线性方程组的直接解法(16)分析

合集下载

线性方程组直接解法

线性方程组直接解法

14/87
算法 1.3 LU 分解
1: 2: 3: 4: 5: 6: 7: 8:
for k = 1 to n − 1 do for i = k + 1 to n do aik = aik /akk for j = k + 1 to n do aij = aij − aik akj end for end for end for
其中
li2 =
ai2
(1) (1)
, i = 3, 4, . . . , n.
a22
ln2 0 · · · 1
1 (1) 用 L− , 并将所得到的矩阵记为 A(2) , 则 2 左乘 A a11 a12 a13 (1) 0 a(1) 22 a23 0 0 a(2) 1 −1 −1 A(2) = L− 33 2 A = L2 L1 A = . . . . . . . . . (2) 0 0 an3
k=i+1
加上回代过程的运算量 O(n2 ), 总运算量为
2 3 n + O(n2 ) 3
12/87
† 评价算法的一个主要指标是执行时间, 但这依赖于计算机硬件和编 程技巧等, 因此直接给出算法执行时间是不太现实的. 所以我们通常 是统计算法中算术运算 (加减乘除) 的次数.
† 在数值算法中, 大多仅仅涉及加减乘除和开方运算. 一般地, 加减运 算次数与乘法运算次数具有相同的量级, 而除法运算和开方运算次 数具有更低的量级.
· · · a1n (1) · · · a2n (2) · · · a3n . .. . · · · ann
(2)
9/87
(k−1) • 依此类推, 假定 akk ̸= 0 (k = 3, 4, . . . , n − 1), 则我们可以构造一系 列的矩阵 L3 , L4 , . . . , Ln−1 , 使得 a11 a12 a13 · · · a1n (1) (1) 0 a(1) 22 a23 · · · a2n 0 0 a(2) · · · a(2) 1 −1 −1 L− · · · L L A = ≜ U → 上三角 33 3 n n−1 2 1 . . . .. . . . . . . . (n−1) 0 0 0 · · · ann

解线性方程组的直接方法

解线性方程组的直接方法

解线性方程组的直接方法一、高斯消元法高斯消元法是解线性方程组最常用的方法之一、它通过一系列的消元操作,将线性方程组转化为阶梯型方程组,从而求解未知数的值。

1.确定线性方程组的阶数和未知数的个数。

设线性方程组中有n个未知数。

2.将线性方程组写成增广矩阵的形式。

增广矩阵是一个n行n+1列的矩阵,其中前n列是线性方程组的系数矩阵,第n+1列是等号右边的常数。

3.通过初等行变换(交换行、数乘行、行加行)将增广矩阵化为阶梯型矩阵。

具体步骤如下:a.首先,找到第一个非零元素所在的列,将它所在的行视为第一行。

b.将第一行的第一个非零元素(主元)变成1,称为主元素。

c.将主元所在列的其他元素(次元素)变为0,使得主元所在列的其他元素只有主元素是非零的。

d.再找到第一个非零元素所在的列,将它所在的行视为第二行,并重复上述步骤,直到将增广矩阵化为阶梯型矩阵。

4.根据阶梯型矩阵求解未知数的值。

具体步骤如下:a.从最后一行开始,依次求解每个未知数。

首先,将最后一行中非零元素所在的列作为含有该未知数的方程,将该未知数的系数设为1b.将含有该未知数的方程中其他未知数的系数设为0,并对其他方程进行相应的变换,使得该未知数所在列的其他元素都为0。

c.重复上述步骤,直到求解出所有未知数的值。

高斯消元法的优点是简单易懂、容易实现,但当线性方程组的系数矩阵接近奇异矩阵时,计算精度可能会降低。

二、矩阵求逆法矩阵求逆法是解线性方程组的另一种直接方法。

它通过对系数矩阵求逆,然后与常数矩阵相乘,得到未知数的值。

1.确定线性方程组的阶数和未知数的个数。

设线性方程组中有n个未知数。

2.将线性方程组写成矩阵方程的形式,即Ax=b,其中A是一个n阶方阵,x和b分别是n维列向量。

3.求系数矩阵A的逆矩阵A^-1a. 首先,计算系数矩阵A的行列式det(A)。

b. 判断det(A)是否为0,如果det(A)=0,则该线性方程组无解或有无穷多解;如果det(A)≠0,则系数矩阵A可逆。

解线性方程组的直接方法

解线性方程组的直接方法

(1.5)
消去法的回代过程是解上三角形方程组(1.5).我们从方程组(1.5)的第三个方 x3 6 / 6 1 ; 程解得 然后将它代入第二个方程得到
x2 ( 5 x3 ) / 3 2;
最后,将 x3 1, x2 2 代第一个方程得到
x1 (3 2 x2 3 x3 ) / 2 2.

(n+1)n/2次运算
i 1 l11 bi lij x j l21 l22 j 1 A xi , i 1, , n lii l l l nn n1 n 2

(n+1)n/2次运算
n u11 u12 u1n bi uij x j u22 u2 n j i 1 A x , i n, ,1 i uii u nn
1,2,...,n)
( 1 .2 )
Ax b,
a1n a2 n , ann
§1 1.1 Gauss 消去法 本章主要介绍求解线性方程组(1.1)的直接法。所谓直接法,就是不考虑 计算过程的舍入误差时,经有限次数的运算便可求得方程组准确解的方法.我 们还将在§5中对计算过程中的舍入误差作一些初步分析.
a11 a 21 A, b ... an 2
之间有一对应关系.不难看出:
a12 a22 ... an 2
... ... ... ...
a1n a2 n ... ann
b1 b2 ... bn
(1.3)
(1)交换矩阵(1.3)的第p,q两行(记作 的第p,q两个方程;

