《第13章 轴对称复习教案》

合集下载

人教版八年级数学上册第十三章轴对称全章复习(第二课时)教学设计

人教版八年级数学上册第十三章轴对称全章复习(第二课时)教学设计
9.激发数学美,培养兴趣:通过展示轴对称在实际生活中的应用,让学生感受数学美,培养学习数学的兴趣。
四、教学内容与过程
(一)导入新课
1.教师通过多媒体展示一组生活中的轴对称图形,如剪纸、建筑、图案等,引导学生观察并思考:这些图形有什么共同特点?它们在现实生活中有哪些应用?
2.学生观察、讨论,教师适时引导学生发现:这些图形都是轴对称的,它们具有美观、平衡的特点,广泛应用于日常生活和艺术设计中。
5.拓展作业:
-鼓励学生阅读与轴对称相关的书籍、文章,了解轴对称在历史、文化、艺术等方面的应用。
-组织学生参加学校或社区举求:
1.学生需独立完成作业,遇到问题可向同学和老师请教,培养自主解决问题的能力。
2.提交作业时,要求书写工整、条理清晰,解题过程和答案正确。
4.掌握轴对称图形的折叠与展开,培养空间想象能力和动手操作能力。
(二)过程与方法
1.通过观察、操作、探索等活动,让学生在自主探究和合作交流中体验轴对称的性质和运用,提高解决问题的能力。
2.利用实际问题情境,引导学生运用轴对称的性质进行分析和解决,培养学生运用数学知识解决实际问题的能力。
3.设计具有挑战性的问题和任务,激发学生的思维,培养他们勇于挑战、善于思考的品质。
3.教师总结:轴对称不仅是几何图形的一种特性,还广泛应用于现实生活中的各个方面。今天我们将进一步学习轴对称的相关知识。
(二)讲授新知
1.教师引导学生复习轴对称的定义,强调对称轴的概念,让学生理解轴对称图形的对称性质。
2.讲解轴对称的性质和定理,如对称轴上的点、线段、角的轴对称映像等,结合实例进行解释,让学生直观地理解轴对称的性质。
3.应用作业:
-利用轴对称性质,解决一道实际问题,如最短路线问题、图形面积计算等。

数学人教版八年级上册第13章-轴对称单元复习课 教学设计

数学人教版八年级上册第13章-轴对称单元复习课 教学设计

第十三章轴对称复习教学设计一、复习目标1、重新认识轴对称、轴对称图形,探索轴对称的基本性质,理解对应点连线被对称轴垂直平分的性质。

2、按照要求作出简单图形经过一次或两次轴对称后的图形,能应用轴对称进行简单的图案设计。

3、理解线段的垂直平分线的概念并掌握其性质;理解等腰三角形、等边三角形的有关概念,并掌握它们的性质及判定方法。

二、自主复习,盘点知识(一)基本概念1.轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做,这条直线就叫做。

折叠后重合的点是对应点,叫做。

2.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线,这条直线叫做,折叠后重合的点是对应点,叫做。

(说明:两个图形关于某条直线对称也叫两个图形成轴对称)。

3.线段的垂直平分线经过线段点并且这条线段的直线,叫做这条线段的垂直平分线。

4.等腰三角形有的三角形,叫做等腰三角形。

相等的两条边叫做,另一条边叫做,两腰所夹的角叫做,底边与腰的夹角叫做。

5.等边三角形三条边都的三角形叫做等边三角形。

(二)主要性质1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的。

或者说轴对称图形的对称轴,是任何一对对应点所连线段的。

2.线段垂直平分钱的性质线段垂直平分线上的点与这条线段两个端点的距离。

3.通过画出坐标系上的两点观察得出:(1)点P(x,y)关于x轴对称的点的坐标为P′(,)。

(2)点P(x,y)关于y轴对称的点的坐标为P″(,)。

4.等腰三角形的性质(1)等腰三角形的两个底角(简称“等边对等角” )。

(2)等腰三角形的顶角、底边上的、底边上的相互重合。

(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的。

(4)等腰三角形两腰上的高、中线分别,两底角的平分线也。

5.等边三角形的性质(1)等边三角形的三个内角都 ,并且每一个角都等于 。

第十三章轴对称教案

第十三章轴对称教案

第十三章轴对称教案教案标题:第十三章轴对称教案教学目标:1. 理解轴对称的概念,并能够识别轴对称图形。

2. 掌握绘制轴对称图形的方法。

3. 运用轴对称的概念解决问题。

教学重点:1. 轴对称的概念及特点。

2. 轴对称图形的绘制方法。

教学准备:1. 教师准备:教学课件、黑板、彩色粉笔、绘图纸、铅笔、直尺、剪刀等。

2. 学生准备:学习用书、绘图工具等。

教学过程:步骤一:导入(5分钟)1. 利用课件或黑板上展示一些轴对称图形,引发学生对轴对称的认识和兴趣。

2. 提问学生:你们能否找出这些图形中的轴对称线?轴对称线有什么特点?步骤二:讲解轴对称的概念及特点(10分钟)1. 通过示意图和实例,向学生解释轴对称的定义和特点。

2. 强调轴对称的概念是指一个图形可以通过某条线对折后,两边完全重合。

步骤三:绘制轴对称图形(15分钟)1. 以具体的图形为例,向学生展示绘制轴对称图形的方法。

2. 指导学生使用直尺和铅笔,在绘图纸上练习绘制轴对称图形。

3. 强调绘制时要保持对称性,即对折后两边要完全重合。

步骤四:巩固练习(15分钟)1. 分发练习册或工作纸,让学生独立完成一些绘制轴对称图形的练习题。

2. 监督学生的练习过程,及时纠正错误并给予指导。

步骤五:应用拓展(10分钟)1. 提供一些实际问题,让学生运用轴对称的概念解决问题。

2. 鼓励学生思考并提供合理的解决方法。

步骤六:总结与评价(5分钟)1. 回顾本节课所学内容,强调轴对称的重要性和应用。

2. 对学生的表现进行评价,并鼓励他们在日常生活中多观察和运用轴对称的概念。

教学延伸:1. 鼓励学生在课后继续练习绘制轴对称图形,提高技巧和速度。

2. 推荐相关绘画或几何学习资源,帮助学生进一步了解轴对称的应用。

教学反思:本节课通过引导学生认识轴对称的概念,讲解绘制轴对称图形的方法,并应用解决问题,帮助学生掌握了轴对称的基本知识和技能。

在教学过程中,教师应注意引导学生思考和互动,激发学生的学习兴趣和积极性。

13章复习教案

13章复习教案

第十三章轴对称复习教案一. 轴对称图形•1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。

这条直线叫做对称轴。

折叠后重合的点是对应点,叫做_对称点_____.3. 轴对称的性质:①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

二. 用坐标表示轴对称小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.练习例:已知△ABC的三个顶点的坐标分别为A(-3,5),B(- 4,1),C(-1,3),作出△ABC关于y轴对称的图形。

思考:如图,分别作出点P,M,N关于直线x=1的对称点, 你能发现它们坐标之间分别有什么关系吗?如图,分别作出△ABC关于直线x=1(记为m) 和直线y=-1(记为n)对称的图形,它们的对应点的坐标之间分别有什么关系?•如图:类似: 若两点(x1,y1)、(x2,y2)关于直线y=n对称,则;4.利用轴对称变换作图:如图:要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道什么地方,可使所用的输气管道线最短?1. 如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直)•.作法:1.将点B沿垂直与河岸的方向平移一个河宽到E,2.连接AE交河对岸与点M,则点M为建桥的位置,MN为所建的桥。

