《复变函数》-期末试卷及答案(A卷)
复变函数_期末试卷及答案
一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.下列复数中,位于第三象限的复数是( )A. 12i +B. 12i --C. 12i -D. 12i -+ 2.下列等式中,不成立的等式是( ) 3.下列命题中,正确..的是( ) A. 1z >表示圆的内部B. Re()0z >表示上半平面C. 0arg 4z π<<表示角形区域D. Im()0z <表示上半平面4.关于0limz zz zω→=+下列命题正确的是( ) A.0ω=B. ω不存在C.1ω=-D.1ω=5.下列函数中,在整个复平面上解析的函数是( ) 6.在复平面上,下列命题中,正确..的是( )A. cos z 是有界函数B. 22Lnz Lnz =7.在下列复数中,使得ze i =成立的是( ) 8.已知31z i =+,则下列正确的是( ) 9.积分||342z dz z =-⎰的值为( )A. 8i πB.2C. 2i πD. 4i π10.设C 为正向圆周||4z =, 则10()zC e dz z i π-⎰等于( ) A.110!B.210!iπ C.29!iπ D.29!iπ- 11.以下关于级数的命题不正确的是( )A.级数0327nn i ∞=+⎛⎫⎪⎝⎭∑是绝对收敛的B.级数212(1)n n in n ∞=⎛⎫+ ⎪-⎝⎭∑是收敛的 C. 在收敛圆内,幂级数绝对收敛D.在收敛圆周上,条件收敛12.0=z 是函数(1cos )ze z z -的( )A. 可去奇点B.一级极点C.二级极点D. 三级极点13.1(2)z z -在点 z =∞ 处的留数为( )A. 0.1BC.12D. 12-14.设C 为正向圆周1||=z , 则积分 sin z c e dzz⎰等于( )A .2πB .2πiC .0D .-2π 15.已知()[()]F f t ω=F ,则下列命题正确的是( ) A. 2[(2)]()j f t eF ωω-=⋅FB. 21()[(2)]j ef t F ωω-⋅=+FC. [(2)]2(2)f t F ω=FD. 2[()](2)jte f t F ω⋅=-F二、填空题(本大题共5小题,每小题2分,共10分) 16. 设121,1z i z =-=,求12z z ⎛⎫=⎪⎝⎭____________. 17. 已知22()()()f z bx y x i axy y =++++在复平面上可导,则a b +=_________. 18. 设函数)(z f =cos zt tdt ⎰,则)(z f 等于____________.19. 幂极数n n2n 1(2)z n ∞=-∑的收敛半径为_______. 20. 设3z ω=,则映射在01z i =+处的旋转角为____________,伸缩率为____________. 20. 设函数2()sin f t t t =,则()f t 的拉氏变换等于____________.三、计算题(本大题共4小题,每题7分,共28分) 21.设C 为从原点到3-4i 的直线段,计算积分[()2]CI x y xyi dz =-+⎰22. 设2()cos ze f z z z i=+-. (1)求)(z f 的解析区域,(2)求).(z f ' 24.已知22(,)4u x y x y x =-+,求一解析函数()(,)(,)f z u x y iv x y =+,并使(0)3f =。
复变函数期末试卷及答案
20**-20** 1 复变函数与积分变换(A 卷)(答案写在答题纸上,写在试题纸上无效)一、单项选择题(每小题3分,共30分) 1.设 复数1z i =-,则arg z =( )A .4π-B .4πC .34πD .54π 2.设z 为非零复数,,a b 为实数且z a bi z=+,则22a b +( )A .等于0B .等于1C .小于1D .大于1 3.函数()f z z =在0z =处( )A .解析B .可导C .不连续D .连续 4.设z x iy =+,则下列函数为解析的是( )A 22()2f z x y i xy =-+ B ()f z x iy =- C ()2f z x i y =+ D ()2f z x iy =+ 5.设C 为正向圆周||1z =,则积分Czdz =⎰( )A .6i πB .4i πC .2i πD .0 6. 设C 为正向圆周||1z =,则积分(2)Cdzz z =-⎰( ).A .i π-B .i πC .0D .2i π7. 设12,C C 分别是正向圆周||1z =与|2|1z -=,则积分121sin 222z C C e z dz dz i z z π⎛⎫+= ⎪--⎝⎭⎰⎰ A .2i π B .sin 2 C .0 D .cos2 8.幂级数1(1)nnn z i ∞=+∑的收敛半径为 ( ) A.0 B.12C. 2D. 2课程考试试题学期 学年 拟题人:校对人: 拟题学院(系): 适 用 专 业:9. 0z =是函数2(1)sin ()(1)z e zf z z z -=-的( ) A .本性奇点 B .可去奇点 C .一级极点 D .二级极点10.已知210(1)sin (21)!n n n z z n ∞+=-=+∑,则4sin Re [,0]zs z =( )A .1B .13!C .13!-D .1-二、填空题(每空3分,共15分)1 复数1i -+,的指数形式为__________。
复变函数历年考试真题试卷
河南理工大学 2009-2010 学年第 二 学期《复变函数论》试卷(A 卷)一、选择题(每题5分,共25分)⒈ 已知 8)11(ii z +-=,则223366-+z z 的值为( ) A. ;i - B. 1; C. ;i D. -1.⒉ 函数iv u z f w +==)(在点0z 处解析,则命题( )不成立A. v u ,仅在点0z 处可微且满足C-R 条件;B. 存在点0z 的某一邻域)(0z U ,v u ,在)(0z U 内满足C-R 条件;C. v u ,在)(0z U 内可微;D. B 与C 同时成立.3. 设11:=-z C ,则=+-⎰Cz z dz 33)1()1(( ) A. i 83π; B. i 83π-; C. i 43π; D. i 43π- 4. 若幂级数∑∞=-0)1(n n n z a 在3=z 发散,则它必在( )A. 1-=z 收敛;B. 23-=z 发散;C. 2=z 收敛;D. 以上全不正确5. =+-=)1)((1Re 2z i z s i z ( ) A.4i B. 4i - C. 41 D. 41- 二、 填空题(每题5分,共25分)1. =+6)1(i .2. 若z i e i = ,则=z Re .3. =++⎰=dz z z z 243)1(1 .4. 4. 幂级数()∑∞=-11n n n z i 的收敛半径为R= 5.=++⎰+∞∞-dx x x x 54cos 2 . 三、 计算题(每题10分,共40分)1、设y e vpx sin =,求p 的值使v 为调和函数,并求出解析函数iv u z f +=)(。
2、计算积分dz z z e I C z ⎰-=3)1(,其中C 为不经过点0与1的闭路。