(1.8)
(1.9)
(1.9)式是消元过程的一般计算公式.式中作分母的元素

线性方程组的解法

线性方程组的解法

线性方程组的解法线性方程组是数学中常见的问题,它可以用于描述多个未知数之间的关系。

解决线性方程组的问题是求解未知数的具体取值,从而得到方程组的解。

本文将介绍几种常见的解线性方程组的方法。

一、高斯消元法高斯消元法是解决线性方程组的经典方法之一。

它通过矩阵变换的方式,将线性方程组转化为一个三角矩阵,从而简化求解过程。

以下是高斯消元法的步骤:1. 将线性方程组写成增广矩阵的形式,其中最后一列为常数项。

2. 选取一个非零元素作为主元,在当前列中将主元素所在的行作为第一行,然后通过初等行变换将其他行的主元素变为0。

3. 重复第2步,直到所有的主元素都变成1,并且每个主元素所在的列的其他元素都变为0。

4. 反向代入,从最后一行开始,依次回代求解未知数的值。

二、矩阵的逆矩阵法矩阵的逆矩阵法是利用矩阵的逆矩阵来求解线性方程组。

以下是逆矩阵法的步骤:1. 对于线性方程组Ax=b,如果矩阵A可逆,将方程组两边同时左乘A的逆矩阵AI,得到x=A^(-1)b。

2. 通过求解矩阵A的逆矩阵来得到未知数向量x的值。

3. 如果矩阵A不可逆,那么线性方程组没有唯一解,可能有无穷多解或者无解。

三、克拉默法则克拉默法则是另一种解决线性方程组的方法,它利用行列式的性质来求解未知数的值。

以下是克拉默法则的步骤:1. 对于线性方程组Ax=b,令|A|=D,其中D表示矩阵A的行列式。

2. 分别计算将矩阵A的第i列替换为常数列b所得到的行列式|A_i|。

3. 未知数向量x的第i个分量可以通过x_i = |A_i|/D来得到。

克拉默法则的优点是简单直观,但是当方程组的规模很大时,计算行列式将变得非常复杂。

四、矩阵的广义逆法矩阵的广义逆法是一种应对方程组无解或者有无穷多解的情况的方法。

对于线性方程组Ax=b,如果矩阵A不可逆,我们可以通过求解广义逆矩阵A^+来得到一个特解x_0。

1. 分别计算A^+ = (A^T·A)^(-1)·A^T和x_0 = A^+·b。

线性方程组直接解法

线性方程组直接解法
线性规划
在求解线性规划问题时,高斯消元法 可以用于求解单纯形表中的方程组,
从而得到最优解。
矩阵求逆
通过高斯消元法可以将一个可逆矩阵 化为单位矩阵,从而求出其逆矩阵。
计算机图形学
在计算机图形学中,高斯消元法可以 用于求解三维变换矩阵,实现图形的 旋转、平移等操作。
2023
PART 03
克拉默法则
REPORTING
2023
PART 02
高斯消元法
REPORTING
高斯消元法的基本思想
通过对方程组的增广矩阵进行初等行 变换,将其化为行阶梯形矩阵,然后 逐步回代求解未知数。
高斯消元法的基本思想是将方程组中 的未知数逐一消去,从而得到一个易 于求解的三角形方程组。
高斯消元法的步骤
将方程组的增广矩阵写出来, 并对其进行初等行变换,化为 行阶梯形矩阵。
未来研究方向
高性能计算
随着计算资源的不断发展,研究如何 在高性能计算环境中更有效地应用直 接解法和迭代解法具有重要意义。
预处理技术
研究更有效的预处理技术,以 改善迭代解法的收敛性和稳定 性。
并行化与分布式计算
探索并行化和分布式计算技术 在解线性方程组中的应用,以 提高计算效率和可扩展性。
自适应算法
开发能够自适应地选择最合适 算法和参数的线性方程组求解 器,以提高求解效率和精度。
2023
THANKS
感谢观看
https://
REPORTING
从行阶梯形矩阵中,选取一个 主元,通过行变换将主元所在 的列的其他元素消为0。
重复上述步骤,直到所有未知 数都被消去,得到一个上三角 形方程组。
从上三角形方程组中,逐个回 代求解未知数。

第二章 线性方程组的直接解法

第二章  线性方程组的直接解法

a i(kk ) l ik = ( k ) a kk a ( k +1) = a ( k ) − l a ( k ) ij ik kj ij ( k +1) = 0 a ik b ( k +1) = b ( k ) − l b ( k ) i ik k i
( i = k + 1, ⋯ , n ) ( i , j = k + 1, ⋯ , n ) ( i = k + 1, ⋯ , n ) ( i = k + 1, ⋯ , n )
定理2 定理2.1 高斯消元法消元过程能进行到底的充要条件是系 n- 阶顺序主子式不为零; Ax=b 能用高斯消元 数阵A的 数阵 A 的 1 到 n-1 阶顺序主子式不为零 ; Ax=b能用高斯消元 法解的充要条件是A的各阶顺序主子式不为零 的各阶顺序主子式不为零. 法解的充要条件是 的各阶顺序主子式不为零.
(i=2,3,⋯,k) )
(i ) 显然, Di ≠ 0 ↔ a ii ≠ 0 , 可知,消元过程能进行到底的充 显然, 可知, 要条件是D 要条件是 i≠0 ,(i=1,2,⋯,n-1),若要回代过程也能完成,还应 , 若要回代过程也能完成, 加上D | | ,综合上述有: 加上 n=|A|≠0,综合上述有:

( a kkk )

( a nkk )
⋯ a 1(1 ) b1(1 ) n (2) (2) ⋯ a 2 n b2 ⋯ ⋯ ⋯ (k ) (k ) ⋯ a kn b k ⋯ ⋮ ⋮ (k ) (k ) ⋯ a nn b n
7
结束
本次消元的目的是对框内部分作类似第一次消元的处 ( (k 消掉第k+1到第 个方程中的 k项,即把 akk ) ,k到 ank ) 化 到第n个方程中的 理,消掉第 到第 个方程中的x +1 为零.计算公式如下: 为零.计算公式如下:

解线性方程组的直接解法

解线性方程组的直接解法

解线性方程组的直接解法一、实验目的及要求关于线性方程组的数值解法一般分为两大类:直接法与迭代法。

直接法是在没有舍入误差的情况下,通过有限步运算来求方程组解的方法。

通过本次试验的学习,应该掌握各种直接法,如:高斯列主元消去法,LU分解法和平方根法等算法的基本思想和原理,了解它们各自的优缺点及适用范围。

二、相关理论知识求解线性方程组的直接方法有以下几种:1、利用左除运算符直接求解线性方程组为bx\=即可。

AAx=,则输入b2、列主元的高斯消元法程序流程图:输入系数矩阵A,向量b,输出线性方程组的解x。

根据矩阵的秩判断是否有解,若无解停止;否则,顺序进行;对于1p:1-=n选择第p列中最大元,并且交换行;消元计算;回代求解。

(此部分可以参看课本第150页相关算法)3、利用矩阵的分解求解线性方程组(1)LU分解调用matlab中的函数lu即可,调用格式如下:[L,U]=lu(A)注意:L往往不是一个下三角,但是可以经过行的变换化为单位下三角。

(2)平方根法调用matlab 中的函数chol 即可,调用格式如下:R=chol (A )输出的是一个上三角矩阵R ,使得R R A T =。

三、研究、解答以下问题问题1、先将矩阵A 进行楚列斯基分解,然后解方程组b Ax =(即利用平方根法求解线性方程组,直接调用函数):⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------=19631699723723312312A ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=71636b 解答:程序:A=[12 -3 2 1;-3 23 -7 -3;2 -7 99 -6;1 -3 -6 19];R=chol(A)b=[6 3 -16 7]';y=inv(R')*b %y=R'\bx=inv(R)*y %x=R\y结果:R =3.4641 -0.8660 0.5774 0.28870 4.7170 -1.3780 -0.58300 0 9.8371 -0.70850 0 0 4.2514y =1.73210.9540-1.59451.3940x =0.54630.2023-0.13850.3279问题 2、先将矩阵A 进行LU 分解,然后解方程组b Ax =(直接调用函数):⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=8162517623158765211331056897031354376231A ,⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=715513252b解答:程序:A=[1/3 -2 76 3/4 5;3 1/sqrt(3) 0 -7 89;56 0 -1 3 13;21 65 -7 8 15;23 76 51 62 81];b=[2/sqrt(5);-2;3;51;5/sqrt(71)];[L,U]=lu(A)y=inv(L)*bx=inv(U)*y结果:L = 0.0060 -0.0263 1.0000 0 00.0536 0.0076 -0.0044 0.1747 1.00001.0000 0 0 0 00.3750 0.8553 -0.6540 1.0000 00.4107 1.0000 0 0 0U =56.0000 0 -1.0000 3.0000 13.00000 76.0000 51.4107 60.7679 75.66070 0 77.3589 2.3313 6.91370 0 0 -43.5728 -50.06310 0 0 0 96.5050y =3.0000-0.63880.859850.9836-11.0590x =0.13670.90040.0526-1.0384-0.1146问题3、利用列主元的高斯消去法,求解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+--=--+=-+-=+-+01002010100511.030520001.0204321432143214321x x x x x x x x x x x x x x x x解答:程序:function [RA,RB,n,X]=liezhu(A,b)B=[A b];n=length(b);RA=rank(A);RB=rank(B);zhica=RB-RA;if zhica>0disp('Çë×¢Ò⣺RA~=RB£¬ËùÒÔ´Ë·½³Ì×éÎ޽⡣')returnendif RA==RBif RA==ndisp('Çë×¢Ò⣺ÒòΪRA=RB=n,ËùÒÔ´Ë·½³Ì×éÓÐΨһ½â¡£')X=zeros(n,1);C=zeros(1,n+1);for p=1:n-1[Y ,j]=max(abs(B(p:n,p)));C=B(p,:);for k=p+1:nm=B(k,p)/B(p,p);B(k,p:n+1)=B(k,p:n+1)-m*B(p,p:n+1)endendb=B(1:n,n+1);A=B(1:n,1:n);X(n)=b(n)/A(n,n);for q=n-1:-1:1X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q);endelsedisp('Çë×¢Ò⣺ÒòΪRA=RB¡´n£¬ËùÒÔ´Ë·½³ÌÓÐÎÞÇî¶à½â¡£') endend键入A=[1 20 -1 0.0012 -5 30 -0.15 1 -100 -102 -100 -1 1];b=[0;1;0;0];[RA,RB,n,X]=liezhu(A,b)结果:请注意:因为RA=RB=n,所以此方程组有唯一解。

6第六章 线性方程组的直接解法

6第六章 线性方程组的直接解法
a b
( 3) ij

a12
( 2) a22
a13
a1n
0 0 0
( 2) ( 2) a23 a2 n ( 3) ( 3) a33 a3 n
0 0



( 3) ( 3) an a 3 nn
b1 ( 2) b2 ( 3) b3 ( 3) bn
即 其中
Numerical Analysis 第二步: 若 (2) 22
a
0
2015/11/6
J. G. Liu
a1n a a
( 2) 2n
( 2) nn
b1 ( 2) b2 ( 2) bn
, a 11
a 第i行 第2行 a ( 2)
A b
1 2 3
2 5 1
3 14 3 14r 2 r 1 2 r2 3r1 0 1 4 10 2 18 3 1 0 5 4 22 5 20
School of Math. & Phys.
9
North China Elec. P.U.

( 2) n
( 2) nn
b
( 2) i
ai1 bi b1 a11
运算量: (n-1)*(n+1)
11 North China Elec. P.U.
School of Math. & Phys.
a11 a12 ( 2) 0 a22 0 a ( 2) n2
a a a
0 0
(1) 13 (2) 23 (3) 33
a a
0

线性方程组的直接解法

线性方程组的直接解法

(0) b1 (1)式变为A( 0) x b 则 (0) bn
b( 0)
a 0 0
(0) 11
a
a
(0) 12 (1) 22

(1) an 2
x1 b a x 2 b ( 1 ) b (1) x a nn n n a
2 3 2 n O( n ) 3
Gauss消去法工作量为
回代
求解三角形方程组(2), 得求解公式:
( n 1) b n x ( n 1) n ann n ( k 1) ( k 1) ( b a xj) k kj j k 1 ( k 1) xk a kk

