沪科版数学九年级下册-圆的认识学案
沪科版数学九年级下册24.2《圆的基本性质》教学设计1

沪科版数学九年级下册24.2《圆的基本性质》教学设计1一. 教材分析《圆的基本性质》这一节内容是沪科版数学九年级下册第24章第2节的内容。
本节课主要让学生了解和掌握圆的基本性质,包括圆的定义、圆心、半径等。
通过本节课的学习,为学生后续学习圆的方程、圆的性质等知识打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本知识,如点、线、面的基本概念,以及相互之间的关系。
但学生对圆的概念和性质可能还不够熟悉,因此,在教学过程中,需要引导学生通过观察、思考、讨论等方式,自主探索和发现圆的基本性质。
三. 教学目标1.了解圆的定义,掌握圆心、半径等基本概念。
2.能够运用圆的性质解决一些简单的几何问题。
3.培养学生的观察能力、思考能力和合作能力。
四. 教学重难点1.圆的定义和圆心的概念。
2.圆的性质的发现和应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探索圆的基本性质。
2.运用多媒体辅助教学,展示圆的性质和应用。
3.采用小组合作学习的方式,培养学生的团队协作能力。
六. 教学准备1.多媒体教学设备。
2.圆的模型或图片。
3.教学课件。
七. 教学过程1.导入(5分钟)教师通过展示一些与圆相关的图片,如圆形的桌面、轮子等,引导学生思考:什么是圆?圆有哪些特点?2.呈现(10分钟)教师通过PPT呈现圆的定义和性质,如圆心、半径等概念,以及圆的性质。
同时,教师可以结合多媒体动画,展示圆的性质,如圆的直径、半径相等,圆心到圆上任意一点的距离相等等。
3.操练(10分钟)教师提出一些有关圆的问题,如:如何判断一个图形是否为圆?如何找到圆的心?如何计算圆的面积?让学生分组讨论,并进行实际操作。
4.巩固(10分钟)教师通过一些练习题,让学生巩固所学知识。
如:判断题、填空题、选择题等。
5.拓展(10分钟)教师引导学生思考:圆的性质在生活中有哪些应用?如何运用圆的性质解决实际问题?6.小结(5分钟)教师引导学生总结本节课所学内容,如圆的定义、圆心的概念、圆的性质等。
新泸科版数学九下优秀学案:24.2 第4课时 圆的确定

24.2 圆的基本性质第4课时圆的确定一.学习目标:1.知识与技能:①理解不在同一直线上的三个点确定一个圆;②掌握过不在同一直线上的三个点作圆的方法;③了解三角形的外接圆、三角形的外心等概念,提高应用数学知识解决实际问题的能力。
2.过程与方法:经历不在同一直线上的三个点确定一个圆的探索过程,体会归纳、类比以及由特殊到一般的数学思想方法。
3.情感态度与价值观:在探索活动中培养学生勇于探究的学习品质,体会解决问题的策略,学会数学地思考。
二.导学过程:(一)课前延伸:创设情境激发兴趣Array问题1:小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是哪一块?问题2:玻璃店里的师傅,要划出一块与原来大小一样的圆形玻璃,他只要知道圆的什么就可以了?为什么?问题3:如果店里师傅仅仅知道圆的半径,他可以画出多少个这样圆?为什么?(二):课中探究活动一:过定点A是否可以作圆?如果能作?可以作几个?活动二:过两个定点A、B是否可以作圆?如果能作,可以作几个?活动三:过三点,是否可以作圆,如果能,可以作几个?(分两种情况讨论)归纳结论:_______________________________________________________________(三)例题示范已知:△ABC,求作⊙O,使它经过A、B、C三点。
(四)知识拓展经过4个(或4个以上的)点是不是一定能作圆?(五)合作交流形成概念:三角形的外接圆、三角形的外心、圆的内接三角形。
自主探索:三角形的外心与三角形的位置关系。
(六)学以致用 发展能力1.直角三角形的两条直角边长分别为6和8,那么这个三角形的外接圆的半径等于 .2.①破镜重圆:利用所学知识,帮助玻璃店里的师傅找出残缺圆片所在的圆心,并把这个圆画完整.②实际操作:小明发现,店里师傅先在圆弧上顺次取三点A 、B 、C.(如图),使AB=BC.并测量得:AB=BC=5dm,AC=8dm,然后师傅计算了下,就很快划出与原来一样大小的圆形玻璃,你知道他计算的是什么?(七)回顾反思 交流收获本节课你学到了什么?(八)达标检测1.判断题:(1)三点确定一个圆 ( )(2)任意一个三角形一定有一个外接圆,并且只有一个外接圆 ( )(3)任意一个圆一定有一个内接三角形,并且只有一个内接三角形( )(4)三角形的外心是三角形三边中线的交点 ( )(5)三角形的外心到三角形各顶点距离相等 ( )2.已知点O 是△ABC 的外心,∠A=500,则∠BOC 的度数是 ( )A.500B. 1000C.1150D. 650课后提升:习题24.2A B C。
沪科版九年级初三下册24.2圆的基本性质(第1课时)精品学案

24.2 圆的对称性第1课时 圆学前温故1.圆的半径为r ,直径为R ,则半径与直径的关系为R =2r .2.圆的半径为r ,直径为R ,则圆的周长为2πr =πR ,面积为πr 2=14πR 2. 新课早知1.在平面内,线段OP 绕它固定的一个端点O 旋转一周,则另一个端点P 所形成的封闭曲线叫做圆.固定的端点O 叫做圆心,线段OP 叫做半径. 2.圆可以被看成:平面内到定点(圆心O)的距离等于定长(半径r )的所有点组成的图形.3.平面上一点P 与⊙O(半径为r )的位置关系有以下三种情况:(1)点P 在⊙O 上⇔OP =r ;(2)点P 在⊙O 内⇔OP <r ;(3)点P 在⊙O 外⇔OP >r .4.圆上任意两点间的部分叫做圆弧,简称弧.5.连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.6.同圆中:(1)半径相等;(2)直径等于半径的2倍.7.圆的任意一条直径的两个端点分圆成两条弧,每条弧都叫做半圆.大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.8.由弦及其所对弧组成的图形叫做弓形.9.能够重合的两个圆叫做等圆,等圆的半径相等.10.在同圆或等圆中,能够互相重合的弧叫做等弧.1.圆中有关的概念【例1】 如图,已知AB 、CB 为⊙O 的两条弦,试写出图中的所有弧.分析:根据弧的定义,圆上任意两点间的部分是弧,圆上任意两点间有两条弧.解:一共有6条弧:AB 、ACB 、BC 、BAC 、AC 、ABC .点拨:劣弧用端点上的两个字母表示,优弧用三个字母表示,端点上的两个字母写在两边,中间的字母为弧上的任一点.2.圆的集合定义【例2】 如图,已知矩形ABCD 中AC 交BD 于点O.求证:A 、B 、C 、D 4个点在以O 为圆心,OA 为半径的圆上.分析:根据圆是到定点的距离等于定长的点的集合,证明OA =OC =OB =OD 即可.证明:∵四边形ABCD 是矩形,∴OA =OC ,OB =OD.又∵AC =BD ,∴OA =OC =OB =OD.∴A 、B 、C 、D 4个点在以O 为圆心,OA 为半径的圆上.点拨:要证明某些点在以定点为圆心,以定长为半径的圆上,只需根据圆的定义,证明这些点到定点的距离都等于定长.3.点与圆的位置关系【例3】 已知⊙O 的半径为6 cm ,A 为线段OP 的中点,当OP =8 cm 时,点A 与⊙O 的位置关系是( ).A .点A 在⊙O 内B .点A 在⊙O 上C .点A 在⊙O 外D .不能确定解析:⊙O 的半径为6 cm ,点A 到圆心O 的距离为4 c m ,显然6 cm >4 cm ,所以点A 在⊙O 内.答案:A点拨:比较点到圆心的距离d 和半径r 的大小,来确定点与圆的位置关系.1.下列说法正确的是( ).A .直径是弦B .弦是直径C .半圆包括直径D .弧是半圆答案:A2.在平面内,⊙O 的半径为5 cm ,点P 到圆心O 的距离为3 cm ,则点P 与⊙O 的位置关系是________.答案:点P 在⊙O 内3.已知⊙O 的半径是5 cm ,圆心O 到直线l 的距离d =OD =3 cm ,在直线l 上有三点P 、Q 、R ,且有PD =4 cm ,QD >4 cm ,RD <4 cm ,则P 在⊙O________,Q 在⊙O________,R 在⊙O________.解析:OP =5 cm ,OQ >5 cm ,OR <5 cm.答案:上 外 内4.如图,△ABC 1,△ABC 2,△ABC 3,…,△ABC n 是n 个以AB 为斜边的直角三角形,试判断点C 1、C 2、C 3、…、C n 是否在同一个圆上?并说明理由.解:点C 1、C 2、C 3、…、C n 在以AB 为直径的圆上.理由如下:取AB 的中点D ,分别连接C 1D 、C 2D 、C 3D 、…、C n D ,则C 1D 、C 2D 、C 3D 、…、C n D 分别表示对应的直角三角形斜边上的中线.根据直角三角形斜边上的中线等于斜边的一半,可知:C 1D =C 2D =C 3D =…=C n D =12AB.所以点C 1、C 2、C 3、…、C n 在同一个圆上,并且在以AB 为直径的圆上.。
沪科版数学九年级下册《圆的定义》教学设计2

