3受弯构件的正截面破坏形态
钢筋砼与砌体结构复习资料
钢筋砼与砌体结构复习资料一、单选题1.以下哪种情况可以不进行局部受压承载力验算。
( )A.支撑柱或墙的基础面B.支撑梁或屋架的砌体墙C.支撑梁或屋架的砌体柱D.窗间墙下面的砌体墙答案:D2.块体和砂浆的强度等级是按( )划分。
A.抗拉强度B.抗压强度C.抗剪强度D.弯曲抗压强度答案:B3.受压砌体墙的计算高度H0与下面哪项无关( )。
A.房屋静力计算方案B.横墙间距C.构件支承条件D.墙体采用的砂浆和块体的强度等级答案:D4.砌体局部受压强度提高的主要原因是( )。
A.局部砌体处于三向受力状态B.套箍作用和应力扩散作用C.受压面积小D.砌体起拱作用而卸荷答案:B5.《砌体结构设计规范》中所列出的砌体弹性模量时依据砌体受压应力—应变曲线上( )确定的。
A.初始弹性模量B.所设定的特定点的切线模量C.取应力为0.43fm点的割线模量D.取弹性模量、切线模量和割线模量三者的平均值答案:C①施工阶段尚未凝结的砂浆;②抗压强度为零的砂浆③用冻结法施工解冻阶段的砂浆;④抗压强度很小接近零的砂浆A.①②B.①③C.②④D.②答案:B7.在水平荷载作用下,框架柱反弯点位置在( )。
A.偏向刚度小的一端B.偏向刚度大的一端C.居于中点D.不一定答案:A8.剪扭构件的承载力计算公式中( )。
A.混凝土部分相关,钢筋不相关B.混凝土和钢筋均相关C.混凝土和钢筋均不相关D.混凝土不相关,钢筋相关答案:A9. 防止梁发生斜压破坏最有效的措施是( )。
A.增加箍筋B.增加弯起钢筋C.增加腹筋D.增加截面尺寸答案:D10.当大偏压构件截面钢筋A s不断增加,可能产生( )。
A.受拉破坏变为受压破坏B.受压破坏变成受拉破坏C.保持受拉破坏D.破坏形态保持不变答案:A11.受弯构件斜截面抗剪设计时,限制其最小截面尺寸的目的( )。
A.防止斜拉破坏B.防止斜压破坏D.防止发生剪压破坏答案:B12.正截面承载力计算中,不考虑受拉混凝土作用是因为( )。
混凝土结构设计原理试卷之简答题题库
2、梁内设置箍筋的作用是什么?其主要构造要求有哪些?答:梁内设置箍筋的主要作用有:保证形成良好的钢筋骨架,保证钢筋的正确位置,满足斜截面抗剪,约束混凝土、提高混凝土的强度和延性。
箍筋的构造要求主要应从以下几个方面考虑:箍筋间距、箍筋直径、最小配箍率,箍筋的肢数、箍筋的封闭形式等。
3、对于弯剪扭构件承载力的计算,《规范》采用的实用计算方法是什么?参考答案:答:弯剪扭构件承载力计算,分别按受弯和受扭承载力计算的纵筋截面面积相叠加;分别按受剪和受扭计算的箍筋截面面积相叠加。
三、简答题1、在钢筋混凝土结构中,钢筋和混凝土能够共同工作的基础是什么?答:(1)钢筋与混凝土之间的粘结力;(2)钢筋与混凝土两种材料的温度线膨胀系数接近(钢为1.2×10-5;混凝土为1.0×10-5~1.5×10-5);(3)钢筋与构件边缘之间的混凝土保护层,保护钢筋不易发生锈蚀,不致因火灾使钢筋软化。
2、适筋梁从加载到破坏的全过程中梁截面经历了哪三个阶段?它们各对截面的设计及验算有何意义?参考答案:答:适筋梁从加载至破坏的全过程梁截面经历弹性工作、带裂缝工作和屈服三个阶段。
弹性工作阶段的极限状态是截面抗裂验算的依据;带裂缝工作阶段是构件变形及裂缝宽度极限状态验算的依据;屈服阶段的最终状态是截面承载能力极限状态计算的依据。
3、当V<V c 时,理论上是否需要设置弯起筋和箍筋?参考答案:答:理论上可不必设置抗剪箍筋,混凝土足以抵抗外部剪力,但考虑到一些没有估计到的因素(不均匀沉降、温度收缩应力等)有可能引起脆性破坏,为此应按构造要求设置一定量的箍筋。
4、什么是结构的可靠性,它包含几方面的含义?答:结构在规定的时间内,在规定的条件下,完成预定功能的能力,称为结构的可靠性。
它包含结构的安全性、耐久性、适用性。
三、简答题1、什么叫钢筋的冷拔? 冷拉和冷拔对钢筋的性能的改变有何不同?参考答案:答:冷拔是将钢筋用强力拔过比其直径小的硬质合金拔丝模。
受弯构件正截面的破坏形态
施工阶段的控制措施
01
严格控制材料质量
02
规范施工操作
03加强Βιβλιοθήκη 量检测确保进场的材料质量符合设计要 求,防止因材料缺陷而导致破坏。
按照施工规范和操作规程进行施 工,确保构件的浇筑、养护和焊 接等工艺符合要求。
对施工过程中的关键工序进行质 量检测,及时发现并处理问题, 确保施工质量。
使用阶段的维护与管理
03 影响受弯构件正截面破坏 形态的因素
混凝土强度
混凝土强度等级