( k- 1) 设akk 0,以第k行为基础, 将以后各行中 ( k- 1) 的aik ( i k 1, , n)化为0.
( k 1) ( k 1) 计算 lik aik / akk (i k 1, ..., n)
10
(0) a1 n (1) a2 n ( k 1) akn ( k 1) ann
2 5 1
0.1000 104 0.2000 10
0.1000104 0
0.1000 10 0.1000 10 r 210 r 0.1000 10 0.3000 10
0.100010 0.2000106 0.100010 0.2000106
(0) 1n (1) 2n
12
将(1)式化为(2)式的过程称为消元过程.
Gauss消去法的消元过程算法

线性方程组的解法线性方程组

线性方程组的解法线性方程组

线性方程组的解法线性方程组线性方程组是数学中常见的一种方程形式,它由多个线性方程联立而成。

解线性方程组是在给定一组方程的条件下,求出符合这些方程的未知数的取值,从而满足方程组的所有方程。

本文将介绍线性方程组的解法和应用。

一、高斯消元法高斯消元法是解线性方程组的一种常用方法。

它通过一系列行变换将线性方程组转化为简化的行阶梯形矩阵,然后通过回代求解得到方程组的解。

具体步骤如下:1. 将线性方程组写成增广矩阵的形式,其中未知数的系数和常数项构成矩阵的左右两部分。

2. 选取一个主元(即系数不为零的元素)作为基准行,并通过行变换使得该元素为1,同时消去其他行中该列的元素。

3. 重复上述步骤,将矩阵转化为行阶梯形式,即每一行的主元都在前一行主元的右下方。

4. 进行回代,从最后一行开始,逐步求解方程组的未知数。

高斯消元法能够解决大部分线性方程组,但对于某些特殊情况,例如存在无穷解或无解的方程组,需要进行额外的判断和处理。

二、矩阵求逆法矩阵求逆法是另一种解线性方程组的方法。

它通过求解方程组的系数矩阵的逆矩阵,再与常数项的矩阵相乘,得到未知数的解向量。

具体步骤如下:1. 如果线性方程组的系数矩阵存在逆矩阵,即矩阵可逆,那么方程组有唯一解。

2. 计算系数矩阵的逆矩阵。

3. 将逆矩阵与常数项的矩阵相乘,得到未知数的解向量。

需要注意的是,矩阵求逆法只适用于方程组的系数矩阵可逆的情况,对于不可逆的方程组,则无解或者存在无穷解。

三、克拉默法则克拉默法则适用于n个未知数、n个方程的线性方程组。

它利用行列式的性质来求解未知数。

具体步骤如下:1. 构建系数矩阵和常数项的矩阵。

2. 计算系数矩阵的行列式,即主对角线上各元素的乘积减去副对角线上各元素的乘积。

3. 分别用求解一个未知数时的系数矩阵替代系数矩阵中对应列的元素,再计算新矩阵的行列式。

4. 将每个未知数的解依次计算出来。

克拉默法则的优点是理论简单,易于理解,但随着未知数和方程数的增加,计算复杂度呈指数增长,计算效率较低。

数值分析-线性方程组的直接解法

数值分析-线性方程组的直接解法

算法 Gauss(A,a,b,n,x)
1. 消元 For k=1,2, … , n-1 1.1 if akk=0 , stop; 1.2 For i=k+1,k+2, …, n 1.2.1 l ik=aik /akk => aik 1.2.2 For j=k+1,k+2, … ,n ai j -aik ak j =>aij 1.2.3 bi -aik bk=> bi 2. 回代 2.1 bn / an=>xn; 2.2 For i=n-1,n-2, …, 2,1 2.2.1 bk => S 2.2.2 For j=k+1,k+2, … ,n S –akj xj =>S 2.2.3 S/ akk => xk a1 1 a1 2 a13 a2 1 a2 2 a23
线性方程组的直接解法
刘 斌
线性方程组的直接解法
§1 Gauss消去法 1.1 顺序Gauss消去法
1.2
§2 2.1 2.2 2.3
列主元Gauss消去法
Gauss消去法的矩阵运算 Doolittle分解法 平方根法
直接三角分解方法
2.4
追赶法
引入
在科学计算中,经常需要求解含有n个未知量 的n个方程构成的线性方程组 a11 x1 a12 x2 a1n xn b1 a21 x1 a22 x2 a2 n xn b2 (1) an1 x1 an 2 x2 ann xn bn
(1) a12 ( 2) a22 0
(1) (1) a13 a1 n ( 2) ( 2) a23 a2 n ( 3) ( 3) a33 a3 n
0

解线性方程组直接法

解线性方程组直接法

第三章 解线性方程组的直接法3.1 引言许多科学技术问题要归结为解含有多个未知量x 1, x 2, …, x n 的线性方程组。

例如,用最小二乘法求实验数据的曲线拟合问题,三次样条函数问题,解非线性方程组的问题,用差分法或有限元法解常微分方程、偏微分方程的边值等,最后都归结为求解线性代数方程组。

关于线性方程组的数值解法一般有两类:直接法和迭代法。

1. 直接法直接法就是经过有限步算术运算,可求得线性方程组精确解的方法(假设计算过程中没有舍 入误差)。

但实际计算中由于舍入误差的存在和影响,这种方法也只能求得线性方程组的近似解。

本章将阐述这类算法中最基本的高斯消去法及其某些变形。

2. 迭代法迭代法就是用某种极限过程去逐步逼近线性方程组精确解的方法,迭代法需要的计算机存储 单元少、程序设计简单、原始系数矩阵在计算过程中不变,这些都是迭代法的优点;但是存在收敛性和收敛速度的问题。

迭代法适用于解大型的稀疏矩阵方程组。

为了讨论线性方程组的数值解法,需要复习一些基本的矩阵代数知识。

3.1.1 向量和矩阵 用nm ⨯R表示全部n m ⨯实矩阵的向量空间,nm C⨯表示全部n m ⨯复矩阵的向量空间。

此实数排成的矩形表,称为m 行n 列矩阵。

⎪⎪⎪⎪⎪⎭⎫⎝⎛=⇔∈n n x x x 21x R x x 称为n 维列向量矩阵A 也可以写成其中 a i 为A 的第i 列。

同理 其中Ti b 为A 的第i 行。

矩阵的基本运算:(1) 矩阵加法 )( ,n m nm R C ,R B ,R A B A C ⨯⨯⨯∈∈∈+=+=n m ij ij ij b a c .(2) 矩阵与标量的乘法 ij j a ci αα== ,A C(3) 矩阵与矩阵乘法 p nk kj ikb acij ⨯⨯⨯=∈∈∈==∑m p n n m R C ,R B ,R A AB C ( ,1(4) 转置矩阵 ji ij T n m a c ==∈⨯ , ,A C R A (5) 单位矩阵 ()nn ⨯∈=Re ,,e ,e I n 21 ,其中()T k e 0,0,1,0,0 = k=1,2,…,n(6) 非奇异矩阵 设n n ⨯∈R A ,n n ⨯∈R B 。