证明:由平移的性质,得BN∥EM 且BN=EM, MN=CD, BD∥CE, BD=CE,所以A.B两地的距:AM+MN+BN=AM+MN+EM=AE+MN,若桥的位置建在CD处,连接AC.CD.DB.CE,则AB两地的距离为:AC+CD+DB=AC+CD+CE=AC+CE+MN,在△ACE中,∵AC+CE>AE,∴AC+CE+MN>AE+MN,即AC+CD+DB >AM+MN+BN所以桥的位置建在CD处,AB两地的路程最短。

八年级数学上册13轴对称复习教案(新版)新人教版

八年级数学上册13轴对称复习教案(新版)新人教版

第十三章轴对称教学目的:让学生掌握等腰三角形中的分类讨论思想和方程思想。

教学重点:掌握等腰三角形中不同的分类问题;及用方程思想解决问题。

教学难点:学生对各种分类的理解及如何构造方程。

教学过程:一、分类讨论思想1. 边分腰、底例1:等腰三角形两边长为6cm , 8cm , 求它的周长.例2:等腰三角形周长为20cm,从底边上的一个顶点引腰的中线,分三角形周长为两部分,其中一部分比另一部分长2cm,求腰长.练习:(1)一个等腰三角形的周长为14cm,且一边长为4cm,那么这个等腰三角形的三边长分别为.(2)等腰三角形一腰上的中线将其周长分为15和12两部分,则它的底边长是.2. 内角分顶角还是底角例3:已知等腰三角形有一个内角为50°,求其余两个内角的度数.例4:等腰三角形ABC中,∠A=40°,则△ABC两个底角的平分线所夹得钝角是多少度?(画图)练习:(1)已知等腰三角形有一个内角为120°,则其余两个内角的度数为 .(2)等腰三角形的一个外角是110°,则顶角度数为.3. 高分形内和形外例5:已知等腰三角形一腰上的高与另一腰的夹角为30°,求这个等腰三角形顶角的度数练习:已知等腰三角形ABC中,BC边上的高AD=BC,求∠BAC的度数.(选作)(先按腰底分,再按形内形外分)二、方程思想等腰三角形的角之间的数量关系:(1)顶角和底角之间的数量关系.(2)顶角的外角与底角之间的数量关系.例6:如图,在△ABC中,∠ABC=1000,点D、E分别在AC和AB上,且AE=ED=DB=BC,求∠A 的度数.例7:如图,在△ABC中,AB=AC,D是BC上一点,E是AC上一点,AD=AE,∠BAD=30°,求∠EDC的度数.练习:(1)如图,点D在AC上,点E在AB上,且AB=AC,BC=BD,AD=DE=EB,求∠A的度数.(2)如图,在△DAB中,DA=DB,点C在BD上,∠DAC=30°,AB=AC,求∠B的度数.三、小结:1. 分类讨论问题:(1)分类讨论问题的一般解题步骤:①确定分类讨论的对象②逐一分析解题③综合答题(2)常见分类:等腰三角形的边(底边,腰)、角(顶角,底角)的分类、三角形的高线位置的分类。

人教版数学八年级上册 第十三章 轴对称 综合提高复习 教案

人教版数学八年级上册 第十三章 轴对称 综合提高复习 教案

第十三章 轴对称综合提高复习 年 级初二 学 科 数学 版 本 人教版 课程内容第十三章 轴对称综合提高复习一、学习目标:1. 总结本章所学的轴对称、轴对称变换、等腰三角形的性质和判定等知识;2. 培养学生用轴对称的观点认识线段的中垂线、角的平分线、等腰三角形等几何图形;3. 归纳总结本章学习过程中用到的数学思想方法,培养分析问题的能力。

二、重点难点:重点:将所学知识有机地组织起来,形成科学合理的知识结构,并能综合运用。

难点:通过归纳总结解题思想和方法,形成分析问题解决问题的能力。

三、考点分析:中考对本章的要求是通过具体实例识别轴对称、轴对称图形;理解轴对称图形和利用轴对称进行图案设计,探索图形之间的变换关系;掌握等腰三角形的性质和等腰三角形、等边三角形的识别,并能运用其性质解答实际问题。

从中考试题来看,本章知识以基础题为主,题型多以填空题、选择题的形式出现,也有简单的作图题和解答题。

等腰三角形图形的折叠与拼图和轴对称性质的应用是中考的热点题型。

【思维导图】【典型例题】知识点一:轴对称的应用例1. 已知AOB α∠=,P 是AOB ∠内一点,分别作点P 关于,OA OB 的对称点',''P P 。

(1)求证:'''2P OP α∠=;(2)若P 点在AOB ∠外,其他条件不变,那么(1)中的结论还成立吗?若成立请证明,若不成立请说明理由。

思路分析:本题考查的是轴对称的性质。

成轴对称的两个图形、或者轴对称图形在对称轴两侧的部分是“一模一样”的,严谨地说就是对应线段相等、对应角度相等、对应面积相等、对应点的连线被对称轴垂直平分等等。

解答过程:(1)如图(1)所示,当点P 在∠AOB 内部时,连接OP',P P 关于OA 对称,则OA 垂直平分'P P∴'OP OP =,OA 平分'P OP ∠∴'2P OP AOP ∠=∠,同理可证''2POP BOP ∠=∠∴''''''2()22P OP P OP POP AOP BOP AOB α∠=∠+∠=∠+∠=∠= (2)如图(2)所示,当点P 在AOB ∠外部时,结论还成立。

第十三章 轴对称复习教案教案模板

第十三章 轴对称复习教案教案模板
作业内容




教学
后记
总结:提问学生
在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.
4、知识点四:等腰三角形
(1)定义:
(2)性质(3条):
(3)判定(2条):
均采取提问学生方式,如果学生回答困难,师作引导。课件展示。




在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等
小雅中学教师教案
2015年10月28日第周第3节八(4)班数学科教师:杨远航
课题
第十三章轴对称复习教案
课型
新课
第1课时




知识与技能:理解轴对称与轴对称图形的概念,掌握轴对称的性质
过程与方法:结合生活实例,欣赏生活中的轴对称现象和镜面对称现象,感受对称的美学价值,体验几何图形与自然、社会、人类的生活,增强学习数学的兴趣
情感态度与价值观:能够按要求做出简单的平面图形的轴对称图形,初步体会从对称的角度欣赏和设计简单的轴对称图案
法制渗透



掌握线段的垂直平分线、等腰三角形的性质及应用
难点
轴对称图形以及关于某条直线成轴对称的概念,等腰三角形的性质应用
教法
教具
学具




教师活动
学生活动
教学过程:
一、课件出示本章结构图
二、知识点复习
1、知识点一:后给出概念(课件展示)
(2)成轴对称
师提问学生,采用个别提问,而后给出概念(课件展示)