混凝土的抗压强度和抗拉强度决定了受 弯构件的正截面承载能力,混凝土强度 等级越高,其抗压和抗拉强度越大,正 截面承载能力越强。
VS
混凝土的弹性模量
混凝土的弹性模量越大,受弯构件的正截 面刚度越大,抵抗变形和破坏的能力越强 。
配筋率
详细描述
少筋破坏是由于受拉区钢筋过细或数量过少引起的,此时受压区混凝土尚未达到抗压强度。随着荷载 增加,受拉区钢筋迅速屈服并断裂,导致构件破坏。这种破坏形态也具有脆性特征,属于典型的拉伸 破坏。
弯曲破坏
总结词
当受弯构件的正截面承载力达到极限时,其破坏形态表现为弯曲破坏。
详细描述
弯曲破坏是由于受拉区和受压区的混凝土同时达到极限承载力引起的,此时受拉区钢筋和受压区混凝土同时达到 极限承载力,导致构件破坏。这种破坏形态具有明显的塑性变形和延性特征,属于典型的弯曲破坏。
超筋破坏
总结词
当受弯构件的正截面承载力超过极限时,其破坏形态表现为超筋破坏。
详细描述
超筋破坏是由于受压区混凝土先达到抗压强度引起的,此时受拉区钢筋尚未屈 服。随着荷载增加,受压区混凝土迅速破裂,导致构件破坏。这种破坏形态具 有脆性特征,属于典型的剪切破坏。
建筑结构答案重大2010年造价1221
一、填空题1.建筑结构应满足的三项功能要求是 安全性 、 适用性 、 耐久性 。
2.衡量有明显屈服点钢筋的力学性能指标有① 屈服强度 、 ② 极限强度 、 ③ 伸长率 、④ 冷弯性能 。
3.预加应力的方法有 先张 法和 后张 法 。
4.室内正常环境下,砼强度等级≥C 25时,梁的砼保护层最小厚度为 25 mm 。
5.砼的基本强度有:立方抗压强度、 轴心抗压强度 、 轴心抗拉强度 , 6.《砼结构设计规范》根据 立方体抗压强度标准值 将砼划分为 14 个等级。
7.《建筑结构设计统一标准》将极限状态分为两类,即 承载力 极限状态和 正常使用 极限状态。
8.钢筋级别越高,强度越 高 ,塑性越 低 。
9. h=500 mm 的矩形截面梁中,常见的钢筋有:纵向受力钢筋、弯起钢筋、 侧向构造钢筋 、 箍筋 、 架立筋 。
10. 受弯构件斜截面破坏形态有斜压破坏、 剪压 破坏、 斜拉 破坏,斜截面抗剪承载力计算以 剪压 破坏为计算依据。
11. 受弯构件正截面计算要求b ξξ≤是为了防止 斜拉 破坏。
12. 钢筋冷加工的方法有 冷拉 和冷拔,冷加工后的钢筋 强度 提高,塑性降低 。
13. 钢筋砼轴心受压构件的b l 0越大,ϕ值越 小 。
14. 计算轴心受压构件正截面承载力时,其计算公式为 Nu=0.9Ψ(fc As+fy`As`) 。
15. 受弯构件正截面破坏形态有 适筋 破坏、 超筋 破坏、 少筋 破坏,16. 混凝土在荷载的长期作用下,随正常时间而增长的变形称为徐变。
17. 没有明显屈服点钢筋的条件屈服强度取残余应变为0.2%时所对应的应力σ0.2。
18. 受弯构件斜截面破坏形态有三种,即: 斜压 破坏、 剪压 破坏和 斜拉 破坏;验算ρsv ≥ρsvmin 则是为了防止 斜拉 破坏。
19. 钢筋砼大偏心受压构件破坏的特征是,先受拉一侧钢筋 先屈服 ,而后受压一侧砼___被压碎_。
20. 钢筋按其外表形状不同,可分为 光圆钢筋和 变形 钢筋两种。
混凝土结构设计原理第4章:钢筋混凝土受弯构件正截面承载力计算
◆判别条件:f y As 1 fcb'f h'f
第一类T形截面
满足:
0M 1 fcb'f h'f h0 h'f 2 否则为第二类截面
混凝土结构设计原理
第4章
■第一类T形截面的计算公式及适用条件
图4.13 第一类T形截面计算简图
◆计算公式: 1 fcbf x f y As
0M
1
f cbf x(h0
由式(4-27)可得:
x h0
h02
M 2
fyAs(h0
1 fcb
as)
As
fyAs 1 fcbx
fy
…4-34 …4-35
混凝土结构设计原理 情形2:已知条件
第4章
M1
0M
f
' y
As'
h0
as'
x h0
h02
M1
0.51 fcb
x h0 b N
Y
x 2as'
按 A未s' 知,重新计算 和As' As
x) 2
◆适用条件: 1.防止超筋破坏: x bh0 2.防止少筋破坏 : As minbh
按 bf h的单筋
矩形截面计算
混凝土结构设计原理
第4章
■第二类T形截面的计算公式及适用条件
图4.14 第二类T形截面计算简图
◆计算公式: 1 fcbx 1 fc (bf b)hf fy As
0M
② 由式(4-27)求 Mu
Mu
fyAs(h0 as) 1 fcbx(h0
x) 2
…4-37
③ 验算: Mu M ?
