现代医学电子仪器原理与设计省一等奖课件第二版 第一章
现代医学电子仪器原理与设计第二版-第三章PPT课件
.
15
理想情况下:第一级输出不产生共模电压; 选择A1,A2的性能参数,使之精确匹配, 可充分发挥对称电路误差电压抵消的优点, 并能获得低漂移。
第一级放大器放 :A大 d1倍 12数 RRW F1
非理想情况下:考虑A1,A2器件本身的 共模抑制能力:
UocCU M ic 2R-CRU M ic 1R A R d1
.
10
;R;R;R R 1 R 1 ( 1 1 )2 R 2 ( 1 2 )3 R 3 ( 1 3 )F R F ( 1 F )
A c 1(1 1 1 ) 1 ( F 2) 2R F3 R 1(1 1 2 1)1 1 ( F2)
通常: 1,2,3,F 1;
Ac1
1
IR1Ui1R 1U IRFUR FUo
Uo
U
RF R1
Ui1U
Uo1R RF 1R2R 3R3Ui2R RF 1Ui1
1R RF 1R2R 3R3R RF 1Uic1R RF 1R2R 3R3R RF 1U 2id
: ; : U o U o cU odU oc共模 U o 输 d差 出 模
.
9
令 : 1R R F 1 R 2R 3R 3R R F 10 (31)4
CMRR Ad Ac1
为了补偿放大均 器偏 输值 入电 平流及 : 其漂 令:R1//RF R2//R3R1R2,RF R3(316)
此:时 AdR RF 1 (31)7
:A 非理想 c 1 1 情 R R F 1 R 2 R 况 3 R 3 R R 下 F 1 (3 1)8
差动放大电路分析方法; --满足:高共模抑制比;低噪声、低漂移。 生物电放大器前置级的基本要求: 高输入阻抗; 高共模抑制比; 低噪声、低漂移; 差分电路解决了高共模抑制比; 尚未解决问题:高输入阻抗;
医学电子仪器原理和技术
医学电子仪器原理和技术
16/35
1. 二极管伏安特征
图1.2 二极管伏安特征曲线
(1)正向特征
死区电压 正向导通压降UF 正向导通区
(2)反向特征
反向截止区 反向击穿 反向击穿电压
医学电子仪器原理和技术
17/35
2. 二极管应用
二极管应用范围很广, 利用其单向导电性, 可组成整流、检波、限幅、钳位等电路。还可 用它组成其它元件或电路保护电路, 以及在脉 冲与数字电路中作为开关元件等。在作电路分 析时, 普通可将二极管视为理想元件, 即认为其 正向电阻为零, 正向导通时为短路特征, 正向压 降忽略不计。反向电阻为无穷大, 反向截止时 为开路特征, 反向漏电流忽略不计。
1.3 半导体器件基础知识
常温下自然界中物质按其导电性能可分为以下 三类。 导体: 导电性能良好,如铜、银、铝等金属材料。 绝缘体: 几乎不导电,如玻璃、橡胶、陶瓷等材 料。 半导体: 其导电性能介于导体和绝缘体之间,如 硅、锗、砷化物和硫化物等材料。
医学电子仪器原理和技术
7/35
半导体导电能力在不一样条件下差异很大。
医学电子仪器原理和技术
9/35
N型、P型半导体及PN结
在半导体中掺入少许5价元素磷(或砷、 锑), 可使半导体内自由电子数量剧增。 在这种半导体中自由电子占绝大多数, 故 称为多数载流子(多子), 而空穴则为少 数载流子(少子)。它主要依靠带负电 电子导电, 所以叫电子型半导体, 或N (Negative)型半导体。
医学电子仪器原理和技术
8/35
3.掺入微量杂质对半导体导电性能影响
