最新-2011(1)《固体物理》试卷a附答案

合集下载

高校物理专业固体物理学期末考试试卷及答案

高校物理专业固体物理学期末考试试卷及答案

高校物理专业固体物理学期末考试试卷及答案一、选择题(每题2分,共40分)1. 下列哪种材料是典型的固体?A. 水B. 空气C. 玻璃D. 油2. 表征物质导电性质的关键因素是:A. 导热系数B. 形变C. 导电子数D. 电阻率3. 相互作用力程远大于它的大小尺度的物质状态是:A. 液体B. 气体C. 等离子体D. 固体4. 根据原子内部粒子组织排列方式的不同,将固体分为晶体和非晶态,以下哪种属于非晶态?A. 钻石B. 石英C. 玻璃D. 铜5. 材料的抗拉强度指的是:A. 材料在拉伸过程中发生断裂的能力B. 材料的硬度C. 材料的耐磨性D. 材料的延展性(以下为第6题至第40题的选项省略)二、填空题(每题3分,共30分)1. 固体的最基本由原子、分子或离子组成的单位结构叫作_____________。

2. 点阵是固体晶体结构中原子、离子或分子的_____________组成的排列方式。

3. 若一堆物体在某种温度下开始熔化,则该温度即为该物质的_____________点。

4. 固体由于结构的紧密性,其密度通常较_____________。

5. 金属中导电电子为材料的_____________。

6. 非晶态材料的特点是_____________无规律的原子组织结构。

(以下为第7题至第30题的空格省略)三、问答题(共30分)1. 简述固体物理学研究的基本内容和意义。

解答:固体物理学研究的基本内容主要包括固体材料的结构、性质和应用等方面。

它通过研究固体的微观结构和宏观性质,探索物质内部的相互作用和运动规律,从而深入了解固体物质的特性和行为。

固体物理学的研究对于提高材料的功能和性能具有重要意义。

通过深入研究固体的结构和性质,我们可以开发出更好的材料,改善材料的导电、导热、机械强度等性能,为社会发展和工业生产提供重要支持。

同时,固体物理学的研究还能够为其他领域的科学研究提供基础和支撑,如电子学、光学、磁学等。

《固体物理学》基础知识训练题及其参考答案

《固体物理学》基础知识训练题及其参考答案

《固体物理》基础知识训练题及其参考答案说明:本内容是以黄昆原著、韩汝琦改编的《固体物理学》为蓝本,重点训练读者在固体物理方面的基础知识,具体以19次作业的形式展开训练。

第一章作业1:1.固体物理的研究对象有那些?答:(1)固体的结构;(2)组成固体的粒子之间的相互作用与运动规律;(3)固体的性能与用途。

2.晶体和非晶体原子排列各有什么特点?答:晶体中原子排列是周期性的,即晶体中的原子排列具有长程有序性。

非晶体中原子排列没有严格的周期性,即非晶体中的原子排列具有短程有序而长程无序的特性。

3.试说明体心立方晶格,面心立方晶格,六角密排晶格的原子排列各有何特点?试画图说明。

有那些单质晶体分别属于以上三类。

答:体心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体的体心位置还有一个原子。

常见的体心立方晶体有:Li,Na,K,Rb,Cs,Fe等。

面心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体每个表面的中心还都有1个原子。

常见的面心立方晶体有:Cu, Ag, Au, Al等。

六角密排晶格:以ABAB形式排列,第一层原子单元是在正六边形的每个角上分布1个原子,且在该正六边形的中心还有1个原子;第二层原子单元是由3个原子组成正三边形的角原子,且其中心在第一层原子平面上的投影位置在对应原子集合的最低凹陷处。

常见的六角密排晶体有:Be,Mg,Zn,Cd等。

4.试说明, NaCl,金刚石,CsCl, ZnS晶格的粒子排列规律。

答:NaCl:先将两套相同的面心立方晶格,并让它们重合,然后,将一套晶格沿另一套晶格的棱边滑行1/2个棱长,就组成Nacl晶格;金刚石:先将碳原子组成两套相同的面心立方体,并让它们重合,然后将一套晶格沿另一套晶格的空角对角线滑行1/4个对角线的长度,就组成金刚石晶格;Cscl::先将组成两套相同的简单立方,并让它们重合,然后将一套晶格沿另一套晶格的体对角线滑行1/2个体对角线的长度,就组成Cscl晶格。

《固体物理学》答案[1]

《固体物理学》答案[1]