混凝土结构设计原理
第3章-受弯构件的正截面受弯承载力全篇
(1) 适筋梁 图3-4 试验梁
(2) 适筋梁正截面受弯的三个阶段
图3-5 M0 — Φ0图
M0 — Φ0 关系曲线上有两个转折点C和y,受弯全过 程可划分为三个阶段 — 未裂阶段、裂缝阶段、破坏阶段。
(2) 适筋梁正截面受弯的三个阶段
1)第Ⅰ阶段:未裂阶段(混凝土开裂前) 由于弯矩很小,混凝土处于弹性工作阶段,应力与应变 成正比,混凝土应力分布图形为三角形。 当受拉区混凝土达到极限拉应变值,截面处于即将开裂 状态,称为第Ⅰ阶段末,用 I a 表示。 第Ⅰ阶段特点: ①混凝土没有开裂;②受压区混凝土的 应力图形是直线,受拉区混凝土的应力图形在第Ⅰ阶段前期 是直线,后期是曲线;③弯矩与截面曲率是直线关系。 I a 阶段可作为受弯构件抗裂度的计算依据。
3)第Ⅲ阶段:破坏阶段(钢筋屈服至截面破坏) 第Ⅲ阶段受力特点:①纵向受拉钢筋屈服,拉力保 持为常值;受拉区大部分混凝土已退出工作;②由于受 压区混凝土合压力作用点外移使内力臂增大,故弯矩还 略有增加;③受压区边缘混凝土压应变达到其极限压应 变实验值ε0cu时,混凝土被压碎,截面破坏;④弯矩一 曲率关系为接近水平的曲线。
3)第Ⅲ阶段:破坏阶段(钢筋屈服至截面破坏) 纵向受拉钢筋屈服后,正截面就进入第Ⅲ阶段工作。 钢筋屈服,中和轴上移,受压区高度进一步减小。弯 矩增大至极限值M0u时,称为第Ⅲ阶段末,用Ⅲa表示。此 时,混凝土的极限压应变达到ε0cu,标志截面已破坏。 第Ⅲ阶段是截面的破坏阶段,破坏始于纵向受拉钢筋 屈服,终结于受压区混凝土压碎。
3.3.2 受压区混凝土压应力合力及其作用点
根据板的跨度L来估算h:单跨简支板 h ≥ L/35;多 跨连续板 h ≥ L/40;悬臂板 h ≥ L/12。
另外尚应满足表3-1的现浇板的最小厚度要求。
(整理)正截面受弯的三种破坏形态
正截面受弯的三种破坏形态•(4)试验过程分析• A.三阶段的划分原则:•第Ⅰ阶段:弯矩从零到受拉区边缘即将开裂,结束时称为Ⅰa点,其标志为受拉区边缘混凝土达到其抗拉强度ft (或其极限拉伸应变εtu );•第Ⅱ阶段:弯矩从开裂弯矩到受拉钢筋即将屈服,结束时称为Ⅱa点,其标志为纵向受拉钢筋应力达到fy ;••第Ⅲ阶段:弯矩从屈服弯矩到受压区边缘混凝土即将压碎,结束时称为Ⅲa点,其标志为受压区边缘混凝土达到其非均匀受压时的极限压应变εcu 。
• B.各阶段受力分析:见图3-10。
• C.三阶段划分的理论意义:是今后推导相关计算公式的理论基础,例如:•Ⅰa :抗裂验算的依据;•第Ⅱ阶段:裂缝宽度及变形验算的依据;•Ⅲa :正截面受弯承载力计算的依据。
•第一阶段——截面开裂前阶段•第二阶段——从截面开裂到纵向受拉钢筋屈服前的裂•缝阶段•第三阶段——钢筋屈服到破坏阶段••钢筋混凝土梁正截面受力过程三个阶段的应力状态与设计有何关系•加荷初期,梁截面承担的弯矩较小,材料近似处于弹性阶段,在第一阶段末即Ⅰa 阶段,由于受拉边缘应变已经达到了混凝土的极限拉应变,构件截面处于将要开裂而还没有开裂的极限状态。
此时的截面应力分布图形是计算开裂弯矩的依据。
第Ⅱ阶段是构件带裂缝工作阶段,在这个阶段由于裂缝不断出现和开展,相应截面的混凝土不断退出工作,引起截面刚度明显降低。
其应力分布图形是受弯构件正常使用极限状态验算的依据。
当弯矩增大到一定程度时,裂缝截面中的钢筋将首先达到屈服强度,其后应变在弯矩基本不增大的情况下持续增长,带动裂缝急剧开展,受压混凝土高度不断减小,当受压区边缘混凝土纤维达•到极限压应变时,被压碎而失去承载能力。
所以第三阶段末截面应力分布图形则是受弯构件正截面受弯承载力计算的依据。
•随着配筋率不同,钢筋混凝土梁可能出现下面三种不同的破坏形态:•(1)适筋破坏形态•当配筋适中时---- 适筋梁的破坏••发生条件:ρmin.h/h0≤ρ≤ρb••适筋梁从开始加荷直至破坏,截面的受力过程经历了三个阶段。
受弯构件的破坏有正截面受弯破坏和斜截面破坏两种
受弯构件的破坏有正截面受弯破坏和斜截面破坏两种。
正截面是指与混凝土构件纵轴线相垂直的计算截面,为了保证正截面有足够的受弯承载力,不产生受弯破坏,由承载力极限状态知应满足M ≤ M uM ----正截面的弯矩设计值,M----正截面的受弯承载力设u计值,M相当于荷载效应组合S,是由内力计算得到的,M u 相当于截面的抗力R。
从截面受力性能看,可归纳为单筋矩形截面、双筋矩形截面和T形(I形、箱形)截面等三种主要截面形式。
1)梁的截面尺寸梁高和跨度之比h/l称为高跨比,《高层建筑混凝土结构技术规程》(JGJ3-2002)规定框架结构主梁的高跨比为1/10~1/18。
梁高与梁宽(T形梁为肋宽)之比h/b,对矩形截面梁取2~3.5,对T形截面梁取2.5~4.0。
梁高h在200mm以上,按50mm模数递增,达到800mm以上,按100mm模数递增。