3、求函数)1)(2(5222+-+-z z z z 在圆环域20<<z ,+∞<<z 2内的洛朗级数.4、求出332)(sin )2)(1()(z z z z f π--= 在扩充复平面内的所有奇点并指明其类型,极点请指出其阶数。
复变函数期末试题及答案
复变函数期末试题及答案一、选择题(每题5分,共20分)1. 若复数 \( z = a + bi \)(其中 \( a, b \) 为实数),则\( \bar{z} \) 表示()A. \( a - bi \)B. \( -a + bi \)C. \( -a - bi \)D. \( a + bi \)答案:A2. 对于复变函数 \( f(z) = u(x, y) + iv(x, y) \),以下说法正确的是()A. \( u \) 和 \( v \) 都是调和函数B. \( u \) 和 \( v \) 都是解析函数C. \( u \) 和 \( v \) 都是连续函数D. \( u \) 和 \( v \) 都是可微函数答案:A3. 若 \( f(z) \) 在 \( z_0 \) 处可导,则下列说法中正确的是()A. \( f(z) \) 在 \( z_0 \) 处解析B. \( f(z) \) 在 \( z_0 \) 处连续C. \( f(z) \) 在 \( z_0 \) 处可微D. \( f(z) \) 在 \( z_0 \) 处的导数为0答案:C4. 已知 \( f(z) \) 是解析函数,且 \( f(z) \) 在 \( z_0 \) 处有孤立奇点,则 \( f(z) \) 在 \( z_0 \) 处的留数是()A. 0B. \( \infty \)C. 1D. \( -1 \)答案:A二、填空题(每题5分,共20分)1. 若 \( z = x + yi \),且 \( |z| = 2 \),则 \( x^2 + y^2 = \_\_\_\_\_ \)。
答案:42. 设 \( f(z) = z^2 \),则 \( f(2 + 3i) = \_\_\_\_\_ \)。
答案:-5 + 12i3. 若 \( f(z) \) 在 \( z_0 \) 处解析,则 \( f(z) \) 在 \( z_0 \) 处的导数 \( f'(z_0) \) 等于 \_\_\_\_\_。
复变期末考试题及答案
复变期末考试题及答案复变函数期末考试题一、选择题(每题2分,共20分)1. 若复数 \( z = x + yi \),则 \( \overline{z} \) 是:A. \( x - yi \)B. \( -x - yi \)C. \( -x + yi \)D. \( x + yi \)2. 复平面上,单位圆上的点 \( z = e^{i\theta} \) 对应的实部是:A. \( \cos\theta \)B. \( \sin\theta \)C. \( \tan\theta \)D. \( \sec\theta \)3. 以下哪个是解析函数:A. \( f(z) = \frac{1}{z} \)B. \( f(z) = z^2 \)C. \( f(z) = \log z \)D. \( f(z) = \sin z \)4. Cauchy-Riemann方程是:A. \( \frac{\partial u}{\partial x} = \frac{\partialv}{\partial y} \)B. \( \frac{\partial u}{\partial y} = -\frac{\partialv}{\partial x} \)C. \( \frac{\partial u}{\partial x} = -\frac{\partialv}{\partial y} \)D. 所有选项5. 若 \( f(z) \) 在 \( z_0 \) 处可导,则下列哪个说法是正确的:A. \( f(z) \) 在 \( z_0 \) 处连续B. \( f(z) \) 在 \( z_0 \) 处可微C. \( f(z) \) 在 \( z_0 \) 处解析D. 以上都是...二、填空题(每空3分,共30分)1. 复数 \( z = 3 + 4i \) 的模是 _________。
2. 如果 \( f(z) = z^3 + 2z^2 + z \),则 \( f'(z) = _________ \)。
吉林师范成人教育《复变函数与积分变换试题》期末考试复习题及参考答案
吉林师范成人教育期末考试试卷《复变函数与积分变换》A 卷年级 专业 姓名 分数一、填空题(每空2分,共16分)1.复数-2是复数________的一个平方根。
2.设y 是实数,则sin(iy)的模为________。
3.设a>0,则Lna=________。
4.记号Res z=af(z)表示________。
5.设f(z)=u(x,y)+iv(x,y),如果________,则称f(z)满足柯西—黎曼条件。
6.方程z=t+i t(t 是实参数)给出的曲线为________。
7.设幂级数∑c z a n n n ()-=+∞∑0,在圆K:|z-a|<R 上收敛于f(z),则c n =______(n=0,1,…)。
8.cosz 在z=0的幂级数展式为________。
二、判断题(判断下列各题,正确的在题干后面的括号内打“√”,错误的打“×”。
每小题2分,共14分)1.lim z 0→e z =∞.( ) 2.设z 0为围线C 内部的一点,则∫c dz z z -0=2πi.( ) 3.若函数f(z)在围线C 上解析,则∫c f(z)dz=0.( )4.z=0是函数124-e z x的4级极点。
( )5.若z 0是f(z)的本性奇点,则z 0是f(z)的孤立奇点。
( )6.若f(z)在|z|≤1上连续,在|z|<1内解析,而在|z|=1上取值为1,则当|z|≤1时f(z)≡1.( )7.若f(z)与f(z)都在区域D 内解析,则f(z)在D 内必为常数。
( )三、完成下列各题(每小题5分,共30分)1.求复数z=1-i 1+i的实部、虚部、模和辐角。
2.试证:复平面上三点a+bi,0,1-a +bi 共直线。
3.计算积分∫c (x-y+ix 2)dz,积分路径C 是连接由0到1+i 的直线段。
4.说明函数f(z)=|z|在z 平面上任何点都不解析。
5.将函数z +1z (z -1)2在圆环1<|z|<+∞内展为罗朗级数。
复变函数A
武夷学院期末考试试卷( 2009 级 数学(本) 专业2010 ~20 11学年度 第 2 学期) 课程名称 复变函数论 A 卷 考试形式 闭卷 考核类型 考试 本试卷共 八 大题,卷面满分100分,答题时间120分钟。