沪科版数学九年级下册《圆的定义》教学设计2一. 教材分析沪科版数学九年级下册《圆的定义》是本节课的主要内容。
教材通过生活中的实例引入圆的概念,接着介绍圆的性质和运算。
本节课的重点是让学生理解并掌握圆的定义,以及能够运用圆的性质解决实际问题。
二. 学情分析九年级的学生已经具备了一定的几何基础,对图形的认识和理解有一定的基础。
但是,对于圆的概念和性质,部分学生可能还比较陌生。
因此,在教学过程中,需要通过具体的实例和生活情境,让学生更好地理解和掌握圆的概念。
三. 教学目标1.知识与技能:让学生掌握圆的定义,理解圆的性质,并能运用圆的性质解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等过程,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的观察能力和创新意识。
四. 教学重难点1.重点:圆的定义和性质。
2.难点:理解和运用圆的性质解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实例,让学生感受圆的存在,激发学生的学习兴趣。
2.问题驱动法:提出问题,引导学生思考,培养学生解决问题的能力。
3.合作学习法:分组讨论,共同解决问题,培养学生的团队协作能力。
六. 教学准备1.教学课件:制作课件,展示圆的实例和性质。
2.学具:准备一些圆形物品,如硬币、圆规等,方便学生直观地理解圆的概念。
3.练习题:准备一些有关圆的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的圆形物体,如地球、太阳、硬币等,引导学生观察并思考:这些物体有什么共同的特点?学生通过观察,发现它们都是圆形的。
教师总结:圆是平面上一动点以一定点为中心,一定长为半径,在平面内一周的轨迹。
2.呈现(10分钟)教师通过讲解和示范,详细介绍圆的性质,如圆心、半径、直径等。
同时,让学生用学具进行实际操作,加深对圆的理解。
3.操练(10分钟)学生分组讨论,共同解决一些关于圆的问题,如:如何画一个特定半径的圆?如何计算圆的面积?教师巡回指导,解答学生的问题。
沪科版数学九年级下册-圆的确定学案

圆的确定教学目标了解不在同一条直线上的三个点确定一个圆,以及过不在同一条直线上的三个点作圆的方法,了解三角形的外接圆、三角形的外心等概念.教学过程:一、知识连接:1、线段的垂直平分线有什么性质?2、如何用尺规做线段的垂直平分线?3、确定圆的两要素是什么?二、探索新知:1、做一做:(1)作圆,使它经过已知点A,你能作出几个这样的圆?友情提示:以点A以外的______点为圆心,以这一点与点A所连的线段为半径就可以作一个圆.由于圆心是任意的.因此这样的圆有无数个.如图(1).(2)作圆,使它经过已知点A、B.你是如何作的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?友情提示:在AB的_________上任取一点都可以作为圆心,这点到A的距离即为半径.圆就确定下来了.由于线段AB的垂直平分线上有无数点,因此有无数个圆心,作出的圆有无数个.如图(2).(3)作圆,使它经过已知点A、B、C(A、B、C三点不在同一条直线上).你是如何作的?你能作出几个这样的圆?友情提示:要作一个圆经过A、B、C三点,就是要确定一个点作为圆心,使它到三点的距离相等.因为到A、B两点距离相等的点的集合是线段AB的________,到B、C两点距离相等的点的集合是线段BC的_________,这两条垂直平分线的交点满足到A、B、C三点的距离相等,就是所作圆的圆心.因为两条直线的交点只有一个,所以只有一个圆心,即只能作出一个满足条件的圆.作法图示1.连结AB、BC2.分别作AB、BC的垂直平分线DE和FG,DE和FG相交于点O3.以O为圆心,OA为半径作圆⊙O就是所要求作的圆回思:过已知一点可作_____个圆;过已知两点也可作______个圆,圆心在______;过不在同一条直线上的三点只能作____个圆,圆心在________________。
由此可得到定理:不在同一直线上的三个点确定一个圆.2、有关定义由上可知,经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆(circumcircle of triangle),这个三角形叫这个圆的内接三角形.外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心(circumcenter).巩固新知:已知锐角三角形、直角三角形、钝角三角形,分别作出它们的外接圆,它们外心的位置有怎样的特点?解:如下图.。
九年级数学下册第24章圆24.2圆的基本性质教案新版沪科版

