现代智能温室大棚
智能温室大棚建设需要多少成本?智能温室大棚建设每平方米多少钱?

智能温室大棚建设需要多少成本?智能温室大棚建设每平方米多少钱?智能温室大棚建设俗称智能温室,这种温室大棚造价较高,结构先进且复杂,具备很好的农业工厂化和流水线作业设计基础,适合休闲农业、无土栽培、花卉栽培、蔬菜大棚等使用。
下面远中温室为您详细分析一下智能温室的构成和造价。
一、什么是“智能温室”“智能温室”,是对荷兰文洛式温室及其他增加智能控制系统温室大棚的一种泛称(并非专业名称)。
一般指智能温室其主体结构以为荷兰文洛式温室(双坡面、人字脊)为主,覆盖玻璃或者PC板保温,配备丰富的如遮阳系统、降温系统、强制通风系统、自然通风系统、加温系统、补光系统、智控系统、喷灌系统、苗床系统等各种先进设施设备,大提高了生产管理效率,尤其是物联网智能控制系统的加入,使得智能温室管理效率更更,降低了温室大棚管理的技术难度和门槛。
需要指出的是,一个“智能温室”如果没有增加物联网智能控制系统,严格来讲其只是一种具备“智能温室”结构的普通温室。
二、“智能温室”大棚造价分析“智能温室”大棚造价构成主要分为主体骨架、覆盖材料、系统设备、安装费等四大项。
其中主体骨架按照100*50米长檐高6米的温室来讲,主体骨架造价约为每平方80-120元左右,骨架规格越高,主体骨架造价也就越高。
覆盖材料一般是指温室四周立面和顶部的保温材料,这些材料先要求具有很好透光率,其次要具有良好的保温隔热效果。
智能温室一般使用PC板或者玻璃作为保温覆盖材料,覆盖材料总价约为每平方70-100左右。
其中PC板一般使用8mm、10mm两种,做玻璃可以为单层钢化或双层中空玻璃,双层中空玻璃保温隔热效果较好。
系统设备主要是指智能温室中实现各系统的功能设备,一般配置主要包括外遮阳、内保温、顶开窗、侧开窗、湿帘、风机、照明等系统设备,这些设备平均下来每平方80-150不等,配置越高造价自然越高,其中智控系统造价平均在每平方20-35元之间,北方地区需要增加加温系统,加温系统看构成造价在35-60元之间。
北京智能温室大棚施工方案

北京智能温室大棚施工方案1. 引言智能温室大棚是一种集温室和智能化技术于一体的现代化农业设施。
它利用先进的空调、灌溉、遮阳、通风等设备,以及传感器、控制系统和数据分析技术,实现对温度、湿度、光照、二氧化碳浓度等环境因素的精确监控和自动调节,提供良好的生长环境,从而改善农作物的产量和质量。
本文档旨在提供一个详细的施工方案,以指导北京地区智能温室大棚的建设工作。
2. 设计原则在设计和施工智能温室大棚时,应遵循以下原则:•选择合适的材料:使用经济、耐用、环保的材料,如玻璃、塑料等,以提供良好的保温和光照条件。
•考虑环境适应性:根据北京地区的气候特点,设计适应于冬季寒冷、夏季炎热的温室大棚。
•考虑自动化控制:采用先进的传感器、控制系统和数据分析技术,实现对温度、湿度、光照等环境因素的自动调节和远程监控。
•考虑能源效率:采用高效的能源利用技术,如太阳能电池板、生物质能源等,以减少能源消耗和运营成本。
3. 施工步骤3.1 土地准备•清理土地:清除地表上的杂草、石头和其他障碍物。
•平整土地:对土地进行整平处理,确保建设基地平坦稳固。
3.2 基础建设•地基施工:按照设计要求,进行地基开挖和回填,确保温室大棚基础的稳固性。
•钢架安装:根据设计图纸,安装钢架结构,保证温室大棚的稳定性和承重能力。
•建造墙体:根据设计要求,建造温室大棚的墙体,选择适合北京气候的保温材料。
3.3 安装设备•灌溉系统:安装自动化灌溉系统,根据植物需水量和土壤湿度进行定时和定量的灌溉。
•通风系统:安装通风设备,控制温室内外的空气流动,调节温度和湿度。
•空调系统:根据温室大棚内外温度的变化,安装空调设备实现温度控制。
•光照系统:安装合适的光照设备,确保作物在不同生长阶段得到适当的光照。