一、选择题:(本大题共6小题,每小题3分,共18分)1.复数i 258-2516z =的辐角为( B )A .arctan 21 B .-arctan 21 C .π-arctan 21 D .π+arctan 212.设z=cosi ,则( A )A .Imz=0B .Rez=πC .|z|=0D .argz=π 3.复数i 3e +对应的点在( A )A .第一象限B .第二象限C .第三象限D .第四象限 4.设函数f(z)=⎰zd e 0ζζζ,则f (z )等于( D )A .1++z z e zeB .1-+z z e zeC .1-+-z z e ze D .1+-z z e ze 5.幂级数∑∞=1n 1-n n!z 的收敛区域为( B )A .+∞<<|z |0B .+∞<|z |C .-1|z |0<<D .1|z |<6.3z π=是函数f(z)=ππ-3z )3-sin(z 的( B ) A .一阶极点 B .可去奇点 C .一阶零点 D .本性奇点二、填空题:(每题3分,共21分)1.设函数()(,)(,)f z u x y iv x y =+,00A u iv =+,000z x iy =+,则0lim ()z z f z A →=的充要条件是_______00),(lim ,),(lim 000v y x v u y x u y y x x y y x x ==→→→→________________.2.计算:(1)_____31_____)2(222i dz z i-=+⎰+-- ;(2)_____1cosh 2_2cos 20=⎰+dz zi π3.设z a =为()f z 的极点,则lim ()z af z →=_______∞_____________. 4.设21()1f z z =+,则()f z 在0z =的邻域内的泰勒展式为_____1,)1(21<-∑∞=z z n n n ____________.5.=-==o z zz sf i z z e z f )(Re ,)()(42则π______54ππi -___________________. 6.函数)6(sin 6633-+z z z 在零点z=0的阶为 157.||Z e 在闭圆1||0≤-z z 的最大值=1Re 0+z e三、计算题(10分):验证22),(y xy x y x u -+=是调和函数,求以),(y x u 为实部的解析函数)(z f ,使之适合i i f +-=1)(分于是得代入分分有取定点于是积分与路径无关程因上式右端为全微分方则记为调和函数即故解方程1021)211()(21,1)(8)211()21()0,()0,()21221()(621221)2()()2()2(),0,0(.,)2()2(,)(.),(,0,2,2,2,2:22222222220),()0,0(0..-------------------+-==+-=-------------+-=+-+=+≡+++-+-+=+=-+++-=+++-=+++-=+++-=+-=====∂∂+∂∂=+==+-==-=+=⎰⎰⎰-i z i z f C i i f iC z i C z i z z iv z u C y xy x i y xy x iv u z f C y xy x C dy y x dx x dy y x dx y x v dyy x dx y x dy u dx u dy y v dx x v dv iv u z f y x u u u u u y x u y x u y y x x x y R C yy xx yy xx y x四.证明题:(12分)若iy x z +=, 试证:yx z y x i y x z 222sinh cos |cos |)2(;sinh .sin cosh .cos cos )1(+=-=分分解12sinh cos sinh sin )sinh 1(cos sinh sin cosh cos cos 6sinh sin cosh cos sin sin cos cos )cos(cos )1(:22222222222-----------------------------+=⋅++⋅=⋅+⋅=--------------------------------------⋅-⋅=⋅-⋅=+=y x y x y x y x y x z y x i y x iy x iy x iy x z五.证明题:(7分)1:,1||__=++=az b b az z 试证设分此即分由于解71||||4)Re(2||||)Re(2||||||)Re(2||||)Re(2||||||,1||:222222222222--------------=++⇒+=+----++=⋅++=+++=⋅++=+=-----=-------QED az b b az a z b b az z b a a b a z b a z b a z b z b a b a b az b az b az z六.计算题:(12分)将下列函数在指定圆环内内展开为洛郎级数.+∞<<<<-+||1,1||0,)1(12z z z z z 分时当分时解1221)1(21)/11121(1)121(1)1(1,1|1|0,||1621)121(1)1(1,1||0:03203222202222-----+=+=-⋅+=-+=-+<<∞<<--------=--=-+<<∑∑∑∞=+∞=∞=n n n n n nz z z zz z z zz zz z z zz zz z z zz z z z七. 计算题:(8分)ze z 111--类别判定下列函数的奇点及分为非孤立奇点点显然是这些极点的聚点点为原函数的一级极点分为原函数的可去奇点于是又由于或令分母解洛必达法则8.,;,24;021lim 11lim )1(1lim ,200)1()1(1111:*000*--------------------------------∞∞∈=-----------------------=-=++-=+--=====-+-∈=⇒=--+-=--→→→Z k i k z z ze e e e ze e e e z e z Z k i k z z e e z e z z e z z z z z z z z z z z z z z z z ππ 八. 计算题:(求下列积分, 12分))1(cos )2(sin )1(201||>+⎰⎰=a a d zz dzz πθθ分从而分其中的二级极点为则在单位圆内令解602)(Re 2sin 4||0,0),1(1)!31(1sin 1,)(0,1||,sin 1)(:)1(101||121222------------------=⋅=⋅=------<<=++=+-==<=-==-⎰C i z sf i z z dzz C z a zz z z z z f z z zz z f z z πππ 分从而原积分且仅有一个一级极点被积函数内在单位圆域分于是变为闭圆变换下区间在令20121214)(Re 22,121|221)(Re 1)(,1||1512221cos ,1||]2,0[,1,2cos ,)2(222211||21||1201111---------------=-⨯=⋅=-=+=-+-=<-----++=++=+====+=======--⎰⎰⎰a a z f s i i I a a z z f s a a z z f z az z dzi iz dz z z a a d I z e z dz izd z ze z z z z z z z z z i i πππθθπθθπθθ。
(完整)复变函数_期末试卷及答案,推荐文档
复变函数与积分变换 第 3 页共 6 页
23. 将函数 f (z)
1
在点 z 0 处展开为洛朗级数.
(z 1)(z 2)
dz
25. 计算 |z|3 (z 1)2 (z i)(z 4) .