第十三章轴对称复习课教案、学案、

第十三章轴对称复习课教案、学案、

课题:第十三章轴对称复习课教案教学目标:1.通过题组训练,深化对轴对称性质的理解;2.经历典例的思考与反思的过程,体会研究轴对称图形的思想方法,提升解题的应变能力,逐步形成用轴对称的视角识别图形与构造图形的基本解题策略.重点、难点:重点:逐步形成用轴对称的视角识别图形与构造图形的基本解题意识..难点:掌握用轴对称的眼光识别图形与构造图形的基本策略.教学方法:讲授式,启发式和探究式的综合教学方法教具准备:多媒体、课件、三角板教学环节教师活动学生活动设计意图一、小题夯基础7~10分钟出示练习题,并指导学生完成相关知识的回顾:1.如图,六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,若∠AFC+∠BCF=150°,则∠AFE+∠BCD的大小是().A.150°B.300°C.210°D.330°.师提问:本题你用到了轴对称图形的什么知识?2.已知,图1是轴对称图形,AF所在的直线为对称轴,连接CD,BE,求证:CD=BE小归纳:这两道小题的共同的特点是什么?学生:快速在学案纸上完成练习学生:做题并用手势展示答案完成解题后的反思,进行相关知识的回顾两小题的共性为“已知轴对称通过小题带动学生对知识的复习,使复习更具靶向性.检测题是对本节课所必需的预备性的、基础性的和相关性的知识与技能的检验.作用在于判断具体学情,以便抓缺漏,及时补.使全体学生都进入新的最佳准备状态.采用“手势展示....答案..”的方式,关注学生课堂学习的参与度和学习效果,体现全.员性...2小题在1题选择题的基础上变成证明题,直接用轴对称图形性CFEDBACABDFE图1归纳提升指导复习二、小题悟方法7分钟轴对称图形全等线段等角等数量关系2.在2题中连接DB,CE,它们与AF的位置关系是什么?请说明理由轴对称图形全等线段等角等数量关系垂直平行位置关系几何图形先判断第二组题1.如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的任意两点,若△ABC的面积为12cm2,则图中阴影部分的面积是___________ cm2解题后反思:本题求面积和的方法是什么?2.如图,已知方格纸中是4个相同的正方形,则∠1+∠2 =____________解题后反思:本题两角和的方法是什么?师生共析:1本小题的共性是已知虽然没有说轴对称图形,但依据所给条件及图形特征可以判断是轴对称图形,然后利用对称性“一移二拼”化零为整2.见题三问提炼解题策略:拿到一道题时,先问自己三个问题1.此图是轴对称图形吗?图形,利用性质解题”学生完成解题后,进行相关知识的回顾学生:在学案纸上独立思考完成题目的解答学生交流解题思路,可能一题多解学生加深认识:利用对称性解题可以事半功倍,所以今后解题时见到图形必须先判..断.其对称性,充分利用对称性质解题培养学生建立“进行知识整合”的意识第二组题目——没有告诉是轴对称图形,但识别出了两个基本的轴对称图形,等腰三角形,角;并利用性质解题学生初步感受“解题时见到图形应关注..其轴对称性的重要..整体思想是初中教学的难点,本组通过小题学方法为今后学习搭台阶,自然的突破难点..12.三、典例学经验20分钟例题1用轴对称思考,增加解题的靶向性四、小结3分钟2.它的对称轴是谁?3.此题能否运用对称性解题?例1.如图,已知D为等边三角形ABC内一点,且DB=DA,BP=AB,∠DBP=∠DBC,求∠BPD的度数4分钟后,此题没有思路的学生请按照下面的提示思考:(1)如图,已知D为等边三角形ABC内一点,且∠DBP=∠DBC, ,BP=AB,DB=DA①寻找轴对称图形.......,②求∠BPD的度数7分钟后,找到轴对称图形也没能找到解题思路的学生继续按下面的提示思考:(2)如图,已知D为等边三角形ABC内一点,且∠DBP=∠DBC ,BP=AB,DB=DA,①寻找轴对称图形,②画出对称轴,③.......求∠BPD的度数10分钟后,找到轴对称图形也没能找到解题思路的学生继续按下面的提示思考:(3)如图,已知D为等边三角形ABC内一点,且∠DBP=∠DBC, BP=AB,DB=DA,①寻找轴对称图形,②画出对称轴,③.......每个轴对称图形能帮你实现什么?④求∠BPD的度数2. 利用拆分图的方式讲解,并用几何画板强调:当点D位置发生变化,但只要满足的条件不变,∠P的度数就不变,因为这个图中的轴对称性不变学生:独立思考完成题目的解答学生在黑板板演过程学生:体会用轴对称思考,用全等表达引导学生较复杂图进行拆图,提炼基本图.采用分层教学4、7、10分钟后,此题没有思路的学生按照分层提示思考此题PAB CD五、作业师:现在,大家回顾一下本节课的学习过程,想一想,本节课都有哪些收获?你认为本节课的重点是什么?你还有哪些疑点?引导学生分组交流课堂心得,或整理笔记我的收获:课上检测题及课后作业1.(贵阳中考)如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为cm2.2.如图:△ABC中,∠BAC=54°,∠BAC的角平分线交BC于D,若AB-AC=CD,则∠ABC的度数为________CDBA3.如图,在△ABC中,∠BAC=54°,∠BAC的外角平分线交直线BC于D,若AB+AC=BD,求∠ABC的度数。