假如在纯净半导体中掺入一些微量杂质, 其导电能力将大大增强。而且掺入杂质 元素不一样、浓度不一样, 半导体导电性 能能够人为地控制。掺入杂质半导体称 为杂质半导体。依据掺入杂质不一样, 杂 质半导体可分为N型半导体和P型半导体 两种。
现代医学电子仪器原理与设计复习指导(含答案)
现代医学电子仪器原理与设计复习指导(含答案)现代医学电子仪器原理与设计复指导(含答案)第一章医学仪器概述医学仪器的工作方式分为直接和间接、实时和延时、间断和连续、模拟和数字。
根据用途不同,医学仪器通常分为诊断用仪器和理疗用仪器。
诊断用仪器包括生物电诊断与监护、生理功能诊断与监护、人体组织成分的电子分析、人体组织结构形态影像诊断。
理疗用仪器包括电疗、光疗、磁疗与超声波治疗。
生理系统的建模与仿真方法是为了研究、分析生理系统而建立的一个与真实系统具有某种相似性的模型,然后利用这一模型对生理系统进行一系列实验,这种在模型上进行实验的过程就称为系统仿真。
建模是医学仪器设计的第一步和关键,是对生命对象进行科学定量描述的产物。
建模关系即模型的有效性度量主要包括复制有效,在系统输入与输出上认识系统;预测有效,对系统内部状态及总体结构认识清楚;结构有效,内部状态、总体结构及分解结构均有了解等三个层次。
广义而言,生理系统的模型不仅包括人造的物理或数学的模型,也应包括动物模型。
建模即建立一个在某一特定方面与真实系统具有相似性的系统,真实系统称为原型,而这种相似性的系统就称为该原型系统的模型。
模型的建立蕴含的三层意思即理想化、抽象化和简单化。
模型可分为数学模型、物理模型和描述模型三种。
按照真实系统的性质而构造的实体模型即物理模型。
对生理系统而言,其物理模型通常是由非生物物质构成的,根据其与原型相似的形式可分为如下四种类型:几何相似模型、力学相似模型、生理特性相似模型、等效电路模型。
数学模型是用数学表达式来描述事物的数学特性,它不像物理模型那样追求与客观事物的几何结构或物理结构的相似性,但可较好地刻划系统内在的数量联系,从而可定量地探求系统的运转规律。
构造一个数学模型主要包括系统中各个作用环节的描述即寻求一个适当的数学运算关系来描述系统的结构、功能和内在联系和表征系统的固有特征量的提取即主要来源于实验数据的参量提取两个方面的内容。
现代医学电子仪器原理与设计课件第二版_第二章[46P][5.65MB]
设放大器输出端噪声为U no , 是由U ns ,U n 和I n 造成, 它们各自对U no的贡献:
U ns : U o1 U ns
Zi A Rs Z i
b)
I.
干扰耦合途径
传导耦合:经导线传播把干扰引入测试系统。 如:交流电源线、测试系统中的长线 。 经公共阻抗耦合: Rcs
Vc1 Vcs
II.
前 置 级
电 路 I
电 路 II
Rce
III.
近场: 远场: 2 2
电场和磁场耦合
:电磁波波长
电场干扰:主要以电容耦合引入。 磁场干扰:主要以电感性耦合引入干扰。 近场干扰: 1MHz 近场<300m 30kHz 近场<10km。
第一节 人体电子测量系统中的电磁干扰
一. 干扰的引入
干扰形成的三个条件:干扰源、耦合通道(即引 入方式)与敏感电路(即接收电路)。
干扰源 耦合通道 敏感电路
a)
干扰源:能产生一定的电磁能量而影响周围电路 正常工作的物体或设备。
自然界的干扰 外界干扰源: 周围电气、电子设备的干扰 50Hz工频干扰
Zin
Zin
ZG
Cd2 ZG
人体内位移电流通过右腿接地电阻ZG产生共模 干扰,在理想情况下,共模干扰通过系统的高共 模抑制比被克服。
VI.