四、综合题(共 4 小题,每题 8 分,共 32 分)
2
25. 计算
1
d .
0 5 4 cos
A. 3 4i 的主辐角为 arctan 4 3
C. a rg(3 4i)2 2 arg(3 4i)
B. arg(3i) arg(i) D. z z | z |2
3.下列命题中,正确的是( )
A. z 1表示圆的内部
B. Re(z) 0 表示上半平面
C. 0 arg z 表示角形区域 4
19.
( 2)n
幂极数
n2
n 1
zn
的收敛半径为_______.
复变函数与积分变换 第 2 页 共 6 页
20. 设 z3 ,则映射在 z0 1 i 处的旋转角为____________,伸缩率为____________. 20. 设函数 f (t) t 2 sin t ,则 f (t) 的拉氏变换等于____________.
15.已知 F () F[ f (t)] ,则下列命题正确的是( )
A. F[ f (t 2)] e2 j F ()
B. e2 j f (t) F 1[F ( 2)]
C. F[ f (2t)] 2F (2)
D. F[e2 jt f (t)] F ( 2)
二、填空题(本大题共 5 小题,每小题 2 分,共 10 分)
解:设曲线 C 的参数方程为 C : z (2 3i)t 0 t 1.
(完整版)《复变函数》期末试卷及答案(A卷)(可编辑修改word版)
a - b1- abn (z -1) n (z -1) XXXX 学院 2016—2017 学年度第一学期期末考试复变函数 试卷7.幂级数∑(-1)n n =0z n2nn !的和函数是()学号和姓名务必正确清 A. e -zz B. e2- zC. e2dzD. sin z楚填写。
因填写错误或不清 8. 设C 是正向圆周 z = 2 ,则⎰C z2=()楚造成不良后果的,均由本 A. 0 B. - 2i C. iD. 2i人负责;如故意涂改、乱写 的,考试成绩 答一、单项选择题(本大题共 10 小题,每题 3 分,共 30 9. 设函数 f (z ) 在0 < z - z 0 < R (0 < R ≤ +∞) 内解析,那么 z 0 是 f (z ) 的极点的充要条件是()A. lim f (z ) = a ( a 为复常数)B. lim f (z ) = ∞视为无效。
题分,请从每题备选项中选出唯一符合题干要求的选项,z → z 0z → z 0请勿1.Re(i z ) =并将其前面的字母填在题中括号内。
)()10. 10. C. lim f (z ) 不存在D.以上都对z → z 0ln z 在 z = 1处的泰勒级数展开式为 ()超 A. - Re(i z )B. Im(i z )∞(z -1)n +1∞ (z -1)n A. ∑(-1)n, z -1 < 1B. ∑(-1)n, z -1 < 1过C. - Im z此 D. Im zn =1∞n +1n +1n =1 n∞n2. 函数 f (z ) =z 2在复平面上()C. ∑(-1) , z -1 < 1D. ∑(-1) , z -1 < 1密 封 A.处处不连续B.处处连续,处处不可导线 C.处处连续,仅在点 z = 0 处可导D.处处连续,仅在点 z = 0 处解析,3. 设复数 a 与b 有且仅有一个模为 1,则的值()n =0n +1 n =0n 否 则 A.大于 1 B.等于 1 C.小于 1D.无穷大视 4. 设 z = x + i y ,f (z ) = - y + i x ,则 f '(z ) = ()二、填空题(本大题共 5 小题,每题 3 分,共 15 分)为A.1+ i无B. isin zC. -1D. 011. z = 1+ 2i 的5. 设C 是正向圆周 z = 1 , ⎰C dz = 2i ,则整数n 等于 ()zn A. -1B. 0e z -1C.1D. 26. z = 0 是 f (z ) =的()z2A.1阶极点B. 2 阶极点C.可去奇点D.本性奇点∞系别专业姓名班级学号(最后两位)总分 题号 一 二 三四统分人 题分 30203030复查人得分得分评卷人复查人得分评卷人复查人⎰18.求在映射 w = z 2 下, z _ _ _ _ 平面上的直线 __ _z = (2 + i)t 被映射成 w 平面上的曲线的方程.12.设 z = (2 - 3i)(-2 + i) ,则arg z =.13.在复平面上,函数 f (z ) = x 2 - y 2 - x + i(2xy - y 2 ) 在直线上可导.cos 5z.19.求e z 在 z = 0 处的泰勒展开式.14. 设C 是正向圆周 z = 1 ,则 ⎰Cdz = .z∞ ∞∞15. 若级数∑ zn 收敛,而级数∑ zn 发散,则称复级数∑ zn 为.n =1n =1n =1三、计算题(本大题共 5 小题,每小题 8 分,共 40 分)16. 利用柯西-黎曼条件讨论函数 f (z ) = z 的解析性.20.计算积分1+iz 2dz .2017 + n i 17.判断数列 z n = n +1的收敛性. 若收敛,求出其极限.三、证明题(本大题共1 小题,每小题15 分,共15 分)nn !⎩ 21.试证明柯西不等式定理:设函数 f (z ) 在圆C : z - z 0 = R 所围的区域内解析,且在C因此在任何点(x , y ) 处, ∂u ≠∂v,所以 f (z ) 在复平面内处处不解析。
华中师范大学 复变2002 –2003
华中师范大学 2002 –2003 学年第二学期期末考试试卷(A 卷)(答)课程名称 复变函数 课程编号 任课教师题型 判断题叙述题 解答题 证明题 总分分值 18 12 50 20 100 得分得分 评阅人 一、判断题(判断正确、错误,并改正。
共6题,共6×3=18分)1、点集{1|<=z z D 且}0Re ≤z 是区域。
( × )点集{1|<=z z D 且}0Re ≤z 不是区域。
2、函数z z f =)(在z 平面上处处连续,且处处可微。
( × )函数z z f =)(在z 平面上处处连续,但处处不可微。
3、⎰==1z i dz z zπ。
( × ) ⎰==10z dz zz4、z=0为3sin zz的二阶极点。
( √ ) 5、因∞=z 为211z z +的可去奇点,则 0)11(Re 2=+∞=zz s z 。
( × )虽然∞=z 为211z z +的可去奇点,但 1)11(Re 2-=+∞=zz s z 。
6、若)(z f 在有界闭区域D 上解析,)(z f 在D 的边界上恒为常数,则)(z f在D 上也恒为常数。