•传感器和控制系统:安装温度、湿度、光照、二氧化碳浓度等传感器,并与控制系统连接,实现自动调节和远程监控。
3.4 完善设施•内部配套设施:配置合适的植物栽培设备、栽培介质、种植槽等,以提供良好的种植环境。
什么是智能温室大棚

什么是智能温室大棚概述:智能化温室,通常简称连栋温室或者现代温室,它是设施农业中的高级类型,拥有综合环境控制系统,利用该系统可以直接调节室内温、光、水、肥、气等诸多因素,可以实现全年高产、稳步精细蔬菜、花卉,经济效益好。
近几年随着蔬菜大棚建设的快速发展,智能温室为农业发展带来了推动力。
智能温室的控制一般由信号采集系统、中心计算机、控制系统三大部分组成。
智能温室的定义和优势:温室大棚内温度、湿度、光照强弱以及土壤的温度和含水量等因素,对温室的作物生长起着关键性作用。
温室自动化控制系统是以PLC为核心,采用计算机集散网络控制结构对温室,温室自动化控制系统,温室自动化控制系统内的空气温度、土壤温度、相对湿度、CO2浓度、土壤水份、光照强度、水流量以及PH 值、EC值等参数进行实时自动调节、检测,创造植物生长的最佳环境,使温室内的环境接近人工设想的理想值,以满足温室作物生长发育的需求。
[2] 适用于种苗繁育、高产种植、名贵珍稀花卉培养等场地,以增加温室产品产量,提高劳动生产率。
是高科技成果为规模化生产的现代农业服务的成功范例。
计算机操作人员根据种植作物所需求的数据及控制参数输入计算机,系统即可实现无人自动操作,计算机采集的各项数据准确的显示、统计,为专家决策提供可靠依据。
控制柜设有手动/自动切换开关,必要时可进行手动控制操作。
与传统的人工的控制相比,智能控制最大的好处就是能够相对恒定的控制大棚内部的环境,对于环境要求比较高的植物来说,更能避免因为人为因素而造成生产损失。
相对生产来说,将温室大棚监测控制系统应用到大棚生产以后,产量与质量比人工控制的大棚都有极大的提高,对于不同的种植品种而言,提高产量与质量相对不同,对于档次较高的经济作物来说,生产效率可以提高30%以上。
相对运行成本来的核算,对于有一定规模的种植企业来说,极大的降低了劳动力成本,设备的投入与运行,可以完全由节约下来的劳动力成本中核算出来,使用时间越长,光节约的劳动力成本就是一笔巨大的利润。
智能温室大棚设计方案

智能温室大棚设计方案智能温室大棚设计方案为了提高农作物的生产效率和品质,设计了一种智能温室大棚方案。
该方案采用了现代化的技术手段,以提供良好的生长环境和自动化管理,以实现农作物的高产高效。
首先,该温室大棚采用玻璃或聚碳酸酯材料作为覆盖物,以确保充足的光照和保温效果。
温室大棚的结构设计合理,能够承受风雨和大雪等恶劣天气条件的影响,并提供良好的空气循环和温湿度控制。
其次,该方案引入了自动化的温室控制系统。
该系统能够实时监测温室内外的温度、湿度、光照等参数,并根据设定的阈值进行自动调节。
例如,当温度过高时,系统会自动打开通风设备或喷水降温;当温度过低时,系统会自动启动加热设备。
此外,系统还可以调节光照强度、CO2浓度等因素,以优化农作物的生长环境。
除了温度、湿度和光照的控制,该方案还包括水肥一体化的管理系统。
该系统可以根据农作物的需求,定时定量地给农作物供应水分和营养。
通过传感器和控制阀门,系统可以实现自动灌溉、施肥和调节pH值等功能。
此外,该系统还可以监测土壤的水分含量、肥料浓度等参数,并提供实时的数据分析和报告,以帮助农民更好地管理温室大棚。
此外,该智能温室大棚还配备了远程监控和管理功能。
农民可以通过智能手机或电脑远程监测温室内外的环境,实时了解农作物的生长状况。
当发生紧急情况或需要进行调节时,农民可以远程操作温室控制系统,以实现远程管理。
综上所述,智能温室大棚设计方案采用了现代化的技术手段,提供了良好的生长环境和自动化管理,从而提高农作物的生产效率和品质。