生物电测量中磁场的电感性耦合(图2-14)
在人体和测试系统输入回路构成环路时,将在环路中感 应出干扰电压,其幅度为: SB cos
一般病室中B cos 3.2 10 7 Wb / m 2 则50 Hz感应电压 100 S ( V )。 回路面积限定在0.1m 2以下方可使电感耦合干扰电压小于10V
现代医学电子仪器原理与设计考试重点(精简版)
现代医学电子仪器原理与设计考试重点现代医学电子仪器原理与设计考试重点第一章医学仪器概述 1、人体系统的特征人体是一个复杂的自然系统,分为器官自控制系统、神经控制系统、内分泌系统和免疫系统。
器官自控制系统具有不受神经系统和内分泌系统控制的机制,如心脏的收缩与舒张。
神经控制系统是一种由神经进行快速反应的控制调节机制,如人的喜怒哀乐。
内分泌系统通过循环系统的路径将信息传到全身细胞进行控制。
免疫系统识别异物,排斥异物。
2、人体控制功能的特点负反馈机制、双重支配性、多重层次性、适应性、非线性。
3、生物信号的基本特性不稳定性、非线性、概率性、信号弱、噪声强、频率范围低。
4、生物信号类型电信号机体的各种生物电利用材料的物理变化非电信号利用化学反应把化学成分、浓度转换成电信号利用生物活性物质选择性识别来测定生化性质 5、医学电子仪器从功能上来说主要有生理信号检测和治疗两大类。
6、医学电子仪器的基本构成 1)生物信号采集系统包括被测对象、传感器或电极 2)生物信号处理系统包括信号与处理和信号处理预处理一般包括过压保护、放大、识别4)辅助系统包括控制和反馈、数据存储和传输、标准信号产生和外加能量源控制和反馈分为开环和闭环两种调节控制系统。
手动控制、时间程序控制均属开环控制;通过反馈回路对控制对象进行调节的自动控制系统称为闭环系统。
外加能量源是指仪器向人体施加的能量准确度---越小越好,不存在准确度为零的仪器,准确度也称为精度准确度=精密度可以表示在相同条件下用同一种方法测量所得数值的接近程度。
3) 输入阻抗---越大越好,外加输入变量与相应应变量之比生物放大电极应大于输入电阻的100倍电极-皮肤接触电阻 2~150K 引线和保护电阻 10~30K 体表电极 10~150K 4) 灵敏度输出变化量与引起它变化的输入变化量之比。
当输入为单位输入量是,输出量的大小即为灵敏度的量值。
5)频率响应仪器保持线性输出时允许其输入频率范围的变化,是衡量系统增益随频率变化的尺度 6)信噪比信号功率PS与噪声功率PN 之比 7)零点漂移仪器的输入量在恒定不变干扰源:能产生一定的电磁能量而影响周围电路正常工作的物体或设备主要干扰是近场50赫兹干扰源,因为生物电信号中大都包含有50赫兹的频率成分,而且生物电信号的强度远小于50赫兹的干扰。
现代医学电子仪器原理与设计PPT课件
要求离患者2.5m范围内要取得等电位化, 这个范围称为患者环境。 现代医学电子仪器原理与设计
四、预防电击的措施 (七)辅助绝缘
在基础绝缘的基础上,再加强一层绝缘, 称为辅助绝缘。
现代医学电子仪器原理与设计
四、预防电击的措施
(八)医用安全超低压电源
3.信号隔离
在绝缘部分中,触体部分和其他部分之间进 行了电路绝缘,但还必须能够传送信号,能实 现这个任务的就是信号隔离。
现代医学电子仪器原理与设计
四、预防电击的措施 信号隔离是依靠电磁耦合或光电耦合来传
送信号的。
现代医学电子仪器原理与设计
第三节 医用电子仪器的接地 一、医院配电方式
载 接 地 方 式
电气安全:把意外电击的危险降低到尽可能 小的程度。
对于医用电子仪器在临床上的应用而言, 安全指的是应用过程中确保对患者和医护人员 不造成危害,即保证人员的安全。另外,广义 而言,医用电子仪器的电气安全还应包括仪器 本身的安全。
现代医学电子仪器原理与设计
二、电流的生理效应
人体的体液是包含有多种离子的液体构成 的,是一种比较复杂的特殊电解质,因此人体 本身就是一个良好的导体,当人体成为电路的 一部分时,就有电流通过人体,从而引起生理 效应。 注意:引起生理效应和人体损伤的直接因素是
任何两个插座地线之间的电压不应超过 20mV,而电阻不应超过0.1Ω。在任一插座地 线和任一病人附近的外露导体表面之间的电 压不应超过0.5V,电阻不应超过0.5Ω。 3.绝缘电源系统的检验
现代医学电子仪器原理与设计
现代医学电子仪器原理与设计
三、产生电击的因素 电阻性泄漏电流的形成是由于电源线或变 压器一次侧与金属外壳间存在的绝缘电阻造成 的。
