个幂级数有相同的收敛半径
nc
n
n
c n z;
c
n1z
n1
n1
;
n1 nc n z。
2
9.设级数c收敛,而
n c发散,证明
n
n
c n z的收敛半径为1。
n0n0n0
10.如果级数
n
c n z在它的收敛圆的圆周上一点z0处绝对收敛,证明它在收敛圆所围的闭区域上绝对收n0
敛。
11.把下列各函数展开成z的幂级数,并指出它们的收敛半径:
1)
11
3
z
;
2)
11
z
22
;
3)
2 cos z;
4)shz;
5)chz;
6)e
2
z sin;
2
z z
7)
z1 e;
8)
1 sin。
1z
12.求下列各函数在指定点z处的泰勒展开式,并指出它们的收敛半
径:
1) z
z
1
1
,z1;
2)
z
z
1z2
,z2;
3
3) 1
2
z
,z1;
4)
1
43z
,z01i;
5)tgz;z;
4
6)arctgz;0
z。
13.为什么在区域zR内解析且在区间R,R取实数值的函数fz展开成z的幂级数时,展开式的系数都是实数?
14.证明在fz
1
cos以z的各幂表出的洛朗展开式中的各系数为z
z
c
1
2
n cos2coscos nd,n0,1,2,。
[提示:在公式4.4.8中,取C为z1,2
在此圆上设积分变量
i
e。
然后证明c n的积分的虚部等于零。
]
15.下列结论是否正确?
用长除法得
1z
z
zz
23
z z
4
z z111
1
23 1zzz
zz
因为0
1zz1
111234
所以21zzzz0
3
zzz
16.把下列各函数在指定的圆环域内展开成洛朗级数:
1)
z 2
1
1z2
,1z2;
4
1
2),1z1,0z11;
2
z1z
1 3),0z11,1z2;
z1z2
1
1z
4)e,1z;
5)
z 2
1
z i
,在以i为中心的圆环域
内;
6)
1
sin,在z1的去心邻域内;
1z
z1z2
7),3z4,4z。
z3z4
1
17.函数能否在圆环域0zR0R展开成洛朗级数?为什么?
tg
z
2
18.如果k为满足关系k1的实数,证明
sin n
k sin n1
2
12k cos kn0
cos kn
k cos n1
2
12k cos kn0
[提示:对zk展开
1
zk成洛朗级数,并在展开式的结果中置
i
ze,再令两边的实部与实部
相等,虚部与虚部相等。
]
19.如果C为正向圆周z3,求积分fzdz的值。
设fz为:
C
1
1)
;zz2
5
WORD格式可编辑
z2
2)
;z1z
1
3)
;
2
zz1
z
4)。
z1z2
20.试求积分z ndz的值,其中C为单位圆z1内的任何一条不经过原点的简单闭曲线。
Cn2
WORD格式可编辑
6
专业知识整理分享。