2018-2019学年北京市海淀区八年级(下)期末数学试卷(解析版)
2018-2019北京期八年级下期末试卷分类汇编八下期末数学试卷分类-几何综合【含答案】

2018-2019年初二期末分类—几何证明1、【海淀】在Rt△ABC 中,∠BAC = 90︒,点O 是△ABC 所在平面内一点,连接OA,延长OA 到点E,使得AE=OA,连接OC,过点B 作BD 与OC 平行,并使∠DBC=∠OCB,且BD=OC,连接DE.(1)如图一,当点O 在Rt△ABC 内部时.① 按题意补全图形;②猜想DE 与BC 的数量关系,并证明.图一(2)若A B = AC(如图二),且∠OCB = 30︒, ∠OBC = 15︒,求∠AED的大小.图二备用图备用图26.四边形ABCD是正方形,AC是对角线,E是平面内一点,且CE<BC.过点C作FC⊥CE,且CF=CE.连接AE,AF.M是AF的中点,作射线DM交AE于点N.(1)如图1,若点E,F分别在BC,CD边上.求证:①∠BAE=∠DAF;②DN⊥AE;(2)如图2,若点E在四边形ABCD内,点F在直线BC的上方.求∠EAC与∠ADN的和的度数.图1 图227.在正方形ABCD中,点E是射线AC上一点,点F是正方形ABCD外角平分线CM上一点,且CF=AE,连接BE,EF.(1)如图1,当E是线段AC的中点时,直接写出BE与EF的数量关系;(2)当点E不是线段AC的中点,其它条件不变时,请你在图2中补全图形,判断(1)中的结论是否成立,并证明你的结论;的度数. (直接写出结果即可)(3)当点B,E,F在一条直线上时,求CBE27.已知,点E在正方形ABCD的AB边上(不与点A,B重合),BD是对角线,延长AB 到点F,使BF=AE,过点E作BD的垂线,垂足为M,连接AM,CF.(1)根据题意补全图形,并证明MB=ME;(2)①用等式表示线段AM与CF的数量关系,并证明;②用等式表示线段AM,BM,DM之间的数量关系(直接写出即可).C27.正方形ABCD 中,点P 是直线AC 上的一个动点,连接BP ,将线段BP 绕点B 顺时针旋转90°得到线段BE ,连接CE .(1)如图1,若点P 在线段AC 上, ①直接写出ACE ∠的度数为 °; ②求证:2222PA PC PB +=;(2)如图2,若点P 在CA 的延长线上,1PA =,PB = ①依题意补全图2;②直接写出线段AC 的长度为 .图1 图2CE正方形ABCD 中,点M 是直线BC 上的一个动点(不与点B 、C 重合),作射线DM ,过点B 作BN ⊥DM 于点N ,连接CN 。
北京市海淀区2018-2019年八年级下期末学业数学试题含答案

海淀区20 1 8年八年级学业发展水平评价数学一、选择题(本题共30分,每小题3分) 在下列各题的四个备选答案中,只有一个.是正确的1 •下列各点中,在直线y= 2x 上的点是A • (1 , 1)B • (2 , 1)C • (1 , 2)D . (2 , 2)2.如图,在△ ABC 中,/ ACB= 90,点D 为AB 的中点,若 AB =4,则CD 的长为6. 如图,把一个长方形的纸片对折两次,然后剪下一个角.要得到 一个正方形,剪口与折痕所成锐角的大小为 A. 300 B . 450 C . 600 D . 90°7. 小张骑车从图书馆回家,中途在文具店买笔耽误了1分钟,然后继续骑车回家.若小张骑车的速度始终不变,从出发开始计时,小3•以下列长度的二条线段为边,能组成直角二角形的是 A. 6,7,8B.2,3,4C.3,4,6 D .6, 8. 10A . 52=2 .3B . 3.3-.,3 =3C . 2+七=2、、3 D.5. 如图,一个小球由静止开始沿一个斜坡向下滚动,其速度每秒增加1.5 m/s ,则小球速度v (单位:m/s )关于时间t(A. 2 B . 3 C . 4 D . 5单位:s )的函数图象是张离家的距离s (单位:米)与时间t (单位:分钟)的对应关系如图所示,则文具店与小张家的距离为A. 600米B . 800 米C. 900米D . 1000米8. 为了了解班级同学的家庭用水情况,小明在全班50名同学中,随机调查了10名同学家庭中一年的月平均用水量(单位:吨),绘制了条形统计图如图所示.这10名同学家庭中一年的月平均用水量的中位数是A. 6 B . 6.5C. 7.5 D . 89. 如图,在平面直角坐标系xOy中,菱形ABCD勺顶点D在x轴上,边BC在y轴上,若点A的坐标为(12 ,13),则点C的坐标是A. (0,-5)B . (0,-6)C. (0,-7)D . (0,-8)10. 教练记录了甲、乙两名运动员在一次1500米长跑比赛中的成绩,他们的速度v (单位:米/秒)与路程s (单位:米)的关系如图所示,下列说法错误的是A. 最后50米乙的速度比甲快B. 前500米乙一直跑在甲的前面C. 第500米至第1450米阶段甲的用时比乙短D. 第500米至第1450米阶段甲一直跑在乙的前面二、填空题(本题共18分,每小题3分)11. 如图,在△ ABC中, D, E分别为AB AC的中点,若BC=10, 则DE 的长月平均用加为.12. 如图,在平面直角坐标系xOy中,若4点的坐标为(1, 73 ), 2非1・再)则OA的长为Ol 1 2x13. 若A(2, y i), B(3,範是一次函数y=-3x+1的图象上的两个点则y i与y2的大小关系是y i亠 2.(填“ >”,“二”或“<”)14. 甲、乙两地6月上旬的日平均气温如图所示,则这两地中6月上旬日平均气温的方差较小的是•(填“甲”或“乙”)15•《九章算术》卷九“勾股”中记载:今有立木,系索其末,委地三尺•引索却行,去本八尺而索尽,问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺•牵着绳索(绳索头与地面接触)退行,在距木根部8尺处时绳索用尽•问绳索长是多少?设绳索长为x尺,可列方程为.16. 计算机可以帮助我们又快又准地画出函数的图象•用“几何画板”软件画出的函数y=x2(x-3 )和y=x-3的图象如图所示.根据图象可知方程x2(x-3 )=x-3的解的个数为_—若m n 分别为方程x2(x-3 )=1和x-3=1的解,则m n的大小关系是三、解答题(本题共22分,第17-19题每小题4分,第20-21题每小题5 分)17. 计(.8-、2 )x算:18. 如图,四边形ABC助平行四边形,E, F是直线BD上两点,且BE=DF,连接AF, CE19. 已知x = 2 - -、3, y = 2 • 3,求代数式x2 xy y2的值20. 直线h,过点A( -6,0),且与直线12: y=2x相交于点B(m, 4)(1) 求直线h的解析式;⑵过动点P(n,0)且垂直于x轴的直线与h,J的交点分别为C, D,当点C位于点D上方时,直接写出n的取值范围.y*4-寸2| 2 1 4 Jf-6 -5 -4^-3 -2 -1 & -1亠丿*21. 如图,口ABC冲,以B为圆心,BA的长为半径画弧,交BC于点F,作/ ABC勺角平分线,交AD于点E,连接EF.⑴求证:四边形ABFE是菱形;⑵若AB=4 / ABC= 60,求四边形ABFE的面积四、解答题(本题共14分,第22题8分,第23题6分)22. 近年来,越来越多的人们加入到全民健身的热潮中来。
北京市海淀区2018-2019学年初二第二学期期末数学测试卷及参考答案

北京市海淀区2019 年八年级学业发展水平评价数学试卷及参考答案一、选择题(本题共30 分,每小题 3 分)在下列各题的四个选项中,只.有.一.个.是符合题意的.1.下列实数中,是方程x2 - 4 = 0 的根的是A. 1B. 2C. 3D. 42019.72.如图,在Rt△ABC 中,A.7B.8C.9D.10∠C = 90 °,BC = 6 ,AC = 8 ,则AB 的长度为3.在下列条件中,能判定四边形为平行四边形的是A. 两组对边分别平行B. 一组对边平行且另一组对边相等C. 两组邻边相等D. 对角线互相垂直4.下列各曲线中,不表示y 是x 的函数的是A B C D5.数据2, 6, 4, 5, 4, 3 的平均数和众数分别是A.5 和4B.4 和4C.4.5 和4D.4 和55 CO 6. 一元二次方程 x 2 - 8x -1 = 0 经过配方后可变形为A. (x + 4)2 = 15B. (x + 4)2 = 17C. (x - 4)2 = 15D. (x - 4)2 = 177.若点 A (-3, y 1 ), B (1, y 2 ) 都在直线 y=x + 2 上,则 y 1 与 y 2 的大小关系是A. y 1<y 2B. y 1=y 2C. y 1>y 2D. 无法比较大小8.如图,正方形 ABCD 的边长为则 BE 的长度为A. B. 102, 对角线 AC , BD 交于点 O , E 是 AC 延长线上一点, 且CE =CO .EDC.D. 2AB9.对于一次函数 y = kx + b (k , b 为常数),下表中给出 5 组自变量及其对应的函数值,其中恰好有一个函数值计算有误,则这个错误的函数值是 A. 5B. 8C. 12D. 1410.博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为公众提供知识、教育及欣赏服务. 近年来,人们到博物馆学习参观的热情越来越高. 2012-2018 年我国博物馆参观人数统计如下:2 35小明研究了这个统计图,得出四个结论:① 2012 年到 2018 年,我国博物馆参观人数持续增长;② 2019 年末我国博物馆参观人数估计将达到 10.82 亿人次;③ 2012 年到 2018 年,我国博物馆参观人数年增幅最大的是 2017 年;④ 2016 年到 2018 年,我国博物馆参观人数平均年增长率超过 10%. 其中正确的是 A .①③B .①②③C .①②④D .①②③④二、填空题(本题共 18 分,每小题 3 分) 11.如图,在□ABCD 中,∠B =110°,则∠D =°.A12. 八年级(1)班甲、乙两个小组的 10 名学生进行飞镖训练,某次训练成绩如下:由上表可知,甲、乙两组成绩更稳定的是组.13. 若关于 x 的一元二次方程 x26x m 0 有实数根, 且所有实数根均为整数,请写出一个符合条件的常数 m 的值:m =.博物馆参观人数:亿人次2018年2017年2016年2015年2014年2013年2012年425.646 6.387.817.188 8.5010.089.721210 2012-2018年全国博物馆参观人数统计图14. 如图,某港口 P 位于南北延伸的海岸线上,东面是大海.“远洋”号、“长峰”号两艘轮船同时离开港口 P ,各自沿固定方向航行,“远洋”号每小时航行 12 n mile ,“长峰”号每小时航行 16 n mile ,它们离开港口 1 小时后,分别到达 A ,B 两个位置,且 A B =20 n mile ,已知“远洋”号沿着北偏东 60°方向航行,那么“长峰”号航行的方向是.15. 若一个矩形的长边的平方等于短边与其周长一半的积,则称这样的矩形为“优美矩形”.某公园在绿化时,工作人员想利用如图所示的直角墙角(两边足够长)和长为 38 m 的篱笆围成一个“优美矩形”形状的花园 ABCD ,,其中边 AB , AD 为篱笆,且 AB 大于 AD . 设 AD 为 x m, 依题意可列方程为.16. 在平面直角坐标系 xOy 中,直线 y = kx + 3 与 x ,y 轴分别交于点 A ,B ,若将该直线向右平移 5 个单位,线段 A B 扫过区域的边界恰好为菱形,则 k 的值为.三、解答题(本题共 26 分,第 17 题 8 分,第 18,20 题各 5 分,第 19,21 题各 4 分)17. 解方程:(1) x 2 - 2x - 3 = 0 ;(2) 2x 2 + 3x -1 = 0 .18. 在平面直角坐标系 xOy 中,一次函数 y =kx +b 的图象与直线 y =2x 平行,且经过点 A (1,6).(1) 求一次函数 y =kx +b 的解析式;(2) 求一次函数 y =kx +b 的图象与坐标轴围成的三角形的面积.19. 下面是小丁设计的“利用直角三角形和它的斜边中点作矩形”的尺规作图过程. 已知:如图,在 Rt △ABC 中,∠ABC =90°,O 为 AC 的中点. 求作:四边形 ABCD ,使得四边形 ABCD 为矩形.作法:①作射线 BO ,在线段 BO 的延长线上取点 D ,使得 DO =BO ;②连接 AD ,CD ,则四边形 ABCD 为矩形. 根据小丁设计的尺规作图过程.(1)使用直尺和圆规,在图中补全图形(保留作图痕迹);(2) 完成下面的证明.证明:∵点 O 为AC 的中点,∴ AO =CO .又∵ DO =BO ,∴四边形 A BCD 为平行四边形( )(填推理的依据).D C∵∠ABC =90°,∴□ABCD 为矩形()(填推理的依据).20.关于x 的一元二次方程x2 + 2x +k - 4 = 0 有实数根.(1)求k 的取值范围;(2)若k 是该方程的一个根,求2k 2+ 6k - 5 的值.21.小东和小明要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边CD 上有水池及建筑遮挡,没有办法直接测量其长度.小东经测量得知AB=AD=5 m,∠A=60°,BC=12 m,∠ABC=150°.小明说根据小东所得的数据可以求出CD 的长度.你同意小明的说法吗?若同意,请求出CD 的长度;若不同意,请说明理由.B CAD四、解答题(本题共13 分,第22 题7 分,第23 题 6 分)22.三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动.为了让同学们更好的了解二十四节气的知识, 本次学习节在沿袭以往经典项目的基础上,增设了“二十四节气之旅”项目,并开展了相关知识竞赛. 该学校七、八年级各有400 名学生参加了这次竞赛, 现从七、八年级各随机抽取20 名学生的成绩进行抽样调查.收集数据如下:七年级:74 97 96 72 98 99 72 73 76 7474 69 76 89 78 74 99 97 98 99八年级:76 88 93 89 78 94 89 94 95 5089 68 65 88 77 87 89 88 92 91整理数据如下:人数年级七年级分析数据如下:(1)a= ,b= ;(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合;理性)(3)学校对知识竞赛成绩不低于80 分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有人.23.如图,在□ABCD 中,对角线AC,BD 交于点O,过点B 作BE⊥CD 于点E,延长CD 到点F,使DF=CE,连接AF.(1)求证:四边形ABEF 是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF 的长度.五、解答题(本题共13 分,第24 题 6 分,第25 题7 分)24.如图,在平面直角坐标系xOy 中,直线y =kx + 7 与直线y =x - 2 交于点A(3, m).(1)求k, m 的值;(2)已知点P (n, n),过点P 作垂直于y 轴的直线与直线y =x - 2 交于点M ,过点P 作垂直于x 轴的直线与直线y =kx + 7 交于点N (P 与N 不重合). 若PN ≤ 2PM ,结合图象,求n 的取值范围.25. 在 Rt △ABC 中, ∠BAC = 90︒ ,点 O 是△ABC 所在平面内一点,连接 OA ,延长 OA 到点 E ,使得AE =OA ,连接 OC ,过点 B 作 BD 与 OC 平行,并使∠DBC =∠OCB ,且 BD =OC ,连接 DE .(1) 如图一,当点 O 在 Rt △ABC 内部时.① 按题意补全图形;② 猜想 DE 与 BC 的数量关系,并证明.图一(2) 若 A B = AC (如图二), 且∠OCB = 30︒, ∠OBC = 15︒ ,求∠AED 的大小.图二备用图备用图北京市海淀区2019 年八年级学业发展水平评价数学试卷及参考答案一、选择题二、填空题11.11012.甲13.0(答案不唯一)14.南偏东 30°15.(38 -x)2= 38x (无需写成一般式)16 . ±3(填对一个得 2 分,填对两个得 3 分,含有错误答案得 0 分)4三、解答题17.解:(1)x2 - 2x - 3 = 0 ;解法一:x2 - 2x - 3 = 0x2 - 2x = 3x2 -2x +1 = 4(x -1)2 = 4 x -1 =±2…………………………………………………………………………1分………………………………………………………………………………2分………………………………………………………………………………3分x1 = 3,x2=-1………………………………………………………………………………4 分解法二:x2 -2x -3 =0 (x -3)(x +1) =………………………………………………………………………………2 分x1 = 3,x2=-1………………………………………………………………………………4 分(2)2x2 + 3x -1 = 0 .解:2x2 +3x -1 = 0a =2,b =3,c =-1∴∆=9 -4⨯2⨯(-1) =17> 0……………………………………………………………………1 分x =-3 ± 174………………………………………………………………………………3 分x =-3 + 1 417,x =-3 -172 4……………………………………………………………………4 分注:若(1)中用公式法,请参考(2)中评分细则D(1) 一次函数 y = kx + b 的图象为直线,且与直线 y = 2x 平行,∴k = 2 ................................................................. 1 分又知其过点 A (1,6),∴2 + b = 6 . ∴b = 4 .∴一次函数的解析式为 y = 2x + 4 ........................................ 2 分(2)当 x = 0 时, y = 4 ,可知直线 y = 2x + 4 与 y 轴的交点为(0, 4) ................................... 3 分 当 y = 0 时, x = -2 , 可知直线 y = 2x + 4 与 x 轴交点为(-2, 0) ................................. 4 分可得该直角三角形的两条直角边长度分别为 4 和 2.所以直线 y = 2x + 4 与坐标轴围成的三角形的面积为 1 ⨯ 4 ⨯ 2 = 4 ............ 5 分219. 解:(1) 作图如图所示BA ...............................................................2 分(2) 对角线互相平分的四边形是平行四边形 ...................................... 3 分有一个角是直角的平行四边形是矩形 ......................................... 4 分20. 解:(1)x 2 + 2x + k - 4 = 0 有实数根,∴∆ ≥ 0 ..................................................................... 1 分即22 - 4(k - 4) ≥ 0 .∴ k ≤ 5. .................................................................... 2 分(2) k 是方程 x 2 + 2x + k - 4 = 0 的一个根,∴k 2 + 2k + k - 4 = 0.……………………………………………………………………………3 分∴k 2 + 3k = 4 ............................................................ 4 分 2k 2 + 6k - 5 = 2(k 2 + 3k) - 5= 3. ...................................................................... 5 分同意 ........................................................................ 1 分 连接 BD ,如图.∵AB =AD =5 (m),∠A =60°,BC∴△ABD 是等边三角形 ....................... 2 分 ∴BD =AB =5 (m),∠ABD =60°. A∵∠ABC =150°,∴∠CBD =∠ABC -∠ABD =150°-60°=90°. ……3 分 D在 Rt △CBD 中,BD =5 (m),BC =12 (m),∴CD = 13 (m) ........................................ 4 分四、解答题22. 解:(1)8,88.5; .................................................................. 2 分 (2)你认为 八 年级知识竞赛的总体成绩较好,理由 1:八年级成绩的中位数较高;理由 2:八年级与七年级成绩的平均数接近且八年级方差较低,成绩更稳定. 或者你认为 七 年级知识竞赛的总体成绩较好, 理由 1:七年级的平均成绩较高;理由 2:低分段人数较少 .…………………………………………………………………………………5 分(答案不唯一,合理即可)(3)460. ...................................................................... 7 分23. (1)证明:∵四边形 ABCD 是平行四边形∴ A B = CD , A B ∥CD . ∵ DF = CE ,∴ DF + DE = CE + ED , 即: FE = CD .∵点 F 、E 在直线 CD 上, ∴ AB = FE AB ∥ F E .∴四边形 A BEF 是平行四边形 ................................................... 1 分 又∵ BE ⊥ CD ,垂足是 E , ∴ ∠BEF = 90︒ .∴四边形 A BEF 是矩形 ......................................................... 2 分 (2)解:∵四边形 ABEF 是矩形O ,∴ ∠AFC = 90︒ , A B = FE . ∵AB = 6, DE = 2 , ∴ FD = 4 . ∵ FD = CE , ∴ CE = 4 .29 29 ∴ FC = 10 ....................................................................... 3 分 在Rt △AFD 中, ∠AFD = 90︒ . ∵ ∠ADF = 45︒ ,∴ AF = FD = 4 ............................................................ 4 分 在Rt △AFC 中, ∠AFC = 90︒ .∴ AC == 2 . ............................................... 5 分 ∵点 O 是平行四边形 ABCD 对角线的交点, ∴ O 为 AC 中点.在Rt △AFC 中, ∠AFC = 90︒ . O 为 AC 中点.∴ O F = 1AC = . ......................................................... 6 分2五、解答题24. 解:(1) ∵直线 y =kx +7 与直线 y =x ﹣2 交于点 A (3,m ),∴m =3k +3,m =1 .............................................................. 1 分∴k =﹣2 ..................................................................... 2 分 (2) ∵点 P (n ,n ),过点 P 作垂直于 y 轴的直线与直线 y =x ﹣2 交于点 M ,∴M (n +2,n ).∴PM =2 ...................................................................... 3 分 ∵PN ≤2PM , ∴PN ≤4.∵过点 P 作垂直于 x 轴的直线与直线 y =kx +7 交于点 N ,k =﹣2,∴N (n ,﹣2n +7).∴PN = 3n - 7 ................................... 4 分当 PN =4 时,如图,即 3n - 7 =4,∴n =1 或 n = 11 .3∵P 与 N 不重合, ∴ 3n - 7 ≠ 0 .∴ n ≠ 7.3当 PN ≤4(即 PN ≤2PM )时,n 的取值范围为:1≤ n < 7 或 7 < n ≤11 .......................................6 分 3 33⎨⎩25. 解:(1) ①补全图形,如图一 .......................... 1 分②猜想 D E =BC .................................. 2 分如图,连接 OD 交 BC 于点 F ,连接 AF. 在△BDF 和△COF 中, ⎧∠DBF = ∠OCF ,⎪∠DFB = ∠OFC , 图 一⎪DB = OC , ∴△BDF ≌△COF.∴DF =OF , BF =CF ................................. 3 分 ∴F 分别为 B C 和 D O 的中点. ∵∠BAC =90°, F 为 BC 的中点,∴ AF = 1BC .2∵OA =AE , F 为 BC 的中点,∴ AF = 1ED .2∴DE =BC ...................................... 4 分(2) 如图二,连接 OD 交 BC 于点 F ,连接 AF ,延长 CO交 AF 于点 M ,连接 BM.由(1)中②可知,点 F 为 BC 的中点,AF 为 Rt △ABC 斜边 BC 边中线,为△OED 的中位线, ∴AF 为 BC 边的垂直平分线. ∴MB =MC.∵∠OCB =30°,∠OBC =15°,DD图二∴∠MBC =∠MCB =30°. ∵∠BAC =90°,AB =AC, ∴∠MBO =∠MBA=15°. 又可证∠BAM =∠BOM=45°. ∴△BMA ≌△BMO.∴AM =OM 且∠BMO =∠BMA=120°. ∴∠OMA=120°. ∴∠MAO=30°. ∵AF 为△OED 的中位线, ∴AF ∥ED. BC∴∠AED=30°.类似的,如备用图可知,∠AED=15°. ………………7 分O备用图(提示:证明△ABO 为等边三角形,得到∠AED=15°.) ∴∠AED=30°或 15°.注:各题中若有其他合理的解法请酌情给分.。
海淀区第二学期期末八年级数学答案