梁宽b通常取150、180、200、250mm,其后按50mm模数递增。
2)梁中钢筋的布置梁中的钢筋有纵向钢筋、弯起钢筋、纵向构造钢筋(腰筋)、架立钢筋和箍筋,箍筋、纵筋和架立钢筋绑扎(或焊)在一起,形成钢筋骨架,使各种钢筋得以在施工时维持正确的位置。
纵向受力钢筋主要是指受弯构件在受拉区承受拉力的钢筋,或在受压区承受压力的钢筋。
梁内纵向受力钢筋宜采用HRB400或RRB400级和HRB335级钢筋为了保证钢筋和混凝土有良好的握裹能力,构件的外缘应当保证保护层的厚度大于钢筋直径,并满足表4-1的规定。
构件的内部钢筋的间距4.2.1 配筋率对构件破坏特征的影响假设受弯构件的截面宽度为b,截面高度为h,纵向受力钢筋截面面积为A s,从受压边缘至纵向受力钢筋截面重心的距离h o为截面的有效高度,截面宽度与截面有效高度的乘积bh o为截面的有效面积(图4-6)。
构件的截面配筋率是指纵向受力钢筋截面面积与截面有效面积的百分比,即(4-1)图4-6 矩形截面受弯构件构件的破坏特征取决于配筋率、混凝土的强度等级、截面形式等诸多因素,但是以配筋率对构件破坏特征的影响最为明显。
第3章受弯构件的正
(4)钢筋的应力-应变关系采用理想弹塑性应力-应变关系, 钢筋应 力的绝对值不应大于其相应的强度设计值,受拉钢筋的极限拉应 变取0.01。
§3.3 正截面受弯承载力计算原理
第3章 受弯构件的正截面受弯承载力
2 受压区等效矩形应力图形
等效矩形应力图 等效原则: 1)混凝土压应力的合力合力C大小相等; 2)两图形中受压区合力C的作用点不变.
适筋梁正截面受力的三个阶段
第Ⅲ阶段的受力特点 (1)纵向受拉钢筋屈服,拉力保持为常值;裂缝截面处,受
拉区大部分混凝土已退出工作,受压区混凝土压应力曲线 图形比较丰满,有上升段曲线,也有下降段曲线; (2)弯矩还略有增加;
(3)受压区边缘混凝土压应变达到其极限压应变实验值 时c0u ,
混凝土被压碎,截面破坏; (4)弯矩—曲率关系为接近水平的曲线。
混凝土保护层的三个作用: (1)防止纵向钢筋锈蚀 (2)在火灾等情况下,使钢筋的温度上升缓慢 (3)使纵向钢筋与混凝土有较好的粘结 梁、板、柱的混凝土保护层厚度与环境类别和混凝土强 度等级有关,见附表3-4 注意:我们通常所说的保护层厚度都是指构件的最小保 护层厚度
§3.1 梁、板的一般构造
第3章 受弯构件的正截面受弯承载力
《混凝土结构设计规范》规定:
对于受弯的梁类构件
m inb A hs 0.45ffy t ,0.2% 取 大 值
对于地基上的混凝土板 ,最小配筋率可适当降低,但不应小于
0.15%。
§3.3 正截面受弯承载力计算原理
第3章 受弯构件的正截面受弯承载力
§3.4 单筋矩形截面受弯构件正截面受弯承载力计算 1 基本计算公式 适用条件
或 s smax
防止发生少筋破坏
As mibn h
结构设计原理 第三章 受弯构件 习题及答案
第三章 受弯构件正截面承载力一、填空题1、受弯构件正截面计算假定的受压区混凝土压应力分布图形中,0ε= ,cu ε= 。
2、梁截面设计时,可取截面有效高度:一排钢筋时,0h h =- ;两排钢筋时,0h h =- 。
3、梁下部钢筋的最小净距为 mm 及≥d 上部钢筋的最小净距为 mm 及≥1.5d 。
4、适筋梁从加载到破坏可分为3个阶段,试选择填空:A 、I ;B 、I a ;C 、II ;D 、II a ;E 、III ;F 、III a 。
①抗裂度计算以 阶段为依据;②使用阶段裂缝宽度和挠度计算以 阶段为依据;③承载能力计算以 阶段为依据。
5、受弯构件min ρρ≥是为了 ;max ρρ≤是为了 。
6、第一种T 形截面梁的适用条件及第二种T 形截面梁的适用条件中,不必验算的条件分别是 及 。
7、T 形截面连续梁,跨中按 截面,而支座边按 截面计算。
8、界限相对受压区高度b ζ需要根据 等假定求出。
9、单筋矩形截面梁所能承受的最大弯矩为 ,否则应 。
10、在理论上,T 形截面梁,在M 作用下,f b '越大则受压区高度χ 。
内力臂 ,因而可 受拉钢筋截面面积。
11、受弯构件正截面破坏形态有 、 、 3种。
12、板内分布筋的作用是:(1) ;(2) ;(3) 。
13、防止少筋破坏的条件是 ,防止超筋破坏的条件是 。
14、受弯构件的最小配筋率是 构件与 构件的界限配筋率,是根据 确定的。
15、双筋矩形截面梁正截面承载力计算公式的适用条件是:(1) 保证;(2) 保证 。
当<2s a χ'时,求s A 的公式为 ,还应与不考虑s A '而按单筋梁计算的s A 相比,取 (大、小)值。
16、双筋梁截面设计时,s A 、s A '均未知,应假设一个条件为 ,原因是 ;承载力校核时如出现0>b h χξ时,说明 ,此时u M = ,如u M M ≤外,则此构件 。