( × )若)(z f 在有界闭区域D 上解析,)(z f 在D 的边界上恒为常数,则)(z f在D 上不一定恒为常数。
得分 评阅人 二、叙述题(共4题,共4×3=12分)1、函数)(z f 在点0z 解析。
函数)(z f 在点0z 解析是指)(z f 在点0z 的某邻域内解析。
2、刘维尔定理。
有界整函数必为常数。
3、解析函数零点的孤立性。
不恒为零的解析函数的零点必为孤立零点。
4、解析函数的最大模原理区域内不恒为常数的解析函数的模函数的最大值一定不能在区域内取得。
得分 评阅人 三、解答题(共5题,共5×10=50分)1、讨论y ix xy z f 22)(-=在复平面上的连续性、可微性和解析性.。
《复变函数与积分变换》期末考试试卷A及答案
《复变函数与积分变换》期末考试试卷A及答案六、(本题6分)求)()(0>=-ββtet f 的傅立叶变换,并由此证明:te d t ββπωωβω-+∞=+⎰2022cos三.按要求完成下列各题(每小题10分,共40分)(1).设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xvy u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。
(2).计算⎰-C zz zz e d )1(2其中C 是正向圆周: 解:本题可以用柯西公式\柯西高阶导数公式计算也可用留数计算洛朗展开计算,仅给出用前者计算过程因为函数z z e z f z2)1()(-=在复平面内只有两个奇点1,021==z z ,分别以21,z z 为圆心画互不相交互不包含的小圆21,c c 且位于c 内⎰⎰⎰-+-=-21d )1(d )1(d )1(222C z C z C zz z z e z zz e z z z e i z e iz e i z zz z πππ2)1(2)(2021=-+'===无论采用那种方法给出公式至少给一半分,其他酌情给分。
(3).⎰=++3342215d )2()1(z z z z z解:设)(z f 在有限复平面内所有奇点均在:3<z 内,由留数定理]),([Re 2d )2()1(3342215∞-=++⎰=z f s i z z z z z π -----(5分) ]1)1([Re 22z z f s i π= ----(8分)234221521))1(2()11()1(1)1(z z zz zz f ++=0,z )12()1(11)1(34222=++=有唯一的孤立奇点z z z z z f 1)12()1(11)1(]0,1)1([Re 34220202lim lim =++==→→z z z z zf z z f s z z⎰==++∴33422152d )2()1(z i z z z z π --------(10分)(4)函数2332)3()(sin )2)(1()(-+-=z z z z z z f π在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级. 解:∞±±±==-+-=,的奇点为 ,3,2,1,0,)(sin )3()2)(1()(3232k k z z z z z z z f π(1)的三级零点,)为(032103=±±±==z kk z πsin ,,,,,(2)的可去奇点,是的二级极点,为,)()(,z f z z f z z 210-=±== (3)的一级极点,为)(3z f z =(4)的三级极点;,为)(4,3,2z f z±-=(5)的非孤立奇点。
复变函数 期末试题及答案
复变函数期末试题及答案一、选择题1. 下列哪个不是复变函数的定义?A. 函数表达式包含复数部分和常数部分。
B. 函数的定义域为复数集合。
C. 函数表达式只包含实数。
D. 复变函数可以进行加法、减法、乘法和除法运算。
答案:C2. 设函数 f(z) = z^2 - 2z。
那么 f(z) 在 z = 1 处的导数是多少?A. 0B. -1C. 2D. 4答案:B3. 设函数 f(z) = sin(z)。
则它的周期是多少?A. 2πB. πC. 2D. 1答案:A二、填空题1. 复数的共轭是指实数部分相等,虚数部分______的两个复数。
答案:相反2. 设 z = a + bi 是一个复数,其中 a 和 b 分别表示实部和虚部。
那么实部 a = ______,虚部 b = ______。
答案:a,b三、计算题1. 计算复数 z = 2 + 3i 和 w = -1 - 4i 的和 z + w。
解答:z + w = (2 + 3i) + (-1 - 4i)= 1 - i答案:1 - i2. 计算复数 z = 1 + 2i 和 w = 3 - i 的乘积 z × w。
解答:z × w = (1 + 2i)(3 - i)= 3 + 6i - i - 2i^2= 3 + 5i + 2= 5 + 5i答案:5 + 5i四、问答题1. 复数的解析函数具有什么特点?答:复数的解析函数具有以下特点:- 函数的实部和虚部都是解析函数。
- 函数的导数在定义域内处处存在。
- 函数满足柯西-黎曼方程。
2. 复数在数学和实际应用中有什么作用?答:复数在数学和实际应用中具有广泛的作用,包括但不限于以下几个方面:- 复数可以用于表示电路中的交流电信号。
- 复数可以用于解决数学方程中的平方根问题。
- 复数可以用于描述波的传播和干涉现象。
- 复数可以用于解析几何中的向量运算。
以上为复变函数期末试题及答案,希望能对您有所帮助。
复变函数试题及答案
二.判断题(每题3分,共30分)1.n z z z f =)(在0=z 解析。
【 】2.)(z f 在0z 点可微,则)(z f 在0z 解析。
【 】 3.z e z f =)(是周期函数。
【 】4. 每一个幂函数在它的收敛圆周上处处收敛。
【 】 5. 设级数∑∞=0n nc收敛,而||0∑∞=n nc发散,则∑∞=0n n n z c 的收敛半径为1。
【 】 6. 1tan()z能在圆环域)0(||0+∞<<<<R R z 展开成洛朗级数。
【 】 7. n 为大于1的正整数, Ln Ln nz n z =成立。
【 】8.如果函数)(z f =ω在0z 解析,那末映射)(z f =ω在0z 具有保角性。
【 】 9.如果u 是D 内的调和函数,则yu i x u f ∂∂-∂∂=是D 内的解析函数。
【 】10.212233||||221112|2(1)1z z z z dz dz i i z z z z ππ======--⎰⎰。