24.2 圆的基本性质第1课时圆的概念和性质教师:大豕看教材,你能用自己的语言口述圆的定义吗?学生看教材•学生:将线段0P的一个端点0固定,使线段0P绕着点0在平面内旋转一周,另一个端点P 运动所形成的封闭曲线叫做圆•看教材练习第1题•教师:你能举出一些圆形物体的实例吗?学生甲:太阳、盘子等•学生乙:车轮、表盘等•活动:利用圆规画一个O Q使O O的半径r = 3cm.教师:在平面内任意取一点P,点与圆有哪几种位置关系?学生:圆内、圆上和圆外•教师:分别在圆内、圆上、圆外各取一个点,量出这些点到圆心的距离,并比较它们与圆半径的大小.你有什么发现?学生小组讨论,教师参与•师生共同努力完成:如果O 0的半径为r,点P到圆心0的距离为d,那么点P在圆内?d v r,点P在圆上?d= r,点P在圆外?d>】教师:请大豕看教材内容,我们来认识一下弧、弦、直径等与圆有关的概念•请你把重要用师生共同探究的方法来唤起学生的参与意识,通过学生的自我学习或者小组学习完成对定义的深化•I教学小结丨【板书设计】圆的概念和性质1.圆的概念:平面内到定点的距离等于定长的所有点组成的图形2•点与圆的位置关系:⑴点P在O O上? OP= r;(2)点P在O O内?0代r;(3)点P有O 0外? 0P>r.3.圆的相关概念24.2 圆的基本性质第2课时垂径定理及其逆定理I教学过程设计丨教学过程一、创设情境,导入新课你知道赵州桥吗?它是1400多年前我国建造的,是我国古代人民勤劳与智慧的结晶,它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.4m,拱高(弧的中点到弦的距离)为7.2m,你能求出桥拱所在圆的半径吗?结合赵州桥资料向学生进行爱国主义教育和美育渗透,并引入新知识.通过本节课的学习,我们就会很容易解决这一问题.二、师生互动,探究新知1.实验发现实验:用纸剪一个圆(课前让学生做好),沿着圆的任意一条直径对折,重复几次,你发现了设计意图让学生亲自动手,进行实验、探究,得出圆的轴对称性什么?由此你得到了什么结论?结论:圆是轴对称图形,其对称轴是任意一条过圆心的直线2.探究活动1 :垂径定理如下图,在圆形纸上任意画一条垂直于直径思考:①上图是轴对称图形吗?如果是,其对称轴是什么?②你能发现图中有哪些等量关系?与同伴说一说你的想法• 通过讨论,可得下面定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧•验证:你能用逻辑的方法验证垂径定理吗?例1已知,如图,在O O中,CD是直径,AB是弦,CDL AB垂足为E通过该问题引导学生探究、定理,初步感知.发现垂径引导学生自主、合作探究辑推理能力•,培养学生逻求证:AE=EB A D = D B(或A C = C B)分析:如图,连接OA OB则OA= OB可通过证明Rt△ OAE和Rt△ OBE全等,结合轴对称证明•题吗?这个逆命题正确吗?平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧•若AB是O 0的一条弦,且Al BP过点P作直径CD则ABL CD A C = Be, A D = ?D .思考:平分弧的直径垂直于平分这条弧所对的弦吗?教师引导学生先写出垂径定理的逆命题,再判断出此逆命题是正确的.根据逆命题画出图形,写出已知,求证. 引导学生仿照垂径定理的证明来证明这个命题.指出思考的问题是正确的,也是垂径定理的逆定理.最后教师归纳垂径定理及其逆定理.例2出示教材例3,并让学生解决•让学生亲自动手,进行实验、探究,得出圆的轴对称性.三、运用新知,解决冋题2.如图,AB是O 0的直径,弦CD L AB于点M(1) ?C = 1cm,A D = 1cm,那么B D =cm,A C = cm,O O的周长是学会用类比的方法解决问题径定理的逆定理.,掌握垂会利用垂径定理解决问题进一步巩固所学知识,加深对定理的理1.教材练习第I教学小结I垂径定理及其逆定理垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧垂径定理的逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧解题方法:连接一条半径,半径、弦心距、弦的一半构成直角三角形(如图).24.2 圆的基本性质第3课时弦、弧、圆心角、弦心距间的关系【教学目标】1. 了解圆是旋转对称图形及圆心角的概念 •2. 圆心角、弧、弦、弦心距之间的关系定理 .【重点难点】重点:圆心角、弧、弦、弦心距之间的关系定理难点:“圆心角、弧、弦、弦心距之间的关系定理”中的“在同圆或等圆”条件的理解 及定理的证明.丨教学过程设计丨教学过程设计意图一、 导入新课教师引导,学生自学教材知识•二、 师生互动,探究新知1. 教师出示两张透明纸,指导学生分别作半 径相等的O O 和o O ,然后把两张纸叠在一 起,使O o 与oO 重合,用图钉钉住圆心,将 上面一个圆旋转任意一个角度 •指出问题:两个圆还能重合吗?归纳:圆是旋转对称图形,对称中心为圆心.2. 将O O 绕圆心O 旋转任意角度以后,出现一 个角/ AOB 请同学们观察一下这个角有什么 特点?如图:通过教师和学生的共同努力 ,得到定 理,充分体现合作的价值.学生感受知识之间 的密切联系. 圆心角的概念:顶点在圆心的角叫做圆心角 3. 教师用多媒体课件出示教材图 24- 25.4. 提问:当/ AO 申/ A O B'时,根据圆的 旋转对称性,你能推测出,两个圆心角所对的通过学生自己的操作,充分感受圆是旋 转对称图形,并且也是中心对称图形.24.2 圆的基本性质第4课时圆的确定【教学目标】1.理解不在同一直线上的三个点确定一个圆并掌握它的运用2.了解三角形的外接圆和三角形外心的概念3.了解反证法的证明思想.【重点难点】重点:点和圆的位置关系的结论:不在同一直线上的三个点确定一个圆及其运用难点:讲授反证法的证明思路•3•作圆,使它经过已知点A、B、QA、B C三点不在同一条直线上).你是如何作的?你能作出几个这样的圆?引导学生得出:不在冋一直线上的三个点确定一个圆•连接3中的三个点,可得一个三角形,它叫做圆的内接三角形,圆叫做三角形的外接圆•三角形的外接圆的圆心叫做这个三角形的外心.三角形的外心到三角形的三个顶点距离相等•学生作直角、锐角、钝角三角形的外接圆,分别观察外心的位置•教师多媒体出示动画《王戎不摘李》片段•教师引导学生假设李子不是苦的,即李子是甜的,那么这长在人来人往的大路边的李子会不会被过路人摘去解渴呢?那么,树上的李子还会这么多吗?这与事实矛盾吗?说明李子是甜的这个假设是错的还是对的?教师引导学生归纳反证法的定义,根据学生总结的情况补充兀善•思考:经过同一直线上的三点能作出一个圆吗?教师出示问题,引导、点拨、分析•学生在教师的引导下,小组合作交流完成证明过程•教师总结:反证法的一般步骤先假设命题不成立一一从假设出发一一矛盾一一得出假设命题不成立通过该问题引导学生学会探究、发现结论,亲自体验经历数学发生发展的过程•教师通过引导学生自主、合作探究,培养学生分析问题、解决问题的意识和能力,养成良好的分析问题、解决问题的习惯•【板书设计】圆的确定1.圆的确定条件:不在同一直线上的三点确定一个圆2.三角形的外接圆及外心.3.反证法.。
沪科版数学九年级下册24.2.4圆的确定优秀教学案例

5.作业小结:设计具有针对性的作业,让学生巩固所学知识,提高学生的应用能力。同时,引导学生对作业进行自我检查和修改,培养学生的自主学习和自我纠错的能力。教师对学生的作业进行批改和评价,及时了解学生的学习情况,为下一步教学提供参考。
3.引导学生通过观察、操作、思考等途径,自主探索圆的确定方法,提高学生的解决问题的能力。
(三)小组合作
1.组织学生进行小组讨论,共同探讨圆的确定方法,培养学生的合作意识和团队精神。
2.设计具有挑战性的任务,让学生在合作中共同解决问题,提高学生的综合运用知识的能力。
3.鼓励学生相互倾听、交流、反馈,培养学生的沟通能力和批判性思维。
在教学过程中,我以生活实例导入,让学生思考在实际生活中如何确定一个圆的位置和大小。接着,我引导学生通过观察和动手操作,发现圆的确定方法。在学生理解圆的确定方法后,我设计了一系列练习题,让学生在实际问题中运用所学知识,巩固和提高对圆的确定的理解。
在教学过程中,我注重启发式教学,引导学生主动探究、积极思考,从而达到理解圆的确定的目的。同时,我关注学生的个体差异,根据学生的实际情况给予有针对性的指导,使他们在原有基础上得到提高。通过本节课的学习,学生不仅掌握了圆的确定方法,而且培养了学生的空间想象能力和逻辑思维能力,为后续学习打下了坚实的基础。
5.注重启发式教学,引导学生主动探究、积极思考,从而达到理解圆的确定的目的。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和好奇心,激发学生学习数学的内在动力。
2.引导学生感受数学与实际生活的紧密联系,提高学生运用数学知识解决实际问题的意识。
沪科版九年级数学下册24.2圆的基本性质(第一课时)教学设计

二、学情分析
九年级学生在学习圆的基本性质这一章节之前,已经掌握了平面几何中直线、三角形、四边形等基本图形的性质和计算方法。他们对几何图形有一定的认识,具备了一定的观察、分析、推理能力。但在圆的性质这一部分,学生可能会遇到以下问题:对圆的基本概念理解不够深入,对圆的性质掌握不够熟练,对圆的相关计算方法不够熟悉。因此,在教学过程中,教师需要关注以下几点:
四、教学内容与过程
(一)导入新课
1.教师出示一枚硬币,让学生观察硬币的形状,并提问:“这个形状是什么?它有什么特点?”
2.学生回答:“这个形状是圆形,它的特点是边缘线条流畅,各点到中心点的距离相等。”
3.教师总结:“今天我们要学习一种新的几何图形——圆,它具有很多独特的性质。接下来,让我们一起来探索圆的世界。”
沪科版九年级数学下册24.2圆的基本性质(第一课时)教学设计
一、教学目标
(一)知识与技能
1.让学生理解圆的基本概念,掌握圆的各个基本性质,如圆的半径、直径、圆周率等,并能运用这些性质解决实际问题。
2.培养学生运用圆的相关性质进行计算和推理的能力,如求圆的周长、面积,判断点与圆的位置关系等。
3.使学生掌握圆的对称性质,并能运用对称性质解决一些几何问题,如求圆的切线、弦的性质等。
(二)过程与方法
1.通过直观演示、实际操作和小组讨论等教学活动,引导学生探索圆的基本性质,培养学生观察、分析、归纳的能力。
2.设计丰富的例题和练习题,让学生在解决实际问题的过程中,掌握圆的性质和计算方法,提高学生的解决问题的能力。
3.引导学生运用数形结合的思想,将圆的性质与几何图形相结合,培养学生的空间想象力和几何直观。
2024-2025学年沪科版初中数学九年级(下)教案第24章圆24.2圆的基本性质(第1课时)