海淀区八年级数学参考答案2023.07一、选择题(共24分,每题3分) 题号 1 2 3 4 5 6 7 8 答案CBDACADD二、填空题(共18分,每题3分) 9.110 10.③ 11.4 12.86 13.4214.左 4 (第一空2分,第二空1分)三、解答题(共58分,第15题6分,每题3分,16~21题,每题4分,21~24题,每题5分,24题5分,25题6分,26题7分)15.(1)解:原式=252535-+ ································································ 2分=35. ··············································································· 3分(2)解:原式=164- ·········································································· 4分=42- ················································································ 5分 =2. ·················································································· 6分16.证明:如图,连接AC ,交EF 于点O .∵四边形ABCD 是平行四边形,∴BO DO =,AO CO =. ······················ 1分 ∵BE DF =, ∴OB BE OD DF +=+.即FO EO =. ··································· 3分 ∴四边形AECF 是平行四边形. ············· 4分F ACEDBO17.(1)如图所示 ························································································ 2分(2)1( , 0 )2························································································ 3分12x >··························································································· 4分 18.(1)如图所示 ························································································ 2分(2)解:如图所示,过点C 作CH AB ⊥于H ,记AD 与CE 相交于点F ,∵90CHE CHB ∠=∠=,4CH =,8EH =,2BH =, ∴2245CE EH CH =+=,222 5.BC CH BH =+= ∵10BE =, ∴222CE BC BE +=.∴90BCE ∠=. ······················· 3分 ∵四边形ABCD 是平行四边形, ∴AD BC ∥. ∴90AFE ∠=︒. ∴AD CE ⊥.······························· 4分yx–1–2 –3 –412 3 4 –1 –2 –3 –4 12 34 OBECAD BECAD HF19= ······················································ 1分=cm.································································· 2分甲与乙的边长和为==cm.∵2025<=,61820<=<, ························· 3分 ∴应选择中号纸箱. ·········································································· 4分20.(1)解:设一次函数的解析式为(0)y kx b k =+≠.∵(0)y kx b k =+≠的图象过点(2,4)A ,(1,1)B -,∴2 4 1 .k b k b +=⎧⎨-+=⎩,········································································· 1分解得 1 2 .k b =⎧⎨=⎩, ········································································ 2分∴一次函数的解析式为2y x =+. ·················································· 3分(2)1m ≤-或 2.m ≥ ················································································ 4分 21.(1)证明:∵AB AC =,点D 为BC 的中点,∴AD BC ⊥.∴90ADB ADC ∠=∠=︒. ······················· 1分 ∵点E ,F 分别为AB ,AC 的中点, ∴12DE AE BE AB ===,12DF AF CF AC ===. ∴DE AE DF AF ===.∴四边形AEDF 是菱形. ····························································· 2分(2) 解: ∵点E ,F 分别为AB ,AC 的中点,10BC =,∴152EF BC ==. 在Rt ADB △中,6AB =,5BD =,∴AD =. ························································ 3分 ∵四边形AEDF 是菱形,∴12AEDF S AD EF =⋅菱形···················································· 4分22.(1)如图所示. ······················································································ 1分(2)5 ································································································ 2分2 ································································································ 3分 2222(52)(2)1x x +-=-+ ································································ 4分 51- ··························································································· 5分23.(1)6 7 8 9 10 甲12 乙15·············································································································· 1分··············································································································· 4分 (2)乙更可能获胜,理由如下:①从“击中”个数来看,甲在资格赛中射出9.6环及以上共35次,乙在资格赛中射出9.6环及上共38次,乙比甲多;②从累计环数来看,若将甲9.69.8x ≤<分段的按9.8分计,9.810x ≤<分段的按10分计,甲的最高累计环数为9.851091021349⨯+⨯+⨯=,而将乙9.69.8x ≤<分段的按9.6分计,9.810x ≤<分段的按9.8分计,乙的最低累计环数为9.639.881027377.2⨯+⨯+⨯=,乙的最低累计环数比甲的最高累计环数还高.···································································································· 5分(备注:理由能够支持结论即可,理由不唯一)选手平均数中位数 众数 甲 9 乙910选手 频数得分NMF E BCAD24.(1)4a ≤,0b ≥; ················································································· 2分 (2)① ∵4a ≤ 且a 为正整数,∴1,2,3,4a =;当1a =时,3b =,3333b =⨯=,符合题意; 当2a =时,2b =,332=6b =⨯,不符合题意; 当3a =时,11b ==,33b =,不符合题意; 当4a =时,00b ==,30b =,符合题意.综上,b 的值为0或3. ······························································ 4分② 8-,296-. ·················································································· 5分 25.(1)如图所示 ························································································ 1分证明:∵正方形ABCD 中,90DCB ∠=,∴18090DCM DCB ∠=-∠=. ∵CN 是DCM ∠的角平分线, ∴1452FCM DCM ∠=∠=.∵BD 是对角线, ∴1452DBC ABC ∠=∠=.∴FCM DBC ∠=∠. ∴DB CF ∥. ∴BEC ECF ∠=∠. ∵EC EF =, ∴EFC ECF ∠=∠. ∴=BEC ECF EFC ∠=∠∠.∵在△ECF 中,180EFC ECF CEF ∠+∠+∠=,∴2180BEC CEF ∠+∠=. ·························································· 2分(2)BE CF DE =+. ················································································ 3分证明:在BE 上截取BG CF =,连接FG ,∵BG CF ∥,NMF DACB E∴四边形BGCF 为平行四边形. ∴GF BC CD ==. ∵GF BC ∥,∴45EGF DBC ∠=∠=. ∵DB CF ∥, ∴DEF EFC ∠=∠. ∴BEC DEF ∠=∠.∴++GEF GEC CEF DEF CEF DEC ∠=∠∠=∠∠=∠. ………………… 4分 在GEF △和DEC △中,.GEF DEC EGF EDC GF DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,,∴△GEF ≌△DEC .∴GE DE =. …………………………………………………………… 4分 ∴BE BG GE CF DE =+=+.(3). ···················································································· 6分26.(1)①④; ···························································································· 2分 (2)①解:当1t =-时,(0)1,M -,()0,1N ,设MN 所在直线的解析式为()0y kx b k =+≠, ∴0 1 .k b b -+=⎧⎨=⎩,解得 1 1 .k b =⎧⎨=⎩,∴MN 所在直线的解析式为1y x =+. …………………………………3分 设线段AB 的等差点为()00,P x y ,由定义可知,点A 为BP 的中点或点B 为AP 的中点,∴点P 也在直线y x =-上. ∵点P 在线段MN 上, ∴00001 .y x y x =+⎧⎨=-⎩,∴解得001 21 .2x y ⎧=-⎪⎪⎨⎪=⎪⎩,∴11(,)22P -. ………………………………………………………………4分∵点A 的横坐标为2-, ∴()2,2A -.∴当点A 为BP 的中点时,则77(,)22B -;当点B 为AP 的中点时,则55(,)44B -.综上,点B 的坐标为77(,)22-或55(,)44-. ………………………………5分②72t -≤≤-或16t ≤≤. ··································································· 7分。
北京市海淀区2018-2019学年八年级下期末数学试卷含答案

海淀区 2019-2019 学年八年级第二学期期末练习数学(分数: 100 分时间: 90 分钟)学校班级姓名成绩一、选择题:(此题共30 分,每题 3 分)在以下各题的四个备选答案中,只有一个是正确的.....1.以下各式中,运算正确的选项是A .( 2)2 2 B.28 10C.28 4 D .2222.如图,在△ABC 中, AB 3 , BC 6 , AC 4 ,点 D , E 分别是边AB , CB 的中点,那么 DE 的长为 AA .B . 2 C. 3 D .4 DB EC 3.要获得函数y 2x 3 的图象,只需将函数y2x 的图象A .向左平移 3 个单位B.向右平移 3 个单位C.向上平移 3 个单位D.向下平移 3 个单位.在 Rt △ ABC 中, D 为斜边AB的中点,且 BC 3 , AC 4 ,则线段 CD 的长是4A .2 B.3 C.5D.5 25.已知一次函数y (k 1)x .若 y 随 x 的增大而增大,则k 的取值范围是A .k1B.k1C.k0D.k06 .如图,在△ABC 中, AB 5 , BC 6 , BC 边上的中线AD 4 ,那么 AC 的长是A .5 B.6C.34 D .2 13AB D C7.如图,在点 M , N , P, Q 中,一次函数y kx 2 (k 0) 的图象不行能经过的点是A . MB .N C. P D. QyM2N- 2O 2x Q - 2P8.如图是某一天北京与上海的气温T (单位: C )随时间t(单位:时)变化的图象.依据图中信息,以下说法错误的是..A .12 时北京与上海的气温同样B .从 8 时到 11 时,北京比上海的气温高C.从 4 时到 14 时,北京、上海两地的气温渐渐高升D .这天中上海气温达到 4 C 的时间大概在上午 10 时9.如图,在平面直角坐标系xOy 中,正方形ABCD的极点D在y轴上,且 A( 3,0) ,B (2, b ) ,则正方形ABCD 的面积是yDA .13 B.20 C.25 D.34 CA O x 10.已知两个一次函数y1, y2的图象互相平行,它们的部分自变量与相B 应的函数值以下表:x m 0 2y1 4 3 ty2 6 n - 1则 m 的值是1B . 3 1D .5A .C.3 2二、填空题:(此题共18 分,每题 3 分)11.x 2 在实数范围内存心义,那么x 的取值范围是.12.已知 2 x (y 1)20 ,那么y x的值是.13.如图,两张等宽的纸条交错叠放在一同,若重合部分组成的四边形ABCD 中,AB 3 , AC 2 ,则BD的长A B为.D C14 4的正方形ABCD四条边上的点,.如图, E, F , M , N 分别是边长为EA B且 AE BF CM DN .那么四边形 EFMN 的面积的最小值N 是.15.第 24 届冬天奥林匹克运动会,将于2022 年 2 月在北京市和张家口市结合举行 . 某校寒假时期组织部分滑雪喜好者参加冬令营集训. 训练时期,冬令营的同学们都参加了“单板滑雪” 这个项目40 次的训练测试,每次测试成绩分别为 5 分,4 分, 3 分, 2 分,1 分五档 .甲乙两位同学在这个项目的测试成绩统计结果以下图.F D M C依据上图判断,甲同学测试成绩的众数是;乙同学测试成绩的中位数是;甲乙两位同学中单板滑雪成绩更稳固的是.16.已知一次函数y kx b 的图象过点( 1,0) 和点 (0,2) . 若 x(kx b) 0 ,则 x 的取值范围是.三、解答题:(此题共22 分,第 17— 19 题每题 4 分,第 20— 21 题每题 5 分)317.计算:12 6 .218.如图,在Y ABCD中,点E,F分别在边AD , BC 上,AE CF ,求证:BE DF .A E D19.已知x5 1,求x 2BFC 2x 的值.20.在平面直角坐标系xOy 中,已知点A(0, 3) 、点 B(3, 0) ,一次函数y 2x 的图象与直线AB 交于点 M .(1)求直线AB的函数分析式及M点的坐标;(2)若点N是x轴上一点,且△MNB的面积为 6,求y 54 3 2点 N 的坐标. 1- 5 - 4 - 3 - 2 - 1O 1234 5 x-1-2-3-4-521.如图,在△ABC中,点D,E,F分别是边AB , AC ,ABC 的中点,且 BC 2 AF .( 1)求证:四边形ADFE为矩形;D E( 2)若 C 30 , AF 2 ,写出矩形ADFE的周长.B CF四、解答题:(此题共14 分,第 22 题 8 分,第 23 题 6 分)22.阅读以下资料:2019 年人均阅读16 本书!2019 年 4 月 23 日“世界念书日” 以前,国际网络电商亚马逊公布了“亚马逊中国2019 全民阅读报告”.报告显示,大多数读者已养成必定的阅读习惯,阅读总量在10 本以上的占 56%,而昨年阅读总量在10 本以上的占48%.京东图书也公布了2019 年度图书阅读报告.依据京东图书娱乐业务部数据统计,2019 年销售纸书人均16 册,总量叠在一同相当于15000 个帝国大厦的高.(1)在亚马逊这项检查中,以每年有效问卷 1.4 万份来计, 2019 年阅读量十本以上的人数比昨年增添了人;(2)毛毛雨作为学校的图书管理员,依据初二年级每位同学本学期的借书记录,对各个班借阅的状况作出了统计,并绘制统计图表以下:初二年级图书借阅分类统计扇形图初二年级各班图书借阅状况统计表班级123 4人数35353436借阅总182165143数(本)中位数565 5①整年级140名同学中有科技社团成员40 名,他们人均阅读科普类书本1.5 本,年级其余同学人均阅读科普类书本 1.08 本,请你计算整年级人均阅读科普类书本的数目,再经过计算补全统计表;②在①的条件下,若要介绍初二某个班级为本学期阅读先进集体,你会介绍哪个班,请写出你的原因.23.在四形中,一条上的两个角称角. 一条上的角相等,且条的上的角也相等,的四形叫做 IT 形 . 你依据研究平行四形及特别四形的方法,写出 IT 形的性,把你的都写出来 .五、解答:(本共16 分,第 24 8 分,第 25 8 分)24.如,四形ABCD是正方形,E是CD垂直均分上的点,点 E 对于 BD 的称点是 E ',直 DE 与直 BE' 交于点 F .A B(1)若点E是CD的中点,接AF ,FAD =;E'F(2)小明从老那边认识到,只需点 E 不在正方形的中心,直 AF 与 AD 所角不.他改点 E 的位置,算相角度,老的法.①如,将点 E 在正方形内,且△ EAB 等三角形,求出直 AF 与 AD 所角的度数;D CEA B E'E② 你研究个,能够延小明的想法,也可用其余方法 .D C F我想沿用小明的想法,把点 E 在CD 垂直均分上的另一个特别位置,我的地点是⋯⋯我没有沿用小明的想法,我的想法是⋯⋯我选择小明的想法;(填“用”或“不用”)并简述求直线度数的思路.AF 与AD 所夹锐角A BD C 25.对于正数 x ,用符号 [ x] 表示 x 的整数部分,比如: [0.1] 0 ,[2.5] 2 ,[3] 3 .点 A(a ,b) 在第一象限内,以 A 为对角线的交点画一个矩形,使它的边分别与两坐标轴垂直. 其中垂直于y 轴的边长为 a ,垂直于 x 轴的边长为 [ b] 1,那么,把这个矩形覆盖的地区叫做点 A 的矩形域.比如:点(3, 3 ) 的矩形域是一个以2(3, 3 ) 为对角线交点,长为23,宽为 2 的矩形所覆盖的地区,如图 1 所示,它的面积是6.y321- 1O 1234 5 x- 1y7654321- 1 O 12 3 4 5 x- 1图 1 图 2 依据上边的定义,回答以下问题:( 1)在图 2 所示的坐标系中画出点(2, 7) 的矩形域,该矩形域的面积是;2(7),Q( a,70) 的矩形域重叠部分面积为1,求 a 的值;2)点 P(2, )(a2 2( 3)已知点 B(m, n )(m 0) 在直线 y x 1上,且点 B 的矩形域的面积S 知足 4 S 5 ,那么 m 的取值范围是.(直接写出结果)八年级第二学期期末练习数学答案一、选择题(此题共30 分,每题3 分)题号 1 2 3 4 5 6 7 8 9 10答案 C B C C B A D D D A 二、填空题(此题共18 分,每题 3 分)11. x 2 12 .1 13. 4 2 14.8 15.3;3;乙同学16. 1 x 0说明:第15 题每空 1 分,共 3 分 .三、解答题(此题共22 分,第17— 19 题每题 4 分,第 20— 21 题每题 5 分)17 .解:原式= 2 3 3 3 ------------------------------ 3 分= 5 3 ------------------------------ 4 分18.证明:∵四边形ABCD是平行四边形,∴AD∥ BC,AD BC.------------------------------1分∵ AE CF ,A E D ∴ DE BF . ------------------------------ 2 分EBFD 是B F C∴ 四边形平行四边形 .------------------------------ 3 分∴ BE DF . ------------------------------ 4 分证法二:∵四边形ABCD是平行四边形,∴ AB DC , A C . ------------------------------1 分A E D ∵ AE CF . ------------------------------2 分∴ VBAE VDCF . ------------------------------3 分∴ BE DF . ------------------------------4 分 B F C 19.解法一:∵x 5 1,∴ x 1 5 .∴ x2 2x x2 2x 1 1 (x 1)2 1------------------------------ 2 分( 5) 2 14 .解法二:∵ x5 1,∴ x 22x x(x 2) ( 5 1)( 5 1 2)( 5) 21------------------------------4分------------------------------2 分4 .------------------------------ 4分注:结论错,有对根式计算正确的部分给1 分。
【Word版】2019.7海淀区八年级期末数学试题及答案