【 】 三.(8分)y e v pxsin =为调和函数,求p 的值,并求出解析函数iv u z f +=)(。
四.(8分) 求())2)(1(--=z z zz f 在圆环域21<<z 和+∞<-<21z 内的洛朗展开式。
五.(8分)计算积分dx x x x⎰∞+∞-++54cos 22。
六.(8分)设⎰-++=Cd zz f ξξξξ173)(2,其中C 为圆周3||=z 的正向,求(1)f i '+。
七.(8分)求将带形区域})Im(0|{a z z <<映射成单位圆的共形映射。
复变函数与积分变换(A)的参考答案与评分标准 (2007.7.5)一.填空(各3分)1.3ln 2i k e +-π; 2. 三级极点 ;3. 23z ;4. 0 ;5. 0 ;6. e 1 ;7. 322)1(26+-s s ;8. 0; 9. 0 ;10. )]2()2()2(1)2(1[21++-+++-ωπδωπδωωj j 。
最新复变函数与积分变换期末考试试卷(A卷)(1)
复变函数与积分变换期末考试试卷(A 卷)一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.下列复数中,位于第四象限的复数是( )A. 4+3iB. -3-3iC.-1+3iD.5-3i 2.下列等式中,不成立的等式是( ) A. z·z =Re (z·z ).arg(3)arg()B i i -=- .rg(3)arg(3)C A =2.||D z z z ⋅=3.不等式 ||3z > 所表示的区域为( ) A. 圆的外部B.上半平面C. 角形区域D.圆的内部4.积分||322z dz z =-⎰的值为( )A. 8i πB.2C. 2i πD. 4i π 5.下列函数中,在整个复平面上解析的函数是( ).z A z e +.sin z B z e + .tan z C z e + .R e ()s i n D z z+6.在复平面上,下列命题中,错误..的是( )A. cosz 是周期函数B. ze 是解析函数.cos sin iz C e z i z =+.||D z =7.在下列复数中,使得ze =成立的是( ).ln 224iA z i ππ=++.ln 424iB z i ππ=++.ln 22C z i π=+.l n 42D z iπ=+ 8.设C 为正向圆周1||=z , 则积分 cos z c e dzz⎰等于( )A .2πB .2πiC .0D .-2π 9.设C 为正向圆周||2z =, 则21(1)C dz z i --⎰等于( )A.i21π B. 0 C.i 2πD.2i π-10.以下关于级数的命题不正确的是( )A.级数0327nn i ∞=+⎛⎫⎪⎝⎭∑是绝对收敛的B.级数212(1)n n in n ∞=⎛⎫+ ⎪-⎝⎭∑是收敛的 C.级数01(1)2n n n i n ∞=⎛⎫-+ ⎪⎝⎭∑是收敛的D.级数212n n i n ∞=⎛⎫+ ⎪⎝⎭∑是收敛的11.已知31z i =+,则下列正确的是( )12.iA z π=34.iB z eπ=712.i C z π=3.iD z π=12.下列关于幂级数的叙述,不正确 的是( ) A.在收敛圆内,幂级数绝对收敛 B.在收敛圆外,幂级数发散 C.在收敛圆周上,可能收敛,也可能发散 D.在收敛圆周上,条件收敛13.0=z 是函数sin z e z z的( )A.本性奇点B.一级极点C.二级极点D.可去奇点14.cos z zz π-在点 z π= 处的留数为( ) A. π-.B πC.1D. -115.关于0Im lim z zzω→=下列命题正确的是( )A.0ω=B. ω不存在C.1ω=-D.1ω=二、填空题(本大题共5小题,每小题2分,共10分)16.sincos 33z i ππ=+复数的三角形式为____________. 17. 已知22()()()f z x ay x i bxy y =++++在复平面上可导,则a b +=_________. 18. 设函数)(z f =3zt te dt ⎰,则)(z f 等于____________.19. 幂极数n n2n 1(-1)z n∞=∑的收敛半径为_______.20.设121,1z i z =-+=,求12z z ⎛⎫=⎪⎝⎭____________.三、计算题(本大题共4小题,每题7分,共28分) 21.设C 为从原点到2+3i 的直线段,计算积分[(2)]CI x y ixy dz =-+⎰22. 设2()cos 4ze f z z z=+-. (1)求)(z f 的解析区域,(2)求).(z f '23. 将函数1()(1)(2)f z z z =--在点0=z 处展开为泰勒级数.24. 将函数112()(1)z ef z z -=-在圆环0|1|z <-<∞内展开成洛朗级数.四、综合题(共4小题,每题8分,共32分)25.已知22(,)2u x y x y x =-+,求一解析函数()(,)(,)f z u x y iv x y =+,并使(0)2f i =。
复变函数与积分变换期末考试-11-12-1-A-试题&答案
京
交
通
大
学
2011-2012 学年第二学期《复变函数与积分变换》期末考试卷(A 卷)
(参考答案)
学院
专业
班级
学号
题 得 号 分 一 二
姓名
三 四 总分
阅卷人
一、填空题(每小题 3 分,共 18 分)
1. 复数 i 的指数形式为____ e 2.
i
2 k 2
______。
ln(3i)
2
π ln 3 i 2
。
3. 级数 1 z z
zn
的和函数的解析域是
| z |1
。
4.
1 e2 z 1 e2 z 4 z 0 是 4 的 3 阶极点, Re s[ 4 , 0] 。 z 3 z
2
5. 在映射 w z i z 下, z i 处的旋转角为__
(8 分)
由于 f (i) 2i ,得 c 1 (9 分) , f ( z ) (4 xy y 1) i(2 x 2 y x) (10 分)
2.
2
z
z z 1 e dz z 1
2 1 1 2 ( ) z 1 2! z 1
2
e z 1 1
v y 4 y u x , u 4 xy c( y) , v x (4 x 1) u y , (4 x 1) 4 x c( y)
c( y) 1, c( y) y c
u( x, y) 4 xy y c
2 2
我们有,
1 1 1 z 3 z 1 z1 3! 5! 7!
z =0为f ( z )的三阶极点, 1 Re s[ f ( z ),0] . 5!