* v0 =
(2π )3 v0
1.5 证明:倒格子矢量 G = h1b1 + h2 b2 + h3b3 垂直于密勒指数为 ( h1h2 h3 ) 的晶面系。 证:
v v v uuu v uuu r a r a a a CA = 1 − 3 , CB = 2 − 3 h1 h3 h2 h3 uuu r v Gh1h2h3 ⋅ CA = 0 容易证明 v uuu r Gh1h2h3 ⋅ CB = 0 v v v v G = h1b1 + h2b2 + h3b3 与晶面系 (h1h2 h3 ) 正交。 v v v h k l ( ) 2 + ( )2 + ( )2 ;说明面 a b c
图 1.3 体心立方晶胞
(2)对体心立方晶体,任一个原子有 8 个最近邻,若原子刚性球堆积,如图 1.3 所示,体心位置 O 的原 子 8 个角顶位置的原子球相切, 因为晶胞空间对角线的长度为 3a = 4r , V = a 3 , 晶胞内包含 2 个原子, 所
2* 4 3π( 以ρ = a3
3a 3 4

3 ε 23 2 1 − ε 23 2 ε 33
由上式可得
ε 23 = 0, ε 32 = 0, ε 11 = ε 22 . ε 11 ε = 0 0 0 ε 11 0 0 0 . ε 33
于是得到六角晶系的介电常数
附:证明不存在 5 度旋转对称轴。 证:如下面所示,A,B 是同一晶列上 O 格点的两个最近邻格点,如果绕通过 O 点并垂直于纸面的转轴顺时 针旋转θ 角,则 A 格点转到 A 点,若此时晶格自身重合,点处原来必定有一格点,如果再绕通过 O 点的
3a = 8r , 晶胞体积 V = a 3

《固体物理》A卷参考答案

《固体物理》A卷参考答案

一.简要回答以下各题(本题36分,每题6分) 1. 写出NaCl 和CsCl 的结构类型。

解答:NaCl ,面心立方 CsCl ,简单立方 都是复式格子2. 什么是费米能级?解答:T=0K 时,费米子按泡利不相容原理占据各能级,在K 空间中,占有与不占有电子的分界面为费米面,费米面处的能级为费米能。

若T 不为0K 时,则有一半量子态被电子占据的能级为费米能级。

3. 对于固体学原胞是N 的三维晶体,基元有两个原子,声学支和光学支的振动模式的数目分别是多少? 解答: 3 ,6N-34. 什么叫简正振动模式?简正振动数目、格波数目或格波振动模式数目是否是一回事?解答:为了使问题既简化又能抓住主要矛盾,在分析讨论晶格振动时,将原子间互作用力的泰勒级数中的非线形项忽略掉的近似称为简谐近似. 在简谐近似下, 由N 个原子构成的晶体的晶格振动, 可等效成3N 个独立的谐振子的振动. 每个谐振子的振动模式称为简正振动模式, 它对应着所有的原子都以该模式的频率做振动, 它是晶格振动模式中最简单最基本的振动方式. 原子的振动, 或者说格波振动通常是这3N 个简正振动模式的线形迭加.简正振动数目、格波数目或格波振动模式数目是一回事, 这个数目等于晶体中所有原子的自由度数之和, 即等于3N .5. 什么是周期性边界条件,引入它的理由? 解答:(1) 方便于求解原子运动方程.由本教科书的(3.4)式可知, 除了原子链两端的两个原子外, 其它任一个原子的运动都与相邻的两个原子的运动相关. 即除了原子链两端的两个原子外, 其它原子的运动方程构成了个联立方程组. 但原子链两端的两个原子只有一个相邻原子, 其运动方程仅与一个相邻原子的运动相关, 运动方程与其它原子的运动方程迥然不同. 与其它原子的运动方程不同的这两个方程, 给整个联立方程组的求解带来了很大的困难.(2) 与实验结果吻合得较好.对于原子的自由运动, 边界上的原子与其它原子一样, 无时无刻不在运动. 对于有N 个原子构成的的原子链, 硬性假定0 ,01==N u u 的边界条件是不符合事实的. 其实不论什么边界条件都与事实不符. 但为了求解近似解, 必须选取一个边界条件. 晶格振动谱的实验测定是对晶格振动理论的最有力验证。