这种智能温室大棚不仅可以减少人力成本和劳动强度,还可以提供可持续的农业生产方式,为农民带来更多的利益和便利。
智能温室大棚总结

智能温室大棚总结
我是以“智能大棚系统”这个角度来阐述的;
“智能温室大棚”字面上很好理解——即大棚智能化了,好似有了一定的思考能力,根据自己的逻辑自动去执行某操作,而不需人为的去控制,如有了一个简单的大脑。
智能化温室大棚是在自动化温室大棚的基础上加装一套智能软
件控制系统(简称“智能大棚系统”)的温室大棚。
智能大棚系统相当于一个简单的大脑。
智能大棚系统是将物联网技术运用到大棚种植中去,运用传感器和软件通过移动平台或者电脑云平台监测控制各项设备的运行,从而对大棚生产进行控制。
通过翻阅资料,我国现在智能大棚系统基本已经实现了对土壤水分、土壤温度、空气温度、空气湿度、光照强度、植物养分含量等参数的检测和数据存储,并基于采集数据进行分析,进而实现调温、调光、换气、水肥一体化等自动控制
智能大棚系统是实时检测温室大棚内部的温度、湿度、二氧化碳浓度、光照等参数。
通过对参数的分析和对比设定好的参数,来调节温室大棚内部的自动化设备来达到农作物最佳的生长环境。
以达到高品质、高产量。
智能温室大棚建设实施方案

智能温室大棚建设实施方案一、背景介绍。
随着人口的增长和气候变化的影响,农业生产面临着越来越大的挑战。
为了提高农业生产的效率和质量,智能温室大棚成为了现代农业发展的重要方向。
智能温室大棚利用先进的技术和设备,能够实现对温度、湿度、光照等环境因素的精准控制,从而为植物的生长提供最佳的条件。
二、建设目标。
1. 提高农业生产效率,通过智能温室大棚的建设,可以提高农作物的产量和质量,满足人们对食品的需求。
2. 节约资源,智能温室大棚能够有效利用水、土壤和光能资源,减少资源的浪费,实现可持续发展。
3. 保护环境,智能温室大棚可以减少化肥、农药的使用,减少对环境的污染,保护生态平衡。
三、建设内容。
1. 地点选择,选择阳光充足、通风良好、水资源充足的地方建设智能温室大棚。
2. 设备选购,选择高效节能的温室设备,包括智能温控系统、自动灌溉系统、光照调节系统等。
3. 种植规划,根据当地的气候条件和市场需求,制定种植计划,选择适合的作物进行种植。
4. 施肥管理,采用有机肥料和微生物肥料,减少化肥的使用,保证作物的健康生长。
5. 病虫害防治,采用生物防治和物理防治的方法,减少农药的使用,保证作物的质量和安全。
6. 人员培训,对农户进行智能温室大棚的管理和操作培训,提高他们的技术水平和管理能力。
四、建设步骤。
1. 确定建设规模和投资预算。
2. 选址和规划设计。
3. 设备选购和安装调试。
4. 种植计划制定和实施。
5. 管理和维护。
六、建设效果。
1. 农产品供应,智能温室大棚可以提供全年稳定的农产品供应,满足市场需求。
2. 经济效益,智能温室大棚可以提高农产品的产量和质量,增加农民的收入。
3. 社会效益,智能温室大棚可以提供就业机会,促进农村经济的发展。
七、总结。
智能温室大棚的建设是现代农业发展的重要举措,它能够提高农业生产的效率和质量,节约资源,保护环境,带动农村经济的发展。
因此,有必要加大对智能温室大棚建设的支持力度,为农业的可持续发展提供更多的保障。
智慧大棚整体解决方案

数据分析与预测
远程监控与管理
通过手机APP或电脑客户端实现对智 慧大棚的远程监控和管理,方便用户 随时了解大棚内的环境参数和作物生 长情况。
对采集到的环境参数数据进行实时分 析,预测作物生长趋势,为农业生产 提供决策支持。
03 智慧大棚的硬件设备
CHAPTER
传感器设备
温度传感器
监测大棚内的温度,为作物提供适宜的生 长环境。
应用拓展
拓展智慧大棚的应用领域,不仅限于农业生产,还可应用于生态 旅游、科普教育等领域。
商业模式创新