28第13章轴对称小结与复习教案

28第13章轴对称小结与复习教案

第13章轴对称小结与复习一、教学目标(一)知识与技能:1.总结本章所学的轴对称、轴对称变换、等腰三角形的性质和判定等知识;2.培养学生用轴对称的观点认识线段的中垂线、角的平分线、等腰三角形等几何图形;3.归纳总结本章学习过程中用到的数学思想方法,培养分析问题的能力.(二)过程与方法:使学生能较好地运用本章知识和技能解决有关问题.(三)情感态度与价值观:培养学生的分析解答能力.二、教学重点、难点重点:将所学知识有机地组织起来,形成科学合理的知识结构,并能综合运用.难点:通过归纳总结解题思想和方法,形成分析问题解决问题的能力.三、教学过程知识梳理一、轴对称相关定义和性质1.定义(1)如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.(2)如果一个图形沿一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线就是它的对称轴.2.性质(1)关于某直线对称的两个图形是全等图形;(2)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;(3)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.二、线段垂直平分线的性质和判定性质:线段垂直平分线上的点与这条线段两个端点的距离相等.判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.三、平面直角坐标系中轴对称点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y).四、等腰三角形的性质及判定1.性质:(1)两腰相等;(2)轴对称图形,等腰三角形底边上的中线(顶角的平分线、底边上的高)所在的直线就是它的对称轴;(3)两个底角相等,简称“等边对等角”;(4)顶角平分线、底边上的中线、底边上的高相互重合(简称“三线合一”).2.判定(1)有两边相等的三角形是等腰三角形;(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).五、等边三角形的性质及判定1.性质:(1)等边三角形的三边相等.(2)等边三角形的三个内角都相等,并每一个角都等于60°.(3)等边三角形的三条高线,三条中线,三条角平分线,分别互相重合.(4)等边三角形是轴对称图形,有三条对称轴.2.判定(1)三边相等的三角形是等边三角形.(2)三个角都相等的三角形是等边三角形.(3)有一个角是60°的等腰三角形是等边三角形.六、有关作图1.作线段的垂直平分线.2.过已知直线外的一点作该直线的垂线.3.最短路径:(1)牧人饮马问题;(2)造桥选址问题.考点讲练考点一轴对称及轴对称图形例1在下列“禁止行人通行、注意危险、禁止非机动车通行、限速20”四个交通标志图中,为轴对称图形的是( )针对训练1.在等腰三角形、圆、长方形、正方形、直角三角形中,一定是轴对称图形的有( )个A.1B.2C.3D.42.如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为_____.考点二关于坐标轴对称的点的坐标例2按要求完成作图:(1)作△ABC关于y轴对称的△A1B1C1;(2)在x轴上找出点P,使PA+PC最小,并直接写出P点的坐标.解:(1)如图,△AB1C1为所求;(2)如图,点P为所求,P点的坐标为(-3,0).针对训练3.在直角坐标系中,点P(a,2)与点A(-3,m)关于x轴对称,则a,m的值分别为( )A.3,-2B.-3,-2C.3,2D.-3,2考点三线段垂直平分线的性质和判定例3在△ABC中,AD是高,在线段DC上取一点E,使得BD=DE,已知AB+BD=DC.求证:点E在线段AC的垂直平分线上.证明:∵ AD是高,且BD=DE∴ AB=AE∵ AB+BD=DC,DC=CE+DE∴ AB+BD=CE+DE又∵ BD=DE∴ AB=CE∴ AE=CE∴ 点E 在线段AC 的垂直平分线上针对训练4.如图:△ABC 中,MN 是AC 的垂直平分线,若CM =5cm ,△ABC 的周长是22cm ,则△ABN 的周长是______.方法总结线段的垂直平分线一般会与中点、90°角、等腰三角形一同出现,在求角度、三角形的周长,或证明线段之间的等量关系时,要注意角或线段之间的转化.考点四 等腰三角形的性质和判定例4 如图,已知等边△ABC 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE =CD ,DM ⊥BC ,垂足为M.求证:M 是BE 的中点.证明:连接BD∵ △ABC 是等边三角形,且D 是AC 的中点∴ ∠ACB=60°,∠DBC=∠ABC=×60°=30°∵ CE=CD∴ ∠E=∠CDE∵ ∠ACB=∠E+∠CDE∴ ∠E= ∠ACB=30°∴ ∠DBC=∠E=30°∴ DB=DE又∵ DM ⊥BC∴ M 是BE 的中点例5 等腰三角形的一个内角是另一个内角的2倍,求该等腰三角形的顶角的度数.解:设该等腰三角形中,小角的度数为x ,则大角的度数为2x .(1)当x 为底角时,x +x +2x =180,解得 x =45,则 2x =90(2)当x 为顶角时,x +2x +2x =180,解得 x =36答:该等腰三角形顶角的度数为90°或36°.方法总结在等腰三角形中,常用到分类讨论思想,一般有如下情况:(1)在求角度时,未指明底角和顶角;(2)在求三角形周长时,未指明底边和腰;(3)未给定图形时,有时需分锐角三角形和钝角三角形两种情况进行讨论.针对训练5.如图,在△ABC 中,∠A =36°,AB =AC ,BD 平分∠ABC ,DE ∥BC ,则图中的等腰三角形共有____个.6.如图,已知等边△ABC 中,点D 、E 分别在边AB 、BC 上,把△BDE 沿直线DE 翻折,使点B 落在B 1处,DB 1,EB 1分别交边AC 于M 、H 点,若∠ADM =50°,则∠CEH 的度数为_____.21217.如图,在△ABC中,AD是角平分线,AC=AB+BD.求证:∠B=2∠C.证明:在AC上截取AE=AB,连接DE.∵ AD是角平分线,∴∠EAD=∠BAD又∵ AD=AD,∴△EAD≌△BAD (SAS)∴ DE=DB,∠AED=∠B∵ AC=AB+BD=AE+DE=AE+EC∴ EC=ED,∴∠C=∠CDE∴∠AED=∠C+∠CDE=2∠C∴∠B=2∠C8.在△ABC中,AB=AC,D是直线BC上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图①,点D在线段BC上移动时,角α与β之间的数量关系是____________,请说明理由;解:(1)α+β=180°理由:∵∠DAE=∠BAC∴∠DAE-∠DAC=∠BAC-∠DAC,即∠CAE=∠BAD又∵ AB=AC,AD=AE∴△ABD≌△ACE (SAS)∴∠ABD=∠ACE∵∠BAC+∠ABD+∠ACB=180°∴∠BAC+∠ACE+∠ACB=180°∴∠BAC+∠BCE=180°,即α+β=180°(2)如图②,点D在线段BC的延长线上移动时,角α与β之间的数量关系是________,请说明理由;解:(2)α=β理由:∵∠DAE=∠BAC∴∠DAE+∠DAC=∠BAC+∠DAC,即∠CAE=∠BAD又∵ AB=AC,AD=AE∴△ABD≌△ACE (SAS)∴∠ABD=∠ACE∵∠ACD=∠ABC+∠BAC=∠ACE+∠DCE∴∠BAC=∠DCE即α=β(3)当点D在线段BC的反向延长线上移动时,请在图③中画出完整图形并猜想角α与β之间的数量关系是______.解:(3)如图所示.猜想:α=β。

(八年级数学教案)第13章轴对称教案4份

(八年级数学教案)第13章轴对称教案4份

第13章轴对称教案4份
八年级数学教案
(一)〔知识与技能〕
1•本章的所有基本概念2本章的所有性质.
3•本章的所有基本概念及其性质的应用.
(二)〔过程与方法〕
通过学生的操作和思考,使学生掌握本章的基本概念,并在运用概念及其性质解题的过程中培养学生认真思考的习惯.
教学重点:1•本章的基本概念及性质2本章性质的应用.
教学难点:本章性质的理解及其应用.
课教学过程
一、选择题:
1•下列图案是轴对称图形的有().
(A)1 个(B)2 个(C)3 个(D)4 个
2•将写有字“ 0的字条正对镜面,则镜中出现的会是().
(1)3•已知直角三角形中30角所对的直角边为2 cm,则斜边的长为() (A)2 cm (B)4 cm (C) 6 cm (D)8 cm
4•点M(1,2)关于x轴对称的点的坐标为()
(A)(—1,2) (B)(-1,-2) (C)(1,-2) (D)(2,-1)
5•下列说法正确的是()
A.等腰三角形的高、中线、角平分线互相重合
B.顶角相等的两个等腰三角
形全等
C.等腰三角形一边不可以是另一边的二
D.等腰三角形的两个底角相等
6.如图(1),DE是ABC中AC边的垂直平分线若BC=8厘米,AB=10厘米,
则EBC的周长为()厘米
A.16
B.28
C.26
D.18
7•等腰三角形的一个角是80。

,则它的底角是()图
(A) 50 或80 °(B) 80 (C) 50 (D) 20 或80 °
(A)B (B) (C) (D)
8.如图(1)。

轴对称复习教案

轴对称复习教案

《第13章轴对称复习教案》三维目标知识与技能1.理解轴对称与轴对称图形的概念,掌握轴对称的性质2.掌握线段的垂直平分线、角的平分线的性质及应用3.理解等腰三角形的性质并能够简单应用4.理解等边三角形的性质并能够简单应用过程与方法初步体会从对称的角度欣赏设计简单的轴对称图案情感态度与价值观数形结合的思想及方程的思想都应引起广泛的重视和应用教学重点:掌握线段的垂直平分线、角的平分线的性质、等腰三角形的性质及应用教学难点:轴对称图形以及关于某条直线成轴对称的概念,等腰三角形的性质应用教学方法与手段:由特殊到一般的思想、分类讨论的思想教学过程:一.知识梳理形成系统做轴对称图形的对称轴轴对称做轴对称图形等腰三角形性质和判定等边三角形二.知识巩固变式训练1、以下图形有两条对称轴的是()A、正六边形B、矩形C、等腰三角形D、圆2、如图1,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A为()3、等腰三角形的两边长分别为3cm,7cm,则它的周长为cmCB C4、如图2,在△ABC中,DE是边AC的垂直平分线,若BC=8cm,AB=10cm,则△EBC的周长为 cm(学生可以合作讨论,互帮互学)5、将一张长方形纸按如图3的方式折叠,BC,BD为折痕,则∠CBD为()A、50°B、90°C、 100°D、110°6.如图4,A、B、C是三个村庄,现要修建一个自来水厂P,使得自来水厂P到三个村庄的距离相等,请你作出自来水厂的位置7.如图5,在直线CD上求作一点H,点H使点H到点A和点B的距离相等.8.如图6,∠AOB内有两点P﹑Q,求作一点H,使到∠AOB两边的距离相等,且到点P和点Q的距离相等9、四边形ABCD是正方形,△PAD是等边三角形,求BPC的度数。