固体物理习题参考答案

固体物理习题参考答案

固体物理第一次习题参考答案1.如果将等体积球分别排成下列结构,设x 表示刚球所占体积与总体积之比,证明结构 x简单立方 0.526x π=≈体心立方 30.688x π=≈ 面心立方 20.746x π=≈ 六角密排 20.746x π=≈ 金刚石 30.3416x π=≈解:设钢球半径为r ,立方晶系晶格常数为a ,六角密排晶格常数为a,c 钢球体积为V 1,总体积为V 2(1)简单立方单胞含一个原子,a r =2 52.06343321≈==ππa r V V(2)体心立方取惯用单胞,含两个原子,r a 43= 68.0833423321≈=⋅=ππar V V (3)面心立方取惯用单胞,含4个原子,r a =2 74.0623443321≈=⋅=ππar V V (4)六角密排与面心立方同为密堆积结构,可预期二者具有相同的空间占有率 取图示单胞,含两个原子,a r =2 单胞高度a c 38=(见第2题) 74.062233422321≈=⋅⋅=ππc a r V V (5)金刚石取惯用单胞,含8个原子,r a 2341= 34.01633483321≈=⋅=ππar V V2.试证六方密排密堆积结构中128() 1.6333c a =≈解: 六角密排,如图示,4个原子构成正四面体222)2332(2a a c =⋅+⎪⎭⎫⎝⎛ ⇒ a c 38=3.证明:体心立方晶格的倒格子是面心立方,面心立方的倒格子是体心立方。

证:体心立方基矢取为⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=++-=-+=)(2)(2)(2321k j i a a k j i a a k j i a a其中a 为晶格常数其倒格子基矢,按定义)(2)(21111114212)(223321j i b j i a kj ia a a a b+=+=--⋅=⨯Ω=πππ)(2)(2132k j b a a b +=⨯Ω=π)(2)(2213k i b a a b +=⨯Ω=π可见,体心立方的倒格子是晶格常数为a b π4=的面心立方。

固体物理试卷

固体物理试卷

单选题(1)离子性结合是以()而不是以原子为结合单元,即靠()间的静电库仑作用相互结合.•A离子,正负离子•B正负离子,离子•C负离子,正离子•D正离子,负离子正确答案:A(2)离子晶体中的长光学波可以与()发生共振耦合,引起远红外光在共振频率附近的强烈吸收.•A声波•B光波•C声学波•D光学波正确答案:B(3)晶格振动谱中的光学波之所以称为光学波是因为:在长波极限情况,离子晶体的长光学波可以与电磁波发生(),可以引起远红外光在共振频率附近的强烈吸收.•A散射•B共振•C反射•D折射正确答案:B(4)立方晶系中的体心立方晶格的倒格子结构是•A面心立方晶格•B简立方晶格•C六角密排晶格•D金刚石结构正确答案:A(5)在长波极限情况,()晶体的长光学波可以与电磁波发生共振,引起远红外光在共振频率附近的强烈吸收.•A离子•B分子•C共价•D金属正确答案:A(6)结构介于晶体和非晶体之间,具有准周期结构的称为().•A晶体•B非晶体•C准晶体•D固体正确答案:C(7)下面说法正确的是•A同一周期元素自左向右电负性逐渐减弱;•B同一周期元素自上向下电负性逐渐增强;•C某种元素的原子电负性愈小,表示其吸收电子的能力愈强.•D某种元素的原子电负性愈大,表示其吸收电子的能力愈强.正确答案:D(8)对于化合物而言,原子电负性差别小的易于形成()晶体.•A离子•B金属•C氢•D分子正确答案:D(9)晶体中体积最小的周期性结构单元常称()•A原胞•B晶胞•C布拉伐格子•D晶格正确答案:A(10)石墨具有层状结构,石墨的层与层之间是靠()结合的,这种力很弱,所以石墨硬度较金刚石差。

•A库仑引力•B一种强相互作用力•C范德瓦尔斯力•D氢键正确答案:C(11)原子排列具有周期性的称为•A晶体•B非晶体•C准晶体•D固体正确答案:A(12)金刚石结构的最近邻原子数是•A12•B8•C6•D4正确答案:D(13)布里渊区的特征之一是所有布里渊区都是()对称的.•A轴•B线•C面•D中心正确答案:D(14)贵金属Cu,Ag,Au及Pb,Ni,Al等属于()结构.•A简立方•B体心立方•C六角密堆•D面心立方正确答案:D(15)晶格振动是指•A晶体中的原子、离子围绕平衡位置作的微振动;•B晶体中的电子围绕平衡位置作的微振动;•C晶体中的原子、离子围绕初始位置作的微振动;•D晶体中的电子围绕初始位置作的微振动;正确答案:A(16)离子晶体的长光学波可以与电磁波发生共振,可以引起远红外光在()附近的强烈吸收.•A光波频率•B共振频率•C电磁波频率•D晶格振动频率正确答案:B(17)1920年,()等提出X射线衍射方法,从实验上验证了晶体具有规则几何外形是晶体中原子、分子规则排列结果.•A劳埃•B爱因斯坦•C德拜•D布喇菲正确答案:A(18)共价结合是靠两个原子各贡献一个自旋()的电子,形成所谓的共价键。