数值分析小论文线性方程组的直接解法

数值分析小论文线性方程组的直接解法

数值分析小论文线性方程组的直接解法线性方程组的直接解法是指通过一系列的代数运算直接求解线性方程组的解。

线性方程组是数值分析中非常重要的问题,广泛应用于工程、科学、计算机图形学等领域。

在线性方程组的直接解法中,最常用的方法是高斯消元法,它是一种基于矩阵变换的方法。

高斯消元法将线性方程组表示为增广矩阵,并通过一系列的行变换将增广矩阵转化为行阶梯形矩阵,从而得到方程组的解。

高斯消元法的主要步骤包括消元、回代和得到方程组的解。

消元是高斯消元法的第一步,通过一系列的行变换将增广矩阵的元素转化为上三角形式。

在消元过程中,我们首先找到主元素,即矩阵的对角线元素,然后将其它行的元素通过消元操作转化为0,从而使得矩阵逐步变成上三角形矩阵。

回代是高斯消元法的第二步,通过一系列的回代操作求解线性方程组。

回代操作是从上三角形矩阵的最后一行开始,通过依次求解每个未知数的值,最终得到方程组的解。

高斯消元法的优点是算法简单易于实现,可以在有限的步骤内求解线性方程组,适用于一般的线性方程组问题。

但是高斯消元法也存在一些问题,例如当矩阵的主元素为0时,无法进行消元操作,此时需要通过行交换操作来避免这种情况。

另外,高斯消元法对病态矩阵的求解效果较差,容易引起舍入误差累积,导致解的精度下降。

在实际应用中,为了提高求解线性方程组的效率和精度,人们常常使用一些改进的直接解法,例如列主元高斯消元法和LU分解法。

列主元高斯消元法通过选择最大主元来避免主元为0的情况,进一步提高了求解线性方程组的精度。

LU分解法将矩阵表示为两个矩阵的乘积,从而将线性方程组的求解问题转化为两个三角形矩阵的求解问题,提高了求解效率。

综上所述,线性方程组的直接解法是一种基于矩阵变换的方法,通过一系列的代数运算求解线性方程组的解。

高斯消元法是最常用的直接解法之一,它简单易于实现,适用于一般的线性方程组问题。

在实际应用中,可以通过改进的直接解法来进一步提高求解效率和精度。

线性方程组的直接解法

线性方程组的直接解法

线性方程组的直接解法
线性方程组(linear equation system)是一类几何问题,也是解决线性系统和代数问题的重要方法,线性方程组由多个联立方程组成,这些方程中也可能含有未知量。

直接解法是把数学模型转换为数值模型,并给出实现其解题步骤的算法,它不同于间接求解的方法,既不做任何假设,也不处理不确定性问题,只是简单地直接求解线性方程组。

解线性方程组的直接解法主要分为三种,分别是高斯消元法、列主元消去法和列坐标变换法。

高斯消元法是一种比较常用的方法,主要是把线性方程组的未知量从左到右一步步求出来,其中用到的主要技术是把矩阵中部分元素消去为零,以便求解不定线性方程组的未知量。

而列主元消去法则是以一列为主元,去消除其他联立方程中出现的此列中的变量,从而最终求出其他未知变量的值。

最后,列坐标变换法是将线性方程组转换为一个更有利于求解的矩阵,其中未知量可以直接求得解答。

除了这三种常见方法外,还有一些更特殊的直接解法,比如要解常微分方程的未知函数,可以用拉格朗日方法和分部积分方法,再比如求解雅各比方程的根,可以通过主副方程互解求解,这种方法也叫作特征根法。

综上,解线性方程组的直接解法有高斯消元法、列主元消去法、列坐标变换法等;特殊问题可以采用拉格朗日方法、分部积
分法和特征根法等。

每种方法都有自己的优势,因此在使用时,可以根据问题的特点,选择适合的方法来解决。

计算方法第三章线性方程组的直接解法

计算方法第三章线性方程组的直接解法

5 3
3 1
r3
r1 6
6 1 18 2
1 0
4 5 1 3
3 1
r3 r225
1 0
4 1
5 3
3 1
0 25 48 16
0 0 27 9
林龙
计算方法
6
化原方程组为三角方程组的过程为消元过程. 解三角方程组的过程为回代过程.
也可将上边的增广矩阵进一步化简.
1 4 5 3
1 0 7 1
xi
Di D
(i
1, 2,3,
),由于方程含有n 1个
行列式.如对每个行列式按展开定理来计算.
用克莱姆法则求解,所需要的乘除运算量为
n!(n2 1) n次,若n 20用每秒一千万次的
计算机要三百万年,所以并不是凡直接法都
可以用来做实际运算.
林龙
计算方法
4
设有
§3.1直接法
a11x1 a12 x2 a21x1 a22 x2
解 : 10
7
0
7
r1 r2
5 1 5 6
林龙
计算方法
16
10 3 5
7 2 1
0 6 5
7 4 6
r2
3 10
r1
r3
5 10
r1
10
0
0
7 0.1 2.5
0 7 6 6.1 5 2.5
r2 r3
r3
1 25
r2
10 7 0 7 x3 1
0
2.5
5
2.5
x2
2.5 5x
nn
a11 a12 .... a1n 1 0 0
a21
a22