海淀区2019 年八年级学业发展水平评价数学一、选择题(本题共30 分,每小题 3 分)在下列各题的四个选项中,只.有.一.个.是符合题意的.1.下列实数中,是方程x2 - 4 = 0 的根的是A. 1B. 2C. 3D. 42019.72.如图,在Rt△ABC 中,A.7B.8C.9D.10∠C = 90 °,BC = 6 ,AC = 8 ,则AB 的长度为3.在下列条件中,能判定四边形为平行四边形的是A. 两组对边分别平行B. 一组对边平行且另一组对边相等C. 两组邻边相等D. 对角线互相垂直4.下列各曲线中,不表示y 是x 的函数的是A B C D5.数据2, 6, 4, 5, 4, 3 的平均数和众数分别是A.5 和4B.4 和4C.4.5 和4D.4 和55 CO 6. 一元二次方程 x 2 - 8x -1 = 0 经过配方后可变形为A. (x + 4)2 = 15B. (x + 4)2 = 17C. (x - 4)2 = 15D. (x - 4)2 = 177.若点 A (-3, y 1 ), B (1, y 2 ) 都在直线 y=x + 2 上,则 y 1 与 y 2 的大小关系是A. y 1<y 2B. y 1=y 2C. y 1>y 2D. 无法比较大小8.如图,正方形 ABCD 的边长为则 BE 的长度为A. B. 102, 对角线 AC , BD 交于点 O , E 是 AC 延长线上一点, 且CE =CO .EDC.D. 2AB9.对于一次函数 y = kx + b (k , b 为常数),下表中给出 5 组自变量及其对应的函数值,其中恰好有一个函数值计算有误,则这个错误的函数值是 A. 5B. 8C. 12D. 1410.博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为公众提供知识、教育及欣赏服务. 近年来,人们到博物馆学习参观的热情越来越高. 2012-2018 年我国博物馆参观人数统计如下:2 35小明研究了这个统计图,得出四个结论:① 2012 年到 2018 年,我国博物馆参观人数持续增长;② 2019 年末我国博物馆参观人数估计将达到 10.82 亿人次;③ 2012 年到 2018 年,我国博物馆参观人数年增幅最大的是 2017 年;④ 2016 年到 2018 年,我国博物馆参观人数平均年增长率超过 10%. 其中正确的是 A .①③B .①②③C .①②④D .①②③④二、填空题(本题共 18 分,每小题 3 分) 11.如图,在□ABCD 中,∠B =110°,则∠D =°.A12. 八年级(1)班甲、乙两个小组的 10 名学生进行飞镖训练,某次训练成绩如下:由上表可知,甲、乙两组成绩更稳定的是组.13. 若关于 x 的一元二次方程 x26x m 0 有实数根, 且所有实数根均为整数,请写出一个符合条件的常数 m 的值:m =.博物馆参观人数:亿人次2018年2017年2016年2015年2014年2013年2012年425.646 6.387.817.188 8.5010.089.721210 2012-2018年全国博物馆参观人数统计图14. 如图,某港口 P 位于南北延伸的海岸线上,东面是大海.“远洋”号、“长峰”号两艘轮船同时离开港口 P ,各自沿固定方向航行,“远洋”号每小时航行 12 n mile ,“长峰”号每小时航行 16 n mile ,它们离开港口 1 小时后,分别到达 A ,B 两个位置,且 A B =20 n mile ,已知“远洋”号沿着北偏东 60°方向航行,那么“长峰”号航行的方向是.15. 若一个矩形的长边的平方等于短边与其周长一半的积,则称这样的矩形为“优美矩形”.某公园在绿化时,工作人员想利用如图所示的直角墙角(两边足够长)和长为 38 m 的篱笆围成一个“优美矩形”形状的花园 ABCD ,,其中边 AB , AD 为篱笆,且 AB 大于 AD . 设 AD 为 x m, 依题意可列方程为.16. 在平面直角坐标系 xOy 中,直线 y = kx + 3 与 x ,y 轴分别交于点 A ,B ,若将该直线向右平移 5 个单位,线段 A B 扫过区域的边界恰好为菱形,则 k 的值为.三、解答题(本题共 26 分,第 17 题 8 分,第 18,20 题各 5 分,第 19,21 题各 4 分)17. 解方程:(1) x 2 - 2x - 3 = 0 ;(2) 2x 2 + 3x -1 = 0 .18. 在平面直角坐标系 xOy 中,一次函数 y =kx +b 的图象与直线 y =2x 平行,且经过点 A (1,6).(1) 求一次函数 y =kx +b 的解析式;(2) 求一次函数 y =kx +b 的图象与坐标轴围成的三角形的面积.19. 下面是小丁设计的“利用直角三角形和它的斜边中点作矩形”的尺规作图过程. 已知:如图,在 Rt △ABC 中,∠ABC =90°,O 为 AC 的中点. 求作:四边形 ABCD ,使得四边形 ABCD 为矩形.作法:①作射线 BO ,在线段 BO 的延长线上取点 D ,使得 DO =BO ;②连接 AD ,CD ,则四边形 ABCD 为矩形. 根据小丁设计的尺规作图过程.(1)使用直尺和圆规,在图中补全图形(保留作图痕迹);(2) 完成下面的证明.证明:∵点 O 为AC 的中点,∴ AO =CO .又∵ DO =BO ,∴四边形 A BCD 为平行四边形( )(填推理的依据).D C∵∠ABC =90°,∴□ABCD 为矩形()(填推理的依据).20.关于x 的一元二次方程x2 + 2x +k - 4 = 0 有实数根.(1)求k 的取值范围;(2)若k 是该方程的一个根,求2k 2+ 6k - 5 的值.21.小东和小明要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边CD 上有水池及建筑遮挡,没有办法直接测量其长度.小东经测量得知AB=AD=5 m,∠A=60°,BC=12 m,∠ABC=150°.小明说根据小东所得的数据可以求出CD 的长度.你同意小明的说法吗?若同意,请求出CD 的长度;若不同意,请说明理由.B CAD四、解答题(本题共13 分,第22 题7 分,第23 题 6 分)22.三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动.为了让同学们更好的了解二十四节气的知识, 本次学习节在沿袭以往经典项目的基础上,增设了“二十四节气之旅”项目,并开展了相关知识竞赛. 该学校七、八年级各有400 名学生参加了这次竞赛, 现从七、八年级各随机抽取20 名学生的成绩进行抽样调查.收集数据如下:七年级:74 97 96 72 98 99 72 73 76 7474 69 76 89 78 74 99 97 98 99八年级:76 88 93 89 78 94 89 94 95 5089 68 65 88 77 87 89 88 92 91整理数据如下:人数年级七年级分析数据如下:(1)a= ,b= ;(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合;理性)(3)学校对知识竞赛成绩不低于80 分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有人.23.如图,在□ABCD 中,对角线AC,BD 交于点O,过点B 作BE⊥CD 于点E,延长CD 到点F,使DF=CE,连接AF.(1)求证:四边形ABEF 是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF 的长度.五、解答题(本题共13 分,第24 题 6 分,第25 题7 分)24.如图,在平面直角坐标系xOy 中,直线y =kx + 7 与直线y =x - 2 交于点A(3, m).(1)求k, m 的值;(2)已知点P (n, n),过点P 作垂直于y 轴的直线与直线y =x - 2 交于点M ,过点P 作垂直于x 轴的直线与直线y =kx + 7 交于点N (P 与N 不重合). 若PN ≤ 2PM ,结合图象,求n 的取值范围.25. 在 Rt △ABC 中, ∠BAC = 90︒ ,点 O 是△ABC 所在平面内一点,连接 OA ,延长 OA 到点 E ,使得AE =OA ,连接 OC ,过点 B 作 BD 与 OC 平行,并使∠DBC =∠OCB ,且 BD =OC ,连接 DE .(1) 如图一,当点 O 在 Rt △ABC 内部时.① 按题意补全图形;② 猜想 DE 与 BC 的数量关系,并证明.图一(2) 若 A B = AC (如图二), 且∠OCB = 30︒, ∠OBC = 15︒ ,求∠AED 的大小.图二备用图B备用图海淀区2019 年八年级学业发展水平评价数学参考答案一、选择题二、填空题11.11012.甲13.0(答案不唯一)14.南偏东 30°15.(38 -x)2= 38x (无需写成一般式)16 . ±3(填对一个得 2 分,填对两个得 3 分,含有错误答案得 0 分)4三、解答题17.解:(1)x2 - 2x - 3 = 0 ;解法一:x2 - 2x - 3 = 0x2 - 2x = 3x2 -2x +1 = 4(x -1)2 = 4 x -1 =±2…………………………………………………………………………1分………………………………………………………………………………2分………………………………………………………………………………3分x1 = 3,x2=-1………………………………………………………………………………4 分解法二:x2 -2x -3 =0 (x -3)(x +1) =………………………………………………………………………………2 分x1 = 3,x2=-1………………………………………………………………………………4 分(2)2x2 + 3x -1 = 0 .解:2x2 +3x -1 = 0a =2,b =3,c =-1∴∆=9 -4⨯2⨯(-1) =17> 0……………………………………………………………………1 分x =-3 ± 174………………………………………………………………………………3 分x =-3 + 1 417,x =-3 -172 4……………………………………………………………………4 分注:若(1)中用公式法,请参考(2)中评分细则D(1) 一次函数 y = kx + b 的图象为直线,且与直线 y = 2x 平行,∴k = 2 ................................................................. 1 分又知其过点 A (1,6),∴2 + b = 6 . ∴b = 4 .∴一次函数的解析式为 y = 2x + 4 ........................................ 2 分(2)当 x = 0 时, y = 4 ,可知直线 y = 2x + 4 与 y 轴的交点为(0, 4) ................................... 3 分 当 y = 0 时, x = -2 , 可知直线 y = 2x + 4 与 x 轴交点为(-2, 0) ................................. 4 分可得该直角三角形的两条直角边长度分别为 4 和 2.所以直线 y = 2x + 4 与坐标轴围成的三角形的面积为 1 ⨯ 4 ⨯ 2 = 4 ............ 5 分219. 解:(1) 作图如图所示BA ...............................................................2 分(2) 对角线互相平分的四边形是平行四边形 ...................................... 3 分有一个角是直角的平行四边形是矩形 ......................................... 4 分20. 解:(1)x 2 + 2x + k - 4 = 0 有实数根,∴∆ ≥ 0 ..................................................................... 1 分即22 - 4(k - 4) ≥ 0 .∴ k ≤ 5. .................................................................... 2 分(2) k 是方程 x 2 + 2x + k - 4 = 0 的一个根,∴k 2 + 2k + k - 4 = 0.……………………………………………………………………………3 分∴k 2 + 3k = 4 ............................................................ 4 分 2k 2 + 6k - 5 = 2(k 2 + 3k) - 5= 3. ...................................................................... 5 分同意 ........................................................................ 1 分 连接 BD ,如图.∵AB =AD =5 (m),∠A =60°,BC∴△ABD 是等边三角形 ....................... 2 分 ∴BD =AB =5 (m),∠ABD =60°. A∵∠ABC =150°,∴∠CBD =∠ABC -∠ABD =150°-60°=90°. ……3 分 D在 Rt △CBD 中,BD =5 (m),BC =12 (m),∴CD = 13 (m) ........................................ 4 分四、解答题22. 解:(1)8,88.5; .................................................................. 2 分 (2)你认为 八 年级知识竞赛的总体成绩较好,理由 1:八年级成绩的中位数较高;理由 2:八年级与七年级成绩的平均数接近且八年级方差较低,成绩更稳定. 或者你认为 七 年级知识竞赛的总体成绩较好, 理由 1:七年级的平均成绩较高;理由 2:低分段人数较少 .…………………………………………………………………………………5 分(答案不唯一,合理即可)(3)460. ...................................................................... 7 分23. (1)证明:∵四边形 ABCD 是平行四边形∴ A B = CD , A B ∥CD . ∵ DF = CE ,∴ DF + DE = CE + ED , 即: FE = CD .∵点 F 、E 在直线 CD 上, ∴ AB = FE AB ∥ F E .∴四边形 A BEF 是平行四边形 ................................................... 1 分 又∵ BE ⊥ CD ,垂足是 E , ∴ ∠BEF = 90︒ .∴四边形 A BEF 是矩形 ......................................................... 2 分 (2)解:∵四边形 ABEF 是矩形O ,∴ ∠AFC = 90︒ , A B = FE . ∵AB = 6, DE = 2 , ∴ FD = 4 . ∵ FD = CE , ∴ CE = 4 .29 29 ∴ FC = 10 ....................................................................... 3 分 在Rt △AFD 中, ∠AFD = 90︒ . ∵ ∠ADF = 45︒ ,∴ AF = FD = 4 ............................................................ 4 分 在Rt △AFC 中, ∠AFC = 90︒ .∴ AC == 2 . ............................................... 5 分 ∵点 O 是平行四边形 ABCD 对角线的交点, ∴ O 为 AC 中点.在Rt △AFC 中, ∠AFC = 90︒ . O 为 AC 中点.∴ O F = 1AC = . ......................................................... 6 分2五、解答题24. 解:(1) ∵直线 y =kx +7 与直线 y =x ﹣2 交于点 A (3,m ),∴m =3k +3,m =1 .............................................................. 1 分∴k =﹣2 ..................................................................... 2 分 (2) ∵点 P (n ,n ),过点 P 作垂直于 y 轴的直线与直线 y =x ﹣2 交于点 M ,∴M (n +2,n ).∴PM =2 ...................................................................... 3 分 ∵PN ≤2PM , ∴PN ≤4.∵过点 P 作垂直于 x 轴的直线与直线 y =kx +7 交于点 N ,k =﹣2,∴N (n ,﹣2n +7).∴PN = 3n - 7 ................................... 4 分当 PN =4 时,如图,即 3n - 7 =4,∴n =1 或 n = 11 .3∵P 与 N 不重合, ∴ 3n - 7 ≠ 0 .∴ n ≠ 7.3当 PN ≤4(即 PN ≤2PM )时,n 的取值范围为:1≤ n < 7 或 7 < n ≤11 .......................................6 分 3 33⎨⎩25. 解:(1) ①补全图形,如图一 .......................... 1 分②猜想 D E =BC .................................. 2 分如图,连接 OD 交 BC 于点 F ,连接 AF. 在△BDF 和△COF 中, ⎧∠DBF = ∠OCF ,⎪∠DFB = ∠OFC , 图 一⎪DB = OC , ∴△BDF ≌△COF.∴DF =OF , BF =CF ................................. 3 分 ∴F 分别为 B C 和 D O 的中点. ∵∠BAC =90°, F 为 BC 的中点,∴ AF = 1BC .2∵OA =AE , F 为 BC 的中点,∴ AF = 1ED .2∴DE =BC ...................................... 4 分(2) 如图二,连接 OD 交 BC 于点 F ,连接 AF ,延长 CO交 AF 于点 M ,连接 BM.由(1)中②可知,点 F 为 BC 的中点,AF 为 Rt △ABC 斜边 BC 边中线,为△OED 的中位线, ∴AF 为 BC 边的垂直平分线. ∴MB =MC.∵∠OCB =30°,∠OBC =15°,DD图二∴∠MBC =∠MCB =30°. ∵∠BAC =90°,AB =AC, ∴∠MBO =∠MBA=15°. 又可证∠BAM =∠BOM=45°. ∴△BMA ≌△BMO.∴AM =OM 且∠BMO =∠BMA=120°. ∴∠OMA=120°. ∴∠MAO=30°. ∵AF 为△OED 的中位线, ∴AF ∥ED. BC∴∠AED=30°.类似的,如备用图可知,∠AED=15°. ………………7 分O备用图(提示:证明△ABO 为等边三角形,得到∠AED=15°.) ∴∠AED=30°或 15°.注:各题中若有其他合理的解法请酌情给分.。
2018-2019学年 北京海淀区第二学期初二年级数学学业水平测试试题(

海淀区2019年八年级学业发展水平评价数 学2019.7一、选择题(本题共30分,每小题3分)在下列各题的四个选项中,只有一个....是符合题意的. 1. 下列实数中,是方程240x −=的根的是A. 1B. 2C. 3D. 42. 如图,在Rt △ABC 中, 90C ∠=°,6BC =,8AC =,则AB 的长度为A. 7B. 8C. 9D. 103. 在下列条件中,能判定四边形为平行四边形的是A. 两组对边分别平行B. 一组对边平行且另一组对边相等C. 两组邻边相等D. 对角线互相垂直4. 下列各曲线中,不表示y 是x 的函数的是ABCD5. 数据2, 6, 4, 5, 4, 3的平均数和众数分别是A .5和4B .4和4C .4.5和4D .4和56. 一元二次方程2810x x −−=经过配方后可变形为A. 2(4)15x +=B. 2(4)17x +=C. 2(4)15x −=D. 2(4)17x −=7. 若点12(3,),(1,)A y B y −都在直线122y x =+上,则1y 与2y 的大小关系是 A. y 1<y 2 B. y 1=y 2C. y 1>y 2D. 无法比较大小8. 如图,正方形ABCD, 对角线AC , BD 交于点O , E 是AC 延长线上一点, 且CE =CO .则BE 的长度为A.B.C.D.9. 对于一次函数y kx b =+(k , b 为常数),下表中给出5组自变量及其对应的函数值,其中恰好有一个函数值计算有误,则这个错误的函数值是 A. 5B. 8C. 12D. 1410. 博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为公众提供知识、教育及欣赏服务. 近年来,人们到博物馆学习参观的热情越来越高. 2012-2018年我 国博物馆参观人数统计如下:BCD O EA小明研究了这个统计图,得出四个结论:① 2012年到2018年,我国博物馆参观人数持续增长; ②2019年末我国博物馆参观人数估计将达到10.82亿人次;③ 2012年到2018年,我国博物馆参观人数年增幅最大的是2017年; ④ 2016年到2018年,我国博物馆参观人数平均年增长率超过10%. 其中正确的是 A .①③B .①②③C .①②④D .①②③④二、填空题(本题共18分,每小题3分)11. 如图,在□ABCD 中,∠B =110°,则∠D =________°.12.八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下:由上表可知,甲、乙两组成绩更稳定的是 组. 13.若关于x 的一元二次方程260xx m 有实数根, 且所有实数根均为整数,请写出一个符合条件的常数m 的值:m = .A14.如图,某港口P 位于南北延伸的海岸线上,东面是大海.“远洋”号、“长峰”号两艘轮船同时离开港口P ,各自沿固定方向航行,“远洋”号每小时航行12 n mile ,“长峰”号每小时航行16 n mile ,它们离开港 口1小时后,分别到达A ,B 两个位置,且AB =20 n mile ,已知“远 洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是_______. 15.若一个矩形的长边的平方等于短边与其周长一半的积,则称这样的矩形为“优美矩形”.某公园在绿化时,工作人员想利用如图所示的直角墙 角(两边足够长)和长为38 m 的篱笆围成一个“优美矩形”形状的花 园ABCD ,,其中边AB , AD 为篱笆,且AB 大于AD . 设AD 为x m, 依题 意可列方程为 .16. 在平面直角坐标系xOy 中,直线3y kx =+与x ,y 轴分别交于点A ,B ,若将该直线向右平移5个单位,线段AB 扫过区域的边界恰好为菱形,则k 的值为 .三、解答题(本题共26分,第17题8分,第18,20题各5分,第19,21题各4分) 17.解方程: (1)2230x x −−=;(2)22310x x +−=.18.在平面直角坐标系xOy 中,一次函数y =kx +b 的图象与直线y =2x 平行,且经过点A (1,6).(1)求一次函数y =kx +b 的解析式;(2)求一次函数y =kx +b 的图象与坐标轴围成的三角形的面积.19.下面是小丁设计的“利用直角三角形和它的斜边中点作矩形”的尺规作图过程.已知:如图,在Rt △ABC 中,∠ABC =90°,O 为AC 的中点. 求作:四边形ABCD ,使得四边形ABCD 为矩形.作法:①作射线BO ,在线段BO 的延长线上取点D ,使得DO =BO ;②连接AD ,CD ,则四边形ABCD 为矩形. 根据小丁设计的尺规作图过程.(1)使用直尺和圆规,在图中补全图形(保留作图痕迹); (2)完成下面的证明. 证明:∵点O 为AC 的中点,∴ AO =CO . 又∵ DO =BO ,∴四边形ABCD 为平行四边形( )(填推理的依据).∵∠ABC =90°,∴□ABCD 为矩形( )(填推理的依据).20. 关于x 的一元二次方程2240x x k ++−=有实数根.(1)求k 的取值范围;(2)若k 是该方程的一个根,求2265k k +−的值.21.小东和小明要测量校园里的一块四边形场地ABCD (如图所示)的周长,其中边CD 上有水池及建筑遮挡,没有办法直接测量其长度.小东经测量得知AB =AD =5 m ,∠A =60°,BC =12 m ,∠ABC =150°. 小明说根据小东所得的数据可以求出CD 的长度.你同意小明的说法吗?若同意,请求出CD 的长度;若不同意,请说明理由.ADCB四、解答题(本题共13分,第22题7分,第23题6分)22.三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动.为了让同学们更好的了解二十四节气的知识, 本次学习节在沿袭以往经典项目的基础上,增设了 “二十四节气之旅”项目,并开展了相关知识竞赛. 该学校七、八年级各有400名学生参加了这 次竞赛, 现从七、八年级各随机抽取20名学生的成绩进行抽样调查. 收集数据如下:七年级:74 97 96 72 98 99 72 73 76 7474 69 76 89 78 74 99 97 98 99八年级:76 88 93 89 78 94 89 94 95 50 89 68 65 88 77 87 89 88 92 91整理数据如下:分析数据如下:年级 平均数 中位数 众数 方差 七年级 84. 2 77 74 138.56 八年级84b89129.7根据以上信息,回答下列问题:(1)a = ,b = ;(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性);(3)学校对知识竞赛成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有 人.50x ≤≤5960x ≤≤6970x ≤≤7980x ≤≤8990x ≤≤100七年级 0 1 10 1 a 八年级 12386人数 成绩年级23. 如图,在□ABCD 中,对角线AC ,BD 交于点O ,过点B 作BE ⊥CD 于点E ,延长CD 到点F ,使DF =CE ,连接AF . (1)求证:四边形ABEF 是矩形;(2)连接OF ,若AB =6,DE =2,∠ADF =45°,求OF 的长度.五、解答题(本题共13分,第24题6分,第25题7分)24.如图,在平面直角坐标系xOy 中,直线7y kx =+与直线2y x =−交于点()3,A m .(1)求,k m 的值;(2)已知点(),P n n ,过点P 作垂直于y 轴的直线与直线2y x =−交于点M ,过点P 作垂直于x 轴的直线与直线7y kx =+交于点N (P 与N 不重合). 若2PN PM ≤,结合图象,求n 的取值范围.25.在Rt △ABC 中,90BAC ∠=︒,点O 是△ABC 所在平面内一点,连接OA ,延长OA 到点E ,使得AE =OA ,连接OC ,过点B 作BD 与OC 平行,并使∠DBC =∠OCB ,且BD =OC ,连接DE . (1)如图一,当点O 在Rt △ABC 内部时.① 按题意补全图形;② 猜想DE 与BC 的数量关系,并证明.(2)若AB = AC (如图二), 且30,15OCB OBC ∠=︒∠=︒,求AED ∠的大小.图一图二备用图25.(1)①补全图形,如图一. ……………………………2分②猜想DE =BC. …………………………………3分 如图,连接OD 交BC 于点F ,连接AF . 在△BDF 和△COF 中,,,,DBF OCF DFB OFC DB OC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△COF.∴DF =OF , BF =CF. …………………………………4分 ∴F 分别为BC 和DO 的中点. ∵∠BAC =90°, F 为BC 的中点, ∴12AF BC =. ∵OA =AE , F 为BC 的中点, ∴12AF ED =.∴DE =BC. ………………………………………5分 (2)如图二,连接OD 交BC 于点F ,连接AF ,延长CO交AF 于点M ,连接BM.由(1)中②可知,点F 为BC 的中点,AF 为Rt △ABC 斜边BC 边中线,为△OED 的中位线, ∴AF 为BC 边的垂直平分线. ∴MB =MC.∵∠OCB =30°,∠OBC =15°, ∴∠MBC =∠MCB =30°. ∵∠BAC =90°,AB =AC, ∴∠MBO =∠MBA=15°. 又可证∠BAM =∠BOM=45°. ∴△BMA ≌△BMO.∴AM =OM 且∠BMO =∠BMA=120°. ∴∠OMA=120°. ∴∠MAO=30°.备用图图一图二∵AF为△OED的中位线,∴AF∥ED.类似的,如备用图可知,∠AED=15°. ………………7分(提示:证明△ABO为等边三角形,得到∠AED=15°.)∴∠AED=30°或15°.备用图。
北京市海淀区2018-2019学年八年级下期末模拟数学试题有答案