固体物理试题分析及答案

固体物理试题分析及答案

1 简述Drude模型的基本思想?2 简述Drude模型的三个基本假设并解释之.• 独立电子近似:电子与电子无相互作用;• 自由电子近似:除碰撞的瞬间外电子与离子无相互作用;• 弛豫时间近似:一给定电子在单位时间内受一次碰撞的几率为1/τ。

3 在drude模型下,固体如何建立热平衡?建立热平衡的方式——与离子实的碰撞• 碰撞前后速度无关联;• 碰撞后获得速度的方向随机;• 速率与碰撞处的温度相适应。

4 Drude模型中对金属电导率的表达式。

5 在自由电子气模型当中,由能量均分定理知在特定温度T下,电子的动能为。

6 在Drude模型当中,按照理想气体理论,自由电子气的密度为n·cm-3,比热Cv=(见上图)。

7 1853年维德曼和弗兰兹在研究金属性质时发现一个定律,即在给定温度下金属的热导系数和电导率的比值为常数。

8 简述Drude模型的不足之处?、Drude模型的局限性• 电子对比热的贡献与温度无关,过大(102)• 电子速度,v2,太小(102)• 什么决定传导电子的数目?价电子?• 磁化率与温度成反比?实际无关• 导体?绝缘体?半导体?9 对于自由电子气体,系统的化学势随温度的增大而降低。

10 请给出Fermi-Dirac统计分布中,温度T下电子的能量分布函数,并进一步解释电子能量分布的特点。

在温度T下,能量为E的状态被占据的几率。

式中E F是电子的化学势,是温度的函数。

当温度为零时,电子最高占据状态能量,称为费米能级。

11 比较分析经典Maxwel-Boltzman统计分布与Fermi-Dirac统计分布对解释自由电子气能量分布的不同之处.• 基态,零度时,电子都处于费米能级以下• 温度升高时,即对它加热,将发生什么情况?• 某些空的能级将被占据,同时,原来被占据的某些能级空了出来。

12 在自由电子气模型当中若电子的能量为E, 则波矢的大小为K= 。

13 若金属的体积为V,那么在k空间中,k的态密度为。

固体物理习题及答案

固体物理习题及答案

固体物理第一章习题及参考答案1.题图1-1表示了一个由两种元素原子构成的二维晶体,请分析并找出其基元,画出其布喇菲格子,初基元胞和W -S 元胞,写出元胞基矢表达式。

解:基元为晶体中最小重复单元,其图形具有一定任意性(不唯一)其中一个选择为该图的正六边形。

把一个基元用一个几何点代表,例如用B 种原子处的几何点代表(格点)所形成的格子 即为布拉菲格子。

初基元胞为一个晶体及其空间点阵中最小周期性重复单元,其图形选择也不唯一。

其中一种选法如图所示。

W -S 也如图所示。

左图中的正六边形为惯用元胞。

2.画出下列晶体的惯用元胞和布拉菲格子,写出它们的初基元胞基矢表达式,指明各晶体的结构及两种元胞中的原子个数和配位数。

(1) 氯化钾 (2)氯化钛 (3)硅 (4)砷化镓 (5)碳化硅 (6)钽酸锂 (7)铍 (8)钼 (9)铂 解:基矢表示式参见教材(1-5)、(1-6)、(1-7)式。

11.对于六角密积结构,初基元胞基矢为→1a =→→+j i a 3(2 →→→+-=j i a a 3(22求其倒格子基矢,并判断倒格子也是六角的。

倒空间 ↑→ji i (B)由倒格基失的定义,可计算得Ω⨯=→→→3212a a b π=a π2)31(→→+j i →→→→→+-=Ω⨯=j i a a a b 31(22132ππ→→→→=Ω⨯=k ca ab ππ22213正空间二维元胞(初基)如图(A )所示,倒空间初基元胞如图(B )所示(1)由→→21b b 、组成的倒初基元胞构成倒空间点阵,具有C 6操作对称性,而C 6对称性是六角晶系的特征。