受弯构件的破坏有正截面受弯破坏和斜截面破坏两种
受弯构件的破坏有正截面受弯破坏和斜截面破坏两种。
正截面是指与混凝土构件纵轴线相垂直的计算截面,为了保证正截面有足够的受弯承载力,不产生受弯破坏,由承载力极限状态知应满足M ≤ M uM ----正截面的弯矩设计值,M----正截面的受弯承载力设u计值,M相当于荷载效应组合S,是由内力计算得到的,M u 相当于截面的抗力R。
从截面受力性能看,可归纳为单筋矩形截面、双筋矩形截面和T形(I形、箱形)截面等三种主要截面形式。
1)梁的截面尺寸梁高和跨度之比h/l称为高跨比,《高层建筑混凝土结构技术规程》(JGJ3-2002)规定框架结构主梁的高跨比为1/10~1/18。
梁高与梁宽(T形梁为肋宽)之比h/b,对矩形截面梁取2~3.5,对T形截面梁取2.5~4.0。
梁高h在200mm以上,按50mm模数递增,达到800mm以上,按100mm模数递增。
梁宽b通常取150、180、200、250mm,其后按50mm模数递增。
2)梁中钢筋的布置梁中的钢筋有纵向钢筋、弯起钢筋、纵向构造钢筋(腰筋)、架立钢筋和箍筋,箍筋、纵筋和架立钢筋绑扎(或焊)在一起,形成钢筋骨架,使各种钢筋得以在施工时维持正确的位置。
纵向受力钢筋主要是指受弯构件在受拉区承受拉力的钢筋,或在受压区承受压力的钢筋。
梁内纵向受力钢筋宜采用HRB400或RRB400级和HRB335级钢筋为了保证钢筋和混凝土有良好的握裹能力,构件的外缘应当保证保护层的厚度大于钢筋直径,并满足表4-1的规定。
构件的内部钢筋的间距4.2.1 配筋率对构件破坏特征的影响假设受弯构件的截面宽度为b,截面高度为h,纵向受力钢筋截面面积为A s,从受压边缘至纵向受力钢筋截面重心的距离h o为截面的有效高度,截面宽度与截面有效高度的乘积bh o为截面的有效面积(图4-6)。
构件的截面配筋率是指纵向受力钢筋截面面积与截面有效面积的百分比,即(4-1)图4-6 矩形截面受弯构件构件的破坏特征取决于配筋率、混凝土的强度等级、截面形式等诸多因素,但是以配筋率对构件破坏特征的影响最为明显。
混凝土结构设计原理习题之二含答案(钢筋混凝土受弯构件正截面承载力计算)【范本模板】
混凝土结构设计原理习题集之二4钢筋混凝土受弯构件正截面承载力计算一、填空题:1.钢筋混凝土受弯构件正截面破坏有___、___ 和___ 三种破坏形态.2.一配置HRB335 级钢筋的单筋矩形截面梁,该梁所能承受的最大弯矩公式为_________ 。
若该梁所承受的弯矩设计值大于上述最大弯矩,则应___或____或____.3.正截面受弯计算方法的基本假定是: __、__、__ _ 、___ 。
4.在适筋梁破坏的三个阶段中,作为抗裂度计算的依据的是_________ ,作为变形和裂缝宽度验算的依据是_____ ,作为承载力极限状态计算的依据是_____。
5.双筋矩形截面梁可以提高截面的, 越多,截面的越好。
6.双筋矩形截面受弯构件正截面承载力计算公式的适用条件是、。
7.提高受弯构件截面延性的方法,在单筋矩形截面梁受拉钢筋配筋率不宜,在双筋矩形截面梁受压钢筋配筋率不宜。
8.适筋梁的破坏始于,它的破坏属于。
超筋梁的破坏始于,它的破坏属于。
9.混凝土保护层的厚度主要与有关、和所处的等因素有关. 10.单向板中分布钢筋应板的受力钢筋方向,并在受力钢筋的按要求配置。
二、选择题:1.混凝土保护层厚度是指()。
A.箍筋的外皮至混凝土外边缘的距离B.受力钢筋的外皮至混凝土外边缘的距离C.受力钢筋截面形心2.适筋梁在逐渐加载过程中,当正截面受力钢筋达到屈服以后().A.该梁即达到最大承载力而破坏B.该梁达到最大承载力,一直维持到受压混凝土达到极限强度而破坏C.该梁达到最大承载力,随后承载力缓慢下降直到破坏D.该梁承载力略有提高,但很快受压区混凝土达到极限压应变,承载力急剧下降而破坏3.图示中所示五种钢筋混凝土梁的正截面,采用混凝土强度等级为C20;受力钢筋为HRB335 级,从截面尺寸和钢筋的布置方面分析,正确的应是( )。
4.双筋矩形截面正截面受弯承载力计算,受压钢筋设计强度规定不超过 400N/mm 2, 因为( )。
(整理)正截面受弯的三种破坏形态
正截面受弯的三种破坏形态•(4)试验过程分析• A.三阶段的划分原则:•第Ⅰ阶段:弯矩从零到受拉区边缘即将开裂,结束时称为Ⅰa点,其标志为受拉区边缘混凝土达到其抗拉强度ft (或其极限拉伸应变εtu );•第Ⅱ阶段:弯矩从开裂弯矩到受拉钢筋即将屈服,结束时称为Ⅱa点,其标志为纵向受拉钢筋应力达到fy ;••第Ⅲ阶段:弯矩从屈服弯矩到受压区边缘混凝土即将压碎,结束时称为Ⅲa点,其标志为受压区边缘混凝土达到其非均匀受压时的极限压应变εcu 。
• B.各阶段受力分析:见图3-10。
• C.三阶段划分的理论意义:是今后推导相关计算公式的理论基础,例如:•Ⅰa :抗裂验算的依据;•第Ⅱ阶段:裂缝宽度及变形验算的依据;•Ⅲa :正截面受弯承载力计算的依据。