海淀区八年级第二学期期末练习数学(分数:100分时间:90分钟)学校 _________________ 班级 _________________ 姓名 ______________ 成绩 ________________一、选择题:(本题共30分,每小题3分)在下列各题的四个备选答案中,只有一个..是正确的. 1.下列各式中,运算正确的是A . 3.3 - 3 = 3B .8=2.2C . 2+.3 =2.3D . , (-2)2 = -22•下列各组数中,以它们为边长的线段不能构成直角三角形的是A . 1, 2 , 3B . 3, 4, 5C . 5, 12, 13D . 2, 2, 33. 如图,矩形 ABCD 中,对角线 AC , BD 交于O 点.若/ AOB = 60 °AC = 8,则AB 的长为 I“A . 4B .朋C . 3D . 54. 已知P 1 (- 1, y 1) , P 2(2, --------------------------------------------------- y 2)是一次函数y=—x +1图象上的两个点,拧 「 贝V ---------------------------------------------------------------------------- y 1,y 的大小关系是A . y 1=y 2B .如:::y ?C .小 yD .不能确定5 . 2022年将在北京一张家口举办冬季奥运会,很多学校开设了相关的课程.下表记录了某校4名同学短道速滑选拔赛成绩的平均数 X 与方差s 2:队员1队员2 队员3 队员4 平均数x (秒) 51 50 51 50 方差S 2 (秒 2)3.53.514.515.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择7.如图,在平行四边形 ABCD 中,/ BAD 的平分线交 BC 于点E ,/ ABC 分线交AD于点F ,若BF = 12, AB = 10,则AE 的长为 A . 13 B . 14 C . 15& 一个有进水管与出水管的容器,从某时刻开始4min 内只进水不出1VL水,在随后的8min 内既进水又出水,每分钟的进水量和出水量是两个常数, 容器内的水量y (单位:1_)与时间x (单位:min )之间的关系如图所示.贝Ui8min 时容器内的水量为J/iA .队员1 6.用配方法解方程A . (x -1)2 =2B .队员2C .队员3 2x -2x -3 =0,原方程应变形为B . (x 1)2 =4 C. (x-1)—4 D .队员4D . (x 1)—2 D . 16A.20 L B . 25 L1/j C27L D . 30 L"of8 12 x/min29.若关于x 的方程kx —(k 1)x ・1=0的根是整数,则满足条件的整数k 的个数为C . 3个D . 4个10.如图1,在菱形 ABCD 中,/ BAD = 60° AB = 2, E 是DC 边上一个动点, F 是AB 边上一点,/ AEF =30°设DE =x ,图中某条线段长为 y , y 与x 满足的函数关系的图象大致如图 2所示,则这条线段可能是图中的二、填空题:(本题共18分,每小题3分)11•写出一个以0, 1为根的一元二次方程 _________________________212.若关于x 的一元二次方程x ,4x-m=0有两个不相等的实数根,则m 的取值范围是A .线段ECB .线段AEC .线段EFD .线段BF13.如图,为了检查平行四边形书架 ABCD 的侧边是否与上、下边 直,工人师傅用一根绳子比较了其对角线AC , BD 的长度,若长度相等,则该书架的侧边与上、下边都垂直,请你说出其中的图11-I 图2三、解答题:(本题共22分,第17—19题每小题4分,第20— 21每小题5分)17.计算:(.12 3) 6 -18.解方程:y(y -4) = -1 -2y .19•已知x =1是方程x 2 -3ax ・a 2 =0的一个根,求代数式 3a 2 _9a ・1的值.20.在平面直角坐标系 xOy 中,一次函数的图象经过点 A ( 2, 3)与点B (0, 5)(1) 求此一次函数的表达式; (2)若点P 为此一次函数图象上一点,且△POB 的面积为10,求点P 的坐标.■ 7 643 21 ■ -7-6-5-4-3-2-101 2 i 4 5 6 7 r x-1-2 -3 -4 1 -5 ■6 -7四、解答题:(本题共10分,第22题5分,第23题5 分)22. 阅读下列材料:21.如图,四边形ABCD 中,北京市为了紧抓疏解非首都功能这个“牛鼻子”,迁市场、移企业,人随业走•东城、西城、海淀、丰台……人口开始出现负增长,城六区人口2019年由升转降.而现在,海淀区许多地区人口都开始下降。
北京市海淀区2018—2019学年度第二学期期末试卷-初二数学-含详细答案

海淀区2019年八年级学业发展水平评价数 学2019.7一、选择题(本题共30分,每小题3分)在下列各题的四个选项中,只有一个....是符合题意的. 1. 下列实数中,是方程240x -=的根的是A. 1B. 2C. 3D. 42. 如图,在Rt △ABC 中, 90C ∠=°,6BC =,8AC =,则AB 的长度为A. 7B. 8C. 9D. 103. 在下列条件中,能判定四边形为平行四边形的是A. 两组对边分别平行B. 一组对边平行且另一组对边相等C. 两组邻边相等D. 对角线互相垂直4. 下列各曲线中,不表示y 是x 的函数的是ABCD5. 数据2, 6, 4, 5, 4, 3的平均数和众数分别是A .5和4B .4和4C .4.5和4D .4和56. 一元二次方程2810x x --=经过配方后可变形为A. 2(4)15x +=B. 2(4)17x +=C. 2(4)15x -=D. 2(4)17x -=7. 若点12(3,),(1,)A y B y -都在直线122y x =+上,则1y 与2y 的大小关系是 A. y 1<y 2 B. y 1=y 2C. y 1>y 2D. 无法比较大小8. 如图,正方形ABCD对角线AC , BD 交于点O , E 是AC 延长线上一点, 且CE =CO .则BE 的长度为A.B.C.D.9. 对于一次函数y kx b =+(k , b 为常数),下表中给出5组自变量及其对应的函数值,其中恰好有一个函数值计算有误,则这个错误的函数值是 A. 5B. 8C. 12D. 1410. 博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为公众提供知识、教育及欣赏服务. 近年来,人们到博物馆学习参观的热情越来越高. 2012-2018年我 国博物馆参观人数统计如下:BCD O EA小明研究了这个统计图,得出四个结论:① 2012年到2018年,我国博物馆参观人数持续增长; ②2019年末我国博物馆参观人数估计将达到10.82亿人次;③ 2012年到2018年,我国博物馆参观人数年增幅最大的是2017年; ④ 2016年到2018年,我国博物馆参观人数平均年增长率超过10%. 其中正确的是 A .①③B .①②③C .①②④D .①②③④二、填空题(本题共18分,每小题3分)11. 如图,在□ABCD 中,∠B =110°,则∠D =________°.12.八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下:由上表可知,甲、乙两组成绩更稳定的是 组.13.若关于x 的一元二次方程260x x m ++=有实数根, 且所有实数根均为整数,请写出一个符合条件的常数m 的值:m = .A14.如图,某港口P 位于南北延伸的海岸线上,东面是大海.“远洋”号、“长峰”号两艘轮船同时离开港口P ,各自沿固定方向航行,“远洋”号每小时航行12 n mile ,“长峰”号每小时航行16 n mile ,它们离开港 口1小时后,分别到达A ,B 两个位置,且AB =20 n mile ,已知“远 洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是_______. 15.若一个矩形的长边的平方等于短边与其周长一半的积,则称这样的矩形为“优美矩形”.某公园在绿化时,工作人员想利用如图所示的直角墙 角(两边足够长)和长为38 m 的篱笆围成一个“优美矩形”形状的花 园ABCD ,,其中边AB , AD 为篱笆,且AB 大于AD . 设AD 为x m, 依题 意可列方程为 .16. 在平面直角坐标系xOy 中,直线3y kx =+与x ,y 轴分别交于点A ,B ,若将该直线向右平移5个单位,线段AB 扫过区域的边界恰好为菱形,则k 的值为 .三、解答题(本题共26分,第17题8分,第18,20题各5分,第19,21题各4分) 17.解方程: (1)2230x x --=;(2)22310x x +-=.18.在平面直角坐标系xOy 中,一次函数y =kx +b 的图象与直线y =2x 平行,且经过点A (1,6).(1)求一次函数y =kx +b 的解析式;(2)求一次函数y =kx +b 的图象与坐标轴围成的三角形的面积.19.下面是小丁设计的“利用直角三角形和它的斜边中点作矩形”的尺规作图过程.已知:如图,在Rt △ABC 中,∠ABC =90°,O 为AC 的中点. 求作:四边形ABCD ,使得四边形ABCD 为矩形.作法:①作射线BO ,在线段BO 的延长线上取点D ,使得DO =BO ;②连接AD ,CD ,则四边形ABCD 为矩形. 根据小丁设计的尺规作图过程.(1)使用直尺和圆规,在图中补全图形(保留作图痕迹); (2)完成下面的证明. 证明:∵点O 为AC 的中点,∴ AO =CO . 又∵ DO =BO ,∴四边形ABCD 为平行四边形( )(填推理的依据).∵∠ABC =90°,∴□ABCD 为矩形( )(填推理的依据).20. 关于x 的一元二次方程2240x x k ++-=有实数根.(1)求k 的取值范围;(2)若k 是该方程的一个根,求2265k k +-的值.21.小东和小明要测量校园里的一块四边形场地ABCD (如图所示)的周长,其中边CD 上有水池及建筑遮挡,没有办法直接测量其长度.小东经测量得知AB =AD =5 m ,∠A =60°,BC =12 m ,∠ABC =150°. 小明说根据小东所得的数据可以求出CD 的长度.你同意小明的说法吗?若同意,请求出CD 的长度;若不同意,请说明理由.ADCB四、解答题(本题共13分,第22题7分,第23题6分)22.三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动.为了让同学们更好的了解二十四节气的知识, 本次学习节在沿袭以往经典项目的基础上,增设了 “二十四节气之旅”项目,并开展了相关知识竞赛. 该学校七、八年级各有400名学生参加了这 次竞赛, 现从七、八年级各随机抽取20名学生的成绩进行抽样调查. 收集数据如下:七年级:74 97 96 72 98 99 72 73 76 7474 69 76 89 78 74 99 97 98 99八年级:76 88 93 89 78 94 89 94 95 50 89 68 65 88 77 87 89 88 92 91整理数据如下:分析数据如下:年级 平均数 中位数 众数 方差 七年级 84. 2 77 74 138.56 八年级84b89129.7根据以上信息,回答下列问题:(1)a = ,b = ;(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性);(3)学校对知识竞赛成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有 人.50x ≤≤5960x ≤≤6970x ≤≤7980x ≤≤8990x ≤≤100七年级 0 1 10 1 a 八年级 12386人数 成绩年级23. 如图,在□ABCD 中,对角线AC ,BD 交于点O ,过点B 作BE ⊥CD 于点E ,延长CD 到点F ,使DF =CE ,连接AF . (1)求证:四边形ABEF 是矩形;(2)连接OF ,若AB =6,DE =2,∠ADF =45°,求OF 的长度.五、解答题(本题共13分,第24题6分,第25题7分)24.如图,在平面直角坐标系xOy 中,直线7y kx =+与直线2y x =-交于点()3,A m .(1)求,k m 的值;(2)已知点(),P n n ,过点P 作垂直于y 轴的直线与直线2y x =-交于点M ,过点P 作垂直于x 轴的直线与直线7y kx =+交于点N (P 与N 不重合). 若2PN PM ≤,结合图象,求n 的取值范围.25.在Rt △ABC 中,90BAC ∠=︒,点O 是△ABC 所在平面内一点,连接OA ,延长OA 到点E ,使得AE =OA ,连接OC ,过点B 作BD 与OC 平行,并使∠DBC =∠OCB ,且BD =OC ,连接DE . (1)如图一,当点O 在Rt △ABC 内部时.① 按题意补全图形;② 猜想DE 与BC 的数量关系,并证明.(2)若AB = AC (如图二), 且30,15OCB OBC ∠=︒∠=︒,求AED ∠的大小.图一图二备用图海淀区2019年八年级学业发展水平评价数 学参考答案一、选择题二、填空题11. 110 12.甲13.0(答案不唯一) 14.南偏东30°15.2(38)38x x -=(无需写成一般式) 16. 34±(填对一个得2分,填对两个得3分,含有错误答案得0分) 三、解答题 17.解:(1)2230x x --=;解法一: 2230x x --=223x x -=2214x x -+=…………………………………………………………………………1分 2(1)4x -=………………………………………………………………………………2分 12x -=±………………………………………………………………………………3分 123,1x x ==-………………………………………………………………………………4分解法二:2230x x --=(3)(1)0x x -+= ………………………………………………………………………………2分123,1x x ==-………………………………………………………………………………4分备用图(2)22310x x +-=.解:22310x x +-= 2,3,1a b c ===-Q942(1)170∴∆=-⨯⨯-=>……………………………………………………………………1分x = ………………………………………………………………………………3分12x x ……………………………………………………………………4分 注:若(1)中用公式法,请参考(2)中评分细则18.解:(1)Q 一次函数y kx b =+的图象为直线,且与直线2y x =平行,2k ∴=. ……………………………………………………………………………1分 又知其过点A (1,6), 26b ∴+=. 4b ∴=.∴一次函数的解析式为24y x =+. ………………………………………………………2分 (2)当0x =时,4y =,可知直线24y x =+与y 轴的交点为(0,4). ……………………………………………3分当0y =时,2x =-,可知直线24y x =+与x 轴交点为(2,0)-. ……………………………………………4分可得该直角三角形的两条直角边长度分别为4和2.所以直线24y x =+与坐标轴围成的三角形的面积为14242⨯⨯=.…………………5分19.解:(1)作图如图所示…………………………………………………………………2分(2)对角线互相平分的四边形是平行四边形.……………………………………………3分 有一个角是直角的平行四边形是矩形.……………………………………………4分20. 解:(1)2240x x k ++-=Q 有实数根, 0∴∆≥.………………………………………………………………………………………1分即()22440k --≥.5.k ∴≤ …………………………………………………………………………………2分(2)Q k 是方程2240x x k ++-=的一个根,2240.k k k ∴++-= ……………………………………………………………………………3分 234k k ∴+=. …………………………………………………………………………………4分2265k k +-()2235k k =+-3.=…………………………………………………………………………………5分21.解:同意.………………………………………………………………………………………1分连接BD ,如图.∵AB =AD =5 (m),∠A =60°, ∴△ABD 是等边三角形. ……………………2分 ∴BD =AB =5 (m),∠ABD =60°. ∵∠ABC =150°,∴∠CBD =∠ABC -∠ABD =150°-60°=90°. ……3分 在Rt △CBD 中,BD =5 (m),BC =12 (m), ∴CD13=(m). …………………………………………………4分四、解答题 22.解: (1)8,88.5;…………………………………………………………………………………2分(2)你认为 八 年级知识竞赛的总体成绩较好,理由1:八年级成绩的中位数较高;理由2:八年级与七年级成绩的平均数接近且八年级方差较低,成绩更稳定. 或者你认为 七 年级知识竞赛的总体成绩较好, 理由1:七年级的平均成绩较高; 理由2:低分段人数较少 .…………………………………………………………………………………5分(答案不唯一,合理即可) (3)460. …………………………………………………………………………………7分 23. (1)证明:∵四边形ABCD 是平行四边形∴AB CD =,AB CD ∥.∵DF CE =,∴DF DE CE ED +=+, 即: FE CD =.∵点F 、E 在直线CD 上, ∴AB FE = AB FE ∥. ∴四边形ABEF 是平行四边形. ……………………………………………………………1分又∵BE CD ⊥,垂足是E ,A∴90BEF ∠=︒. ∴四边形ABEF 是矩形.……………………………………………………………2分(2)解:∵四边形ABEF 是矩形O ,∴90AFC ∠=︒,AB FE =. ∵6,2AB DE ==, ∴4FD =.∵FD CE =, ∴4CE =.∴10FC =.…………………………………………………………………………………3分在Rt AFD △中,90AFD ∠=︒. ∵45ADF ∠=︒, ∴4AF FD ==.………………………………………………………………………4分在Rt AFC △中,90AFC ∠=︒.∴AC ==.……………………………………………………………5分∵点O 是平行四边形ABCD 对角线的交点, ∴O 为AC 中点.在Rt AFC △中,90AFC ∠=︒.O 为AC 中点.∴12OF AC == …………………………………………………………………6分五、解答题 24.解:(1)∵直线y =kx +7与直线y =x ﹣2交于点A (3,m ),∴m =3k +3,m =1. …………………………………………………………………1分∴k =﹣2. …………………………………………………………………2分 (2)∵点P (n ,n ),过点P 作垂直于y 轴的直线与直线y =x ﹣2交于点M , ∴M (n +2,n ). ∴PM =2. …………………………………………………………………………………3分 ∵PN ≤2PM , ∴PN ≤4.∵过点P 作垂直于x 轴的直线与直线y =kx +∴N (n ,﹣2n +7).∴PN =37n -. 当PN =4时,如图,即37n -=4, ∴n =1或n =113.∵P 与N 不重合,∴370n -≠. ∴73n ≠.当PN ≤4(即PN ≤2PM )时, n 的取值范围为:713n <≤或71133n <≤.…………………………………………………6分25. 解:(1)①补全图形,如图一.……………………………1分②猜想DE =BC. …………………………………2分如图,连接OD 交BC 于点F ,连接AF . 在△BDF 和△COF 中, ,,,DBF OCF DFB OFC DB OC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△COF .∴DF =OF , BF =CF . …………………………………3分 ∴F 分别为BC 和DO 的中点. ∵∠BAC =90°, F 为BC 的中点, ∴12AF BC =. ∵OA =AE , F 为BC 的中点,∴12AF ED =. ∴DE =BC. ………………………………………4分 (2)如图二,连接OD 交BC 于点F ,连接AF ,延长CO交AF 于点M ,连接BM.由(1)中②可知,点F 为BC 的中点,AF 为Rt △ABC 斜边BC 边中线,为△OED 的中位线, ∴AF 为BC 边的垂直平分线. ∴MB =MC.∵∠OCB =30°,∠OBC =15°, ∴∠MBC =∠MCB =30°.图一图二∵∠BAC=90°,AB=AC,∴∠MBO=∠MBA=15°.又可证∠BAM=∠BOM=45°.∴△BMA≌△BMO.∴AM=OM且∠BMO=∠BMA=120°.∴∠OMA=120°.∴∠MAO=30°.∵AF为△OED的中位线,∴AF∥ED.∴∠AED=30°.类似的,如备用图可知,∠AED=15°. ………………7分(提示:证明△ABO为等边三角形,得到∠AED=15°.)∴∠AED=30°或15°.注:各题中若有其他合理的解法请酌情给分.备用图。
北京海淀区2018八年级第二学期期末检测数学试卷 (17)