第3章 线性方程组求解的直接解法

第3章  线性方程组求解的直接解法

线性方程组求解的直接法5.2线性方程组直接解法概述直接解法就是利用一系列公式进行有限步计算,直接得到方程组的精确解的方法.当然,实际计算结果仍有误差,譬如舍入误差,而且舍入误差的积累有时甚至会严重影响解的精度.这是一个众所周知的古老方法,但用在计算机上仍然十分有效.求解线性方程组最基本的一种直接法是消去法.消去法的基本思想是,通过将一个方程乘以或除以某个常数,以及将两个方程相加减这两种手段,逐步减少方程中的变元的数目,最终使每个方程仅含一个变元,从而得出所求的解.高斯(Gauss )消去法是其中广泛应用的方法,其求解过程分为消元过程和回代过程两个环节.消元过程将所给的方程组加工成上三角方程组,所归结的方程组再通过回代过程得出它的解.Gauss 消去法由于添加了回代的过程,算法结构稍复杂,但这种改进的算法明显减少了计算量.直接法比较适用于中小型方程组.对高阶方程组,即使系数矩阵是稀疏的,但在运算中很难保持稀疏性,因而有存储量大,程序复杂等不足.5.3直接解法5.3.1Gauss 消去法Gauss 消去法是一个古老的求解线性方程组的方法,由它改进而来的选主元法是目前计算机上常用的有效的求解低阶稠密矩阵线性方程组的方法.例5.1用Gauss 消去法解方程组1231231232221(5.3.1)1324 (5.3.2)2539(5.3.3)2x x x x x x x x x ⎧++=⎪⎪++=⎨⎪++=⎪⎩解〖JP4〗第1步,式35.3.12⨯-()()加到式(5.3.2)上,式()15.3.1()2⨯-加到式(5.3.3)上,得到等价方程组123232322211(5.4.4)282(5.4.5)x x x x x x x ⎧++=⎪⎪-+=-⎨⎪⎪+=⎩第2步,式()2⨯5.3.4加到式(5.3.5)上得等价的方程组12323322211100(5.3.6)x x x x x x ++=⎧⎪-+=-⎨⎪=⎩第3步,回代法求解方程组(5.3.6),即可求得该方程组的解为32110,1,.2x x x ===-.用矩阵描述其约化过程即为233(2)22221011100100r r r ⨯+⇒⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦→[]122133(1)3()21()222212221,3241/201111395/20282r r r r r r A b ⨯-+⇒⨯-+⇒⎡⎤⎡⎤⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦→.这种求解过程称为具有回代的Gauss 消去法.由此例可见,Gauss 消去法的基本思想是:用矩阵的初等行变换将系数矩阵A 化为具有简单形式的矩阵(如上三角阵、单位矩阵等),而三角形方程组是很容易回代求解的.一般地,设有n 个未知数的线性方程组为11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪++=⎩L L MM M L (5.3.7)1212)(,,)(,,)T T ij n n n n A a X x x x b b b b ⨯===L L (,,,则方程组(5.3.7)化为AX b =.方便起见,记()(1)det 0A AA ==≠,(1)b b =,且()1A的元素记为()()11,ij a b ,的元素记为()1i b ,则消去法的步骤如下:第1步:1110a≠(),,计算(1)11(1)11(2,3,4),i i a m i n a ==L 用()1i m -乘方程组(5.3.7)中的第1个方程加到第i个方程中()2,3,i n =L ,即进行行初等变换()112,3,i i i R m R R i n -⋅→=L ,消去第2个到第n个方程中的未知数1,x ,得等价方程组111121(2)(2)(2)22222(2)(2)(2)2inn n n nn n x a a b x a a b ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦LMM LM M L (5.3.8)记为(2)(2)A X b =,其中(2)(1)(1)(2)(1)(1)1111(,2,3),2,3,ij ij i j i i i a a m a i j n b b m b i n =-==-=L L ,,第k 步()1,2,1k n =-L:继续上述消元过程.第1步到第1k -步计算已完成,且得到与原方程组等价的方程组(1)(1)(1)(1)1112111(2)(2)(2)222223()()()()()()nn k k k kkkn k n k k k nk nn n a a a b x a a b xx aa b x a a b ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦L L LLOM L M MMM L(5.3.9)记为()(()K k A X b =,进行第k 步消元:设()0k kka≠,计算乘数()()(1,)k ikk ik kka m k k n a ==+L ,用ik m -乘方程组(5.3.9)中第k 个方程加到第i 1)i k n =+L (,,,个方程上消去方程组(5.3.9)中第i 1)i k n =+L (,,个方程的未知数k x ,得到与原方程组等价的方程组:(1)()()(1)()()(1)(1)()(,1,)( 1.)k k k ij ij ik kj k k k i i ik k k k k k a a m a i j k n b b m b i k n A A k b b k ++++⎧=-=+⎪=-=+⎨⎪⎩L L ()与前行元素相同,与前个元素相同 (5.3.10) 记为(1)(1)k k A X b ++=其中(1)(1,k k A b ++)中元素计算公式为(1)()()(1)()()(1)(1)()(,1,)( 1.)k k k ij ij ik kj k k k i i ik k k k k k a a m a i j k n b b m b i k n A A k b b k ++++⎧=-=+⎪=-=+⎨⎪⎩L L ()与前行元素相同,与前个元素相同 (5.3.11)重复上述过程,且设()0(1,2,1)k kk a k n ≠=-L ,共完成1n -步消元计算,得到与方程组(5.3.7)等价的三角形方程组1111211(2)(2)(2)22222()()n n n n n nn n x a a b x a b ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦LMOM M (5.3.12)再用回代法求方程组(5.3.12)的解,计算公式为()()()()1()(),(1,2,1)n n n nn n i i i ij j j i i i ii b x a b a x x i n n a =+⎧=⎪⎪⎨-⎪==--⎪⎩∑L (5.3.13)元素()k kka 称为约化的主元素.将方程组(5.3.7)化为方程组(5.3.12)的过程称为消元过程.方程组(5.3.12)的求解过程(5.3.13)称为回代过程.由消元过程和回代过程求解线性方程组的方法称为Gauss 消去法.定理5.1(Gauss 消去法)设AX b =。