第24章圆24.2 圆的基本性质第1课时圆的定义及与圆有关的概念教学目标教学反思1.认识圆,理解圆的本质属性.2.理解弦、弧、直径、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,并了解它们之间的区别和联系.3.会判断点与圆的位置关系,并应用这一关系进行解题.教学重难点重点:认识圆,理解圆的本质属性.难点:理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,并了解它们之间的区别和联系.教学过程导入新课问题情境:观察下列图片,从图片中找出共同的图形.教师追问:你还能举出生活中的圆形吗?师生活动:学生列举生活中的圆形,教师适当引导.思考:车轮为什么做成圆形? 做成三角形、正方形可以吗?师生活动:如果把车轮做成圆形,车轴安装在圆心上,当车轮在地面滚动的时候,车轴离开地面的距离总是等于车轮半径长.因此车厢里坐的人都将平稳地被车子拉着走.假设车轮是个破的,已经不成圆形了,轮缘上高一块低一块的,也就是说从轮缘到轮子圆心的距离不相等,那么这种车子行驶起来一定很颠簸.同样道理,如果车轮设计成三角形或是正方形,因为其中心点到周边各点的距离不等长,所以行驶起来也一定会很颠簸!探究新知1.圆的定义教师提问:同学们,你们知道怎样画一个圆吗?你有哪些方法?师生活动:学生畅所欲言,教师圆规演示画圆的过程,总结圆的定义.1.定好半径长(即圆规两脚间的距离);2.固定圆心(即把有针尖的脚固定在一点);教学反思3.旋转一圈(使铅笔在纸上画出封闭曲线);4.用字母表示圆心、半径、直径.【归纳总结】圆的旋转定义:在一个平面内,线段OP绕它固定的一个端点O旋转一周,另一个端点P所形成的图形叫做圆.以点O为圆心的圆,记作“⊙O”,读作“圆O”.问题情境:1.以1 cm为半径能画几个圆,以点O为圆心能画几个圆?2.如何画一个确定的圆?师生活动:学生独立思考并回答,教师引导.教师追问:从画圆的过程可以看出什么呢?【归纳总结】①圆上各点到定点(圆心O)的距离都等于半径.②平面内到定点的距离等于定长的所有点都在同一个圆上.【归纳总结】圆的集合定义:平面内到定点(圆心O )的距离等于定长(半径r)的所有点组成的图形.探究:确定一个圆的要素.教师提问:当圆的圆心确定时,这个圆唯一确定吗?当圆的半径确定时,这个圆唯一确定吗?师生活动:学生小组讨论,举出反例,思考确定圆的要素,教师引导.①②【解】如图①,圆心相同,半径不同,能画出无数个同心圆;如图②,半径相同,圆心不同,能画出无数个等圆.【归纳总结】确定一个圆的要素一是圆心,圆心确定其位置;二是半径,半径确定其大小.圆的基本性质:同圆的半径相等.【新知应用】例1 如图,矩形ABCD 的对角线AC ,BD 相交于点O .求证:A ,B ,C ,D 四个点在以点O 为圆心的同一个圆上.师生活动:(学生思考,教师引导)要使A ,B ,C ,D 四个点在以点O 为圆心的同一圆上,结合圆的集合性定义,点A ,B ,C ,D 与点O 的距离有什么关系?【证明】∵ 四边形ABCD 为矩形, ∴ OA =OC =12AC ,OB =OD =12BD ,AC =BD ,∴ OA =OB =OC =OD ,∴ A ,B ,C ,D 四个点在以点O 为圆心,OA 为半径的圆上.【归纳总结】(学生总结,老师点评)由圆的集合性定义可知,圆上各点到定点(圆心O )的距离都等于定长(半径r ). 2.点与圆的位置关系圆心为O ,半径为r 的圆可以看成是所有到定点O 的距离等于定长r 的点的集合.请你用集合的语言描述下面的两个概念:(1)圆的内部是到圆心的距离小于圆的半径r 的所有点的集合; (2)圆的外部是到圆心的距离大于圆的半径r 的所有点的集合. 【新知讲解】点与圆的位置关系: 1.点P 在圆上⇔OP =r (如图①). 2.点P 在圆内⇔OP <r (如图②). 3.点③练一练:1.正方形ABCD 的边长为3 cm ,以A 为圆心,3cm 长为半径作⊙A ,则点A 在⊙A ,点B 在⊙A ,点C 在⊙A ,点D 在⊙A .2.一点和⊙O 上的最近点距离为4 cm ,最远距离为10 cm ,则这个圆的半径是 cm.3.与圆有关的概念 (1)弦连接圆上任意两点的线段(如图中的AB )叫做弦.图中的弦还有 .经过圆心的弦(如图中的AC )叫做直径.注意:①弦和直径都是线段.②直径是弦,是经过圆心的特殊弦,是圆中最长的弦,但弦不一定是直径. (2)弧圆上任意两点间的部分叫做圆弧,简称弧.以A ,B 为端点的弧记作AB ,读作“圆弧AB ”或“弧AB ”. (3)半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.教学反思(4)劣弧与优弧小于半圆的弧叫做劣弧,如图中的AC .大于半圆的弧叫做优弧,如图中的ABC .(5)等圆能够重合的两个圆叫做等圆.等圆是两个半径相等的圆. (6)等弧在同圆或等圆中,能够互相重合的弧叫做等弧. 3.概念辨析(1)长度相等的弧是等弧吗?师生活动:学生思考并回答,说明理由,教师引导归纳总结.【归纳总结】(学生总结,老师点评)长度相等的弧不一定是等弧,只有在同圆或等圆中,长度相等的弧才是等弧.(2)直径是弦吗?弦是直径吗?师生活动:学生思考并回答,说明理由,教师引导归纳总结.【归纳总结】(学生总结,老师点评)直径是弦,但弦不一定是直径,只有在弦经过圆心时,这条弦才叫直径,因此直径是圆中最长的弦.(3)半圆是弧吗?弧是半圆吗?师生活动:学生思考并回答,说明理由,教师引导归纳总结.【归纳总结】(学生总结,老师点评)半圆是弧,但弧不一定是半圆,只有直径的两个端点把圆分成的两条弧才是半圆.【新知应用】例2 下列说法:①弧分为优弧和劣弧;②半径相等的圆是等圆;③过圆心的线段是直径;④长度相等的弧是等弧;⑤半径是弦.其中正确的是________.(填序号)师生活动:(引发学生思考)优弧、劣弧、等圆、直径、等弧的定义分别是什么?圆上的弧可以分为哪几类?【答案】②【归纳总结】(学生总结,老师点评)由圆的有关概念可知,连接圆上任意两点的线段是弦;过圆心的弦是直径;在同圆或等圆中,能够互相重合的弧是等弧;圆上的弧分为优弧、半圆、劣弧.例3 如图.(1)请写出以点B 为端点的劣弧及优弧; (2)请写出以点B 为端点的弦及直径; (3)请任选一条弦,写出这条弦所对的弧.师生活动:发对优弧、劣弧概念的思考.【解】(1)劣弧:BD ,BF ,BC ,BE .优弧:BFE ,BFC ,BCD ,BCF .(2)弦BD , AB , BE .其中弦AB 又是直径.(3)答案不唯一.如:弦DF ,它所对的弧是DF 和DEF . 【归纳总结】大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.要按照一定的顺序书写,不要遗漏.【拓展延伸】 例4 下列说法:①经过点P 的圆有无数个;②以点P 为圆心的圆有无数个;③半径为3 cm ,且经过点P 的圆有无数个;④以点P 为圆心,以3 cm 为半径的圆有无数个.其中错误的有( )A .1个 B.2个 C.3个 D.4个师生活动:(引发学生思考)结合圆的定义分析怎样确定一个圆?确定一个圆的条件有哪些?【答案】A教学反思【归纳总结】(学生总结,老师点评)确定一个圆需要两个要素:一是圆心,确定圆的位置;二是半径,确定圆的大小.两者缺一不可.例5A,B是半径为5的⊙O上两个不同的点,则弦AB的取值范围是()A.AB>0B.0<AB<5C.0<AB<10D.0<AB≤10师生活动:(引发学生思考)连接圆上任意两点的线段是弦,求弦AB的取值范围,就要知道连接圆上任意两点构成的最长线段和最短线段分别是什么.【答案】D【归纳总结】(学生总结,老师点评)圆上最长的弦是直径,则圆上不同两点构成的弦长大于0且小于等于直径长.课堂练习1.填空:(1)______是圆中最长的弦,它是______的2倍.(2)如图所示,图中有条直径,条非直径的弦.2.一点和⊙O上的点最近距离为6 cm,最远距离为12 cm,则这个圆的半径是 .3.判断下列说法的正误.(1)弦是直径. ()(2)过圆心的线段是直径. ()(3)半圆是弧. ()(4)过圆心的直线是直径. ()(5)直径是最长的弦. ()(6)半圆是最长的弧. ()(7)长度相等的弧是等弧. ()(8)同心圆也是等圆. ()4.给出下列说法:①直径是弦;②优弧是半圆;③半径是圆的组成部分;④两个半径不相等的圆中,大的半圆的弧长小于小的半圆的周长.其中正确的是.(填序号)5.如图,点A,B,C,E在⊙O上,点A,O,D与点B,O,C分别在同一直线上,图中有几条弦?分别是哪些?第5题图6.如图,点A,N在半圆O上,四边形ABOC和四边形DNMO均为矩形,求证:BC=MD.参考答案1.(1)直径半径(2)两三2.9 cm或3 cm3.(1)×(2)×(3)√(4)×(5)√(6)×(7)×(8)×4.①5.解:图中有3条弦,分别是弦AB,BC,CE.6.证明:如图,连接ON,OA.∵点A,N在半圆O上,∴ON=OA.∵四边形ABOC和四边形DNMO均为矩形,∴ON=MD,OA=BC,∴BC=MD. 教学反思第6题答图课堂小结学生独立思考,进行总结,教师补充概括. ⎧⎧⎪⎪⎨⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎪⎪⎨⎪⎪⎨⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩圆的旋转定义圆的定义圆的集合定义弦—直径劣弧圆弧半圆圆的有关概念优弧等圆等弧 布置作业教材第14页练习板书设计24.2 圆的基本性质第1课时 圆的定义及与圆有关的概念1.圆的定义(1)圆的旋转定义 (2)圆的集合定义2.与圆有关的概念:弦;直径;弧;半圆;等圆;等弧.3.点与圆的位置关系: 点P 在圆上⇔OP =r ; 点P 在圆内⇔OP <r ; 点P 在圆外⇔OP >r. 教学反思。
九年级数学下册24圆课题圆的确定学案(新)沪科