•第一阶段——截面开裂前阶段•第二阶段——从截面开裂到纵向受拉钢筋屈服前的裂•缝阶段•第三阶段——钢筋屈服到破坏阶段••钢筋混凝土梁正截面受力过程三个阶段的应力状态与设计有何关系•加荷初期,梁截面承担的弯矩较小,材料近似处于弹性阶段,在第一阶段末即Ⅰa 阶段,由于受拉边缘应变已经达到了混凝土的极限拉应变,构件截面处于将要开裂而还没有开裂的极限状态。
此时的截面应力分布图形是计算开裂弯矩的依据。
第Ⅱ阶段是构件带裂缝工作阶段,在这个阶段由于裂缝不断出现和开展,相应截面的混凝土不断退出工作,引起截面刚度明显降低。
其应力分布图形是受弯构件正常使用极限状态验算的依据。
当弯矩增大到一定程度时,裂缝截面中的钢筋将首先达到屈服强度,其后应变在弯矩基本不增大的情况下持续增长,带动裂缝急剧开展,受压混凝土高度不断减小,当受压区边缘混凝土纤维达•到极限压应变时,被压碎而失去承载能力。
所以第三阶段末截面应力分布图形则是受弯构件正截面受弯承载力计算的依据。
•随着配筋率不同,钢筋混凝土梁可能出现下面三种不同的破坏形态:•(1)适筋破坏形态•当配筋适中时---- 适筋梁的破坏••发生条件:ρmin.h/h0≤ρ≤ρb••适筋梁从开始加荷直至破坏,截面的受力过程经历了三个阶段。
第3章受弯构件正截面详解
3.1 截面的形式和构造
(2)板
单向板 One-way Slab 悬臂板 Cantilever Slab 双向板 Two-way Slab 基础筏板 Raft Foundation Slab
两对边支撑的板应按单向板计算;四边支撑的板,当
长边与短边之比大于3,按单向板计算,否则按双向 板计算 混凝土板有两种。 现浇板:截面宽度大,可根据需要定,设计时可取单 位宽度(b=1000mm)进行计算。 预制板:宽度b=0.6~1.5m,可以做成矩形板和空心板
3.2 受弯构件正截面受弯性能
受力全过程的特点
M
Mu My
y
第Ⅰ阶段截面曲率或挠度增长速度 较慢,第Ⅱ阶段增长速度较前为快, 第Ⅲ阶段由于钢筋屈服,截面曲率 急剧增加 随着弯矩的增大,中和轴不断上移, 受压区高度逐渐缩小,混凝土压应 变增大,受拉钢筋的拉应变增大, 平均应变符合平截面假定。 第Ⅰ阶段钢筋应力增长速度较慢, 开裂前后钢筋应力发生突变,弯矩 达到屈服弯矩时钢筋屈服
3.3 受弯构件正截面承载力计算原理
3.3.3 受压区混凝土等效矩形应力图形
等效条件: 混凝土压应力合力大小不变; 混凝土压应力合力作用点位置不变。
3.3.3 等效矩形应力图系数
k1 f cbxc =1 f cbx x 2( xc yc ) 2(1 k2 ) xc
≤C50 C55 0.99 0.79 C60 0.98 0.78 C65 0.97 0.77 C70 0.96 0.76
2)板的钢筋
板分为周边支撑板(单向板、双向板)和悬臂板。 受力筋:HRB400、HRB500级 d=6、8、10、12mm 间距:70~200mm且≯250mm; ≯ 200mm(h≤150mm); ≯ 1.5h( h>150mm ) 分布钢筋: HRB335、HRB400级 d=6、8mm 间距: ≯ 250mm, 为构造筋,垂直于板内主筋,与 主筋焊接或绑扎在一起,形成钢筋骨架。 截面面积不 宜小于单位宽度上受力钢筋截面面积的 15%,配筋率不 宜小于0.15%
受弯构件正截面受力全过程和破坏形态
青海大混学凝土应力分布规律——第Ⅱ阶段
结构设计原理
达到Mcr时,在纯弯段抗拉能力最薄弱的某一截面处,将首先出 现第一条裂缝,即由第Ⅰ阶段转入为第Ⅱ阶段工作。 裂缝出现时梁的挠度和截面曲率都突然增大,中和轴位置随之上 移,受拉区的拉力主要由钢筋承担。之后主裂缝越来越宽,受压 区应力图形呈曲线变化。当弯矩继续增大到受拉钢筋应力即将到 达屈服强度My时,即进入第Ⅱ阶段末。
青海大学 结构设计原理
青海大学 结构设计原理
3.2 受弯构件正截面全过程和破坏形态
通过了解受弯构件正截面全过程和破坏形态,明确钢筋 混凝土梁的受力和变形规律,为下个章节的承载力计算 的基本原则做铺垫。
掌握: 破坏形态分类及其特点
作业:3-2,3-3,3-6
青海大混学凝土应力分布规律——第Ⅰ阶段
结构设计原理
刚开始加载,由于弯矩很小,混凝土基本处于弹性工作阶段,应 力与应变成正比,受压区和受拉区混凝土应力分布图形为三角形 在弯矩增加到Mcr时,受压区基本上处于弹性工作阶段,受压区 应力图形接近三角形;而受拉区应力图形则呈曲线分布,受拉区 边缘应变值即将到达混凝土的极限拉应变值,截面遂处于即将开 裂状态。
青海大学 结构设计原理
3.2.1 受弯构件正截面受力全过程