数值分析第五章解线性方程组的直接法

数值分析第五章解线性方程组的直接法

数值分析第五章解线性方程组的直接法解线性方程组是数值分析中的一个重要问题,对于大规模的线性方程组来说,直接法是一种常用的求解方法。

本文将介绍解线性方程组的直接法,包括高斯消元法和LU分解法,并对其稳定性和计算复杂度进行讨论。

高斯消元法是一种常用的直接法,用于求解非奇异线性方程组。

其基本思想是通过初等行变换将线性方程组转化为上三角方程组,然后通过回代求解得到方程的解。

高斯消元法的步骤如下:1.将线性方程组表示为增广矩阵[A,b],其中A是系数矩阵,b是常数向量。

2.从第一行开始,选择一个非零元素作为主元,通过行变换将主元下方的元素全部消为零。

3.重复第2步,直到矩阵变为上三角矩阵。

4.通过回代求解上三角矩阵,得到方程组的解。

高斯消元法的主要优点是简单直接,容易实现,但存在一些问题。

首先,如果系数矩阵A是奇异矩阵,即行列式为零,那么高斯消元法无法得到方程组的解。

其次,如果系数矩阵A的其中一行或几行接近于线性相关,那么在消元过程中会引入大量的舍入误差,导致计算结果不准确。

这也说明了高斯消元法的稳定性较差。

为了提高稳定性,可以使用LU分解法来解线性方程组。

LU分解法将系数矩阵A分解为两个矩阵L和U的乘积,其中L是下三角矩阵,U是上三角矩阵。

这样,原始的线性方程组可以表示为LUx=b,进而可以通过两个步骤来求解方程组:1.进行LU分解,将系数矩阵A分解为L和U。

2.分别用前代和回代的方法求解方程组Ly=b和Ux=y。

LU分解法相对于高斯消元法的优点是,可以在求解多个右端向量时,避免重复计算LU分解,从而提高计算效率。

同时,LU分解法的稳定性也较高,对于多个右端向量求解时,舍入误差的累积相对较小。

然而,LU分解法也存在一些问题。

首先,LU分解法的计算复杂度较高,需要进行两次矩阵乘法和一次矩阵向量乘法,而且LU分解过程中需要对系数矩阵A进行大量的行变换,增加了计算量。

其次,当系数矩阵A的一些元素非常小或非常大时,LU分解法容易出现数值不稳定的情况,即舍入误差的累积较大,导致计算结果不准确。

解线性方程组的直接方法

解线性方程组的直接方法

解线性方程组的直接方法一、高斯消元法高斯消元法是解线性方程组的一种常用且直接的方法。

它的基本思想是通过一系列的代数运算,将方程组化为一个三角方程组,然后从最后一行开始,逐步回代求解未知数。

下面以一个二元一次方程组为例,说明高斯消元法的具体步骤:例如,给定方程组:a₁₁x₁+a₁₂x₂=b₁a₂₁x₁+a₂₂x₂=b₂其中,a₁₁,a₁₂,a₂₁,a₂₂,b₁,b₂为已知系数。

1.检查a₁₁的值是否为0,若为0则交换第一行与非零行。

2.将第一行的每个元素除以a₁₁,使a₁₁成为13.将第一行乘以(-a₂₁)并加到第二行上,使第二行的第一个元素变为0。

4.引入一个新的未知数y₂=a₂₁x₁+a₂₂x₂,并代入第二行,化简方程组。

5.使用回代法求解方程组。

高斯消元法的优势在于其直接的解题思路和较高的计算精度,但是其缺点是计算复杂度较高,对于大规模的方程组不太适用。

二、逆矩阵法逆矩阵法是解线性方程组的另一种直接方法,它通过求解方程组的系数矩阵的逆矩阵,并将其与方程组的常数向量相乘,得到方程组的解向量。

下面以一个三元一次方程组为例,说明逆矩阵法的具体步骤:例如,给定方程组:a₁₁x₁+a₁₂x₂+a₁₃x₃=b₁a₂₁x₁+a₂₂x₂+a₂₃x₃=b₂a₃₁x₁+a₃₂x₂+a₃₃x₃=b₃其中,a₁₁,a₁₂,a₁₃,a₂₁,a₂₂,a₂₃,a₃₁,a₃₂,a₃₃,b₁,b₂,b₃为已知系数。