课题:圆的确定【学习目标】1.理解“不在同一直线上的三个点确定一个圆”,了解三角形的外接圆和三角形外心的概念.2.经历不在同一直线上三个点作圆的具体过程,从圆心与半径的唯一性理解不在同一直线上的三个点确定一个圆的道理.【学习重点】会经过不在同一直线上的三点作圆,并理解不在同一直线上的三点确定一个圆的道理.【学习难点】学会用反证法证明命题.行为提示:点燃激情,引发学生思考本节课学什么.行为提示:教会学生怎么交流,先对学,再群学,充分在小组内展示自己,分析答案,提出疑惑,共同解决.知识链接:确定一个圆,关键是确定圆心和半径来判断仿例的做法.情景导入生成问题旧知回顾:1.经过一点可作多少条直线?经过两点呢?答:经过一点可作无数条直线,经过两点只可以作一条直线,即两点确定一条直线.2.经过一点A作圆,能作多少个圆?答:能作无数个圆,如图1.图1图23.经过两点A,B作圆,能作多少个圆?这些圆的圆心有什么特点?答:经过两点A,B能作无数个圆?如图2.这些圆的圆心在线段AB的垂直平分线上.自学互研生成能力知识模块一确定圆的条件阅读教材P21~P22,完成以下问题:1.经过不在同一直线上三点A,B,C,能不能作圆?关键是什么?由此可得出什么结论?答:经过不在同一直线上三点A,B,C可以作一个圆,关键是确定该圆的圆心,可作出AB,BC两条线段的垂直平分线的交点O,即该圆的圆心,由此可得出结论:不在同一直线上的三个点确定一个圆.2.什么是三角形的外接圆?什么是三角形的外心?三角形的外心有何性质?答:经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.三角形的外心到三角形三个顶点距离相等.范例1:由下列条件能确定一个圆的有( D)①已知圆心和半径;②已知直径的位置和大小;③已知不在同一直线上的三个点.A.①B.②③C.①②D.①②③仿例:小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃片应该是( B)A.第①块B.第②块C.第③块D.第④块行为提示:找出自己不明白的问题,先对学,再群学.对照答案,提出疑惑.小组解决不了的问题,写在小黑板上,在小组展示的时候解决.范例2:三角形的外心在三角形内部的三角形是锐角三角形,外心在其一边上的三角形是直角三角形,外心在三角形外部的是钝角三角形.仿例1:在Rt△ABC中,∠C=90°,∠A=30°,AC=43,则此三角形的外接圆的半径为( D)A. 3 B.2 C.2 3 D.4仿例2:在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,则它的外心与顶点C的距离为( B)A.1.5cm B.2.5cm C.3cm D.4cm知识模块二反证法阅读教材P22~P23,完成以下问题:什么是反证法?用反证法证明命题有哪几个步骤?答:先假设命题结论不成立,然后经过推理,得出矛盾的结果,最后断定结论一定成立,这样的证明方法叫反证法.反证法证明命题一般有以下三个步骤:(1)反设:假设命题的结论不成立;(2)推理:从(1)中的反设出发、逐步推理,直至出现与已知条件、定义、基本事实、定理等中任一个相矛盾的结果;(3)结论:由矛盾的结果判定(1)中的“反设”不成立,从而肯定命题的结论成立.范例3:用反证法证明“在△ABC中,若∠A>∠B>∠C,则∠A>60°”,第一步应假设( A)A.∠A≤60°B.∠A<60°C.∠A≠60°D.∠A=60°仿例1:用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设( D)A.a不垂直于c B.a,b都不垂直于cC.a⊥b D.a与b相交仿例2:如图,直线AB,CD相交,求证:AB,CD只有一个交点.证明:假设AB,CD相交于两个交点O与O′,那么过O,O′两点就有两条直线,这与“两点确定一条直线”相矛盾,所以假设不成立,则AB,CD只有一个交点.交流展示生成新知1.将阅读教材时生成的新问题和通过“自学互研”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一确定圆的条件知识模块二反证法检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:__________________________________________________________________2.存在困惑:_________________________________________________________________。
(完整版)沪科版九年级(下)数学:24.2《圆的基本性质》教案

24.2.3圆的确定教材分析:“圆的确定”是沪科版初中数学教材九年级下册第24章《圆》的内容之一,它是在学生学习了圆的基本性质等相关知识之后的延续学习,也为后面深入学习圆周角定理等相关内容奠定基础。
其重点内容是“过不在同一直线上三个点作圆”和反证法,本节课的学习,对于培养学生规范地操作技能、探索问题能力及条理地思维能力具有重要作用。
从解决问题的思想方法来看,渗透了分类讨论、类比、化归等数学思想方法。
所以本课时无论从知识性还是思想性来讲,在教学中都占有重要的地位,起着承上启下的作用。
学情分析:学生已经学习了确定圆的条件是圆心和半径,还学习了线段的垂直平分线的性质、判定和画法,这些知识的学习会为本节课的学习打下良好的基础。
而作一个符合要求的圆,发现圆心的分布规律是学生不易发现的,因此会产生一定的思维障碍,另外在圆心的找取上,由于学生不能建立圆与垂直平分线两者之间的关联而产生知识生成的困难;用反证法证明命题时,学生在运用反证法证明命题的过程中,可能会存在很大的困难。
大多数的学生在遇到困难懒于思索,在课堂活动中习惯性充当旁观者,而不是积极主动的探究者。
教学目标:知识技能目标:1、理解不在同一条直线上的三个点确定一个圆。
2、了解三角形的外接圆和三角形外心的概念及相关知识。
3、理解和掌握反证法的证明方法。
数学思考与问题解决目标:1、经历不在同一条直线上的三个点确定一个圆的探索过程和三角形的外心的性质、培养学生的探索能力。
2、通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略。
3、经历用反证法证明命题成立的方法,体会辩证的数学方法。
情感态度价值观1、形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力和创新精神。
2、感知数学来源于生活并服务于生活,树立探究数学问题的意识,通过问题解决过程中的相互合作和独立思考能力,体验成功的喜悦。
教学重点:1、过不在同一条直线上的三个点作圆的方法及其运用。
沪科版九下:24.2.4圆的确定 教案(表格式)