混凝土应力分布规律——第Ⅰ阶段 由于受拉区混凝土塑性的发展, 阶段时中和轴的位置比 第Ⅰ阶段初期略有上升。 受力特点: ①混凝土没有开裂;②受压区混凝土的应力图 形是直线,受拉区混凝土的应力图形在第Ⅰ阶段前期是直 线,后期是曲线;③弯矩与挠度基本上是直线关系。 作用:阶段可作为受弯构件抗裂度的计算依据。
青海大学 结构设计原理
第2章 习题课问题解答
1、概念 结构上的作用——施加在结构上的集中力或分布力(直接 作用,也称为荷载)和引起结构外加变形或约束变形的原 因(间接作用)。 作用效应——由于直接作用或间接作用作用于结构构件上 ,在结构内产生的内力和变形(如轴力、弯矩、剪力、扭矩 、挠度、转角和裂缝等)。 结构抗力——结构或结构构件承受内力和变形的能力(如构 件的承载能力、刚度等)。 2、弯矩和剪力的单位 3、作用效应系数确定
混凝土结构设计原理PPT课件第3章 受弯构件正截面承载力计算
3.5.3计算方法 1)截面计算
情况1:已知截面尺寸、材料的强度类别,弯 矩计算值,求 As和As 。
(1)假设 as和as ,求得h0 has。
(2)验算是否需要双筋截面。
M M ufcb d02 hb(1.5b)
(3)补充条件xbh0 ,求得 As和As 。
(4)分别选择受压及受拉钢筋的直径和根数,进 行截面布置。
第三章
受弯构件正截面承载力计算
受弯构件的主要破坏形态:
3.1受弯构件的截面形式与构造 3.1.1截面的形式和尺寸
板
受压区
现浇板宽度 比较大,计算 时可取单位宽 度的矩形截面 计算。
b 整体式板
受拉钢筋
钢筋混凝土简支板的标准跨径不宜大于13m,连 续板桥的标准跨径不宜大于25m,预应力连续板桥 的标准跨径不宜大于30m。
As
M fsd(h0 as)
(4)当 xbh0且 x2as时,由基本公式求 A s 。
(5)选择钢筋的直径和根数,布置截面钢筋。
2)截面复核 (1)检查钢筋布置是否符合要求。 (2)按双筋截面求受压区高度x。
(3)当 xbh0且 x2as时,由下式求受拉钢筋面积。
As
M fsd(h0 as)
箍筋直径不小于8mm或受压钢筋直径的1/4倍。
受压钢筋的应力 由图可得:
cu 0.0033
x c xc as s
a s
cs uxcx cas (1a xc s)(10.8 xas)
A s
As
s
0.00(1303.8as) x
取 x 2as
C0bx0bxc 0bch0 yc 2x12xc 12ch0
x = βxc
混凝土结构 试题1.1
一.单项选择1.下列关于钢筋混凝土结构的说法错误的是( A )A.钢筋混凝土结构自重大,有利于大跨度结构、高层建筑结构及抗震B.取材较方便、承载力高、耐久性佳、整体性强C.施工需要大量模板、工序复杂、周期较长、受季节气候影响大D.耐火性优、可模性好、节约钢材、抗裂性差。
2.我国混凝土结构设计规范规定:混凝土强度等级依据( D )确定。
A.圆柱体抗压强度标准 B.轴心抗压强度标准值C.棱柱体抗压强度标准值D.立方体抗压强度标准值3.混凝土的弹性系数反映了混凝土的弹塑性性质,定义( A )为弹性系数A.弹性应变与总应变的比值B.塑性应变与总应变的比值C.弹性应变与塑性应变的比值 D.塑性应变与弹应变的比值4.由混凝土的应力应变曲线可见,随着混凝土的强度的提高,(A,上升段和峰值应变的变化不显著,下降段的坡度越缓)因此延性越差。
5.(A,1阶段)可做为受弯构件抗裂验算的依据。
6.结构的功能要求不包括( D )A 安全性B 适用性C 耐久性D 经济性7.结构上的作用可分为直接作用和间接作用两种,下列不属于间接作用的是( B )A 地震B 风荷载C 地基不均匀沉降D 温度变化8.当时,v>0.25时,应采取的措施是(D,增大截面尺寸)9.当结构或构件出现(B.I、III)时,我们认为其超过了承载能力极限状态。
I.结构转变为机动体系 II.构件挠度超过允许的限值III.结构或构件丧失稳定 IV.构件裂缝宽度超过了允许的最大裂缝宽度10.有明显流幅的热轧钢筋,其屈服强度是以( D )为依据的。
A. 比例极限B. 强度极限C. 屈服上限D. 屈服下限11.受弯构件正截面极限状态承载力计算的依据是适筋梁正截面( C )的截面受力状态。
A.第I阶段末B.第II阶段末C.第III阶段末12.在T形梁的截面设计计算中,满足下列条件(D,M>.)则为第二类T形梁13.单筋矩形梁正截面承载力计算基本公式的适用条件是:(A,I,.III,.)14.双筋矩形截面梁正截面承载力计算基本公式的第二个适用条件的物理意义是( C )A.防止出现超筋破坏B.防止出现少筋破坏C.保证受压钢筋屈服D.保证受拉钢筋屈服15.受弯构件斜截面承载力计算公式是以( D )为依据的。
混凝土结构基本原理_第3章_受弯构件的正截面受弯承载力讲解
•
一般取2.0~4.0
•
梁宽度多为150、200、250、300、350mm等
b. 板
a) 设计时通常取单位宽度(b=1000mm)进行计算
b) 板厚除应满足各项功能要求外,尚应满足最小厚度要求