教师小结:1、关于轴对称的点,线段,图形的性质与做法。

2、角平分线的性质。

3、垂直平分线的性质。

4、等腰三角形的性质与应用。

新人教版八年级数学教材上册第十三章《-轴对称》全章教案

新人教版八年级数学教材上册第十三章《-轴对称》全章教案

13.1.1轴对称教学设计【教学目标】一、知识与技能1. 了解轴对称图形和两个图形成轴对称的概念,知道轴对称图形和两个图形成轴对称的区别与联系.2. 了解线段垂直平分线的概念.二、过程与方法探索成轴对称的两个图形的性质和轴对称图形的性质,体会由具体到抽象认识问题的过程,感悟类比方法在研究数学问题中的作用.三、情感态度与价值观欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的应泛运用和它的丰富文化价值。

【教学重点】轴对称的概念和性质【教学重点】轴对称的概念和性质【教学方法】观察、作图操作、类比【教学课型】新授课【教学准备】多媒体、剪刀、尺规【教学过程】一、问题导入:引言对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!二、探索新知:问题1如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了美丽的窗花.观察得到的窗花,你能发现它们有什么共同的特点吗?如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴•这时,我们也说这个图形关于这条直线(成轴)对称.教师:你能举出一些轴对称图形的例子吗?问题2观察下面每对图形(如图),你能类比前面的内容概括出它们的共同特征吗?共同特征:每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.教师:你能再举出一些两个图形成轴对称的例子吗?教师:你能结合具体的图形说明轴对称图形和两个图形成轴对称有什么区别与联系吗?两者的联系:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形.把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称。

两者的区别:轴对称图形指的是一个图形沿对称轴折叠后这个图形的两部分能完全重合,而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合。