教学过程设计
3、以O为圆心,OB为半径作圆。
所以⊙O就是所求作的圆。
现在你知道了怎样要将一个如图所示的破损的圆盘复原了吗?
方法:
1、在圆弧上任取三点A、B、C。
2、作线段AB、BC的垂直平分线,其交点O即为圆心。
3、以点O为圆心,OC长为半径作圆。
⊙O即为所求。
练一练:已知△ABC,用直尺和圆规作出过点A、B、C的圆
外接圆:经过三角形各个顶点的圆叫做三角形的外接圆,外接圆
的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形
如图:⊙O是△ABC的外接圆,△ABC是⊙O的内接三角形,点O是△ABC的外心
外心是△ABC三条边的垂直平分线的交点,它到三角形的三个顶点的距离相等。
练习
1.下列命题不正确的是
A.过一点有无数个圆.
B.过两点有无数个圆.
C.弦是圆的一部分.
D.过同一直线上三点不能画圆.
2.三角形的外心具有的性质是
A.到三边的距离相等.
B.到三个顶点的距离相等.
C.外心在三角形的外.
D.外心在三角形内.
3.判断
(1)经过三点一定可以作圆。
()
(2)三角形的外心就是这个三角形两边垂直平分线的交点。
()(3)三角形的外心到三边的距离相等。
()
(4)等腰三角形的外心一定在这个三角形内。
()
本节课学习了哪些内容?。
沪科版数学九年级下册《圆的定义》教学设计1

沪科版数学九年级下册《圆的定义》教学设计1一. 教材分析《圆的定义》是沪科版数学九年级下册第五章第一节的内容。
本节课的主要任务是让学生掌握圆的定义、性质和判定方法,以及了解圆与其他几何图形的关系。
教材通过引入日常生活中的实例,引导学生探索圆的特征,从而得出圆的定义。
教材还通过丰富的练习题,帮助学生巩固所学知识,为后续学习圆的性质和判定方法打下基础。
二. 学情分析九年级的学生已具备一定的几何基础,对生活中的圆形物体有一定的认识。
但他们对圆的定义、性质和判定方法的了解还不够深入。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生从日常生活中发现圆的特征,激发他们的学习兴趣,并通过适当的示例和练习,帮助他们掌握圆的基本知识。
三. 教学目标1.知识与技能:让学生掌握圆的定义,了解圆的基本性质和判定方法。
2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的几何思维能力。
3.情感、态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:圆的定义及其性质。
2.难点:圆的判定方法及其在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生发现圆的特征,激发学习兴趣。
2.启发式教学法:在教学中提问引导学生思考,培养学生的几何思维能力。
3.合作学习法:鼓励学生分组讨论,共同探索圆的知识,提高沟通与合作能力。
六. 教学准备1.教学课件:制作课件,展示圆的实例和相关的几何图形。
2.教学素材:准备一些圆形物体,如硬币、圆规等,以便在课堂上进行展示和操作。
3.练习题:挑选一些有关圆的练习题,以便在课堂上进行巩固和拓展。
七. 教学过程1.导入(5分钟)教师通过展示一些圆形物体,如硬币、圆规等,引导学生关注圆的特征。
提问:“你们对这些圆形物体有什么认识?请描述一下圆的特征。
”2.呈现(10分钟)教师通过课件呈现圆的定义,讲解圆的定义及其与其他几何图形的区别。
沪科版数学九年级下册24.2《圆的基本性质》教学设计

沪科版数学九年级下册24.2《圆的基本性质》教学设计一. 教材分析《圆的基本性质》是沪科版数学九年级下册第24章第2节的内容,主要讲述了圆的定义、圆的性质、圆的方程及其应用。
本节内容是学生对圆的基本概念和性质的掌握,为后续学习圆的方程和其他相关知识打下基础。
教材通过生动的实例和丰富的练习,引导学生探索和发现圆的性质,培养学生的逻辑思维能力和空间想象力。
二. 学情分析学生在学习本节内容前,已经掌握了平面几何的基本知识,如点、线、面的基本性质,对图形的变换有一定的了解。
但圆的概念和性质较为抽象,对学生来说是新的挑战。
因此,在教学过程中,需要关注学生的学习情况,引导学生从实际问题中发现圆的性质,激发学生的学习兴趣,帮助学生建立圆的概念和性质。
三. 教学目标1.理解圆的定义,掌握圆的基本性质;2.学会用圆的性质解决实际问题;3.培养学生的逻辑思维能力和空间想象力;4.提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.圆的定义及其性质;2.圆的方程及其应用;3.圆的性质在实际问题中的运用。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中发现圆的性质;2.运用多媒体辅助教学,展示圆的性质和图形变换,增强学生的直观感受;3.采用分组讨论、合作学习的方式,培养学生的团队协作能力;4.注重练习,巩固所学知识,提高学生的应用能力。
六. 教学准备1.准备相关教学课件和教学素材;2.安排学生分组讨论和合作学习的时间和空间;3.准备一些实际问题,用于课堂练习和拓展。
七. 教学过程1.导入(5分钟)通过展示一些实际问题,如自行车轮子、地球等,引导学生思考这些问题的共同特点,从而引出圆的概念。
2.呈现(10分钟)介绍圆的定义,讲解圆的基本性质,如圆的轴对称性、中心对称性、旋转对称性等。
通过多媒体展示,让学生更直观地理解圆的性质。
3.操练(10分钟)分组讨论,让学生结合圆的性质,解决一些实际问题。
如:如何判断一个图形是否为圆?如何计算圆的周长和面积?4.巩固(10分钟)对圆的性质进行总结,强调重点知识点。
沪科版数学九年级下册《圆的定义》教学设计1

沪科版数学九年级下册《圆的定义》教学设计1一. 教材分析《圆的定义》是沪科版数学九年级下册第五章第一节的内容。
本节课主要让学生通过观察和操作活动,认识圆的概念,掌握圆的特征,理解圆的画法,并能够应用圆的知识解决实际问题。
教材通过生活中的实例引入圆的概念,接着介绍圆的半径、直径等基本术语,最后讲解圆的画法。
二. 学情分析九年级的学生已经具备了一定的几何基础知识,对图形的认识有一定的基础。
但是,对于圆的概念和特征的理解还需要通过观察和操作来加深。
此外,学生对于圆的画法可能比较陌生,需要通过实践来掌握。
三. 教学目标1.知识与技能:理解圆的概念,掌握圆的基本术语,学会用圆规和直尺画圆。
2.过程与方法:通过观察、操作、讨论等方法,培养学生的空间想象能力和动手能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.圆的概念和特征。
2.圆的画法。
五. 教学方法1.观察法:让学生通过观察生活中的实例,发现圆的特征。
2.操作法:让学生动手画圆,实践掌握圆的画法。
3.讨论法:让学生分组讨论,培养团队合作意识。
六. 教学准备1.圆规、直尺、铅笔等画图工具。
2.生活中的圆形物品,如硬币、碗等。
3.课件或黑板。
七. 教学过程1.导入(5分钟)通过展示生活中的圆形物品,如硬币、碗等,让学生观察并说出它们的特点,引导学生发现这些物品都有一个共同的特点——圆形。
进而引入本节课的主题——圆的定义。
2.呈现(10分钟)讲解圆的概念,通过课件或黑板展示圆的特征,如半径、直径等。
让学生理解圆的基本术语,并能够正确地描述圆。
3.操练(10分钟)让学生分组,每组用圆规和直尺画一个圆。
在画圆的过程中,引导学生注意圆规的距离、角度等参数,确保画出的圆准确无误。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生用自己的话复述圆的定义和基本术语,加深对圆的理解。
然后,让学生用圆的知识解决一些实际问题,如计算圆的面积、周长等。
沪科版数学九年级下册《圆的基本性质》学案