北京海淀区2018八年级第二学期期末检测数学试卷一、选择题(本大题共8小题,共24.0分)1.下列电视台的台标,是中心对称图形的是A. B.C. D.2.下列调查适合用普查的是A. 了解某市学生的视力情况B. 了解某市中学生课外阅读的情况C. 了解某市百岁以上老人的健康情况D. 了解50发炮弹的杀伤半径3.矩形具有而平行四边形不一定具有的性质是A. 对角线互相平分B. 两组对角相等C. 对角线相等D. 两组对边相等4.在数轴上离最近的整数为A. B. C. 0 D. 15.对于函数,下列说法错误的是A. 它的图像分布在第一、三象限B. 它的图像与直线y x无交点C. 当x时,y的值随x的增大而增大D. 当x时,y的值随x的增大而减小6.若,则A. bB. bC. bD. b7.关于x的分式方程的解是负数,则m的取值范围是A. B. 且C. D. 且8.如图,在矩形ABCD中,BC, BAC若点M、N分别是线段AC、AB上的两个动点,则BM MN的最小值为A. 10B. 5C.D.二、填空题(本大题共10小题,共30.0分)9.如果根式有意义,则x的取值范围是.由此可以估计油菜籽发芽的概率约为精确到11.若分式的值为零,则x.12.若a、b为实数满足,则a b的值为.13.已知,则的值是______ .14.如图,在平面直角坐标系中,点A在函数,的图象上,过点A作轴交x轴于点B,点C在y轴上,连结AC、若的面积是3,则______ .15.如图,在矩形ABCD中,E为BC中点,作AEC的角平分线交AD于F点若AB,AD,则FD的长为.16.如图,在ABC中,AC,BC,F是中位线DE所在直线上一动点,当AFC时,DF的长度为.17.18.如图,点C为x的图像上一点,过点C分别作x轴、y轴的平行线交反比例函数的图像于点B、A,若S,则k的值为.19.20.如图,正方形ABCD的边长为5,AE CF,BE DF,连接EF,则线段EF的长为.三、计算题(本大题共2小题,共12.0分)21.计算:;.22.先化简,再求值:,其中.四、解答题(本大题共8小题,共64.0分)23.某学校开展课外球类特色的体育活动,决定开设A:羽毛球、B:篮球、C:乒乓球、D:足球四种球类项目为了解学生最喜欢哪一种活动项目每人只选取一种,随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.本次调查的样本容量是;项目A在扇形统计图中对应的圆心角度数是;请把条形统计图补充完整;若该校有学生1500人,请根据样本估计全校最喜欢足球的学生人数约是多少?24.某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元,求这两次各购进这种衬衫多少件?25.如图,将▱ABCD的边DC延长到点E,使,连接AE,交BC于点F.求证: ≌ ;若,连接AC、求证:四边形ABEC是矩形.26.如图所示,在平面直角坐标系中,一次函数的图像与反比例函数的图像交于A,,B,m两点.试确定上述反比例函数和一次函数的表达式;求AOB的面积;观察图像,写出不等式的解集.27.如图所示,已知ABC的三个顶点的坐标分别为A,,B,,C,.请直接写出点A关于点O对称的点的坐标;画出ABC绕点O逆时针旋转后的图形A'B'C',并写出点A的对应点A'的坐标;请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.28.如图,在菱形ABCD中,BAD, MAN,将MAN绕点A任意旋转,交边BC、CD分别于点E、F不与菱形的顶点重合,设菱形ABCD的边长为a a 为常数.判断AEF的形状,并说明理由;在运动过程中,四边形AECF的面积是否变化?如果不变,求出其面积的值;如果变化,求出最大或最小值结果用含a的代数式表示.29.对于平面直角坐标系中的任意两点P x,y、P x,y,我们把称为P、P两点间的对角积,记作S P,P,即S P,P已知O为坐标原点,若点P坐标为,,则S O,P;已知点A,,动点P x,y满足S A,P,请写出y与x之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形;已知点M为,,Q为反比例函数x图像上的一点,试求S M,Q的取值范围.30.问题背景如图1,在Rt ABC中,BAC,分别以ABC的两边AB、AC向外侧作正方形ABEF和正方形ACGH,过点A作AM BC于点M,并反向延长AM交FH于点N.则FN HN;S S填“”“”“”问题拓展小明在解题时发现当BAC时,中两个结论也是成立的,小明与同学共同讨论后,形成了证明这个问题的几种思路:思路一:在BC上取一点I,使得,然后只需证HAN≌ ACI,再证FAN≌ ABI;思路二:分别过点F、H作MN所在直线的垂线段FO、HJ,然后只需证HJA≌ AMC,再证FAO≌ ABM,请你参考他们的想法,证明当BAC时,中两个结论也是成立.简单应用如图3,已知ABC,AB cm,AC cm,分别以AB、BC、CA为边向外作正方形ABEF、BCPQ和ACGH,则图中阴影部分的面积和的最大值是cm.答案和解析【答案】1. A2. C3. C4. B5. C6. C7. B8. D9.10.11. 312. 113. 514.15. 316. 1或917. 518.19. 解:原式;去分母,得去括号,得移项,得合并同类项,得系数化成1,得,经检验,是原方程的解,则原方程的解是.20. 解:原式,当时,原式.21. 解:;;喜欢A:篮球的人数是:人,补全统计图如下:人.答:根据样本估计全校最喜欢足球的学生人数约是300人.22. 解:设第一批衬衫每件进价为x元,则第二批每件进价为元.由题意:,解得:,经检验是原方程的解,且符合题意,件,件,答:两次分别购进这种衬衫30件和15件.23. 证明:四边形ABCD是平行四边形,,,,,,在和中,, ,,≌ .,,四边形ABEC是平行四边形,,,又, ,,,,四边形ABEC是矩形.24. 解:把,代入数得:,解得:k,即反比例函数的解析式是:,把,代入上式得:,即,,把A、B的坐标代入y得:,解得:,一次函数的解析式是:;过A作于E,过B作于F,,,,,,,设直线AB交y轴于N,交x轴于M,当时,,当时,,即,,;25. 解:,;如图示,的坐标,;,、,、,.26. 解:是等边三角形.理由如下:连接AC,四边形ABCD是菱形,, ,是等边三角形,,,即在与中,,≌ ,,,是等边三角形;不变.理由:是等边三角形,,边上的高,,≌ ,四边形即:在运动过程中,四边形AECF的面积不变化27. 解:,;,,,即,所有符合条件的点P所组成的图形如图所示,设Q点的坐标为,,则,,随着m的增大而减小,随着m的增大而减小,当时,,有最大值当时,,有最小值,,.28. 解:;;思路一:在BC上取一点I,使得,正方形ACGH,, ,.,,,在和,≌ ,, ,,.正方形ABEF,同理得, ,≌ ,,,,;思路二:分别过点F、H作MN所在直线的垂线段FO、HJ 正方形ACGH,, ,.,, ,.,,,在和,≌ ,,,同理 ≌ ,,,, , ,≌ ,,;.【解析】1. 【分析】本题考查了中心对称图形,掌握中心对称图形的概念:中心对称图形是要寻找对称中心,旋转后与原图重合是解题的关键根据中心对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:是中心对称图形,故A正确;B.不是中心对称图形,故B选项错误;C.不是中心对称图形,故C选项错误;D.不是中心对称图形,故D选项错误.故选A.2. 【分析】本题主要考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,对各选项分析判断后利用排除法求解.【解答】解:了解某市学生的视力情况,适合采用抽样调查,故本选项错误;B.了解某市中学生课外阅读的情况,适合采用抽样调查,故本选项错误;C.了解某市百岁以上老人的健康情况,人数比较少,适合采用普查,故本选项正确;D.了解50发炮弹的杀伤半径具有破坏性,适合采用抽样调查,故本选项错误.故选C.3. 解:A、错误对角线互相平分,矩形、平行四边形都具有的性质.B、错误两组对角相等,矩形、平行四边形都具有的性质.C、正确对角线相等,矩形具有而平行四边形不一定具有.D、错误两组对边相等,矩形、平行四边形都具有的性质.故选C.根据矩形、平行四边形的性质一一判断即可解决问题.本题考查矩形的性质、平行四边形的性质,解题的关键是熟练掌握平行四边形、矩形的性质,属于中考常考题型.4. 【分析】本题主要考查了无理数的估算问题,通常利用夹逼法求解先求出的大体范围,然后求出的大致取值范围,即可进行判断.【解答】解:,,,在数轴上与表示的点的距离最近的整数点所表示的数是.故选B.5. 【分析】本题考查的是反比例函数的性质,即反比例函数的图象是双曲线,当,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小根据反比例函数的性质对四个选项进行逐一分析即可.【解答】解:函数中,此函数图象的两个分支分别在一、三象限,故本选项正确;B.函数的图象位于一、三象限,经过二、四象限,两函数图象无交点,故本选项正确;C.当时,函数的图象在第一象限,的值随x的增大而减小,故本选项错误;D.当时,函数的图象在第三象限,的值随x的增大而减小,故本选项正确.故选C.6. 【分析】本题考查了对二次根式的性质的应用,注意:当时,,当时,根据二次根式的性质得出,求出即可.【解答】解:,,解得:,故选C.7. 解:方程两边同乘,得解得,,,解得,又,,,即且.故选:B.由题意分式方程的解为负数,解方程求出方程的解x,然后令其小于0,解出m的范围注意最简公分母不为0.此题主要考查分式的解,关键是会解出方程的解,此题难度中等,容易漏掉隐含条件最简公分母不为0.8. 【分析】本题主要考查最短路径问题,关键确定何时路径最短,然后运用勾股定理和相似三角形的性质求得解过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB于F点,EF就是所求的线段,根据直角三角形的性质与勾股定理即可求得结果.【解答】解:过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB 于F点,四边形ABCD是矩形,,, BAC,,,设AC边上的高为h,,., ,,,,,,,.故选D.9. 【分析】此题主要考查了二次根式的意义关键是二次根式中的被开方数必须是非负数,否则二次根式无意义根据二次根式有意义的条件可得,再解不等式即可.【解答】解:由题意得:,解得:,故答案为.10. 【分析】本题主要考查利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率所求情况数与总情况数之比仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在左右,从而得到结论.【解答】解:观察表格,发现大量重复试验发芽的频率逐渐稳定在左右,该玉米种子发芽的概率为.故答案为.11. 【分析】此题主要考查了值为零的条件,分式值为零的条件是分子等于零且分母不等于零注意:“分母不为零”这个条件不能少.直接利用分式的值为0,则分子为零,且分母不为零,进而求出答案.【解答】解:根据题意,得,且,解得.故答案为3.12. 【分析】本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.根据非负数的性质列式求出a、b的值然后代入代数式进行计算即可得解.【解答】解:根据题意,得,,解得,,.故答案为1.13. 解:,,.故答案为:5.先用b表示a,然后代入比例式进行计算即可得解.本题考查了比例的性质,用b表示出a是解题的关键.14. 解:设点A的坐标为,,.故答案为:.设点A的坐标为,,由点A的坐标结合的面积即可得出k的值.本题考查了反比例函数图象上点的坐标特征,解题的关键是求出点A的横纵坐标之积本题属于基础题,难度不大,解决该题型题目时,用点A的坐标来表示三角形的面积是关键.15. 【分析】本题主要考查了矩形性质,平行线性质,等腰三角形的性质和判定的应用,注意:矩形的对边相等且平行求出,推出,求出BE,根据勾股定理求出AE,即可求出AF,即可求出答案.【解答】解:四边形ABCD是矩形,,,,平分,,,,为BC中点,,,在中,,,由勾股定理得:,,.故答案为3.16. 【分析】本题主要考查了三角形的中位线定理、直角三角形的性质等几何知识点及其应用问题;牢固掌握三角形的中位线定理、直角三角形的性质等几何知识点是解题的基础和关键分两种情况:当点F在线段DE上时,当点F在DE的延长线上时,首先证明,根据DE为的中位线,得到,即可解决问题.【解答】解:当点F在线段DE上时,如图1,,,,为的中位线,,,当点F在DE的延长线上时,如图2,,,,为的中位线,,.故答案为1或9.17. 【分析】本题主要考查反比例函数的图象与性质掌握反比例函数的图象与性质是解题的关键设点C的坐标为,,根据图象可得点B,点A的坐标,根据三角形的面积公式即可求出k的值.【解答】解:点C在反比例函数上,设点C的坐标为,,点B在反比例函数上,轴,点B的坐标为,,点C在反比例函数上,轴,点C的坐标为,,S,,解得或,反例函数的图象在第一象限,,.故答案为5.18. 【分析】本题主要考查了正方形的性质、全等三角形的判定和性质以及勾股定理的运用,题目的综合性较强是一道非常不错的中考题目,证明出三角形是等腰直角三角形是解题的关键延长EA交FD的延长线于点M,可证明是等腰直角三角形,而,所以利用勾股定理即可求出EF的长.【解答】解:延长EA交FD的延长线于点M,四边形ABCD是正方形,,,,,是直角三角形,同理可证是直角三角形,, , ,,又, ,,是直角三角形,,,在和中,,≌ ,,,,.故答案为.19. 本题主要考查二次根式的混合运算,绝对值掌握法则是解题的关键第一项根据二次根式的性质计算,第二项根据绝对值的性质计算,第三项根据二次根式的性质计算,然后再算加减即可;本题主要考查解分式方程利用了转化的思想,解分式方程注意要检验分式方程变形后,两边乘以最简公分母得到结果,即可作出判断.20. 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,最后把a的值代入化简后的代数式计算即可.21. 【分析】本题主要考查了条形统计图和扇形统计图,用样本估算总体读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.用B项目的人数除以B项目所占的百分比即可得样本容量;用A的百分比乘以360度可得答案;先求出总人数,再根据A项目所占百分比求得其人数,即可补全条形图;用总人数乘以D项目所占百分比可得答案.【解答】解:人.故答案为50;,.故答案为;见答案;见答案.22. 设第一批衬衫每件进价为x元,则第二批每件进价为元根据第二批该款式的衬衫,进货量是第一次的一半,列出方程即可解决问题.本题考查分式方程的应用,解题的关键是学会设未知数、找等量关系、列出方程解决问题,注意分式方程必须检验,属于中考常考题型.23. 此题考查的知识点是平行四边形的判定与性质,全等三角形的判定和性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形通过角的关系证矩形.先由已知平行四边形ABCD得出,,,从而证得 ≌ ;由得的结论先证得四边形ABEC是平行四边形,通过角的关系得出,,得证.24. 本题主要考查了三角形的面积,一次函数与反比例函数的交点问题,用待定系数法求出一次函数与反比例函数的解析式等知识点,把,代入数即可求出反比例函数的解析式,把B的坐标代入即可求出B的坐标,把A、B的坐标代入一次函数的解析式,得出方程组,求出方程组的解,即可得出一次函数的解析式;过A作于E,过B作于F,求出M、N的坐标,根据S代入即可求出的面积;根据图象和A、B的坐标即可得出答案.25. 【分析】本题考查了根据旋转变换作图,关于原点对称的性质,以及平行四边形的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.点A关于原占对称的问题,对称点的坐标特点是:横坐标互为相反数,纵坐标互为相反数;分别作出点A、B、C绕坐标原点O逆时针旋转后的点,然后顺次连接,并写出点A的对应点的坐标;分别以AB、BC、AC为对角线,写出第四个顶点D的坐标.【解答】解:见答案;见答案;当以AB为对角线时,点D坐标为,;当以AC为对角线时,点D坐标为,;当以BC为对角线时,点D坐标为,.以A、B、C为顶点的平行四边形的第四个顶点D的坐标为,或,或,.26. 本题主要考查了菱形的性质,全等三角形的判定和性质,等边三角形的判定和性质,正确的识别图形是解题的关键.连接AC,由菱形的性质,得是等边三角形,可得,根据,可得,根据全等三角形的性质得到,即可的结论;由是等边三角形,,得到AB边上的高,根据三角形的面积公式得到,等量代换即可得到结论;27. 本题主要考查一次函数的性质,反比例函数的图象与性质.弄清题中的新定义是解本题的关键.由P与原点O的坐标,利用题中的新定义计算即可得到结果;利用题中的新定义列出x与y的关系式,画出相应的图象即可;利用新定义与反比例函数的性质,一次函数的性质,可得,的取值范围.28. 【分析】本题主要考查正方形的性质,全等三角形的判定与性质,旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等三角形的面积公式.根据正方形的性质,全等三角形的判定与性质可得结果;根据全等三角形的性质可得结果;根据正方形的性质,与全等三角形的判定与性质可得结果;把绕点C顺时针旋转,使CP与BC重合,G旋转到的位置,根据旋转的性质和正方形的性质有A、C、在一直线上,且BC为的中线,得到,同理:,所以阴影部分面积,即当时,最大值为:,即可得到三个阴影部分的面积之和的最大值.【解答】解:把绕点C顺时针旋转,使CP与BC重合,G旋转到的位置,四边形ACGH为正方形,,,、C、在一直线上,且BC为的中线,,同理:,所以阴影部分面积之和为的3倍,又,,阴影部分面积,,当最大时阴影部分面积之和最大,即当时,最大值为:,阴影部分面积的最大值为故答案为.。
2018-2019学年第二学期初二年级数学学业水平测试参考答案(最新版)(1)(1)

可得该直角三角形的两条直角边长度分别为 4 和 2.
所以直线 y = 2x + 4 与坐标轴围成的三角形的面积为 1 4 2 = 4 . 2
…………………5 分
19.解:
(1)作图如图所示
C
D
O
B
A
…………………………………………………………………2 分
(2)对角线互相平分的四边形是平行四边形. ……………………………………………3 分
x1 = 3, x2 = −1 ………………………………………………………………………………4 分
(2) 2x2 + 3x −1 = 0 .
解: 2x2 + 3x −1 = 0
a = 2,b = 3, c = −1
= 9 − 4 2 (−1) =17 0 ……………………………………………………………………1 分
x = −3 17 4
………………………………………………………………………………3 分
x1
=
−3 + 4
17 ,
x2
=
−3 − 4
17
……………………………………………………………………4 分
注:若(1)中用公式法,请参考(2)中评分细则
答案 第1页
18.解:
(1) 一次函数 y = kx + b 的图象为直线,且与直线 y = 2x 平行,
= 2(k2 + 3k ) − 5
= 3.
…………………………………………………………………………………5 分
答案 第2页
21.解:
同意.
………………………………………………………………………………………1 分
2019北京海淀区初二(下)期末数学参考答案

∴ AB = CD , AB ∥CD . ∵ DF = CE , ∴ DF + DE = CE + ED , 即: FE = CD . ∵点 F、E 在直线 CD 上, ∴ AB = FE AB∥FE . ∴四边形 ABEF 是平行四边形................................................... 1 分 又∵ BE ⊥ CD ,垂足是 E, ∴ BEF = 90 . ∴四边形 ABEF 是矩形......................................................... 2 分 (2)解:∵四边形 ABEF 是矩形O , ∴ AFC = 90 , AB = FE . ∵ AB = 6, DE = 2 , ∴ FD = 4 . ∵ FD = CE , ∴ CE = 4 .
即22 − 4(k − 4) 0 .
k 5. .................................................................................................................................................... 2 分 (2) k 是方程 x2 + 2x + k − 4 = 0 的一个根,
2019北京海淀区初二(下)期末数学参考答案
一、选择题
题号
1
2
2018-2019学年北京市海淀区八年级(下)期末数学试卷(解析版)