4.1.2 材料选择与一般构造
① 混凝土强度等级
•
工程中常用的梁、板混凝土强度等级是:C20、C25、C30、C35、
Mu的计算、应用是本章的中心问题
截面破坏形式 • 破坏通常有正截面和斜截面
两种形式
V V
•M
受弯构件设计的内容
正截面受弯承载力计算(按已知弯矩设计值M确定截 面尺寸和纵向受力钢筋);
斜截面受剪承载力计算(按剪力设计值V计算确定箍 筋和弯起钢筋的数量);
钢筋布置(为保证钢筋与混凝土的粘结,并使钢筋充 分发挥作用,根据荷载产生的弯矩图和剪力图确定钢 筋沿构件轴线的布置);
梁的截面尺寸主要应根据所承受的外部作用决
定,同时也需考虑模板尺寸、构件的截面尺寸符合模数、
方便施工。
现浇梁、板的截面尺寸可参考下述原则 选a. 取梁:
a) 高度h
•
较为常见的取值为:300、350、400、450、500、
550、600、650、700、750、800、900、1000mm等
b) 梁的高宽比(h/b)
根数:不少于2根,同时应满足图4-2所示对纵筋净距的要求(便于 浇注混凝土,保证钢筋周围混凝土的密实性)
b) 梁内箍筋
强度等级:常采用HPB300级、HRB400级 直径:常采用6mm、8mm、10mm和12mm等
c) 梁内纵向构造钢筋
架立钢筋:梁上部无受压计算钢筋时,仍需配置2根架立筋,以便与 箍筋和梁底部纵筋形成钢筋骨架,直径一般不小于10mm 纵向构造(腰筋): 梁的腹板高度hw≥450mm时,在梁的两个侧面 应沿高度配置纵向构造钢筋以减小梁腹部的裂缝宽度。每侧纵向构 造钢筋(不包括梁上、下部受力钢筋及架立钢筋)的截面面积不应 小于腹板截面面积bhw的0.1%,且其间距不宜大于200mm 梁的腹板高度hw:对矩形截面,取有效高度h0;对T形截面,取有效 高度h0减去翼缘高度;对I形截面,取腹板净高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
联系工程实际
从一片片小小的梁到超级工程,我们桥梁工程人造的 “新世界七大奇迹”!
不忘初心, 做合格道路桥梁人!
一、纵向受拉钢筋的配筋率
h0 as
h
As %
bh0
AS
As——受拉钢筋截面面积;
b ——截面宽度;
b
h0 ——梁截面的有效高度, h0=h-as
一、纵向受拉钢筋的配筋率
h0 as
h
As %
bh0
思考: 为什么以截面有效高度h0
代替截面高度h?
AS b
二、梁正截面的破坏形态
(a)少筋破坏 (b)适筋破坏 (c)超筋破坏
很低,取决于混凝土 的抗拉强度
二、梁正截面的破坏形态
超筋梁破坏
主筋配置是 否越多越好?
二、梁正截面的破坏形态
正截面破 坏形态
少筋梁破坏
超筋梁破坏
拉区混凝土一开裂, 破坏特征 受拉钢筋屈服,梁很
快破坏
混凝土被压碎, 钢筋未屈服。无 明显破坏预兆。
适筋梁破坏
破坏性质
脆性破坏
脆性破坏
承载能力
很低,取决于混凝土 的抗拉强度
课题:受弯构件的正截面破坏形态
学习目标
01 掌握受弯构件配筋率的公式; 02 掌握受弯构件正截面破坏的形态及特征。
导入新课
壮观的桥梁
沉痛的事故
我们在工程中应该做些什么?
导入新课
h
c b
弯曲变形:分受拉区和受压区。
压
z
拉
导入新课
架立钢筋
箍筋
弯起钢筋
纵向受拉钢筋(主钢筋)
思考: 钢筋骨架中决定受弯构件正截面受力性能的是?
二、梁正截面的破坏形态
正截面破 坏形态
少筋梁破坏
超筋梁破坏
适筋梁破坏破坏特征破坏性质承载能力
二、梁正截面的破坏形态
少筋梁破坏
请用四个字 形容少筋梁 破坏
二、梁正截面的破坏形态
正截面破 坏形态
少筋梁破坏
拉区混凝土一开裂, 破坏特征 受拉钢筋屈服,梁很
快破坏
超筋梁破坏
适筋梁破坏
破坏性质
脆性破坏
承载能力
脆性破坏
钢筋先屈服,然后混凝土 被压坏,有明显预兆。
塑性破坏
很低,取决于混凝 土的抗拉强度
取决于混凝土的抗压 强度
取决于配筋率、钢筋 的抗拉强度和混凝土 的抗压强度
内容总结 纵向受拉钢筋的配筋率公式; 梁正截面破坏的三种形态及其特征。
课后作业
思考:怎样防止发 生少筋梁和超筋梁破 坏?
某工程项目中,钢筋混凝土矩形 截面梁尺寸b×h=300mm×650mm, 采用C30混凝土,配置有3 12 (As=339mm2)HRB400级钢筋,箍 筋直径为8mm,受拉钢筋布置如图所 示,Ⅰ类环境条件,设计使用年限为 50年,安全等级为二级;该构件在桥 梁工程中被禁止使用,为什么?
取决于混凝土的 抗压强度
二、梁正截面的破坏形态
适筋梁破坏
总结适筋梁 破坏的三个 阶段
二、梁正截面的破坏形态
适筋梁破坏
第Ⅰ阶段:开裂前
第Ⅱ阶段:带裂缝工作阶段
第Ⅲ阶段:破坏阶段
正截面破坏 形态
二、梁正截面的破坏形态
少筋破坏
超筋破坏
适筋破坏
破坏特征 破坏性质 承载能力
一裂即坏
脆性破坏
混凝土被压碎 钢筋未屈服