人教版八年级数学上册 第十三章 轴对称 章末复习教案

人教版八年级数学上册  第十三章 轴对称 章末复习教案

第十三章 轴对称 章末复习一、思维导图二、典型例题例1 把一张正方形纸片如图①、图②对折两次后,再如图③挖去一个三角形小孔,则展开后图形是( )【知识点】轴对称图形的知识【思路点拨】本题主要考查了学生的立体思维能力即操作能力,实际动手操作(折纸或者将图③按轴对称补全),可得到正确结论.故选C . 【解题过程】按图实际动手操作,可得到正确结论. 【答案】C例2 如图,在△ABC 中,AB =AC ,D 是AB 的中点,且DE ⊥AB ,△BCE 的周图3长为8cm ,且AC -BC=2cm ,求AB ,BC 的长.【知识点】线段垂直平分线的性质 【数学思想】方程思想【思路点拨】由题意知,DE 是线段AB 的垂直平分线,由其性质知BE =AE ,从而得AC +BC =8,又AC -BC =2,即得到关于AC 、BC 的方程组,则易解出. 【解题过程】∵DE ⊥AB ,D 为AB 中点,∴DE 垂直平分AB ,∴BE =AE , ∵BC +BE +EC =8,∴BC +AE +EC =8,即BC +AC =8,又∵AC -BC =2,∴8,2,BC AC AC BC +=⎧⎨-=⎩ 解得5,3.AC BC =⎧⎨=⎩∵AB =AC , ∴AB =5(cm ),BC =3(cm ). 【答案】AB =5(cm ),BC =3(cm ).例3 已知,点O 到△ABC 的两边AB 、AC 所在直线的距离相等,且OB =OC . ⑴如图1,若点O 在BC 上,过点O 分别作OE ⊥AB ,OF ⊥AC ,E 、F 分别是垂足,求证:AB =AC ;⑵如图2,若点O 在△ABC 的内部,求证:AB =AC ; ⑶若点O 在△ABC 的外部,AB =AC 成立吗?请画图表示.图2图1【知识点】等腰(等边)三角形的性质与判定【思路点拨】证明两条线段相等或者两个角相等,都可联想到证明两个三角形全等或等腰三角形.⑴因为AB 、AC 在同一个三角形中,所以考虑证明等腰三角形,从而去找角等,即∠B =∠C ,通过HL 得到三角形全等解决;⑵可类比⑴问求证;⑶由题意知OE =OF ,OB =OC ,所以作图时应使∠A 的平分线所在直线与边BC 的垂直平分线重合;还要分别考虑点O 在△ABC 的内部和外部.【解题过程】⑴如图1,∵OE⊥AB,OF⊥AC,E、F分别是垂足,∴∠OEB= ∠OFC=90°,又由题意知OE=OF,OB=OC,∴Rt△OEB≌Rt△OFC(HL),∴∠B=∠C,∴AB=AC⑵如图3,过点O分别作OE⊥AB,OF⊥AC,E、F分别是垂足,由题意知OE=OF,OB=OC,∴Rt△OEB≌Rt△OFC(HL),∴∠OBE=∠OCF,又由OB=OC 知∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC⑶不一定成立. (注:由题意OE=OF,OB=OC,只有当∠A的平分线所在直线与边BC的垂直平分线重合时:如图①②,有AB=AC成立;否则,AB≠AC,如图③④⑤⑥)图②图①图⑥图⑤图④三、章末检测题《轴对称》章末检测题(时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1. 下列图形一定是轴对称图形的是( )A.平行四边形B.正方形C..三角形D.梯形【知识点】轴对称图形定义【思路点拨】所学的平面几何图形中,常见的轴对称图形有:线段、角、等腰三角形、等边三角形、长方形、正方形、菱形、等腰梯形、圆等.【解题过程】选项A平行四边形不一定是轴对称图形;选项B正方形一定是轴对称图形,并且是四条对称轴;选项C三角形不一定是轴对称图形;选项D梯形不一定是轴对称图形.【答案】B2.已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论:①A、B关于x轴对称;②A、B关于y轴对称;③A、B关于原点对称;④A、B之间的距离为4,其中正确的有()A.1个B.2个C.3个D.4个【知识点】用坐标表示轴对称【数学思想】数形结合【思路点拨】由平面直角坐标系中点坐标的对称规律或直接在平面直角坐标系标出点观察即可.【解题过程】由平面直角坐标系中点坐标的对称规律可得,点A关于x轴对称坐标的是(-2,-3); 点A关于y轴对称的坐标是(2,3); 点A关于原点对称的坐标是(2,-3);因为A、B有相同的纵坐标,所以AB∥x轴,A、B之间的距离为|x A-x B|=4.【答案】B3.若等腰三角形的顶角为40°,则它的底角为()A.40°B.50°C.60°D.70°【知识点】等腰三角形的性质【思路点拨】因为等腰三角形的中,顶角+2倍底角=180°,所以只要知道顶角或者底角一个值,可以求出其余两个值.【解题过程】∵等腰三角形的顶角为40°,∴它的底角=(180°-顶角)÷2=(180°-40°)÷2=70°【答案】D4.如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为( )A.68°B.32°C.22°D.16°【知识点】平行线的性质、等腰三角形的性质【思路点拨】在等腰三角形中“知一角可求其余两角”,可求出∠C得度数;再用“两直线平行,内错角相等”得出∠B=∠C.【解题过程】∵CD=CE,∴∠D=∠CED=74°,∴∠C=180°-74°×2=180°-148°=32°,又∵AB∥CD,∴∠B=∠C=32°【答案】B5.等腰三角形ABC在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶角顶点的坐标,能确定的是()A.横坐标B. 横坐标及纵坐标C.纵坐标D. 横坐标或纵坐标【知识点】用坐标表示轴对称、等腰三角形的性质【数学思想】数形结合【思路点拨】因为等腰三角形是轴对称图形,对称轴为底边的垂直平分线,所以其顶角顶点在底边的垂直平分线上,此垂直平分线上所有点的横坐标都是2. 所以等腰三角形ABC的顶角顶点的横坐标为x=2,纵坐标取y≠0的任意值.【解题过程】由题意得等腰三角形ABC的顶角顶点的横坐标为坐标取y≠0的任意值.【答案】A6.等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角为()A. 30°B. 150°C. 30°或150°D.60°【知识点】等腰三角形的性质【数学思想】分类讨论【思路点拨】由“腰三角形一腰上的高与另一腰的夹角为60°”可想到此等腰三角形为锐角等腰三角形或者为钝角等腰三角形,画出图形即可求解.【解题过程】①当等腰三角形为锐角等腰三角形,如图1,由题可知在Rt△ADC 中,∠ADC=90°,∠ACD=60°,∴Rt△ADC中∠A=30°.②当等腰三角形为钝角等腰三角形,如图2,由题可知在Rt△AEC中,∠AEC=90°,∠ACE=60°,∴Rt△AEC中∠EAC=30°,∴∠BAC=180°-30°=150°.【答案】C7.等腰三角形底边长6cm ,一腰上的中线把它的周长分成两部分的差为2cm ,则腰长为( )A.4cmB. 8cmC. 4cm 或8cmD. 以上都不对【知识点】等腰三角形的性质、中线的性质 【数学思想】分类讨论,数形结合,方程思想【思路点拨】要考虑“腰比底长” 和“腰比底短”两种情况;由题意结合图形它的周长分成两部分的差为2cm ”实质为“腰-底=2”或者“底-腰=2”. 【解题过程】设腰长为xcm ,根据题意得:x -6=2或6-x =2,解得:x =8或x =4,∴腰长为:4cm 或8cm . 【答案】C8.下列说法中正确的是( ) A.关于某直线对称的两个三角形是全等的 B.全等三角形是关于某直线对称的C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D.若点A 、B 关于直线MN 对称,则线段AB 垂直平分MN 【知识点】轴对称的知识【思路点拨】根据轴对称的性质可以判断【解题过程】因为关于某直线对称的两个图形既要满足特殊的位置关系还要满足大小关系,所以关于某直线对称的两个三角形是全等的,但两个全等的三角形不一定关于某直线对称,故A 对B 错;两个图形关于某直线对称,它们可以与对称轴有交点,所以这两个图形不一定分别位于这条直线的两侧,C 错;D 应为若点A 、B 关于直线MN 对称,则MN 垂直平分线段AB .【答案】A9.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.若ED=4,则CE的长为()A.10B.8C.5D.2.5【知识点】含30°角的直角三角形的性质【思路点拨】由垂直平分线易证△EBC为等腰三角形,再由“含30°角的直角三角形的性质”即可求.【解题过程】由题意知,DE是线段BC的垂直平分线,由其性质知EB=EC,∴∠ECD=∠B=30°,∴在【答案】B10.如图是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论不一定成立的是()A. △ABD≌△ACDB. AF垂直平分EGC. 直线BG,CE的交点在AF上D. △DEG是等边三角形【知识点】轴对称的知识【思路点拨】根据轴对称的性质可以判断【解题过程】由轴对称的性质可得选项A、B、C正确,△DEG是等腰三角形,不一定是等边三角形.【答案】D11.如图所示,△ABC与△A′B′C′关于直线l对称,则∠B的度数为()A.60°B.40°C.80°D.100°【知识点】轴对称的知识、三角形内角和定理【思路点拨】利用轴对称的知识将两个已知的角度转化到一个三角形中.【解题过程】∵△ABC与△A′B′C′关于直线l对称,∴△ABC≌△A′B′C′,∴∠A′=∠A=60°,∠C′=∠C=40°,∠B′=180°-∠A′-∠C′=80°,∴∠B=∠B′=80°【答案】C12.已知∠AOB=30°,点P在∠AOB的内部,点P1和点P关于OA对称,点P2和点P关于OB对称,则P1、O、P2三点构成的三角形是()A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形【知识点】轴对称的知识,等边三角形的判定【思路点拨】如图,根据轴对称的性质可求得∠P1OP2=2∠AOB=60°,OP1 = OP =O P2,所以△P1OP2为等边三角形.【解题过程】如图,∵点P关于OA、OB的对称点分别为P1、P2,连接P1P2交OA于点M,交OB于点N,∠AOB=∠2+∠3. 又根据轴对称的性质得∠1=∠2,∠3=∠4,OP1 = OP =O P2,∴∠P1OP2=∠1+∠2+∠3+∠4=2∠AOB=2×30°=60°. ∴△P1OP2为等边三角形2【答案】D二、填空题(每小题4分,共24分)13.已知点P(3,-1)关于y轴的对称点Q的坐标为(a+b,1-b),则a b的值为.【知识点】用坐标表示轴对称【数学思想】方程思想【思路点拨】关于y 轴对称的两点:横坐标互为相反数,纵坐标不变.【解题过程】由题意得 ∴∴a b =(-5)2=25.【答案】2514.如图所示,四边形ABCD 中,点M ,N 分别在AB ,BC 上,将△BMN 沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠B = .【知识点】轴对称的知识、三角形内角和定理(或四边形内角和360°) 【思路点拨】 将已知角度和未知角度转化到一个三角形中(或一个四边形中). 