2018-2019学年北京市海淀区八年级(下)期末数学试卷一、选择题(本题共30分,每小题3分)在下列各题的四个选项中,只有一个是符合题意的1.(3分)下列实数中,是方程x2﹣4=0的根的是()A.1B.2C.3D.42.(3分)如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,则AB的长度为()A.7B.8C.9D.103.(3分)在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直4.(3分)下列各曲线中,不表示y是x的函数的是()A.B.C.D.5.(3分)数据2,6,4,5,4,3的平均数和众数分别是()A.5和4B.4和4C.4.5和4D.4和56.(3分)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=15D.(x﹣4)2=17 7.(3分)若点A(﹣3,y1),B(1,y2)都在直线y=x+2上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法比较大小8.(3分)如图,正方形ABCD的边长为,对角线AC,BD交于点O,E是AC延长线上一点,且CE=CO,则BE的长度为()A.B.C.D.29.(3分)对于一次函数y=kx+b(k,b为常数),下表中给出5组自变量及其对应的函数值,其中恰好有1个函数值计算有误,则这个错误的函数值是()X﹣10123Y2581214 A.5B.8C.12D.1410.(3分)博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为众提供知识、教育及欣赏服务.近年来,人们到博物馆学习参观的热情越来越高,2012﹣2018年我国博物馆参观人数统计如下:小明研究了这个统计图,得出四个结论:①2012年到2018年,我国博物馆参观人数持续增②2019年末我国博物馆参观人数估计将达到1082亿人次③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;④2016年到2018年,我国博物馆参观人数平均年增长率超过10%其中正确的是()A.①③B.①②③C.①②④D.①②二、填空题(本题共18分,每小题3分)11.(3分)在▱ABCD中,若∠B=110°,则∠D=°.12.(3分)八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下甲组成绩(环)87889乙组成绩(环)98797由上表可知,甲、乙两组成绩更稳定的是.13.(3分)若关于x的一元二次方程x2+6x+m=0有实数根,且所有实数根均为整数,请写出一个符合条件的常数m的值:m=.14.(3分)如图,某港口P位于南北延伸的海岸线上,东面是大海远洋号,长峰号两艘轮船同时离开港P,各自沿固定方向航行,“远洋”号每小时航行12nmile,“长峰”号每小时航行16nmile,它们离开港口1小时后,分别到达A,B两个位置,且AB=20nmile,已知“远洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是.15.(3分)若一个矩形的长边的平方等于短边与其周长一半的积,则称这样的矩形为“优美矩形”.某公园在绿化时工作人员想利用如图所示的直角墙角(两边足够长)和长为38m的篱笆围成一个“优美矩形”形状的花园ABCD,其中边AB,AD为篱笆且AB大于AD.设AD为xm,依题意可列方程为.16.(3分)在平面直角坐标系xOy中,直线y=kx+3与x,y轴分别交于点A,B,若将该直线向右平移5单位,线段AB扫过区域的边界恰好为菱形,则k的值为.三、解答题(本题共26分,第17题8分,第18,20题各5分,第19,21题各4分)17.(8分)解下列方程:(1)x2+2x﹣3=0(用配方法)(2)2x2+5x﹣1=0(用公式法)18.(5分)在平面直角坐标系xOy中,函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6)(1)求一次函数y=kx+b的解析式;(2)求一次函数y=kx+b的图象与坐标轴围成的三角形的面积.19.(5分)下面是小丁设计的“利用直角三角形和它的斜边中点作矩形的尺规作图过程:已知:如图,在Rt△ABC中,∠ABC=90°,O为AC的中点,求作:四边形ABCD,使得四边形ABCD为矩形.作法:①作射线BO,在线段BO的延长线上取点D,使得DO=BO②连接AD,CD,则四边形ABCD为矩形根据小丁设计的尺规作图过程(1)使用直尺和圆规,在图中补全图形(保留作图痕迹)(2)完成下面的证明证明:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形()∵∠ABC=90°,∴▱ABCD为矩形()20.(4分)方程x 2+2x +k ﹣4=0有实数根 (1)求k 的取值范围;(2)若k 是该方程的一个根,求2k 2+6k ﹣5的值.21.(4分)小东和小明要测量校园里的一块四边形场地ABCD (如图所示)的周长,其中边CD 上有水池及建筑遮挡,没有办法直接测量其长度小东经测量得知AB =AD =5m ,∠A =60°,BC =12m ,∠ABC =150°小明说根据小东所得的数据可以求出CD 的长度.你同意小明的说法吗?若同意,请求出CD 的长度;若不同意,请说明理由.四、解答题(本题共13分,第22题7分,第23题6分)22.(7分)三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动为了让同学们更好的了解二十四节气的知识,本次学习节在沿袭以往经典项目的基础上,增设了十四节气之旅项目,并开展了相关知识竞赛该学校七、八年级各有400名学生参加了这次竞赛,现从七、八年级各随机抽取20名学生的成绩进行抽样调查 七年级:74 97 96 72 98 99 72 73 76 74 74 69 76 89 78 74 99 97 98 99 八年级:76 88 93 89 78 94 89 94 95 50 89 68 65 88 77 87 89 88 92 91 整理数据如下成绩 人数 年级 50≤x ≤5960≤x ≤6970≤x ≤7980≤x ≤8990≤x ≤100七年级 0 1 10 1 a 八年级 12386分析数据如下年级平均数中位数众数方差七年级84.27774138.56八年级84b89129.7根据以上信息,回答下列问题(1)a=b=;(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性).(3)学校对知识竞赛成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有人.23.(6分)如图,在▱ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD到点F,使DF=CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.五、解答题(本题共13分,第24题6分,第25题7分)24.(6分)如图,在平面直角坐标系xOy中,直线y=kx+7与直线y=x﹣2交于点A(3,m)(1)求k,m的值;(2)已知点P(n,n),过点P作垂直于y轴的直线与直线y=x﹣2交于点M,过点P 作垂直于x轴的直线与直线y=kx+7交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.25.(7分)在Rt△ABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连按OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连按DE.(1)如图一,当点O在Rt△ABC内部时,①按题意补全图形;②猜想DE与BC的数量关系,并证明.(2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.2018-2019学年北京市海淀区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)在下列各题的四个选项中,只有一个是符合题意的1.(3分)下列实数中,是方程x2﹣4=0的根的是()A.1B.2C.3D.4【分析】先把方程化为x2=4,方程两边开平方得到x=±=±2,即可得到方程的两根.【解答】解:移项得x2=4,开方得x=±2,∴x1=2,x2=﹣2.故选:B.【点评】本题考查了解一元二次方程﹣直接开平方法,用直接开方法求一元二次方程的解的类型有:x2=a(a≥0),ax2=b(a,b同号且a≠0),(x+a)2=b(b≥0),a (x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”;2.(3分)如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,则AB的长度为()A.7B.8C.9D.10【分析】根据勾股定理即可得到结论.【解答】解:在Rt△ABC中,∠C=90°,BC=6,AC=8,∴AB===10,故选:D.【点评】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.3.(3分)在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直【分析】根据平行四边形的判定定理逐个判断即可.【解答】解:A、两组对边分别平行的四边形是平行四边形,故本选项符合题意;B、一组对边平行且另一组对边相等的四边形是等腰梯形,不是平行四边形,故本选项不符合题意;C、两组邻边相等的四边形不一定是平行四边形,故本选项不符合题意;D、对角线互相平分的四边形才是平行四边形,故本选项不符合题意;故选:A.【点评】本题考查了平行四边形的判定定理,能熟记平行四边形的判定定理的内容是解此题的关键,注意:平行四边形的判定定理有:①两组对边分别平行的四边形是平行四边形,②两组对边分别相等的四边形是平行四边形,③两组对角分别平行的四边形是平行四边形,④一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形.4.(3分)下列各曲线中,不表示y是x的函数的是()A.B.C.D.【分析】设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.根据函数的意义即可求出答案.【解答】解:显然A、B、D选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;C选项对于x取值时,y都有2个值与之相对应,则y不是x的函数;故选:C.【点评】本题主要考查了函数的定义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应.5.(3分)数据2,6,4,5,4,3的平均数和众数分别是()A.5和4B.4和4C.4.5和4D.4和5【分析】根据平均数和众数的概念求解.【解答】解:这组数据的平均数是:(2+6+4+5+4+3)=4;∵4出现了2次,出现的次数最多,∴这组数据的众数是4;故选:B.【点评】本题考查了众数和平均数的知识,一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.6.(3分)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=15D.(x﹣4)2=17【分析】先把常数项移到方程右边,再把方程两边加上16,然后把方程左边写成完全平方形式即可.【解答】解:x2﹣8x=1,x2﹣8x+16=17,(x﹣4)2=17.故选:D.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.7.(3分)若点A(﹣3,y1),B(1,y2)都在直线y=x+2上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法比较大小【分析】先根据直线y=x+2判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【解答】解:∵直线y=x+2,k=>0,∴y随x的增大而增大,又∵﹣3<1,∴y1<y2.故选:A.【点评】本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y 随x的增大而增大;当k<0,y随x的增大而减小.8.(3分)如图,正方形ABCD的边长为,对角线AC,BD交于点O,E是AC延长线上一点,且CE=CO,则BE的长度为()A.B.C.D.2【分析】利用正方形的性质得到OB=OC=BC=1,OB⊥OC,则OE=2,然后根据勾股定理计算BE的长.【解答】解:∵正方形ABCD的边长为,∴OB=OC=BC=×=1,OB⊥OC,∵CE=OC,∴OE=2,在Rt△OBE中,BE==.故选:C.【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.9.(3分)对于一次函数y=kx+b(k,b为常数),下表中给出5组自变量及其对应的函数值,其中恰好有1个函数值计算有误,则这个错误的函数值是()X﹣10123Y2581214 A.5B.8C.12D.14【分析】经过观察5组自变量和相应的函数值得(﹣1,2),(0,5),(1,8),(3,14)符合解析式y=3x+5,(2,12)不符合,即可判定.【解答】解:∵(﹣1,2),(0,5),(1,8),(3,14)符合解析式y=3x+5,当x=2时,y=11≠12∴这个计算有误的函数值是12,故选:C.【点评】本题考查了一次函数图象上点的坐标特征,图象上点的坐标符合解析式是解决本题的关键.10.(3分)博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为众提供知识、教育及欣赏服务.近年来,人们到博物馆学习参观的热情越来越高,2012﹣2018年我国博物馆参观人数统计如下:小明研究了这个统计图,得出四个结论:①2012年到2018年,我国博物馆参观人数持续增②2019年末我国博物馆参观人数估计将达到1082亿人次③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;④2016年到2018年,我国博物馆参观人数平均年增长率超过10%其中正确的是()A.①③B.①②③C.①②④D.①②【分析】根据条形统计图中的信息对4个结论矩形判断即可.【解答】解:①2012年到2018年,我国博物馆参观人数持续增,正确;②10.08×(1+)=10.45,故2019年末我国博物馆参观人数估计将达到10.45亿人次;故错误;③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;正确;④设平均年增长率为x,则8.50(1+x)2=10.08,解得:x=0.0889,故2016年到2018年,我国博物馆参观人数平均年增长率是8.89%,故错误;故选:A.【点评】此题考查了条形统计图,弄清题中图形中的数据是解本题的关键.二、填空题(本题共18分,每小题3分)11.(3分)在▱ABCD中,若∠B=110°,则∠D=110°.【分析】直接利用平行四边形的对角相等即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴∠B=∠D=110°.故答案为:110.【点评】此题主要考查了平行四边形的性质,正确得出对角相等是解题关键.12.(3分)八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下甲组成绩(环)87889乙组成绩(环)98797由上表可知,甲、乙两组成绩更稳定的是甲.【分析】根据方差计算公式,进行计算,然后比较方差,小的稳定,在计算方差之前还需先计算平均数.【解答】解:甲==8,乙==8,=[(8﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2]=0.4,=[(9﹣8)2+(8﹣8)2+(7﹣8)2+(9﹣8)2+(7﹣8)2]=0.8∵<∴甲组成绩更稳定.故答案为:甲.【点评】考查平均数、方差的计算方法,理解方差是反映一组数据的波动大小的统计量,方差越小,数据越稳定.13.(3分)若关于x的一元二次方程x2+6x+m=0有实数根,且所有实数根均为整数,请写出一个符合条件的常数m的值:m=9.【分析】利用判别式的意义得到△=62﹣4m≥0,解不等式得到m的范围,在此范围内取m=0即可.【解答】解:△=62﹣4m≥0,解得m≤9;当m=0时,方程变形为x2+6x=0,解得x1=0,x2=﹣6,所以m=9满足条件.故答案为9.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.14.(3分)如图,某港口P位于南北延伸的海岸线上,东面是大海远洋号,长峰号两艘轮船同时离开港P,各自沿固定方向航行,“远洋”号每小时航行12nmile,“长峰”号每小时航行16nmile,它们离开港口1小时后,分别到达A,B两个位置,且AB=20nmile,已知“远洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是南偏东30°.【分析】由题意得:P与O重合,得出OA2+OB2=AB2,由勾股定理的逆定理得出△PAB 是直角三角形,∠AOB=90°,求出∠COP=30°,即可得出答案.【解答】解:由题意得:P与O重合,如图所示:OA=12nmile,OB=16nmile,AB=20nmile,∵122+162=202,∴OA2+OB2=AB2,∴△PAB是直角三角形,∴∠AOB=90°,∵∠DOA=60°,∴∠COP=180°﹣90°﹣60°=30°,∴“长峰”号航行的方向是南偏东30°,故答案为:南偏东30°.【点评】此题主要考查了直角三角形的判定、勾股定理的逆定理及方向角的理解及运用.利用勾股定理的逆定理得出△PAB为直角三角形是解题的关键.15.(3分)若一个矩形的长边的平方等于短边与其周长一半的积,则称这样的矩形为“优美矩形”.某公园在绿化时工作人员想利用如图所示的直角墙角(两边足够长)和长为38m的篱笆围成一个“优美矩形”形状的花园ABCD,其中边AB,AD为篱笆且AB大于AD.设AD为xm,依题意可列方程为(38﹣x)2=38x.【分析】设AD为xm,根据“矩形的长边的平方等于短边与其周长一半的积”列出列出方程即可.【解答】解:设AD的长为x米,则AB的长为(38﹣x)m,根据题意得:(38﹣x)2=38x,故答案为:(38﹣x)2=38x.【点评】考查了由实际问题抽象出一元二次方程的知识,解题的关键是表示出另一边的长,难度不大.16.(3分)在平面直角坐标系xOy中,直线y=kx+3与x,y轴分别交于点A,B,若将该直线向右平移5单位,线段AB扫过区域的边界恰好为菱形,则k的值为±.【分析】根据菱形的性质知AB=5,由一次函数图象的性质和两点间的距离公式解答.【解答】解:令y=0,则x=﹣,即A(﹣,0).令x=0,则y=3,即B(0,3).∵将该直线向右平移5单位,线段AB扫过区域的边界恰好为菱形,∴AB=5,则AB2=25.∴(﹣)2+32=25.解得k=±.故答案是:±.【点评】考查了菱形的性质和一次函数图象与几何变换,解题的关键是根据菱形的性质得到AB=5.三、解答题(本题共26分,第17题8分,第18,20题各5分,第19,21题各4分)17.(8分)解下列方程:(1)x2+2x﹣3=0(用配方法)(2)2x2+5x﹣1=0(用公式法)【分析】(1)根据配方法的步骤,可得答案;(2)根据公式法,可得答案.【解答】解:(1)移项,得x2+2x=3配方,得x2+2x+1=3+1即(x+1)2=3开方得x+1=±2,x1=1,x2=﹣3;(2)a=2,b=5,c=﹣1,△=b2﹣4ac=25﹣4×2×(﹣1)=33>0,x==,x1=,x2=.【点评】本题考查了解一元二次方程,配方得出完全平方公式是解题关键.18.(5分)在平面直角坐标系xOy中,函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6)(1)求一次函数y=kx+b的解析式;(2)求一次函数y=kx+b的图象与坐标轴围成的三角形的面积.【分析】(1)根据函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6),即可得出k和b的值,即得出了函数解析式.(2)先求出与x轴及y轴的交点坐标,然后根据三角形面积公式求解即可.【解答】解:(1)∵函数y=kx+b的图象与直线y=2x平行,∴k=2,又∵函数y=2x+b的图象经过点A(1,6),∴6=2+b,解得b=4,∴一次函数的解析式为y=2x+4;(2)在y=2x+4中,令x=0,则y=4;令y=0,则x=﹣2;∴一次函数y=kx+b的图象与坐标轴交于(0,4)和(﹣2,0),∴一次函数y=kx+b的图象与坐标轴围成的三角形的面积为×2×4=4.【点评】本题考查待定系数法求函数解析式及三角形的面积的知识,关键是正确得出函数解析式及坐标与线段长度的转化.19.(5分)下面是小丁设计的“利用直角三角形和它的斜边中点作矩形的尺规作图过程:已知:如图,在Rt△ABC中,∠ABC=90°,O为AC的中点,求作:四边形ABCD,使得四边形ABCD为矩形.作法:①作射线BO,在线段BO的延长线上取点D,使得DO=BO②连接AD,CD,则四边形ABCD为矩形根据小丁设计的尺规作图过程(1)使用直尺和圆规,在图中补全图形(保留作图痕迹)(2)完成下面的证明证明:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形(对角线互相平分的四边形是平行四边形)∵∠ABC=90°,∴▱ABCD为矩形(有一个角是直角的平行四边形是矩形)【分析】(1)根据要求画出图形即可.(2)根据有一个角是直角的平行四边形是矩形即可证明.【解答】解:(1)如图,矩形ABCD即为所求.(2)理由:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形(对角线互相平分的四边形是平行四边形)∵∠ABC=90°,∴▱ABCD为矩形(有一个角是直角的平行四边形是矩形).故答案为:对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形【点评】本题考查作图﹣复杂作图,矩形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.(4分)方程x2+2x+k﹣4=0有实数根(1)求k的取值范围;(2)若k是该方程的一个根,求2k2+6k﹣5的值.【分析】(1)根据判别式的意义得到△=22﹣4(k﹣4)≥0,然后解不等式即可;(2)利用方程解的定义得到k2+3k=4,再变形得到2k2+6k﹣5=2(k2+3k)﹣5,然后利用整体代入的方法计算.【解答】解:(1)△=22﹣4(k﹣4)≥0,解得k≤5;(2)把x=k代入方程得k2+2k+k﹣4=0,即k2+3k=4,所以2k2+6k﹣5=2(k2+3k)﹣5=2×4﹣5=3.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.(4分)小东和小明要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边CD上有水池及建筑遮挡,没有办法直接测量其长度小东经测量得知AB=AD=5m,∠A=60°,BC=12m,∠ABC=150°小明说根据小东所得的数据可以求出CD的长度.你同意小明的说法吗?若同意,请求出CD的长度;若不同意,请说明理由.【分析】直接利用等边三角形的判定方法得出△ABD是等边三角形,再利用勾股定理得出答案.【解答】解:同意小明的说法.理由:连接BD,∵AB=AD=5m,∠A=60°,∴△ABD是等边三角形,∴BD=5m,∠ABD=60°,∵∠ABC=150°,∴∠DBC=90°,∵BC=12m,BD=5m,∴DC ==13(m ),答:CD 的长度为13m .【点评】此题主要考查了勾股定理的应用以及等边三角形的判定,正确得出△ABD 是等边三角形是解题关键.四、解答题(本题共13分,第22题7分,第23题6分)22.(7分)三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动为了让同学们更好的了解二十四节气的知识,本次学习节在沿袭以往经典项目的基础上,增设了十四节气之旅项目,并开展了相关知识竞赛该学校七、八年级各有400名学生参加了这次竞赛,现从七、八年级各随机抽取20名学生的成绩进行抽样调查 七年级:74 97 96 72 98 99 72 73 76 74 74 69 76 89 78 74 99 97 98 99 八年级:76 88 93 89 78 94 89 94 95 50 89 68 65 88 77 87 89 88 92 91 整理数据如下成绩 人数 年级 50≤x ≤5960≤x ≤6970≤x ≤7980≤x ≤8990≤x ≤100七年级 0 1 10 1 a 八年级 12386分析数据如下年级 平均数 中位数 众数 方差 七年级 84.2 77 74 138.56 八年级84b89129.7根据以上信息,回答下列问题 (1)a =8 b = 88.5 ;(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性).(3)学校对知识竞赛成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有180,280人.【分析】(1)从调查的七年级的人数20减去前几组的人数即可,将八年级的20名学生的成绩排序后找到第10、11个数的平均数即是八年级的中位数,(2)从中位数、众数、方差进行分析,调查结论,(3)用各个年级的总人数乘以样本中优秀人数所占的比即可.【解答】解:(1)a=20﹣1﹣10﹣1=8,b=(88+89)÷2=88.5故答案为:8,88.5.(2)八年级成绩较好,八年级成绩的众数、中位数比七年级成绩相应的众数、中位数都要大,说明八年级成绩的集中趋势要高,方差八年级较小,说明八年级的成绩比较稳定.(3)七年级优秀人数为:400×=180人,八年级优秀人数为:400×=280人,故答案为:180,280.【点评】考查频数分布表、众数、中位数、平均数、方差的意义及计算方法,明确各自的意义和计算方法是解决问题的前提.23.(6分)如图,在▱ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD到点F,使DF=CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.【分析】(1)根据平行四边形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据直角三角形斜边中线可得:OF=AC,利用勾股定理计算AC的长,可得结论.【解答】(1)证明:∵在▱ABCD中,∴AD∥BC且AD=BC,∴∠ADF=∠BCE,在△ADF和△BCE中,∵∴△ADF≌△BCE(SAS),∴AF=BE,∠AFD=∠BEC=90°,∴AF∥BE,∴四边形ABEF是矩形;(2)解:由(1)知:四边形ABEF是矩形,∴EF=AB=6,∵DE=2,∴DF=CE=4,∴CF=4+4+2=10,Rt△ADF中,∠ADF=45°,∴AF=DF=4,由勾股定理得:AC===2,∵四边形ABCD是平行四边形,∴OA=OC,∴OF=AC=.【点评】本题考查了矩形的判定和性质,平行四边形的性质,勾股定理,正确的识别图形是解题的关键.五、解答题(本题共13分,第24题6分,第25题7分)24.(6分)如图,在平面直角坐标系xOy中,直线y=kx+7与直线y=x﹣2交于点A(3,m)(1)求k,m的值;(2)已知点P(n,n),过点P作垂直于y轴的直线与直线y=x﹣2交于点M,过点P 作垂直于x轴的直线与直线y=kx+7交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.【分析】(1)把A点坐标代入y=x﹣2中,求得m的值,再把求得的A点坐标代入y =kx+7中,求得k的值;(2)根据题意,用n的代数式表示出M、N点的坐标,再求得PM、PN的值,根据PN ≤2PM,列出n的不等式,再求得结果.【解答】解:(1)把A(3,m)代入y=x﹣2中,得m=3﹣2=1,∴A(3,1),把A(3,1)代入y=kx+7中,得1=3k+7,解得,k=﹣2;(2)由(1)知,直线y=kx+7为y=﹣2x+7,根据题意,作出草图如下:∵点P(n,n),∴M(n+2,n),N(n,﹣2n+7),∴PM=2,PN=|3n﹣7|,∵PN≤2PM,∴|3n﹣7|≤2×2,∴1≤n≤,∵P与N不重合,∴n≠﹣2n+7,∴n≠,综上,1≤n≤,且n≠【点评】本题是一次函数图象的相交与平行的问题,主要考查了待定系数法求一次函数的解析式,第(2)小题关键是用n的代数式表示PM与PN的长度.25.(7分)在Rt△ABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连按OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连按DE.(1)如图一,当点O在Rt△ABC内部时,①按题意补全图形;②猜想DE与BC的数量关系,并证明.(2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.【分析】(1)①根据要求画出图形即可解决问题.②结论:DE=BC.连接OD交BC于F,连接AF.证明AF为Rt△ABC斜边中线,为△ODE的中位线,即可解决问题.(2)分两种情形:如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.证明△BMA≌△BMO(AAS),推出AM=OM,∠BMO=∠BMA=120°,推出∠AMO=120°,即可解决问题.如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.分别求解即可.【解答】解:(1)①补全图形如图所示:②结论:DE=BC.理由:如图一中,连接OD交BC于F,连接AF.∵OC∥BD,∴∠FCO=∠FBD,∵∠CFO=∠BFD,OC=BD,∴△FCO≌△FBD(AAS),∴BF=CF,∵OA=AE,∵DE=2AF,∵∠BAC=90°,BF=CF,∴BC=2AF,∴DE=BC.(2)如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.由(1)可知:AF为Rt△ABC斜边中线,为△ODE的中位线,∵AB=AC,∴AF垂直平分线段BC,∴MB=MC,∵∠OCB=30°,∠OBC=15°,∴∠MBC=∠MCB=30°,∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∠MBO=∠MBA=15°,∵∠BAM=∠BOM=45°,BM=BM,∴△BMA≌△BMO(AAS),∴AM=OM,∠BMO=∠BMA=120°,∴∠AMO=120°,∴∠MAO=∠MOA=30°,∴∠AED=∠MAO=30°.如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.由∠BOM=∠BAM=45°,可知A,B,M,O四点共圆,∴∠MAO=∠MBO=30°﹣15°=15°,∵DE∥AM,∴∠AED=∠MAO=15°,综上所述,满足条件的∠AED的值为15°或30°.【点评】本题属于三角形综合题,考查了全等三角形的判定和性质,直角三角形斜边中线的性质,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2019年北京市海淀区初二下学期期末数学试题