24.2 圆的基本性质第1课时 与圆有关的概念及点与圆的位置关系[学习目标]1.理解圆的两种定义,理解并掌握弦、直径、弧、优弧、劣弧、半圆、等圆、等弧等基本概念,能够从图形中识别;(学习重点)2.理解“直径与弦”、“半圆与弧”、 “等弧与长度相等的弧”等模糊概念;(学习难点)3.能应用圆的有关概念解决问题.[学法指导] 通过生活中圆形物体的感性认识,并自己动手操作画图,理解圆的定义,通过阅读教材理解圆的相关概念并在图中识别,澄清相关概念,并能用相关概念来解决问题. [学习流程]一、导学自习(一)知识链接1.自己回忆一下,小学学习过圆的哪些知识?2.结合教材图24.1-1,说说生活中有哪些物体是圆形的?并思考圆有什么特征?(二)自主学习1.理解圆的定义:(阅读教材并自己动手画圆)(1)描述性定义:______________________________________________________________________。
从圆的定义中归纳:①圆上各点到定点(圆心O )的距离都等于____ __; ②到定点的距离等于定长的点都在____ _. (2)集合性定义:______________________________________________________________________。
(3)圆的表示方法:以O 点为圆心的圆记作______,读作______(4)要确定一个圆,需要两个基本条件,一个是______,另一个是_____,其中_____确定圆的位置,______确定圆的大小.2.圆的相关概念:(1)弦、直径;(2)弧及其表示方法;(3)等圆、等弧。
如图1,弦有线段 ,直径是 ,最长的弦是 ,优弧有 ;劣弧有 。
二、研习展评活动1.判断下列说法是否正确,为什么?(1)直径是弦.( ) (2)弦是直径.( )(3)半圆是弧.( ) (4) 弧是半圆.( )(5) 等弧的长度相等.( ) (6) 长度相等的两条弧是等弧.( ) 活动2.⊙O 的半径为2㎝,弦AB 所对的劣弧为圆周长的61,则∠AOB = ,AB = 活动3.已知:如图2,OA OB 、为O 的半径,C D 、分别为OA OB 、的中点,求证:(1);A B ∠=∠ (2)AE BE =(图1) E D CBA活动4.如图,AB 为⊙O 的直径,CD 是⊙O 中不过圆心的任意一条弦,求证:AB >CD 。
2024-2025学年沪科版初中数学九年级(下)教案第24章圆24.1旋转(第2课时)

第24章圆24.1 旋转第2课时中心对称教学目标1.认识中心对称和中心对称图形.2.通过观察、探索等过程,使学生更深刻地理解中心对称的性质,并体会图形之间的变换关系.3.运用讨论、交流等方式,发展学生的图形分析能力、化归意识和综合运用变换解决有关问题的能力.教学重难点重点:理解中心对称的概念,会识别中心对称图形.难点:会运用中心对称及中心对称图形的性质解决实际问题.教学过程复习巩固1.在这之前你学过哪些有关对称的知识?与大家交流一下.2.什么叫轴对称?3.旋转的性质:在一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等;两组对应点分别与旋转中心的连线所成的角相等,都等于旋转角;旋转中心是唯一不动的点.导入新课我们学习了旋转的定义与性质,知道把一个图形绕一个定点按某个方向转动一定的角度,这样的图形运动称为旋转,如果把一个图形绕某一个定点旋转180°,这样的图形运动是本节课学习的内容.探究新知1.中心对称师生活动:小组讨论(师生互学).问题情境:(学生交流)观察下面两副图,每副图中的图(1)经过怎样的运动变化就可以与图(2)重合?你还能举出一些类似的例子吗?与同伴交流.学生回答:两副图中,图(1)以一定点旋转180°就可以与图(2)重合.【归纳总结】中心对称:把一个图形绕着某一个定点旋转180°,旋转前后的两个图形关于这个点对称叫做中心对称,这个点就叫做它们的对称中心. 教学反思(1)(2)(1)(2)【提示】1.只有一个对称中心;2.旋转角必须是180度;3.是两个图形,且旋转后能够重合. 师生活动:轴对称与中心对称的对比.师生活动:小组讨论(师生互学).问题情境:下图中△A ′B′C′与△ABC 关于点O 成中心对称,你能从图中找到哪些等量关系?(1)OA =OA′,OB =OB′,OC =OC′;(2)△ABC ≌△A′B′C′. 【归纳总结】 中心对称的性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分. 师生活动:探究应用 (教师引导,学生互学)例1 如图,已知△ABC 和△A ′B ′C ′成中心对称,画出它们的对称中心.【探索分析】(引发学生思考)△ABC 和△A ′B ′C ′成中心对称,即从整体上看,此图是一幅中心对称图案,所以本题有两种解法.【解】(方法一)根据观察,B ,B ′及C ,C ′应是两组对应点,连接BB ′,CC ′,BB ′与CC ′相交于点O ,则O(方法二)B ,B ′是一对对应点,连接BB ′,找出BB ′的中点O ,则点O 即为对称中心.如图.【总结】(学生总结,老师点评)利用中心对称的特征,找准对应点.当两个图显,可采用测量的方法找对应点.3.中心对称作图例2 如图,点O 是线段AE 的中点,以点O 为对称中教学反思心,画出与五边形ABCDE 成中心对称的图形.【探索分析】要画出五边形ABCDE 关于点O 成中心对称的图形,只要画出A ,B ,C ,D ,E 五点关于点O 的对称点,再顺次连接各对应点即可.【解】如图,连接BO 并延长到B',使得OB'=OB ; 连接CO 并延长到点C',使得OC'=OC ; 连接DO 并延长到点D',使得OD'=OD ; 顺次连接AD',D'C',C'B',B'E .图形EB'C'D'A 就是以点O 为对称中心、与五边形ABCDE 成中心对称的图形.4.中心对称图形 问题情境:将下面的图形绕O 点旋转180°,你有什么发现?平行四边形 【解】旋转后与原图形完全重合.【思考】(学生交流)上面的课堂练习中,得到的图形,又具有什么特征? 【归纳总结】中心对称图形:把一个图形绕某一个定点旋转180°,如果旋转后的图形能和原来的图形重合,那么这个图形叫做中心对称图形,这个定点就是对称中心.【注意】中心对称图形是指一个图形.判断下列图形是不是中心对称图形?如果是,那么对称中心在哪?师生活动:拓展延伸(学生自学).例3 如图,长方形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E ,F ,AB =2,BC =3,试教学反思求图中阴影部分的面积.【探索分析】由于矩形是中心对称图形,所以依题意可知△BOF 与△DOE 关于点O 成中心对称,则图中阴影部分的三个三角形可以转化到Rt △ADC 中,于是阴影部分的面积即可求得.【解】因为矩形ABCD 是中心对称图形, 所以△BOF 与△DOE 关于点O 成中心对称,所以图中阴影部分的三个三角形就可以转化到Rt △ADC 中. 又因为AB =2,BC =3,所以S Rt △ADC =12×3×2=3,即图中阴影部分的面积为3. 【总结】(学生总结,老师点评)利用中心对称的性质将阴影部分转化到一个直角三角形中来解决,使问题更简单.课堂练习1.观察下列四个平面图形,其中中心对称图形有( )① ② ③ ④第1题图A.2个B.1个C.4个D.3个2.如图所示,已知长方形的长为10 cm ,宽为4 cm ,则图中阴影部分的面积为( )A.20 cm 2B.15 cm 2C.10 cm 2D.25 cm 2第2题图 第3题图3 .在方格纸中选择标有序号的一个小正方形涂上颜色,与图中阴影部分构成中心对称图形,应选 .4.请你用无刻度的直尺画一条直线把下面的图形分成面积相等的两部分,你怎样画?第4题图 第5题图5.如图所示,线段AC ,BD 相交于点O ,且AB ∥CD ,AB =CD ,此图形是中心对称图形吗?试说明你的理由.6.世界上因为有了圆,万物才显得富有生机,以下来自现实生活的图形中都有圆,它们看上去是那么的美丽与和谐,这正是因为圆具有轴对称性和中心对称性.请问以下三个图形中是轴对称图形的有 ,是中心对称图形的有 .教学反思② ③第6题图参考答案1. D 解析:题图①②③是中心对称图形.2. A 解析:根据题意可知,长方形的面积=10×4=40(cm 2),再根据中心对称的性质知,图中阴影部分的面积即是长方形面积的一半,则图中阴影部分的面积=12×40=20(cm 2). 故选A.3. ④4. 解:(答案不唯一)如图所示.① ② ③第4题答图点拨:对于这种由两个中心对称图形组成的复合图形平分面积时,可以把这个图形进行割补,然后找到它们的对称中心,再过对称中心作直线.5. 解:此图形是中心对称图形.理由如下:由AB ∥CD ,AB =CD ,可证得△AOB ≌△COD ,所以此图形是中心对称图形.6. 解:轴对称图形为①②③,中心对称图形为①③.布置作业教材第6页练习板书设计24.1 旋 转 第2课时 中心对称1.中心对称2.中心对称的性质 3中心对称图形4.中心对称图形的性质5.中心对称与中心对称图形的联系与区别 教学反思。
九年级数学下册 24 圆 课题 圆的基本性质学案 (新版)沪科版