【解题过程】∵MF ∥AD ,∴∠BMF =∠A =100°,∵FN ∥DC ,∴∠BNF =∠C =70°, 由翻折可得,△BMN ≌△FMN ,∠BMN =21×100°=50°,∠BNM =21×70°=35°, ∴∠B =180°-50°-35°=95°(在四边形BNFM 中,∠BMF =100°,∠BNF =70°, ∠F =∠B )【答案】∠B =95°15.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N ,如果MB +CN =6,那么线段MN 的长为 .【知识点】等腰三角形的判定、角平分线的定义【思路点拨】∠ABC 和∠ACB 的由角平分线和MN ∥BC 可得出∠EBC=∠MEB ,∠NEC=∠ECB ,即△BME 和△CNE 为等腰三角形,MN=ME+EN=BM+CN . 【解题过程】∵∠ABC 、∠ACB 的平分线相交于点E ,∴∠MBE=∠EBC ,∠ECN=∠ECB . ∵MN ∥BC ,∴∠EBC=∠MEB ,∠NEC=∠ECB ,∴BM=ME ,EN=CN. 又∵MN=ME+EN ,∴MN=BM+CN .∵BM+CN=6 ∴MN=6,【答案】616.如图,在Rt△ABC中,D、E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE=.【知识点】等腰三角形的性质、三角形内角和定理【数学思想】方程思想【思路点拨】△CDE中∠CDE+∠CED+∠DCE=180°,而利用等腰三角形的“等边对等角”将其转化为∠ACB+2∠DCE=180°是本题解决的关键.【解题过程】∵BD=BC,∴∠BDC=∠BCD,∵AC=AE,∴∠ACE=∠AEC.又∵∠CDE+∠CED=∠BCD+∠ACE=∠ACB+∠DCE. ∴在△CDE中,∠CDE+ ∠CED+∠DCE=90°+2∠DCE=180°,∴∠DCE=45°.【答案】45°17.如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为13,BC=6,则AB的长为.【知识点】线段垂直平分线的性质【数学思想】方程思想【思路点拨】由题意知,DE是线段AB的垂直平分线,由其性质知AE = BE,从而得AC+BC=13,又BC=6,即得到关于AC的方程,则易解出.【解题过程】∵DE⊥AB,D为AB中点,∴DE垂直平分AB,∴BE=AE,∵BC+BE+EC=13,∴BC+AE+EC=13,即BC+AC=13. 又∵BC=6,∴6+AC=13,∴AC=7【答案】718.如图,A(2,-1)为平面直角坐标系内一点,O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P 共有个.x【知识点】等腰三角形的知识【数学思想】数形结合、分类讨论【思路点拨】“以点P、O、A为顶点的三角形是等腰三角形”应考虑分为三类:①当∠O为顶角,OP=OA;②当∠A为顶角,AO=AP;③当∠P为顶角,PO=P A. 【解题过程】如图①当∠O为顶角,OA=OP时:以O为圆心,OA长为半径作圆,交x轴于点P1,P2;②当∠A为顶角,AO=AP时:以A为圆心,AO长为半径作圆,交x轴于点P3;③当∠P为顶角,PO=P A时:作线段OA的垂直平分线,交x轴于点P4.x【答案】4三、解答题(每小题7分,共14分)19. 如图,是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形(至少画出两种).【知识点】轴对称图形的定义【思路点拨】题目要求在图中补画一个小正方形,使补画后的图形为轴对称图形,所以关键是观察此图中已有的“轴对称部分”就要着重画图中余下那一个(或那两个)小正方形的轴对称图形.【解题过程】有多种画法,答案不唯一,根据轴对称图形的定义,有多种画法,题目要求在图中补画一个小正方形,使补画后的图形为轴对称图形.【答案】参考图如下图:20.已知:如图,△ABC中,AB=AC,AD⊥BC,垂足为D,E、F分别是AB、AC的延长线上的点,且BE=CF.求证:DE=DF.【知识点】等腰三角形的性质、全的三角形的判定【思路点拨】因为DE、DF在两个不同的三角形中,要证明“DE=DF”只需证明△ADE≌△ADF即可.【解题过程】∵AB=AC,AD⊥BC,∴∠DAE=∠DAF. 又∵BE=CF,∴AB+BE=AC+CF,∴AE=AF. ∵在△ADE和△ADF中,AE= AF,∠EAD=∠F AD,AD=AD,∴△ADE≌△ADF(SAS) ,∴DE=DF.四、解答题(每小题10分,共40分)21.如图,点D、E在△ABC的边BC上,AB=AC,AD=AE.求证:BD=CE.【知识点】等腰三角形的性质【思路点拨】作底边上的高,是等腰三角形的常用辅助线.【解题过程】方法一:过点A作AF⊥BC,垂足为F∵ AB =AC ,AD =AE ,∴ DF =EF ,BF =CF ∴ BF -DF =CF -EF 即 BD =CE方法二:不添加辅助线,利用等腰三角形的性质和三角形的外角定理得到角等,再证明△ABD ≌△ACE (略).22.如图,在△ABC 中,AB =AC ,E 在AC 上,D 在BA 延长线上,且AD =AE ,连接DE . 求证:DE ⊥BC.【知识点】等腰三角形的性质【思路点拨】需求证“DE ⊥BC ”,但DE 与BC 不相交,所以易想到 延长DE 交BC 于F ,从而转化为求∠DFB =90°或∠DFC =90°.【解题过程】延长DE 交BC 于F ,∵AD =AE ,∴∠D =∠AED ,∴∠BAC =∠D +∠AED =2∠D . ∵AB =AC , ∴∠B =∠C ,∵∠B +∠C +∠BAC =180°, ∴2(∠B +∠D )=180°. ∴∠B +∠D =90°,∴∠DFB=90°, ∴DE ⊥BC .23.如图,△ABC 为等边三角形,P 为BC 上一点,△APQ 为等边三角形.(1)求证:AB ∥CQ ;(2)是否存在点P ,使得AQ ⊥CQ ?若存在,指出点P 的位置;若不存在,请说明理由.【知识点】等边三角形的性质、平行线的判定、全等三角形的判定【思路点拨】(1)△ACQ可以看做由△ABP绕点A旋转得到,从而易得到三角形全,继而得到角的相等,再证得线平行;(2) 特殊三角形中的“动点问题”,常常从特殊点、特殊位置去探索.【解题过程】(1)∵△ABC、△APQ均为等边三角形,∴AB=AC,AP=AQ,∠BAC=∠P AQ=60°,∴∠BAP=∠CAQ,∴△ABP≌△ACQ(SAS),∴∠B=∠ACQ =60°,∴∠ACQ=∠BAC,∴AB∥CQ.(2)存在,当点P为BC的中点时,AQ⊥CQ. 理由如下:∵点P为BC的中点,∴∠CAP=30°.又△APQ为等边三角形,∴∠CAQ=30°. 由(1)知∠ACQ=60°,∴∠AQC=90°,即AQ⊥CQ24.如图,在△ABC中,AB=AC,D是CB延长线上的一点,∠ADB=60°,E是AD上的一点,且DE=DB.求证:AE=BE+BC【知识点】等腰(等边)三角形的性质和判定、三角形全等的判定【思路点拨】证明“线段和差”的几何命题,常常采用“截长补短”的方法【解题过程】法一:如图1,延长DC到F,使CF=BD,连接AF.∵AB=AC,∴∠ABC=∠ACB,∴∠ABD=∠ACF,∵BD=CF,∴△ABD≌△ACF,∴∠F=∠D=60°,AD=AF,∴△ADF是等边三角形,∴AD=DF,∵DE=DB,∴△DBE是等边三角形,∴DE=DB=BE,∴AE=BF,∵BF=BC+CF=BC+BE,∴AE=BE+BC.法二:如图2,延长EB 到P ,使BP =BC ,连接AP 、CP .∵∠ADB =60°,DE =DB ,∴△DBE 为等边三角形,∴∠PBC =∠EBD =60°,又BP =BC ,∴△BPC 为等边三角形,∴PB =PC ,又AB =AC ,AP =AP ,∴△ABP ≌△ACP ,∴∠BP A =∠CP A =21∠BPC =30°,∴∠EAP =∠DEB -∠BP A =60°-30°=30°, ∴∠BP A =∠EAP , ∴AE =PE =BE +BP =BE +BC .法三:如图3,作AH ⊥BC 于H ,则易得∠DAH =30°,则有AD =2DH ,AE +DE =2DB +2BH ,易知△DBE 是等边三角形,故DB =DE =BE ,而AB =AC ,故2BH =BC ,∴AE =DB +BC =BE +BC.图3图2图1五、解答题(每小题12分,共24分)25.如图所示,∠ABC =90°,AB =BC ,AE 平分∠BAC 交BC 于E ,CD ⊥AE 交AE 的延长线于D . 求证:CD =21AE .【知识点】等腰三角形的性质、角平分线的性质【思路点拨】由“AE 平分∠BAC 交BC 于E ,CD ⊥AE ”易联想到等腰三角形的“三线合一”,故延长AB 交CD 的延长线于F ,即可证明.【解题过程】方法一:如图,延长AB 交CD 的延长线于F .∵∠ABC =90°,∴∠ABE =∠CBF =90°,又∵CD ⊥AE ,∴∠BCF +∠F =90°,∠BAE +∠F =90°, ∴∠BCF =∠BAE ,又∵AB =BC ,∴△ABE ≌△CBF ,∴AE =CF ,又∵AE 平分∠BAC ,∴∠CAD =∠F AD ,又∵AD ⊥CF ,∴∠ACD+∠CAD =∠AFD +∠F AD =90°,∴∠ACD =∠AFD ,∴AC =AF ,∴CD =DF ,∴CD =21CF ,∴CD =21AE . 方法二:同方法一,先证明△ABE ≌△CBF ,得AE =CF . 又∵AE 平分∠BAC ,∴∠CAD =∠F AD ,又∵AD =AD ,∠ADC =∠ADF =90°,∴△ADC ≌△ADF ,∴CD =DF ,∴CD =21CF ,∴CD =21AE .26.如图,点O 是等边△ABC 内一点,∠AOB =110°,∠BOC =α . 将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,连接OD .⑴求证:△COD 是等边三角形;⑵当α=150°时,试判断△AOD的形状,并说明理由; ⑶探究:当α为多少度时,△AOD 是等腰三角形?【知识点】等腰(等边)三角形的性质和判定、三角形内角和定理【数学思想】分类讨论、方程思想【思路点拨】 ⑴等边三角形的判定方法;⑵判断“三角形的形状”,主要类型有:等腰三角形、等边三角形、直角三角形、等腰直角三角形;⑶△AOD 是等腰三角形应分类考虑:①AO =AD ;②OA =OD ;③OD =AD .【解题过程】⑴证明:∵△BOC 绕点C 按顺时针方向旋转60°得△ADC ∴CO=CD ,∠OCD =60°, ∴△COD 是等边三角形⑵解:当α=150°,即∠BOC=150°时,△AOD是直角三角形. 理由如下:∵由题意得△BOC≌△ADC,∴∠ADC=∠BOC=150°又∵△COD是等边三角形,∴∠ODC=60°∴∠ADO=90°,即△AOD是直角三角形(3)解:∵∠AOB=110°,∠BOC=α,∴∠AOC=360°-110°-α=250°-α又∵△COD是等边三角形,∴∠ COD=∠ODC =60°,∴∠AOD=250°-α-60° =190°-α,∠ADO=α-60°①要使AO=AD,需∠AOD=∠ADO.∵∠AOD=190°-α,∠ADO=α-60°,∴190°-α=α-60°,∴α=125°②要使OA=OD,需∠OAD=∠ADO.∵∠OAD=180°-(∠AOD+∠ADO)=50°,∴α-60°=50°,∴α=110°.③要使OD=AD,需∠OAD=∠AOD,∴190°-α=50°,∴α=140°.综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形.。