(完整版)《复变函数》有答案(期末考试)试卷
浙江师范大学《复变函数》(期末考试)试卷(2004-2005学年第一学期)考试类别: 考试 使用学生: 初阳学院数学专业02级 考试时间:150分钟 出卷时间2004年12月25日 说明:考生应将全部答案都写在答题纸上,否则作无效处理.一、(18%)填空题 1、在01z <<内,函数1(2)(1)z z z -+的罗朗展式是 ① .2、解析分支1z-在1z =处的留数是 ② . 3、 问是否存在解析函数()f z 使111()()2122f f n n n==- ? ③ (只需回答是或否).4、若解析函数()f z 的实部是(cos sin )x e x y y y -,则f()z = ④ .5、已知分式线性函数()f z 把上半平面变为单位圆,则()f z = ⑤ .6、21|2|2d (1)(2)z z zz z -=--⎰的值是 ⑥ . 二、(24%)计算题1、若以上半虚轴为割线,确定Ln z 的一个解析分支ln z .并且分别求出ln w z =在上半虚轴的左沿和右沿,当z i =时的值.2、计算积分0d I (1)xx xα+∞=+⎰,(α为常数,且01α<<). 三、(36%)解答题1、求2Ln 1z z -的解析分支和孤立奇点,并讨论这些奇点的类型.2、在z 平面的上半平面上,从原点起,沿虚轴作一条长为3的割线,试作一个单叶解析函数,把在上述半平面去掉割线而得到的开区域保形映射成w 平面的上半平面(不包括实轴).3、试作一个解析函数,它把上半平面Im 0z>保形双射成w 平面的半带域Re 22w ππ-<<,Im 0w > .四、(22%)证明题1、若1231z z z ===,1230z z z ++=,则122313z z z z z z -=-=- .2、若在1z <内,()f z 解析,并且1()1f z z≤-, 则()(0)(1)!n f e n <+ .浙江师范大学《复变函数》试题答案与评分参考05.1.17一、填空题(每空格3分,共18分)① 101(1)112362n n n n z z ∞+=⎛⎫--+- ⎪⎝⎭∑ ②1± ③否④e i zz c + ⑤ i 000e ()(Im 0)z z z z z θ->- ⑥ 2πi -二、(24%)计算题1、若以上半虚轴为割线,确定Ln z 的一个解析分支ln z .并且分别求出ln w z =在上半虚轴的左沿和右沿,当z i =时的值.解 Ln ln ||iarg 2πi z z z k =++ 3ππarg ,22z k -⎛⎫<<∈⎪⎝⎭¢ (6分) 令ln ln ||iarg 2πi z z z k =++ 3ππ<arg 22z ⎛⎫-< ⎪⎝⎭ (8分)则在上半虚轴的右沿,当i z =时,πln i i 2w ==在上半虚轴的左沿,当i z =时,3ln i πi 2w ==- (12分)2、计算积分0d I (1)xx xα+∞=+⎰,(α为常数,且01α<<). 解因01α<<,故1()(1)F z z z α=+为多值函数,取正实轴为割线且单值解析分支()i arg 11()0arg 2π1||e zf z z z z αα=<<+(4分)(如图)设01r ε<<<<+∞,则2πd ()d (1e )()d ()d (1)rrrrc c c c c c xf z z f z z f z z x x εεεααε+-+--+Γ+Γ+ΓΓ=+++=-+++⎰⎰⎰⎰⎰⎰⎰⎰ 由2π|()d |(1)c f z z εαεεε≤-⎰知0lim ()d 0c f z z εε→=⎰ (8分) 由i 12πi i 0ie d 2π|()d |||(1e )e 1rc r r f z z r r r θαθααθθ-=≤+⋅-⎰⎰知lim ()d 0rr c f z z →+∞=⎰故πi 2πi 0d 2πie π(1)1e sin πx x x αααα-+∞-==+-⎰(12分)三、(36%)解答题1、求2Ln 1z z -的解析分支和孤立奇点,并讨论这些奇点的类型.解因0和+∞是支点,故0和+∞不是孤立奇点. 因此,孤立奇点为1-和1,故可取上半虚轴作割线,因此,解析分支()22ln 1ln ||i(2π+arg )11z z k z z z =+--k ∈¢,3πarg 22z π-<< (6分)(1) 当0k =时,1z =是可去奇点 (2) 当0k ≠时,1z =是一阶极点(3) 1z =-是一阶极点 (12分)2、在z 平面的上半平面上,从原点起,沿虚轴作一条长为3的割线,试作一个单叶解析函数,把在上述半平面去掉割线而得到的开区域保形映射成w 平面的上半平面(不包括实轴).解 (1)若区域D 表示在z 平面的上半平面,从原点起沿虚轴去掉一条长为3的割线,则29z ω=+将区域D 变为()ω平面除去正实轴的开区域1D (6分)(2)w =1D 变为w 平面的上半平面Im 0w >因此w = (12分)3、试作一个解析函数,它把上半平面Im 0z>保形双射成w 平面的半带域Re 22w ππ-<<,Im 0w > .解 由多角形映射公式知1zw c c -=+⎰由π(1)2w --=知1π2c =- 因111arcsin πt --==⎰,故由π(1)2w =知πππ22c -= 所以1c = (6分)因此πarcsin 2zw z -==⎰于是arcsin w z =即为所求. (12分)四、(22%)证明题1、若1231z z z ===,1230z z z ++=,则122313z z z z z z -=-=- . 证法1因1230z z z ++=,3||1z =,故22123()||1z z z +=-=即1212()()1z z z z ++=,即12121z z z z +=-(6分)因此121211121222()()3z z z z z z z z z z z z --=--+=即12||z z -=23||z z -=,12||z z -= (11分)证法2 由平行四边形公式 2222131313||||2(||||)z z z z z z ++-=+知,2222131313||2(||||)||z z z z z z -=+-+,而1230z z z ++=, (6分)因此222213132||2(||||)||413z z z z z -=+--=-=,13||z z -,同理23||z z -,12||z z -= (11分) 2、若在1z <内,()f z 解析,并且1()1f z z≤-, 则()(0)(1)!n f e n <+ 证 因()1||1!()(0)d 2πin n n z n n f z f z z+=+=⎰(3分) 故11||1||1!|(0)||d |2π||z (n)n n z n n f z z -+=+≤⎰(6分)11111!n2π2π()n+1nn n n n n +-++≤(8分) 1(1)!1e(1)!nn n n ⎛⎫=++<+ ⎪⎝⎭ (11分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《复变函数》试卷 第1页(共4页) 《复变函数》试卷 第2页(共4页)
XXXX 学院2016—2017学年度第一学期期末考试
复变函数 试卷
一、单项选择题(本大题共10小题,每题3分,共30分,请从每题备选项中选出唯一符合题干要求的选项,并将其前面的字母填在题中括号内。
)
1. =)i Re(z ( ) A.)i Re(z - B.)i Im(z C.z Im - D.z Im
2.