创新商业模式,探索智慧大棚与电商、社交等领域的结合,拓展 市场渠道。
谢谢
THANKS
喷淋设备
根据湿度传感器的监 测结果,自动为大棚 内的植物提供适量的 水分。
CO2发生器
根据CO2浓度传感器 的监测结果,自动为 大棚内的植物提供充 足的二氧化碳。
遮阳设备
根据光照传感器的监 测结果,自动调节大 棚内的光照强度。
通风设备
根据温度和湿度的监 测结果,自动调节大 棚内的通风条件。
数据采集与传输设备
数据传输网络
通过无线网络或有线网络 将传感器节点采集到的数 据传输到网关或云平台。
网关设备
用于接收传感器节点发送 的数据,并将其传输到云 平台或本地服务器进行处 理。
云平台
接收网关设备发送的数据 ,进行存储、分析和处理 ,为应用层提供数据支持 。
应用层
智能控制
根据环境参数数据和作物生长需求, 自动调节大棚内的环境参数,如温度 、湿度、光照等。
02 智慧大棚系统架构
CHAPTER
感知层
01
02
03
传感器节点
部署在智慧大棚内的传感 器节点,用于监测环境参 数,如温度、湿度、光照 、土壤养分等。
农业现代化智能温室大棚建设与管理方案

农业现代化智能温室大棚建设与管理方案第一章总论 (3)1.1 研究背景 (3)1.2 目的和意义 (3)1.3 研究内容和方法 (3)1.3.1 研究内容 (3)1.3.2 研究方法 (4)第二章智能温室大棚规划与设计 (4)2.1 场地选择与布局 (4)2.1.1 场地选择 (4)2.1.2 布局规划 (4)2.2 设施选型与配置 (5)2.2.1 设施选型 (5)2.2.2 设施配置 (5)2.3 结构设计 (5)2.3.1 结构类型 (5)2.3.2 结构设计原则 (5)2.4 环境控制系统设计 (5)2.4.1 控制系统组成 (5)2.4.2 控制策略 (6)第三章温室大棚环境监测与控制 (6)3.1 环境参数监测 (6)3.2 环境参数控制 (6)3.3 自动控制系统 (7)3.4 数据采集与分析 (7)第四章智能温室大棚作物种植与管理 (7)4.1 作物选择与种植模式 (7)4.2 肥水管理 (8)4.3 病虫害防治 (8)4.4 产量与质量监测 (8)第五章智能温室大棚设施维护与管理 (9)5.1 设备维护与保养 (9)5.1.1 设备维护 (9)5.1.2 设备保养 (9)5.2 系统故障排查与处理 (9)5.2.1 系统故障排查 (9)5.2.2 故障处理 (10)5.3 安全生产管理 (10)5.3.1 安全生产责任制 (10)5.3.2 安全生产培训 (10)5.3.3 安全生产检查 (10)5.3.4 应急预案 (10)5.4.1 节能措施 (10)5.4.2 环保措施 (10)第六章人力资源与培训 (10)6.1 人员配置与培训 (10)6.1.1 人员配置 (11)6.1.2 培训内容 (11)6.1.3 培训方式 (11)6.2 管理体系与职责 (11)6.2.1 管理体系 (11)6.2.2 职责划分 (12)6.3 团队建设与激励 (12)6.3.1 团队建设 (12)6.3.2 激励措施 (12)6.4 安全教育与培训 (12)6.4.1 安全教育 (12)6.4.2 安全培训 (12)第七章财务管理与投资回报分析 (13)7.1 投资估算与资金筹措 (13)7.1.1 投资估算 (13)7.1.2 资金筹措 (13)7.2 成本控制与管理 (13)7.2.1 成本控制 (13)7.2.2 成本管理 (14)7.3 投资回报分析 (14)7.3.1 投资回报期 (14)7.3.2 投资收益率 (14)7.3.3 投资风险分析 (14)7.4 财务报表与分析 (14)7.4.1 财务报表 (14)7.4.2 财务分析 (14)第八章市场分析与营销策略 (15)8.1 市场需求分析 (15)8.2 品牌建设与推广 (15)8.3 营销渠道与策略 (15)8.4 客户关系管理 (16)第九章政策法规与行业动态 (16)9.1 国家政策法规 (16)9.1.1 政策背景 (16)9.1.2 政策内容 (16)9.2 行业标准与规范 (17)9.2.1 行业标准 (17)9.2.2 行业规范 (17)9.3 行业发展趋势 (17)9.3.2 产业链整合 (17)9.3.3 绿色可持续发展 (17)9.4 国际合作与交流 (17)9.4.1 国际合作 (17)9.4.2 交流与合作 (18)第十章智能温室大棚建设与管理的可持续发展 (18)10.1 可持续发展战略 (18)10.2 生态环保与绿色生产 (18)10.3 技术创新与产业升级 (18)10.4 企业社会责任与公益事业 (18)第一章总论1.1 研究背景我国经济的快速发展,农业现代化水平不断提升,智能温室大棚作为农业现代化的重要组成部分,逐渐成为农业发展的新趋势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代智能温室大棚标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]
现代智能温室大棚
在互联网时代智能农业的概念已越来越多地被提及并受到高度关注,智能设施为现代农业保驾护航,设施农业是指在人工设施保护条件下,通过工程技术手段为生物提供适宜的生长环境,以达到高产优质生产目的的现代农业生产方式。
传统的现代化设施农业是高投入、高耗能的产业,对环境并不友好。
从发达国家来看,高投入常规现代农业已暴露出一系列问题,而且无一不与高投入大规模单一经营的农作方式直接相关,所以提高水肥利用效率是促进现代农业快速发展的关键。
在我国农业生产中,水资源和肥料利用效率低是普遍存在的问题,在很大程度上限制了农业生产的进步。
为此,物联网整合了计算机技术、电子信息技术、自动控制技术、传感器技术及施肥技术,设计了一款农业一体化智能控制系统。
该系统由环境智能采集、专家知识库支持、农业一体化自动灌溉三部分组成,详细功能如下:
1.环境智能采集
系统通过传感器设备智能采集农业土壤的温湿度、PH值、EC值及氮、磷、钾等环境数据,环境数据的智能采集是实现科学水肥灌溉的关键。
通过对采集到的数据分析及系统知识库支持,可判断出农作物在此生长阶段对水肥的需求。
2.专家知识库支持
系统根据农作物在不同环境、不同季节、不同生长阶段的根水肥吸收规律,建立了农作物水肥一体化灌溉专家知识库。
用户结合系统对种植环境的数据采集及农作物对水肥需求的分析,可制定出科学的水肥自动灌溉方案。
3.农业一体化自动灌溉
针对系统专家知识库提供的灌溉意见及农作物各生长时期的农业需求规律,通过控制水量和肥量的供给,实现水肥在土壤的分布层与作物吸收层空间同位供给,该模块可分为控制子系统、配肥子系统和灌溉子系统三部分。
控制子系统根据专家知识库提供的数据,设定配肥比重、灌溉时间、灌溉区域等数据,通过总控制器对多个控制节点进行控制,进行定量定时施肥轮灌。
配肥子系统通过上位机的人机界面、PC 机或远程控制界面设定配肥方案;配肥控制系统通过控制器对直流变频器的控制实现对水泵和肥泵的控制,从而完成配肥过程。
灌溉子系统通过上位机的人机界面、PC 机或远程控制界面设定控制方案,来实现定量定时定区域的灌溉。
农业一体化智能控制系统农业一体化智能控制系统将信息技术与农艺技术相结合,实现了农业的信息化和自动化控制,完成了农作物水肥一体化自动控制生产管理功能。
根据农作物水肥需求规律进行施肥与灌溉,对农田水分和养分进行综合调控和一体化管理,具有肥随水走,利于作物吸收的特点,通过以水促肥、以肥调水,实现水肥耦合,全面提升农田水肥利用效率,不仅节水、节肥、节能、节省人力,而且还可大大提高农作物的产量和质量,同时减轻了增施肥料对环境的污染。