八年级数学上册 13章总复习 教案

八年级数学上册 13章总复习 教案

第十三章轴对称复习【教材分析】
【教学流程】
3.如图,△ABC中,AB=5,AC=4
AC的垂直平分线交BC于点D,则△
是( )
A.15 B.9 C.10 D、
4、(2015苏州)如图,在△ABC中,
为BC中点,∠BAD=35°,则∠C的度数为
A.35°B.45°C.55 °D.
例1.如图,△ABC中,AB=AC,E为BC中点,BD AC,垂足为D,∠EAD=20°。

求:∠ABD的度数。

例2、已知,如图:△ABC中AB=AC E为AC 延长线上的一点且CE=BD DE交BC于F
做DG ∥CE交BC于
∠3=∠E
∴∠1=∠B
与点P’(8,b+2).
轴对称,则a=_____ b=_______.
轴对称,则a=_____ b=_______.
是AC的垂直平分线,AC=5
13厘米,则△ABC的周长
2题图 3题图
3、如图:点B、C、D、E、F在∠MAN的边上,
A=15°,AB=BC=CD=DE=EF,则∠ MEF 。

4.(2015聊城)在如图所示的直角坐标系
中,每个小方格都是边长为1的正方形,△ABC
、已知:如图所示,等边三角形ABC中,
BC延长线上一点,CE=CD,
是BE的中点.
(2)连结C′D,由对称性得CD=CD′,∠CDA =∠CDA=60°;所以∠。

最新人教版初中八年级上册数学第十三章《轴对称复习课》精品教案

最新人教版初中八年级上册数学第十三章《轴对称复习课》精品教案

B″ A″
=2 α.
F ON 图(2)
【归纳拓展】轴对称和轴对称图形的概念是本章的重点,通过观 察日常生活中的轴对称现象,理解轴对称图形和轴对称的概念的 区别与联系;学习轴对称变换,不但要会画一个图形关于某直线 的对称图形,还要会通过简单的图案设计确定最短路线等. 【配套训练】如下图所示,作出△ABC关于直线x=1的对称图形.
第十三章 轴对称
复习课
知识网络
专题复习
课堂小结
课后训练
知识网络
生 活 中 轴对称 的 对 称
轴对称图形的坐标特征 轴对称的画法
两个图形成轴对称
轴对称的性质


轴对称图形

中垂线的性质与判定

等腰三角形的性质
图 形
等腰三角形
等腰三角形的判定
等边三角形的性质
等边三角形
应 含30°角的直角三角形的性质
等边三角形的判定
∴ AF=BD.
F
C
1 2
B
∵AE= 1 BD, ∴AE=EF.
2
在△AEB和△FEB中, AE=FE, ∠AEB=∠FEB,
EB=EB, ∴ △AEB≌△FEB(SAS). ∴ ∠ABE=∠FBE,
即BD平分∠ABC.
A
ED
F
C
1 2
B
专题三 本章的数学思想与解题方法
分类讨论思想 【例3】等腰三角形的周长为20cm,其中两边的差为8cm,求这个
M
B1
D
D
H
B
C
第3题
B
第4题E
C
4.如图,已知等边△ABC中,点D、E分别在边AB、BC上,把
△BDE沿直线DE翻折,使点B落在B1外,DB1,EB1分别交边
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双井中学八年级(数学)备课组
集体备课教案主备:辅备:
3、等腰三角形的两边长分别为3cm ,7cm ,则它的周长为 cm
4、如图2,在△ABC 中,DE 是边AC 的垂直平分线,若BC=8cm,AB=10cm ,则△EBC 的周长为 cm (学生可以合作讨论,互帮互学)
5、将一张长方形纸按如图3的方式折叠,BC,BD 为折痕,则∠CBD 为( ) A 、50° B 、90° C 、 100° D 、110°
6.如图4,A 、B 、C 是三个村庄,现要修建一个自来水厂P ,使得自来水厂P 到三个村庄的距离相等,请你作出自来水厂的位置
7.如图5,在直线CD 上求作一点H , 点H 使点H 到点A 和点B 的距离相等.
8.如图6,∠AOB 内有两点P ﹑Q ,求作一点H ,使到∠AOB 两边的距离相等,且到点P 和点Q 的距离相等x k b 1 .c o m
9、四边形ABCD 是正方形,△PAD 是等边三角形,求BPC 的度数。

教师小结:
1、关于轴对称的点,线段,图形的性质与做法。

2、角平分线的性质。

3、垂直平分线的性质。

4、等腰三角形的性质与应用。

5、等边三角形的性质与应用。

板书设计:
第13章 轴对称复习
1、关于轴对称的点,线段,图形的性质与做法。

2、角平分线的性质。

3、垂直平分线的性质。

4、等腰三角形的性质与应用。

图3
图4 图5 图6
新课标第一网系列资料新课标第一网不用注册,免费下载!。

相关文档
最新文档