2019北京海淀区初二(下)期末数学2019.7考生须知1.本试卷共7页,5道大题,25道小题,满分100分,考试时间90分钟。
2.在答题纸上准确填写姓名、准考证号,并将条形码贴在指定区域。
3.试题答案一律填涂或书写在答题纸上,在试卷上作答无效。
4.在答题纸上,选择题用2B铅笔作答,其他试题用黑色字迹的签字笔作答。
5.考试结束,请将答题纸和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)在下列各题的四个选项中,只有一个是符合题意的.1.下列实数中,是方程x2−4=0的根的是A. 1 B .2 C. 3 D. 42.如图在Rt△ABC中,∠C=90°,BC=6,AC=8则AB的长度为A. 7B .8C. 9D. 103.在下列条件中,能判定四边形为平行四边形的是A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直4.下列各曲线中,不表示y是x的函数的是5.数据2,6,4,5,4,3的平均数和众数分别是A. 5和4 B .4和4 C. 4.5和4 D. 4和56.一元二次方程x2-8x-1=0经过配方后可变形为A. (x+4)2=15B. (x+4)2=17C. (x−4)2=15D. (x−4)2=177.若点,(-3,y1 ). B(1, y2)都在直线y=1x+2上,则y1与y2的大小关系是2A. y1<y2B. y1=y2C. y1>y2D.无法比较大小8.如图,正方形ABCD的边长为√2,对角线AC, BD交于点O, E是AC延长线上一点,且CE=CO.则BE的长度为A. √3B. √102C. √5D. 2√59.对于一次函数y=kx+b(k, b为常数),下表中给出5组自变量及其对应的函数值,其中恰好有一个函数值计算有误,则这个错误的函数值是A. 5B. 8C. 12D. 1410.博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为公众提供知识、教育及欣赏服务,近年来,人们到博物馆学习参观的热情越来越高.2012-2018年我国博物馆参观人数统计如下:小明研究了这个统计图,得出四个结论:①2012年到2018年,我国博物馆参观人数持续增长;②2019年末我国博物馆参观人数估计将达到10.82亿人次;③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;④2016年到2018年,我国博物馆参观人数平均年增长率超过10%.其中正确的是A.①③B.①②③C.①②④D.①②③④二、填空题(本题共18分,每小题3分)11. 如图,在ABCD中,∠B=110°,则∠D= °12.八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下:由上表可知,甲、乙两组成绩更稳定的是组13.若关于x的一元二次方程x2+ 6x +m=0有实数根,且所有实数根均为整数,请写出一个符合条件的常数m的值:m=14.如图,某港口P位于南北延伸的海岸线上,东面是大海一远洋”号、“长峰”号两艘轮船同时离开港口P,各自沿固定方向航行,“远洋”号每小时航行12 n mile,“长峰”号每小时航行16 n mile,它们离开港口1小时后,分别到达A, B两个位置,且AB=20 n mile,己知“远洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是_ 。
2018-2019学年北京市海淀区八年级(下)期末数学试卷

2018-2019学年北京市海淀区八年级(下)期末数学试卷一、选择题(本题共30分,每小题3分)在下列各题的四个选项中,只有一个是符合题意的1.(3分)下列实数中,是方程x2﹣4=0的根的是()A.1B.2C.3D.42.(3分)如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,则AB的长度为()A.7B.8C.9D.103.(3分)在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直4.(3分)下列各曲线中,不表示y是x的函数的是()A.B.C.D.5.(3分)数据2,6,4,5,4,3的平均数和众数分别是()A.5和4B.4和4C.4.5和4D.4和56.(3分)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=15D.(x﹣4)2=17 7.(3分)若点A(﹣3,y1),B(1,y2)都在直线y=x+2上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法比较大小8.(3分)如图,正方形ABCD的边长为,对角线AC,BD交于点O,E是AC延长线上一点,且CE=CO,则BE的长度为()A.B.C.D.29.(3分)对于一次函数y=kx+b(k,b为常数),下表中给出5组自变量及其对应的函数值,其中恰好有1个函数值计算有误,则这个错误的函数值是()X﹣10123Y2581214 A.5B.8C.12D.1410.(3分)博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为众提供知识、教育及欣赏服务.近年来,人们到博物馆学习参观的热情越来越高,2012﹣2018年我国博物馆参观人数统计如下:小明研究了这个统计图,得出四个结论:①2012年到2018年,我国博物馆参观人数持续增②2019年末我国博物馆参观人数估计将达到1082亿人次③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;④2016年到2018年,我国博物馆参观人数平均年增长率超过10%其中正确的是()A.①③B.①②③C.①②④D.①②二、填空题(本题共18分,每小题3分)11.(3分)在▱ABCD中,若∠B=110°,则∠D=°.12.(3分)八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下甲组成绩(环)87889乙组成绩(环)98797由上表可知,甲、乙两组成绩更稳定的是.13.(3分)若关于x的一元二次方程x2+6x+m=0有实数根,且所有实数根均为整数,请写出一个符合条件的常数m的值:m=.14.(3分)如图,某港口P位于南北延伸的海岸线上,东面是大海远洋号,长峰号两艘轮船同时离开港P,各自沿固定方向航行,“远洋”号每小时航行12nmile,“长峰”号每小时航行16nmile,它们离开港口1小时后,分别到达A,B两个位置,且AB=20nmile,已知“远洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是.15.(3分)若一个矩形的长边的平方等于短边与其周长一半的积,则称这样的矩形为“优美矩形”.某公园在绿化时工作人员想利用如图所示的直角墙角(两边足够长)和长为38m 的篱笆围成一个“优美矩形”形状的花园ABCD,其中边AB,AD为篱笆且AB大于AD.设AD为xm,依题意可列方程为.16.(3分)在平面直角坐标系xOy中,直线y=kx+3与x,y轴分别交于点A,B,若将该直线向右平移5单位,线段AB扫过区域的边界恰好为菱形,则k的值为.三、解答题(本题共26分,第17题8分,第18,20题各5分,第19,21题各4分)17.(8分)解下列方程:(1)x2+2x﹣3=0(用配方法)(2)2x2+5x﹣1=0(用公式法)18.(5分)在平面直角坐标系xOy中,函数y=kx+b的图象与直线y=2x平行,且经过点A (1,6)(1)求一次函数y=kx+b的解析式;(2)求一次函数y=kx+b的图象与坐标轴围成的三角形的面积.19.(5分)下面是小丁设计的“利用直角三角形和它的斜边中点作矩形的尺规作图过程:已知:如图,在Rt△ABC中,∠ABC=90°,O为AC的中点,求作:四边形ABCD,使得四边形ABCD为矩形.作法:①作射线BO,在线段BO的延长线上取点D,使得DO=BO②连接AD,CD,则四边形ABCD为矩形根据小丁设计的尺规作图过程(1)使用直尺和圆规,在图中补全图形(保留作图痕迹)(2)完成下面的证明证明:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形()∵∠ABC=90°,∴▱ABCD为矩形()20.(4分)方程x2+2x+k﹣4=0有实数根(1)求k的取值范围;(2)若k是该方程的一个根,求2k2+6k﹣5的值.21.(4分)小东和小明要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边CD上有水池及建筑遮挡,没有办法直接测量其长度小东经测量得知AB=AD=5m,∠A=60°,BC=12m,∠ABC=150°小明说根据小东所得的数据可以求出CD的长度.你同意小明的说法吗?若同意,请求出CD的长度;若不同意,请说明理由.四、解答题(本题共13分,第22题7分,第23题6分)22.(7分)三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动为了让同学们更好的了解二十四节气的知识,本次学习节在沿袭以往经典项目的基础上,增设了十四节气之旅项目,并开展了相关知识竞赛该学校七、八年级各有400名学生参加了这次竞赛,现从七、八年级各随机抽取20名学生的成绩进行抽样调查七年级:74 97 96 72 98 99 72 73 76 74 74 69 76 89 78 74 99 97 98 99八年级:76 88 93 89 78 94 89 94 95 50 89 68 65 88 77 87 89 88 92 91整理数据如下50≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100成绩人数年级七年级01101a八年级12386分析数据如下年级平均数中位数众数方差七年级84.27774138.56八年级84b89129.7根据以上信息,回答下列问题(1)a=b=;(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性).(3)学校对知识竞赛成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有人.23.(6分)如图,在▱ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD到点F,使DF=CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.五、解答题(本题共13分,第24题6分,第25题7分)24.(6分)如图,在平面直角坐标系xOy中,直线y=kx+7与直线y=x﹣2交于点A(3,m)(1)求k,m的值;(2)已知点P(n,n),过点P作垂直于y轴的直线与直线y=x﹣2交于点M,过点P 作垂直于x轴的直线与直线y=kx+7交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.25.(7分)在Rt△ABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连按OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连按DE.(1)如图一,当点O在Rt△ABC内部时,①按题意补全图形;②猜想DE与BC的数量关系,并证明.(2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.。
北京市海淀区八年级(下)期末数学试卷