现代医学电子仪器原理和设计
3、家庭和自我保健类仪器:随着医学模 式由“生物——技术”模式向“生物— —心理——社会——技术”模式转化, 家庭和自我保健类仪器会越来越受到重 视,主要包括:家庭/自我监护与诊断、 家庭/自我治疗和远程医疗; 产品有:血尿生化指标和药物浓度的家 用诊断测试仪器、血糖水平检测仪、家 用智能化器械来控制治疗和“训导”病 人、床边监护等用于家庭和社区的远程 医疗设备、“低技术操作”的高技术产 品。
掌握“三个基本知识”、培养“一个基本 能力”,即掌握医学电子类仪器的基本原
理、基本结构、基本电路;培养基本 应用能力(仪器分析、仪器设计、仪器维
护)
教学方法
课堂理论教学
验证性实验教学
设计性实验教学
三、主要参考书
1、余学飞,现代医学电子仪器原理与设计,华南理 工大学出版社,2007 2、John G.Webster,Medical Instrumentation Application and Design,Third edition,John Wiley & Sons,INC.1998 3、吴建刚,现代医用电子仪器原理与维修,电子工 业出版社,2005 4、邓亲恺,现代医学仪器原理与设计,科学出版社, 2004
(一)噪声特性 从人体拾取的生物信号不仅幅度微小, 而且频率也低。必须尽量采取各种抑制措 施,使噪声影响减至最小。一般来说, 限 制噪声比放大信号更有意义。
(二)个体差异与系统性 人体个体差异相当大,用医学仪器作检测 时,应从适应人体的差异性出发,要有相应的 测量手段。 人体又是一个复杂的系统,测定人体某部 分的机能状态时,必须考虑与之相关因素的影 响。要选择适当的检测方法,消除相互影响, 保持人体的系统性相对稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直接和间接方式:
直接工作方式: 间接工作方式:
实时和延时方式:
实时工作方式: 延时工作方式:
间断和连续: 模拟和数字:
Z=
Vi Ii
第三节 医学仪器的特性与分类
一. 医学仪器的主要技术特性
1.
2.
准确度:
理论值 测量值 准确度 100% 理论值
精密度:在相同条件下用同一种方法多次测量所 得数值的接近程度。
生理系统建模:是对系统整体各个层次的行 为、参数及其关系建立数学模型的工作,最 终希望用数学的形式表达出来。 建模的目的:是为了更好地了解生物系统的 行为及规律,为生物控制奠定基础。 意义:生物系统建模与仿真可以将生物系统 简化为数学模型并对此模型进行计算分析, 从而代替实际的复杂、长期、昂贵及至无法 实现的实验,大大提高研究效率和定量性, 并可研究人为施加控制条件以影响生物系统 运行过程。
刺激 激励
信号校准
数据 存储
数据 传输
图1-1 医学电子仪器结构框图
生物信号采集系统:被测对象,传感 器; 生物信号处理系统:信号预处理、信 号处理; 生物信号的记录显示系统:直接记录, 存储记录,数字式显示; 辅助系统:控制和反馈、数据存储和 传输、标准信号产生和外加能量等。
二. 医学仪器的工作方式
第一章 医学仪器概述
医学仪器:主要用于对人体的疾病进 行诊断和治疗,其作用对象是复杂的 人体,所以医学仪器与其它仪器相比 有其特殊性。 在医学仪器没有大量出现前,医生主 要凭经验通过手和五官来获取诊断信 息。现在,医学仪器可以将人体的各 种信息提供给医生观察和诊断。
y kx b
第一节 生物信号知识简介
仪器内部噪声:输入端短路时的噪声电压。
U NO U Ni=20 lg AU
7. 零点漂移:输入量恒定不变(或无输入信号)时,
输出量偏离原起始值而上下漂动,缓慢变化的现象。 8. 共模抑制比: Ad
CMRR = AC
Ad :差模增益;Ac :共模增益。
二. 医用仪器的特殊性
生物信号检测(医用诊断仪器): 标本化验
一. 人体系统的特征
人体是一个复杂的自然系统,它由八大系统组成: 运动、循环、呼吸、消化、排泄、神经、内分泌 和生殖系统组成。 二. 人体控制功能的特点
负反馈机制:人体系统对外界干扰是稳定的。 反馈:将输出信息传递到输入端称为反馈。 负反馈:输出反馈量与输入量的极性相反。 负反馈的作用: 双重支配性:生物体很少以一个变量的正负值来单独控制。 多重层次性:上一级环路对下一级环路进行控制。 适应性:根据外界的刺激改变控制系统本身。 非线性:
3. 4.