1.计算系数矩阵A的行列式D=,A。

2. 求解系数矩阵A的伴随矩阵Adj(A)。

3. 计算逆矩阵A⁻¹=Adj(A)/D。

4.将常数向量b用列向量表示。

5.计算解向量x=A⁻¹b。

逆矩阵法的优势在于其求解过程相对简单,计算量较小,并且不需要对系数矩阵进行消元操作。

但是逆矩阵法的限制在于当系数矩阵不可逆时无法使用。

三、克莱姆法则克莱姆法则是解线性方程组的另一种直接方法,它通过定义克莱姆行列式和克莱姆向量,利用行列式的性质求解方程组的解向量。

数值分析第五章线性方程组直接解法

数值分析第五章线性方程组直接解法

x3 1 x2 8 7x3 1
x1 2 2x2 2x3 2
3
Gauss 消去法
考虑 n 阶线性方程组:
a11x1 a12x2 ... a1nxn b1
a21
x1
a22 x2
...
a2n xn
b2
an1x1 an2x2 ... annxn bn矩阵形式Biblioteka Ax b109 1
1
0 109 109
列主元Gauss消去法:
109 1 1
1
1 2
1 1 2 109 1 1
x2 1, x1 0
x1 x2
1 1
数值分析
第五章 解线性方程组的直接方法
—— 矩阵三角分解法
18
LU 分解
1、LU分解 将 Gauss 消去过程中第 k-1 步消元后的系数 矩阵记为:
10
LU 分解存在唯一性
LU 分解存在
高斯消去法不被中断
所有顺序主子式不为零
a(k) kk
0
定理:若 A 的所有顺序主子式不为零,则 A 存在 唯一的 LU分解
11
列主元 Gauss 消去法
Gauss 消去法有效的条件是: 主元全不为零
例:解线性方程组
0 1
1 0
x1 x2
1 1
列主元 Gauss 消去法
( k = 1, …, n-1)
a(k) nk
a(k) nn
A L A 则 A(k) 与 A(k+1) 之间的关系式可以表示为: (k1)
(k) k
其中: 1
Lk
1 mk1,k 1
mik
a(k) ik
a(k) kk
( i = k + 1, …, n )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代数值计算
第二章 线性方程组的数值解法
第二章 线性方程组的数值解法
§2.0 引 言 §2.1 Gauss消去法 §2.2 矩阵的三角分解 §2.3 QR分解和奇异值分解
汪远征
§2.0 引 言
汪远征
在自然科学和工程技术中很多问题的解决常常归结为解线性
代数方程组。
例如:电学中的网络问题
用最小二乘法求实验数据的曲线拟合问题
a(1) 11
0
a(1) 12
a(2) 22
a(1) 1n
a(2) 2n
素=00不, 则为a在n0(22,)第可1交列换中an(2n至行)
b(1) 1
b(2) 2
bn( 2
)
后再消元
[ A(2) | b(2) ]
a(2) ij
a (1) ij
a (1) i1
a (1) 11
a (1) 1j
迭代法具有需要计算机的存贮单元较少、程序设计简单、原
始系数矩阵在计算过程中始终不变等优点, 但存在收敛性及收
敛速度问题。
迭代法是解大型稀疏矩阵方程组(尤其是由微分方程离散后得
到的大型方程组)的重要方法。
第6章介绍迭代法解线性方程组。
§2.1 Gauss消去法
直接法的基础
汪远征
高斯(Gauss)消去法是解线性方程组最常用的方法之一
1. 消去过程 bi(k1)
bi( k )
a(k) ik
a(k) kk
bk( k )
(2) 第k次消元。
— —
减去第k行的
减去bk( k
)的
ai(kk ak( kk
aa)汪ki((kkkk远)) 倍征

)
i k 1, k 2,..., n
a1(11) 0 [ A(k) | b22 an2
a1n
a2n
ann
为非奇异阵,
x1
x
x2
,
xn
b1
b
b2
bn
关于线性方程组的数值解法一般有两类:
直接法与迭代法。
§2.0 引 言
汪远征
1. 直接法
就是经过有限步算术运算, 可求得方程组精确解的方法(若计算
过程中没有舍入误差)。
a(1) n1
a(1) 12
a(1) 22
a(1) n2
a(1) 1n
a(1) 2n
a(1)
nn
b1(1 b2(1
) )
bn(1
)
a1(11)
0
0
a(1) 12
a(2) 22
a(2) n2
a(1) 1n
a(2) 2n
b(1) 1
b(2) 2
a(2) nn
b(2) n
[ A(2) | b(2) ]
它的基本思想是通过逐步消元(行的初等变换), 把方程组化 为系数矩阵为三角形矩阵的同解方程组, 然后用回代法解此三 角形方程组(简单形式)得原方程组的解。
例如:
1 1 1 6 1 1 1 6
[ A | b] 1
3
2 1 0
2
3
5
2 2 1 1 0 4 1 11
1 1 1 6
0
2
b( k1) i
bi( k )
a(k) ik
a(k) kk
bk( k )
j k 1, k 2,..., n
— —
减去第k行的
减去bk(
k
)的
ai(kk ak( kk
a(k) ik
a(k) kk )

)

i k 1, k 2,..., n
注:为减少计算量,
令 lik
a(k) ik
a(k) kk
a(1) 1k
a(k) kk
a(k) nk
a(1) 1n
b1(1
)
a(k) kn
bk( k
)
a(k) nn
bn(k )
a(1) 11
a(1) 1k
a(1) 1 k 1
a a (k )
(k)
kk
k ,k1
0
a ( k1) k 1, k 1
0
a ( k1) n, k 1
a(1) 1n
3
5
0 0 7 21
§2.1 Gauss消去法 下面讨论一般的解n阶方程组的高斯消去法。
1. 消去过程
将原方程组记为 A(1)x =b(1) 其中A(1)=(aij(1))nn=(aij)nn , b(1)=b (1) 第一次消元。
汪远征
[ A(1)
|
b(1) ]
a(1) 11
a(1) 21
,

a( k 1) ij
a(k) ij
likak( kj )
b( k 1) i
b(k) i
likbk( k )
j k 1, k 2,..., n
i k 1, k 2,..., n
但实际计算中由于舍入误差的存在和影响, 这种方法也只能求
得线性方程组的近似解。
本章将阐述这类算法中最基本的高斯消去法及其某些变形。
这类方法是解低阶稠密矩阵方程组的有效方法, 近十几年来直
接法在求解具有较大型稀疏矩阵方程组方面取得了较大进展

§2.0 引 言
汪远征
2. 迭代法
就是用某种极限过程去逐步逼近线性方程组精确解的方法。
a(k)
kn
a ( k 1) k 1, n
a ( k 1) nn
b(1) 1
b(k) k
b( k 1 k 1
)
[ A(k1)
|
b(k1) ]
bn( k1)
§2.1 Gauss消去法
1. 消去过程
汪远征
(2) 第k次消元。
a( k1) ij
a(k) ij
a(k) ik
a(k) kk
a(k) kj
b(2) i
b(1) i
a (1) i1
a (1) 11
b(1) 1
j 2,3,..., n

减去第1行的
a (1) i1
a (1) 11


减去b1(1)的
a (1) i1
a (1) 11

i 2,3,..., n
ai(§jk12) .1ai(Gjk )auaaski((skkkk消)) ak(去kj ) 法j k 1, k 2,..., n
解非线性方程组问题
用差分法或者有限元方法解常微分方程
偏微分方程边值问题等
都导致求解线性代数方程组。
§2.0 引 言
汪远征
这些方程组的系数矩阵大致分为两种
一种是低阶稠密矩阵(例如, 阶数大约为≤150)
另一种是大型稀疏矩阵(即矩阵阶数高且零元素较多)
§2.0 引 言
汪远征
设有线性方程组Ax = b, 其中
§2.1 Gauss消去法
1. 消去过程
(1) 第一次消元。
[ A(1)
|
b(1) ]
a(1) 11
a(1) 21
a(1) 12
a(1) 22
a(1) n1
a(1) n2
其中
a(2) 2j
a (1) 2j
a (1) 21
a (1) 11
a (1) 1j
汪远征
j 2,3,...n
aaa注 少12n(((111nnn))):有bbb若一12n(((111))) a个11(元1)
相关文档
最新文档