函数2
)
(z z f =在复平面上
( ) A.处处不连续 B.
处处连续,处处不可导 C.处处连续,仅在点0=
z 处可导 D.处处连续,仅在点0=z 处解析
3.设复数a 与b 有且仅有一个模为1,则b
a b
a --1的值 ( )
A.大于1
B.等于1
C.小于1
D.无穷大 4. 设x y z f y x z i )(i +-=+=,,则=')(z f ( ) A.i 1+ B.i C.1- D.0
5.设C 是正向圆周 1=z ,i 2sin
π=⎰dz z z
C n
,则整数n 等于 ( ) A.1- B.0 C.1 D.2
6.0=z 是2
1
)(
z e z f z -=的 ( )
A.1阶极点
B.2阶极点
C.
可去奇点 D.本性奇点
7.幂级数!2)1(0
n z n n
n n
∑∞
=-的和函数是 ( )
A.z
e - B.2
z
e C.2
z e
-
D.z sin
8.设C 是正向圆周 2=z ,则
=⎰C z dz
2 ( )
A.0
B.i 2π-
C.i π
D.i 2π
9.设函数)(z f 在)0( 00+∞≤<<-<R R z z 内解析,那么0z 是)(z f 的极点
的充要条件是 ( ) A.a z f z z =→)(lim 0
(a 为复常数) B.∞=→)(lim 0
z f z z
C.)(lim 0
z f z z →不存在 D.以上都对
10. z ln 在1=z 处的泰勒级数展开式为 ( )
A.11 ,1)1()
1(11<-+--+∞
=∑z n z n n n
B.11 ,)1()1(1
<---∑∞
=z n z n n n C.11 ,1)1()
1(10<-+--+∞
=∑z n z n n n
D.11 ,)1()1(0
<---∑∞=z n z n n n
二、填空题(本大题共5小题,每题3分,共15分)
11.i 21+=z 的共轭复数=z ________ . 12.设)i 2)(i 32(+--=z ,则=z arg ________ .
13.在复平面上,函数)2(i )(2
2
2
y xy x y x z f -+--=在直线 ________ 上可导. 14.设C 是正向圆周1=z ,则
=⎰dz z z
C 5cos ________ .
15.若级数∑∞
=1
n n
z
收敛,而级数
∑∞
=1
n n
z
发散,则称复级数
∑∞
=1
n n
z
为 ________ .
学号和姓名务必正确清楚填写。
因填写错误或不清楚造成不良后果的,均由本人负责;如故意涂改、乱写的,考试成绩视为无效。
答
题
请
勿 超
过 此
密
封
线
, 否 则
视 为
无 效。
《复变函数》试卷 第3页(共4页) 《复变函数》试卷 第4页(共4页)
三、计算题(本大题共5小题,每小题8分,共40分)
16.利用柯西-黎曼条件讨论函数z z f =)(的解析性.
17.判断数列1
i
2017++=n n z n 的收敛性. 若收敛,求出其极限.
18.求在映射2
z w =下,z 平面上的直线t z )i 2(+=被映射成w 平面上的曲线的方程.
19.求z
e 在0=z 处的泰勒展开式.
20.计算积分dz z ⎰
+i
10
2.
三、证明题(本大题共1小题,每小题15分,共15分)
21.试证明柯西不等式定理:设函数)(z f 在圆R z z C =-0:所围的区域内解析,且在C 上连续,则
,...)2,1( !
)(0)(=≤
n R Mn z f n
n 其中M 是)(z f 在C 上的最大值.
《复变函数》试卷 第5页(共4页) 《复变函数》试卷 第6页(共4页)
XXXX 学院2016-2017学年度第一学期期末考试
复变函数答案(A 卷)
一、单项选择题(本大题共10小题,每题3分,共30分) 1-5 C C B B D 6-10 A C A B C
二、单项选择题(本大题共5小题,每题3分,共15分)
11. i 21- 12. 8arctan -π 13. 2
1
=y 14.i 2π 15.条件收敛
三、计算题(本大题共5小题,每小题8分,共40分) 16. 解:因y x z z f i )(-==,故 y y x v x y x u -==),( ,),(,从而
,1 ,0 ,0 ,1-=∂∂=∂∂=∂∂=∂∂y
u
x u y u x u 因此在任何点),(y x 处,y
v
x u ∂∂≠∂∂,所以)(z f 在复平面内处处不解析。
17. 解: i 1
120161i 1602+++=++=n n
n n n z n 而
)( 11
012016∞→→+→+n n n n , 所以 i lim =∞→n n z 18. 解:直线t z )i 2(+=的参数方程为
)( ,
2∞<<-∞⎩⎨
⎧==t t
y t x 在2z w =映射下,该直线被映射成w 平面上的曲线
2222)i 43()i 2(t t z w +=+==
于是 ,4 ,32
2t v t u ==
消去t ,得 )0( 3
4
≥=u u v
这是w 平面上第一象限内的一条半直线。
19. 解:因为,...)2,1,0()()(==n e e z n z ,其展开式中泰勒系数为
!
1!)0()(n n f c n n ==
于是 z
e 在0=z 处的泰勒展开式为
⋅⋅⋅++⋅⋅⋅+++==∑∞
=!!21!
0n z z z n z e n
n n n z
20. 解:)()(i 13
2i 131|313
i 103i
102+-=+==++⎰z dz z
五、证明题(本大题15分)
21. 证:由假设条件及高阶导数公式,有
,...)2,1( )
()
(i 2!)(100)(=-=
⎰+n dz z z z f n z f C n n π 于是
,...)2,1( !
22!,...)2,1( )(2!
)(1110
0)
(==⋅⋅≤=-≤+++⎰n R
Mn R R
M n n dz z z z f n z f
n n C n n πππ 证毕。