北京市海淀区八年级(下)期末数学试卷一、选择题:(本题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.1.(3分)下列各式中,运算正确的是()A.=﹣2B.+=C.×=4D.2﹣2.(3分)如图,在△ABC中,AB=3,BC=6,AC=4,点D,E分别是边AB,CB 的中点,那么DE的长为()A.1.5B.2C.3D.43.(3分)要得到函数y=2x+3的图象,只需将函数y=2x的图象()A.向左平移3个单位B.向右平移3个单位C.向上平移3个单位D.向下平移3个单位4.(3分)在Rt△ABC中,D为斜边AB的中点,且BC=3,AC=4,则线段CD的长是()A.2B.3C.D.55.(3分)已知一次函数y=(k﹣1)x.若y随x的增大而增大,则k的取值范围是()A.k<1B.k>1C.k<0D.k>06.(3分)如图,在△ABC中,AB=5,BC=6,BC边上的中线AD=4,那么AC的长是()A.5B.6C.D.27.(3分)如图,在点M,N,P,Q中,一次函数y=kx+2(k<0)的图象不可能经过的点是()A.M B.N C.P D.Q8.(3分)如图是某一天北京与上海的气温T(单位:℃)随时间t(单位:时)变化的图象.根据图中信息,下列说法错误的是()A.12时北京与上海的气温相同B.从8时到11时,北京比上海的气温高C.从4时到14时,北京、上海两地的气温逐渐升高D.这一天中上海气温达到4℃的时间大约在上午10时9.(3分)如图,在平面直角坐标系xOy中,正方形ABCD的顶点D在y轴上,且A(﹣3,0),B(2,b),则正方形ABCD的面积是()A.13B.20C.25D.3410.(3分)已知两个一次函数y1,y2的图象相互平行,它们的部分自变量与相应的函数值如表:x m02y143ty26n﹣1则m的值是()A.﹣B.﹣3C.D.5二、填空题:(本题共18分,每小题3分)11.(3分)若在实数范围内有意义,则x的取值范围是.12.(3分)已知=0,那么y x的值是.13.(3分)如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD中,AB=3,AC=2,则BD的长为.14.(3分)如图,E,F,M,N分别是边长为4的正方形ABCD四条边上的点,且AE=BF=CM=DN.那么四边形EFMN的面积的最小值是.15.(3分)第24届冬季奥林匹克运动会,将于2022年2月在北京市和张家口市联合举行.某校寒假期间组织部分滑雪爱好者参加冬令营集训.训练期间,冬令营的同学们都参加了“单板滑雪”这个项目40次的训练测试,每次测试成绩分别为5分,4分,3分,2分,1分五档.甲乙两位同学在这个项目的测试成绩统计结果如图所示.根据上图判断,甲同学测试成绩的众数是;乙同学测试成绩的中位数是;甲乙两位同学中单板滑雪成绩更稳定的是.16.(3分)已知一次函数y=kx+b的图象过点(﹣1,0)和点(0,2),若x(kx+b)<0,则x的取值范围是.三、解答题:(本题共22分,第17-19题每小题4分,第20-21题每小题4分)17.(4分)计算:+×.18.(4分)如图,在平行四边形ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:BE∥DF.19.(4分)已知x=+1,求x2﹣2x的值.20.(5分)在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=2x的图象与直线AB交于点M.(1)求直线AB的函数解析式及M点的坐标;(2)若点N是x轴上一点,且△MNB的面积为6,求点N的坐标.21.(5分)如图,在△ABC中,点D,E,F分别是边AB,AC,BC的中点,且BC=2AF.(1)求证:四边形ADFE为矩形;(2)若∠C=30°,AF=2,写出矩形ADFE的周长.四、解答题:(本题共14分,第22题8分,第23题6分)22.(8分)阅读下列材料:2016年人均阅读16本书!2017年4月23日“世界读书日”之前,国际网络电商亚马逊发布了“亚马逊中国2017全民阅读报告”.报告显示,大部分读者已养成一定的阅读习惯,阅读总量在10本以上的占56%,而去年阅读总量在10本以上的占48%.京东图书也发布了2016年度图书阅读报告.根据京东图书文娱业务部数据统计,2016年销售纸书人均16册,总量叠在一起相当于15000个帝国大厦的高.(1)在亚马逊这项调查中,以每年有效问卷1.4万份来计,2017年阅读量十本以上的人数比去年增加了人;(2)小雨作为学校的图书管理员,根据初二年级每位同学本学期的借书记录,对各个班借阅的情况作出了统计,并绘制统计图表如下:初二年级图书借阅分类统计扇形图初二年级各班图书借阅情况统计表班级1234人数35353436182165143借阅总数(本)中位数5655①全年级140名同学中有科技社团成员40名,他们人均阅读科普类书籍1.5本,年级其他同学人均阅读科普类书籍1.08本,请你计算全年级人均阅读科普类书籍的数量,再通过计算补全统计表;②在①的条件下,若要推荐初二某个班级为本学期阅读先进集体,你会推荐哪个班,请写出你的理由.23.(6分)在四边形中,一条边上的两个角称为邻角.一条边上的邻角相等,且这条边的对边上的邻角也相等,这样的四边形叫做IT形.请你根据研究平行四边形及特殊四边形的方法,写出IT形的性质,把你的发现都写出来.五、解答题:(本题共16分,第24题8分,第25题8分)24.(8分)如图1,四边形ABCD是正方形,E是CD垂直平分线上的点,点E 关于BD的对称点是E',直线DE与直线BE'交于点F.(1)若点E是CD边的中点,连接AF,则∠FAD=°;(2)小明从老师那里了解到,只要点E不在正方形的中心,则直线AF与AD所夹锐角不变.他尝试改变点E的位置,计算相应角度,验证老师的说法.①如图2,将点E选在正方形内,且△EAB为等边三角形,求出直线AF与AD所夹锐角的度数;②请你继续研究这个问题,可以延续小明的想法,也可用其它方法.我选择小明的想法;(填“用”或“不用”)并简述求直线AF与AD所夹锐角度数的思路.25.(8分)对于正数x,用符号[x]表示x的整数部分,例如:[0.1]=0,[2.5]=2,[3]=3.点A(a,b)在第一象限内,以A为对角线的交点画一个矩形,使它的边分别与两坐标轴垂直.其中垂直于y轴的边长为a,垂直于x轴的边长为[b]+1,那么,把这个矩形覆盖的区域叫做点A的矩形域.例如:点的矩形域是一个以为对角线交点,长为3,宽为2的矩形所覆盖的区域,如图1所示,它的面积是6.根据上面的定义,回答下列问题:(1)在图2所示的坐标系中画出点的矩形域,该矩形域的面积是;(2)点的矩形域重叠部分面积为1,求a的值;(3)已知点B(m,n)(m>0)在直线y=x+1上,且点B的矩形域的面积S满足4<S<5,那么m的取值范围是.(直接写出结果)北京市海淀区八年级(下)期末数学试卷参考答案一、选择题:(本题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.1.C;2.B;3.C;4.C;5.B;6.A;7.D;8.D;9.D;10.A;二、填空题:(本题共18分,每小题3分)11.x≥﹣2;12.1;13.4;14.8;15.3;3;乙同学;16.﹣1<x <0;三、解答题:(本题共22分,第17-19题每小题4分,第20-21题每小题4分)17.;18.;19.;20.;21.;四、解答题:(本题共14分,第22题8分,第23题6分)22.1120;23.;五、解答题:(本题共16分,第24题8分,第25题8分)24.45;用;25.8;<m<;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年北京市海淀区八年级(下)期末数学试卷一、选择题(本题共30分,每小题3分)在下列各题的四个选项中,只有一个是符合题意的1.(3分)下列实数中,是方程x2﹣4=0的根的是()A.1B.2C.3D.42.(3分)如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,则AB的长度为()A.7B.8C.9D.103.(3分)在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直4.(3分)下列各曲线中,不表示y是x的函数的是()A.B.C.D.5.(3分)数据2,6,4,5,4,3的平均数和众数分别是()A.5和4B.4和4C.4.5和4D.4和56.(3分)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=15D.(x﹣4)2=17 7.(3分)若点A(﹣3,y1),B(1,y2)都在直线y=x+2上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法比较大小8.(3分)如图,正方形ABCD的边长为,对角线AC,BD交于点O,E是AC延长线上一点,且CE=CO,则BE的长度为()A.B.C.D.29.(3分)对于一次函数y=kx+b(k,b为常数),下表中给出5组自变量及其对应的函数值,其中恰好有1个函数值计算有误,则这个错误的函数值是()X﹣10123Y2581214 A.5B.8C.12D.1410.(3分)博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为众提供知识、教育及欣赏服务.近年来,人们到博物馆学习参观的热情越来越高,2012﹣2018年我国博物馆参观人数统计如下:小明研究了这个统计图,得出四个结论:①2012年到2018年,我国博物馆参观人数持续增②2019年末我国博物馆参观人数估计将达到1082亿人次③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;④2016年到2018年,我国博物馆参观人数平均年增长率超过10%其中正确的是()A.①③B.①②③C.①②④D.①②二、填空题(本题共18分,每小题3分)11.(3分)在▱ABCD中,若∠B=110°,则∠D=°.12.(3分)八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下甲组成绩(环)87889乙组成绩(环)98797由上表可知,甲、乙两组成绩更稳定的是.13.(3分)若关于x的一元二次方程x2+6x+m=0有实数根,且所有实数根均为整数,请写出一个符合条件的常数m的值:m=.14.(3分)如图,某港口P位于南北延伸的海岸线上,东面是大海远洋号,长峰号两艘轮船同时离开港P,各自沿固定方向航行,“远洋”号每小时航行12nmile,“长峰”号每小时航行16nmile,它们离开港口1小时后,分别到达A,B两个位置,且AB=20nmile,已知“远洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是.15.(3分)若一个矩形的长边的平方等于短边与其周长一半的积,则称这样的矩形为“优美矩形”.某公园在绿化时工作人员想利用如图所示的直角墙角(两边足够长)和长为38m的篱笆围成一个“优美矩形”形状的花园ABCD,其中边AB,AD为篱笆且AB大于AD.设AD为xm,依题意可列方程为.16.(3分)在平面直角坐标系xOy中,直线y=kx+3与x,y轴分别交于点A,B,若将该直线向右平移5单位,线段AB扫过区域的边界恰好为菱形,则k的值为.三、解答题(本题共26分,第17题8分,第18,20题各5分,第19,21题各4分)17.(8分)解下列方程:(1)x2+2x﹣3=0(用配方法)(2)2x2+5x﹣1=0(用公式法)18.(5分)在平面直角坐标系xOy中,函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6)(1)求一次函数y=kx+b的解析式;(2)求一次函数y=kx+b的图象与坐标轴围成的三角形的面积.19.(5分)下面是小丁设计的“利用直角三角形和它的斜边中点作矩形的尺规作图过程:已知:如图,在Rt△ABC中,∠ABC=90°,O为AC的中点,求作:四边形ABCD,使得四边形ABCD为矩形.作法:①作射线BO,在线段BO的延长线上取点D,使得DO=BO②连接AD,CD,则四边形ABCD为矩形根据小丁设计的尺规作图过程(1)使用直尺和圆规,在图中补全图形(保留作图痕迹)(2)完成下面的证明证明:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形()∵∠ABC=90°,∴▱ABCD为矩形()20.(4分)方程x 2+2x +k ﹣4=0有实数根 (1)求k 的取值范围;(2)若k 是该方程的一个根,求2k 2+6k ﹣5的值.21.(4分)小东和小明要测量校园里的一块四边形场地ABCD (如图所示)的周长,其中边CD 上有水池及建筑遮挡,没有办法直接测量其长度小东经测量得知AB =AD =5m ,∠A =60°,BC =12m ,∠ABC =150°小明说根据小东所得的数据可以求出CD 的长度.你同意小明的说法吗?若同意,请求出CD 的长度;若不同意,请说明理由.四、解答题(本题共13分,第22题7分,第23题6分)22.(7分)三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动为了让同学们更好的了解二十四节气的知识,本次学习节在沿袭以往经典项目的基础上,增设了十四节气之旅项目,并开展了相关知识竞赛该学校七、八年级各有400名学生参加了这次竞赛,现从七、八年级各随机抽取20名学生的成绩进行抽样调查 七年级:74 97 96 72 98 99 72 73 76 74 74 69 76 89 78 74 99 97 98 99 八年级:76 88 93 89 78 94 89 94 95 50 89 68 65 88 77 87 89 88 92 91 整理数据如下成绩 人数 年级 50≤x ≤5960≤x ≤6970≤x ≤7980≤x ≤8990≤x ≤100七年级 0 1 10 1 a 八年级 12386分析数据如下年级平均数中位数众数方差七年级84.27774138.56八年级84b89129.7根据以上信息,回答下列问题(1)a=b=;(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性).(3)学校对知识竞赛成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有人.23.(6分)如图,在▱ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD到点F,使DF=CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.五、解答题(本题共13分,第24题6分,第25题7分)24.(6分)如图,在平面直角坐标系xOy中,直线y=kx+7与直线y=x﹣2交于点A(3,m)(1)求k,m的值;(2)已知点P(n,n),过点P作垂直于y轴的直线与直线y=x﹣2交于点M,过点P 作垂直于x轴的直线与直线y=kx+7交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.25.(7分)在Rt△ABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连按OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连按DE.(1)如图一,当点O在Rt△ABC内部时,①按题意补全图形;②猜想DE与BC的数量关系,并证明.(2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.2018-2019学年北京市海淀区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)在下列各题的四个选项中,只有一个是符合题意的1.(3分)下列实数中,是方程x2﹣4=0的根的是()A.1B.2C.3D.4【分析】先把方程化为x2=4,方程两边开平方得到x=±=±2,即可得到方程的两根.【解答】解:移项得x2=4,开方得x=±2,∴x1=2,x2=﹣2.故选:B.【点评】本题考查了解一元二次方程﹣直接开平方法,用直接开方法求一元二次方程的解的类型有:x2=a(a≥0),ax2=b(a,b同号且a≠0),(x+a)2=b(b≥0),a (x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”;2.(3分)如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,则AB的长度为()A.7B.8C.9D.10【分析】根据勾股定理即可得到结论.【解答】解:在Rt△ABC中,∠C=90°,BC=6,AC=8,∴AB===10,故选:D.【点评】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.3.(3分)在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直【分析】根据平行四边形的判定定理逐个判断即可.【解答】解:A、两组对边分别平行的四边形是平行四边形,故本选项符合题意;B、一组对边平行且另一组对边相等的四边形是等腰梯形,不是平行四边形,故本选项不符合题意;C、两组邻边相等的四边形不一定是平行四边形,故本选项不符合题意;D、对角线互相平分的四边形才是平行四边形,故本选项不符合题意;故选:A.【点评】本题考查了平行四边形的判定定理,能熟记平行四边形的判定定理的内容是解此题的关键,注意:平行四边形的判定定理有:①两组对边分别平行的四边形是平行四边形,②两组对边分别相等的四边形是平行四边形,③两组对角分别平行的四边形是平行四边形,④一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形.4.(3分)下列各曲线中,不表示y是x的函数的是()A.B.C.D.【分析】设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.根据函数的意义即可求出答案.【解答】解:显然A、B、D选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;C选项对于x取值时,y都有2个值与之相对应,则y不是x的函数;故选:C.【点评】本题主要考查了函数的定义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应.5.(3分)数据2,6,4,5,4,3的平均数和众数分别是()A.5和4B.4和4C.4.5和4D.4和5【分析】根据平均数和众数的概念求解.【解答】解:这组数据的平均数是:(2+6+4+5+4+3)=4;∵4出现了2次,出现的次数最多,∴这组数据的众数是4;故选:B.【点评】本题考查了众数和平均数的知识,一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.6.(3分)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=15D.(x﹣4)2=17【分析】先把常数项移到方程右边,再把方程两边加上16,然后把方程左边写成完全平方形式即可.【解答】解:x2﹣8x=1,x2﹣8x+16=17,(x﹣4)2=17.故选:D.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.7.(3分)若点A(﹣3,y1),B(1,y2)都在直线y=x+2上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法比较大小【分析】先根据直线y=x+2判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【解答】解:∵直线y=x+2,k=>0,∴y随x的增大而增大,又∵﹣3<1,∴y1<y2.故选:A.【点评】本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y 随x的增大而增大;当k<0,y随x的增大而减小.8.(3分)如图,正方形ABCD的边长为,对角线AC,BD交于点O,E是AC延长线上一点,且CE=CO,则BE的长度为()A.B.C.D.2【分析】利用正方形的性质得到OB=OC=BC=1,OB⊥OC,则OE=2,然后根据勾股定理计算BE的长.【解答】解:∵正方形ABCD的边长为,∴OB=OC=BC=×=1,OB⊥OC,∵CE=OC,∴OE=2,在Rt△OBE中,BE==.故选:C.【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.9.(3分)对于一次函数y=kx+b(k,b为常数),下表中给出5组自变量及其对应的函数值,其中恰好有1个函数值计算有误,则这个错误的函数值是()X﹣10123Y2581214 A.5B.8C.12D.14【分析】经过观察5组自变量和相应的函数值得(﹣1,2),(0,5),(1,8),(3,14)符合解析式y=3x+5,(2,12)不符合,即可判定.【解答】解:∵(﹣1,2),(0,5),(1,8),(3,14)符合解析式y=3x+5,当x=2时,y=11≠12∴这个计算有误的函数值是12,故选:C.【点评】本题考查了一次函数图象上点的坐标特征,图象上点的坐标符合解析式是解决本题的关键.10.(3分)博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为众提供知识、教育及欣赏服务.近年来,人们到博物馆学习参观的热情越来越高,2012﹣2018年我国博物馆参观人数统计如下:小明研究了这个统计图,得出四个结论:①2012年到2018年,我国博物馆参观人数持续增②2019年末我国博物馆参观人数估计将达到1082亿人次③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;④2016年到2018年,我国博物馆参观人数平均年增长率超过10%其中正确的是()A.①③B.①②③C.①②④D.①②【分析】根据条形统计图中的信息对4个结论矩形判断即可.【解答】解:①2012年到2018年,我国博物馆参观人数持续增,正确;②10.08×(1+)=10.45,故2019年末我国博物馆参观人数估计将达到10.45亿人次;故错误;③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;正确;④设平均年增长率为x,则8.50(1+x)2=10.08,解得:x=0.0889,故2016年到2018年,我国博物馆参观人数平均年增长率是8.89%,故错误;故选:A.【点评】此题考查了条形统计图,弄清题中图形中的数据是解本题的关键.二、填空题(本题共18分,每小题3分)11.(3分)在▱ABCD中,若∠B=110°,则∠D=110°.【分析】直接利用平行四边形的对角相等即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴∠B=∠D=110°.故答案为:110.【点评】此题主要考查了平行四边形的性质,正确得出对角相等是解题关键.12.(3分)八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下甲组成绩(环)87889乙组成绩(环)98797由上表可知,甲、乙两组成绩更稳定的是甲.【分析】根据方差计算公式,进行计算,然后比较方差,小的稳定,在计算方差之前还需先计算平均数.【解答】解:甲==8,乙==8,=[(8﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2]=0.4,=[(9﹣8)2+(8﹣8)2+(7﹣8)2+(9﹣8)2+(7﹣8)2]=0.8∵<∴甲组成绩更稳定.故答案为:甲.【点评】考查平均数、方差的计算方法,理解方差是反映一组数据的波动大小的统计量,方差越小,数据越稳定.13.(3分)若关于x的一元二次方程x2+6x+m=0有实数根,且所有实数根均为整数,请写出一个符合条件的常数m的值:m=9.【分析】利用判别式的意义得到△=62﹣4m≥0,解不等式得到m的范围,在此范围内取m=0即可.【解答】解:△=62﹣4m≥0,解得m≤9;当m=0时,方程变形为x2+6x=0,解得x1=0,x2=﹣6,所以m=9满足条件.故答案为9.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.14.(3分)如图,某港口P位于南北延伸的海岸线上,东面是大海远洋号,长峰号两艘轮船同时离开港P,各自沿固定方向航行,“远洋”号每小时航行12nmile,“长峰”号每小时航行16nmile,它们离开港口1小时后,分别到达A,B两个位置,且AB=20nmile,已知“远洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是南偏东30°.【分析】由题意得:P与O重合,得出OA2+OB2=AB2,由勾股定理的逆定理得出△PAB 是直角三角形,∠AOB=90°,求出∠COP=30°,即可得出答案.【解答】解:由题意得:P与O重合,如图所示:OA=12nmile,OB=16nmile,AB=20nmile,∵122+162=202,∴OA2+OB2=AB2,∴△PAB是直角三角形,∴∠AOB=90°,∵∠DOA=60°,∴∠COP=180°﹣90°﹣60°=30°,∴“长峰”号航行的方向是南偏东30°,故答案为:南偏东30°.【点评】此题主要考查了直角三角形的判定、勾股定理的逆定理及方向角的理解及运用.利用勾股定理的逆定理得出△PAB为直角三角形是解题的关键.15.(3分)若一个矩形的长边的平方等于短边与其周长一半的积,则称这样的矩形为“优美矩形”.某公园在绿化时工作人员想利用如图所示的直角墙角(两边足够长)和长为38m的篱笆围成一个“优美矩形”形状的花园ABCD,其中边AB,AD为篱笆且AB大于AD.设AD为xm,依题意可列方程为(38﹣x)2=38x.【分析】设AD为xm,根据“矩形的长边的平方等于短边与其周长一半的积”列出列出方程即可.【解答】解:设AD的长为x米,则AB的长为(38﹣x)m,根据题意得:(38﹣x)2=38x,故答案为:(38﹣x)2=38x.【点评】考查了由实际问题抽象出一元二次方程的知识,解题的关键是表示出另一边的长,难度不大.16.(3分)在平面直角坐标系xOy中,直线y=kx+3与x,y轴分别交于点A,B,若将该直线向右平移5单位,线段AB扫过区域的边界恰好为菱形,则k的值为±.【分析】根据菱形的性质知AB=5,由一次函数图象的性质和两点间的距离公式解答.【解答】解:令y=0,则x=﹣,即A(﹣,0).令x=0,则y=3,即B(0,3).∵将该直线向右平移5单位,线段AB扫过区域的边界恰好为菱形,∴AB=5,则AB2=25.∴(﹣)2+32=25.解得k=±.故答案是:±.【点评】考查了菱形的性质和一次函数图象与几何变换,解题的关键是根据菱形的性质得到AB=5.三、解答题(本题共26分,第17题8分,第18,20题各5分,第19,21题各4分)17.(8分)解下列方程:(1)x2+2x﹣3=0(用配方法)(2)2x2+5x﹣1=0(用公式法)【分析】(1)根据配方法的步骤,可得答案;(2)根据公式法,可得答案.【解答】解:(1)移项,得x2+2x=3配方,得x2+2x+1=3+1即(x+1)2=3开方得x+1=±2,x1=1,x2=﹣3;(2)a=2,b=5,c=﹣1,△=b2﹣4ac=25﹣4×2×(﹣1)=33>0,x==,x1=,x2=.【点评】本题考查了解一元二次方程,配方得出完全平方公式是解题关键.18.(5分)在平面直角坐标系xOy中,函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6)(1)求一次函数y=kx+b的解析式;(2)求一次函数y=kx+b的图象与坐标轴围成的三角形的面积.【分析】(1)根据函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6),即可得出k和b的值,即得出了函数解析式.(2)先求出与x轴及y轴的交点坐标,然后根据三角形面积公式求解即可.【解答】解:(1)∵函数y=kx+b的图象与直线y=2x平行,∴k=2,又∵函数y=2x+b的图象经过点A(1,6),∴6=2+b,解得b=4,∴一次函数的解析式为y=2x+4;(2)在y=2x+4中,令x=0,则y=4;令y=0,则x=﹣2;∴一次函数y=kx+b的图象与坐标轴交于(0,4)和(﹣2,0),∴一次函数y=kx+b的图象与坐标轴围成的三角形的面积为×2×4=4.【点评】本题考查待定系数法求函数解析式及三角形的面积的知识,关键是正确得出函数解析式及坐标与线段长度的转化.19.(5分)下面是小丁设计的“利用直角三角形和它的斜边中点作矩形的尺规作图过程:已知:如图,在Rt△ABC中,∠ABC=90°,O为AC的中点,求作:四边形ABCD,使得四边形ABCD为矩形.作法:①作射线BO,在线段BO的延长线上取点D,使得DO=BO②连接AD,CD,则四边形ABCD为矩形根据小丁设计的尺规作图过程(1)使用直尺和圆规,在图中补全图形(保留作图痕迹)(2)完成下面的证明证明:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形(对角线互相平分的四边形是平行四边形)∵∠ABC=90°,∴▱ABCD为矩形(有一个角是直角的平行四边形是矩形)【分析】(1)根据要求画出图形即可.(2)根据有一个角是直角的平行四边形是矩形即可证明.【解答】解:(1)如图,矩形ABCD即为所求.(2)理由:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形(对角线互相平分的四边形是平行四边形)∵∠ABC=90°,∴▱ABCD为矩形(有一个角是直角的平行四边形是矩形).故答案为:对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形【点评】本题考查作图﹣复杂作图,矩形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.(4分)方程x2+2x+k﹣4=0有实数根(1)求k的取值范围;(2)若k是该方程的一个根,求2k2+6k﹣5的值.【分析】(1)根据判别式的意义得到△=22﹣4(k﹣4)≥0,然后解不等式即可;(2)利用方程解的定义得到k2+3k=4,再变形得到2k2+6k﹣5=2(k2+3k)﹣5,然后利用整体代入的方法计算.【解答】解:(1)△=22﹣4(k﹣4)≥0,解得k≤5;(2)把x=k代入方程得k2+2k+k﹣4=0,即k2+3k=4,所以2k2+6k﹣5=2(k2+3k)﹣5=2×4﹣5=3.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.(4分)小东和小明要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边CD上有水池及建筑遮挡,没有办法直接测量其长度小东经测量得知AB=AD=5m,∠A=60°,BC=12m,∠ABC=150°小明说根据小东所得的数据可以求出CD的长度.你同意小明的说法吗?若同意,请求出CD的长度;若不同意,请说明理由.【分析】直接利用等边三角形的判定方法得出△ABD是等边三角形,再利用勾股定理得出答案.【解答】解:同意小明的说法.理由:连接BD,∵AB=AD=5m,∠A=60°,∴△ABD是等边三角形,∴BD=5m,∠ABD=60°,∵∠ABC=150°,∴∠DBC=90°,∵BC=12m,BD=5m,∴DC ==13(m ),答:CD 的长度为13m .【点评】此题主要考查了勾股定理的应用以及等边三角形的判定,正确得出△ABD 是等边三角形是解题关键.四、解答题(本题共13分,第22题7分,第23题6分)22.(7分)三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动为了让同学们更好的了解二十四节气的知识,本次学习节在沿袭以往经典项目的基础上,增设了十四节气之旅项目,并开展了相关知识竞赛该学校七、八年级各有400名学生参加了这次竞赛,现从七、八年级各随机抽取20名学生的成绩进行抽样调查 七年级:74 97 96 72 98 99 72 73 76 74 74 69 76 89 78 74 99 97 98 99 八年级:76 88 93 89 78 94 89 94 95 50 89 68 65 88 77 87 89 88 92 91 整理数据如下成绩 人数 年级 50≤x ≤5960≤x ≤6970≤x ≤7980≤x ≤8990≤x ≤100七年级 0 1 10 1 a 八年级 12386分析数据如下年级 平均数 中位数 众数 方差 七年级 84.2 77 74 138.56 八年级84b89129.7根据以上信息,回答下列问题 (1)a =8 b = 88.5 ;(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性).(3)学校对知识竞赛成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有180,280人.【分析】(1)从调查的七年级的人数20减去前几组的人数即可,将八年级的20名学生的成绩排序后找到第10、11个数的平均数即是八年级的中位数,(2)从中位数、众数、方差进行分析,调查结论,(3)用各个年级的总人数乘以样本中优秀人数所占的比即可.【解答】解:(1)a=20﹣1﹣10﹣1=8,b=(88+89)÷2=88.5故答案为:8,88.5.(2)八年级成绩较好,八年级成绩的众数、中位数比七年级成绩相应的众数、中位数都要大,说明八年级成绩的集中趋势要高,方差八年级较小,说明八年级的成绩比较稳定.(3)七年级优秀人数为:400×=180人,八年级优秀人数为:400×=280人,故答案为:180,280.【点评】考查频数分布表、众数、中位数、平均数、方差的意义及计算方法,明确各自的意义和计算方法是解决问题的前提.23.(6分)如图,在▱ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD到点F,使DF=CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.【分析】(1)根据平行四边形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据直角三角形斜边中线可得:OF=AC,利用勾股定理计算AC的长,可得结论.【解答】(1)证明:∵在▱ABCD中,∴AD∥BC且AD=BC,∴∠ADF=∠BCE,在△ADF和△BCE中,∵∴△ADF≌△BCE(SAS),∴AF=BE,∠AFD=∠BEC=90°,∴AF∥BE,∴四边形ABEF是矩形;(2)解:由(1)知:四边形ABEF是矩形,∴EF=AB=6,∵DE=2,∴DF=CE=4,∴CF=4+4+2=10,Rt△ADF中,∠ADF=45°,∴AF=DF=4,由勾股定理得:AC===2,∵四边形ABCD是平行四边形,∴OA=OC,∴OF=AC=.【点评】本题考查了矩形的判定和性质,平行四边形的性质,勾股定理,正确的识别图形是解题的关键.五、解答题(本题共13分,第24题6分,第25题7分)24.(6分)如图,在平面直角坐标系xOy中,直线y=kx+7与直线y=x﹣2交于点A(3,m)(1)求k,m的值;(2)已知点P(n,n),过点P作垂直于y轴的直线与直线y=x﹣2交于点M,过点P 作垂直于x轴的直线与直线y=kx+7交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.【分析】(1)把A点坐标代入y=x﹣2中,求得m的值,再把求得的A点坐标代入y =kx+7中,求得k的值;(2)根据题意,用n的代数式表示出M、N点的坐标,再求得PM、PN的值,根据PN ≤2PM,列出n的不等式,再求得结果.【解答】解:(1)把A(3,m)代入y=x﹣2中,得m=3﹣2=1,∴A(3,1),把A(3,1)代入y=kx+7中,得1=3k+7,解得,k=﹣2;(2)由(1)知,直线y=kx+7为y=﹣2x+7,根据题意,作出草图如下:∵点P(n,n),∴M(n+2,n),N(n,﹣2n+7),∴PM=2,PN=|3n﹣7|,∵PN≤2PM,∴|3n﹣7|≤2×2,∴1≤n≤,∵P与N不重合,∴n≠﹣2n+7,∴n≠,综上,1≤n≤,且n≠【点评】本题是一次函数图象的相交与平行的问题,主要考查了待定系数法求一次函数的解析式,第(2)小题关键是用n的代数式表示PM与PN的长度.25.(7分)在Rt△ABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连按OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连按DE.(1)如图一,当点O在Rt△ABC内部时,①按题意补全图形;②猜想DE与BC的数量关系,并证明.(2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.【分析】(1)①根据要求画出图形即可解决问题.②结论:DE=BC.连接OD交BC于F,连接AF.证明AF为Rt△ABC斜边中线,为△ODE的中位线,即可解决问题.(2)分两种情形:如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.证明△BMA≌△BMO(AAS),推出AM=OM,∠BMO=∠BMA=120°,推出∠AMO=120°,即可解决问题.如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.分别求解即可.【解答】解:(1)①补全图形如图所示:②结论:DE=BC.理由:如图一中,连接OD交BC于F,连接AF.∵OC∥BD,∴∠FCO=∠FBD,∵∠CFO=∠BFD,OC=BD,∴△FCO≌△FBD(AAS),∴BF=CF,∵OA=AE,∵DE=2AF,∵∠BAC=90°,BF=CF,∴BC=2AF,∴DE=BC.(2)如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.由(1)可知:AF为Rt△ABC斜边中线,为△ODE的中位线,∵AB=AC,∴AF垂直平分线段BC,∴MB=MC,∵∠OCB=30°,∠OBC=15°,∴∠MBC=∠MCB=30°,∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∠MBO=∠MBA=15°,∵∠BAM=∠BOM=45°,BM=BM,∴△BMA≌△BMO(AAS),∴AM=OM,∠BMO=∠BMA=120°,∴∠AMO=120°,∴∠MAO=∠MOA=30°,∴∠AED=∠MAO=30°.如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.由∠BOM=∠BAM=45°,可知A,B,M,O四点共圆,∴∠MAO=∠MBO=30°﹣15°=15°,∵DE∥AM,∴∠AED=∠MAO=15°,综上所述,满足条件的∠AED的值为15°或30°.【点评】本题属于三角形综合题,考查了全等三角形的判定和性质,直角三角形斜边中线的性质,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。