课题:圆的基本性质【学习目标】1.学会用集合的观点描述圆,掌握圆的有关定义.2.探索点和圆的位置关系并学会如何判断点和圆的位置关系.【学习重点】圆及其有关概念,点与圆的位置关系.【学习难点】用集合的观点描述对圆的理解.行为提示:点燃激情,引发学生思考本节课学什么.行为提示:认真阅读课本,独立完成“自学互研”中的题目,并在练习中发现规律,从猜测到探索到理解知识.方法指导:判断点与圆的位置关系只需通过点与圆的距离和半径的大小关系来判断.情景导入生成问题情景导入:用圆规在纸上画一个圆,如何定义圆?答:在平面内,线段OP绕着它固定的一个端点O旋转一周,则另一个端点P所形成的封闭曲线叫做圆,固定的端点O叫做圆心,线段OP叫做半径.自学互研生成能力知识模块一圆的定义及点和圆的位置关系阅读教材P12~P13,完成以下问题:1.如何用集合的观点定义圆?答:(1)圆上各点到定点的距离都等于定长;(2)平面内到定点(圆心O)的距离等于定长(半径r)的所有点都在同一圆上,圆可以看成是到定点距离等于定长的所有点的集合,其中定点为圆心,定长为半径.2.点和圆的位置关系有几种?答:(1)点P在⊙O上⇔OP=r;(2)点P在⊙O内⇔OP<r;(3)点P在⊙O外⇔OP>r.范例1:下列条件中,能确定圆的为( B)A.以已知点O为圆心B.以点O为圆心,2cm为半径C.以2cm为半径D.经过已知点A,且半径为2cm范例2:已知⊙O的半径为3cm,A为线段OM的中点,当OA满足:(1)当OA=1cm时,点M与⊙O的位置关系是点M在⊙O内;(2)当OA=1.5cm时,点M与⊙O的位置关系是点M在⊙O上;(3)当OA=3cm时,点M与⊙O的位置关系是点M在⊙O外.仿例:已知在矩形ABCD中,AB=4,AC=6,以点A为圆心,5为半径作圆,则A,B,C,D四点中,在圆内的点有A,B,D.学习笔记:正确理解弦的概念,对于等弧需满足条件:①长度相等;②同圆或等圆中.行为提示:找出自己不明白的问题,先对学,再群学.对照答案,提出疑惑,小组内解决不了的问题,写在小黑板上,在小组展示的时候解决.知识模块二圆的其他相关概念阅读教材P12~P13,完成下列问题:1.什么是弦?什么是直径?什么是弧?什么是半圆、优弧与劣弧?答:连接圆上任意两点的线段叫做弦.经过圆心的弦,叫做直径,圆上任意两点间的部分叫做弧,直径的两个端点分圆成两条弧,每一条弧都叫做半圆.大于半圆的弧叫优弧,小于半圆的弧叫劣弧.2.什么是等圆?什么是等弧?答:能够重合的两个圆叫做等圆,在同圆或等圆中,能够重合的弧叫做等弧.范例3:下列命题正确的是( D)A.直径不是弦B.长度相等的弧是等弧C.圆上两点间的部分叫做弦D.大小不等的圆中不存在等弧仿例1:如图所示,图中有1条直径,有3条弦,以E为端点的劣弧有5条,以A为端点的优弧有4条.仿例2:已知⊙O中最长的弦为16cm,则⊙O的半径为8cm.仿例3:如图,点A,D,G,M在半圆O上,四边形ABOC,DEOF,HMNO均为矩形,设BC=a,EF=b,NH=c,试比较a,b,c的大小.解:连接OM,OD,OA.由矩形性质得:OM=NH=c,OD=EF=b,OA=BC=a.∵OM=OD=OA,∴a =b=c.交流展示生成新知1.将阅读教材时生成的新问题和通过“自学互研”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一圆的定义及点和圆的位置关系知识模块二圆的其他相关概念检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________。
沪科版九年级下册24.2圆的基本性质教学设计(共六课时)

沪科版初中数学九年级第24章圆教学设计24.2圆的基本性质(共六课时)第一课时一.教学背景(一)教材分析:圆是在学习了直线图形的有关性质的基础上来研究的一种特殊的曲线图形。
它是常见的几何图形之一,是初中几何中主要内容之一,《圆》这一章知识本身具有一定的高度和难度,是学生对所学几何知识的再一次综合与提升,是学生丰富对现实空间及图形的认识,建立初步空间观念的保证。
“圆的基本性质”是对已学过的旋转及轴对称等知识的巩固,也为本章即将探究的圆的性质,和圆与其他图形的位置、数量关系等知识打下基础。
(二)学情分析:九年级学生在过去的生活和学习中对圆的知识已经有了一些认识,初步体会到圆在生活、工农业生产、交通运输、土木建筑等方面均广泛存在,这对进一步探究圆的定义及相关性质奠定了一定的基础。
但对圆的相关性质掌握较少,对知识的转化能力较差,所以重在要学生参与,主动探究,增加解决实际问题的能力。
二.教学目标1.通过观察、操作、归纳等理解圆的定义、弦、弧、直径、等圆、等弧等相关概念;探索并掌握点与圆的位置关系; 2.学会圆、弧、弦等的表示方法. 3.感受圆和实际生活的联系,培养学生用数形结合思想方法分析解决问题的能力。
三.教学重难点教学重点:1.理解与圆有关的概念并会用符号语言表示.2.理解和掌握点与圆的位置关系。
教学难点:圆的概念的理解及点与圆的位置关系。
四.教学方法分析及学习方法指导教学方法分析:充分确立学生在教学中的主体地位,贯彻师生合作,民主教学的精神,通过课前延伸,自主学习,合作探究,让学生积极参与知识回顾和技能的训练过程,通过观察和动手操作,充分调动已有知识,采用“迁移法”、“发生法”和“教师引导法”,强化学生的思考和探究意识,提高学生的思维品质。
学习方法指导:教师引导,学生在观察、操作、概括应用的学习过程中,自主参与知识的发生、发展、形成的过程,进一步理解并运用由特殊到一般,数形结合和转化等数学思想方法解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、明确学习目标
1、了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题。
2、从感受圆在生活中大量存在到圆形及圆的形成过程,讲授圆的有关概念。
二、自主预习
阅读教材,思考并完成自主预习区。
三、合作探究
四、当堂检测
五、拓展提升
六、课后作业
---------------------赠予---------------------
【幸遇•书屋】
你来,或者不来
我都在这里,等你、盼你
等你婉转而至
盼你邂逅而遇
你想,或者不想
我都在这里,忆你、惜你
忆你来时莞尔
惜你别时依依
你忘,或者不忘
我都在这里,念你、羡你
念你袅娜身姿
羡你悠然书气
人生若只如初见
任你方便时来
随你心性而去
却为何,有人
为一眼而愁肠百转
为一见而不远千里
晨起凭栏眺
但见云卷云舒
风月乍起
春寒已淡忘
如今秋凉甚好
几度眼迷离
感谢喧嚣
把你高高卷起
砸向这一处静逸
惊翻了我的万卷
和其中的一字一句
幸遇只因这一次
被你拥抱过,览了
被你默诵过,懂了
被你翻开又合起
被你动了奶酪和心思
不舍你的过往
和过往的你
记挂你
相思可以这一世
---------------------谢谢喜欢--------------------