X1 输入阻抗: Z X2
灵敏度:输出变化量与引起它变化的输入变化量 之比。
S PS = N PN
频率响应:仪器保持线性输出时,允许输入频率变 化的范围。 S PS 6. 信噪比:信号功率与噪声功率之比。 N PN 噪 声:除被测信号之外的任何干扰。
5.
外部噪声 :电磁干扰 噪声 内部噪声 :电路本身的热噪声等。
活体检测
1.
2.
生物系统不同于物理系统,在检测过程中,它不 能休止运转,也不能拆卸。因此,人体及生物信 息的特殊性构成了医用仪器的特殊性。 噪声特性: 生物信号一般为微弱、低频信号,常见的交流感 应噪声和电磁感应噪声危害较大。一般来说,限 制噪声比放大信号更有意义。 个体差异与系统性: 个体差异相当大,医用仪器必须适应人体的差异。 人体又是一个复杂的系统测定某部分机能状态时 必须考虑相关因素的影响。
三. 典型医学参数(了解)
P9 表1-1 四. 医用仪器分类
诊断用仪器:生物电诊断监护、生理功能诊断监护、 按用途分 组织成分分析、像诊断。 理疗用仪器:电疗、光疗、磁疗、超声波治疗。
第四节 生理系统的建模与仪器设计 构造一个真实系统的模型,在模型上进行实 验,成为系统分析、研究的十分有效的手段。 为了达到系统研究的目的,系统模型用来收 集系统有关信息和描述系统有关实体。也就 是说,模型是为了产生行为数据的一组指令, 它可以用数学公式、图、表等形式表示。模 型是对相应的真实对象和真实关系中那些有 用的和令人感兴趣的特性的抽象,是对系统 某些本质方面的描述,它以各种可用的形式 提供被研究系统的描述信息。
3. 生理机能的自然性: 在检测时,应防止仪器(探头、传感器)因接触而 造成对被测对象生理机能的变化。
4. 接触界面的多样性: 传感器(电极)与被测对象间有一个合适接触良好 的界面。 5. 操作与安全性: 医用仪器的检测对象是人体。应确保电气安全、辐 射安全、热安全和机械安全,有时因操作失误产生 的危害也是不允许的。 操作者是医生或医辅人员,仪器操作必须简单、 安全、适用、可靠。
a) 复制有效:模型产生的输入输出与实际系统所得 到的输入输出数据是匹配的。 b) 预测有效:可预测实际系统的将来的状态和行为 变化,实际系统数据取得之前,能够由模型看出 相应的数据。
现代医学电子仪器 原理与设计
第二版
主
主
编讲余学飞来自叶哲江课程要求课 程 要 求: 课程要求:不得缺席、迟到、早退。 作业,辅导(周四下午系办)。 考试成绩:平时成绩20%,实验10%,考 试70%。
本课程意义:
专业定位为:医用仪器设计、使用及维护。 学习医用仪器的结构、原理; 撑握医用仪器设计、使用、维护方法; 为就业及工作打下一定的基础。
建立模型结构 : 确定系统的边界, 建模的任务 : 鉴别系统系统的实体、 属性和活动。 提供数据 : 要求各个属性间有确定关系。
系统模型的结构具有以下性质: 相似性:模型与所研究系统在属性上具有相 似的特性和变化规律; 简单性:实用的前提下,模型越简单越好; 多面性:对同一系统可以产生相应于不同层 次的多种模型; 模型的有效性用符合程度来度量,它可分为 以下三个不同级别的模型有效:
y kx b
三. 生物信息的基本特性
不稳定性:如心电、血压等由于精神紧张, 心电畸变,血压升高。 非线性: 概率性: 四. 生物信息的检测与处理 生物信号检测:微弱、低频信号检测。 生物信号处理:时域、频域信号处理。
第二节 医学仪器的结构和工作方式
一. 医学仪器的基本构成
反馈 控制 信号 采集 信号 预处理 信号 处理 记录 显示