(2)由→→21a a 、构成的二维正初基元胞,与由→→21b b 、构成的倒初基元胞为相似平行四边形,故正空间为六角结构,倒空间也必为六角结构。

12.用倒格矢的性质证明,立方晶格的(hcl )晶向与晶面垂直。

证:由倒格矢的性质,倒格矢→→→→++=321b l b k b h G hkl 垂直于晶面(h 、k 、l )。

固体物理习题解答-完整版

固体物理习题解答-完整版
n
2.3
若一晶体的相互作用能可以表示为 u ( r ) = − 求 1 )平衡间距 r 0
α
r
m
+
β
rn
3 )体弹性模量 4 )若取
2 )结合能 W (单个原子的)
m = 2, n = 10, r0 = 0.3 nm, W = 4 eV ,计算 α , β 值。
解 1)晶体内能 U ( r ) =
N α β (− m + n ) 2 r r
⎛ ε 11 3ε 22 ⎜ + 4 4 0 ⎞ ⎜ ⎟ ⎜ 3ε 11 3ε 22 ε 23 ⎟ = ⎜ − + 4 4 ⎜ ε 33 ⎟ ⎠ ⎜ 3ε 23 − ⎜ 2 ⎝ − 3ε 11 3ε 22 + 4 4 3ε 11 ε 22 + 4 4 − − 3ε 23 ⎞ ⎟ 2 ⎟ ε ⎟ − 23 ⎟ 2 ⎟ ε 33 ⎟ ⎟ ⎠
h k l ( )2 + ( )2 + ( )2 a b c
说明面指数简单的晶面,其面密度较大,容易解理 证 简单正交系 a ⊥ b ⊥ c 倒格子基矢 b1 = 2π
a1 = ai , a2 = bj , a3 = ck b2 = 2π a3 × a1 a1 ⋅ a2 × a3 b3 = 2π a1 × a2 a1 ⋅ a2 × a3
⎛ ε 11 ε 12 ⎜ 假 设 六 角 晶 系 统 的 介 电 常 数 为 ε = ⎜ ε 21 ε 22 ⎜ε ⎝ 31 ε 32
⎛ ε 11 ε 12 ⎜ ⎜ ε 21 ε 22 ⎜ε ⎝ 31 ε 32
ε 13 ⎞ ⎟ ε 23 ⎟ 则 由 ε = AT ε Ax 得 ε 33 ⎟ ⎠
x
ε 13 ⎞ ⎛ ε 11 − ε 12 − ε 13 ⎞ 0 ⎞ ⎛ ε 11 0 ⎟ ⎟ ⎜ ⎟ ⎜ ε 23 ⎟ = ⎜ − ε 21 ε 22 ε 23 ⎟ 可见 ε = ⎜ 0 ε 22 ε 23 ⎟ 将上式代入 ε = AzT ε Az ⎜ ⎜0 ε ε 33 ⎟ ε 33 ⎟ ε 33 ⎟ 32 ⎠ ⎠ ⎝ ⎠ ⎝ − ε 31 ε 32

固体物理经典复习题及答案(供参考)

固体物理经典复习题及答案(供参考)

一、简答题1.理想晶体答:内在结构完全规则的固体是理想晶体,它是由全同的结构单元在空间无限重复排列而构成的。

2.晶体的解理性答:晶体常具有沿某些确定方位的晶面劈裂的性质,这称为晶体的解理性。

3.配位数答: 晶体中和某一粒子最近邻的原子数。

4.致密度答:晶胞内原子所占的体积和晶胞体积之比。

5.空间点阵(布喇菲点阵)答:空间点阵(布喇菲点阵):晶体的内部结构可以概括为是由一些相同的点子在空间有规则地做周期性无限重复排列,这些点子的总体称为空间点阵(布喇菲点阵),即平移矢量123d 、d 、h h h d 中123,,n n n 取整数时所对应的点的排列。

空间点阵是晶体结构周期性的数学抽象。

6.基元答:组成晶体的最小基本单元,它可以由几个原子(离子)组成,整个晶体可以看成是基元的周期性重复排列而构成。

7.格点(结点)答: 空间点阵中的点子代表着结构中相同的位置,称为结点。

8.固体物理学原胞答:固体物理学原胞是晶格中的最小重复单元,它反映了晶格的周期性。

取一结点为顶点,由此点向最近邻的三个结点作三个不共面的矢量,以此三个矢量为边作的平行六面体即固体物理学原胞。

固体物理学原胞的结点都处在顶角位置上,原胞内部及面上都没有结点,每个固体物理学原胞平均含有一个结点。

9.结晶学原胞答:使三个基矢的方向尽可能的沿空间对称轴的方向,以这样三个基矢为边作的平行六面体称为结晶学原胞,结晶学原胞反映了晶体的对称性,它的体积是固体物理学原胞体积的整数倍,V=n Ω,其中n 是结晶学原胞所包含的结点数, Ω是固体物理学原胞的体积。

10.布喇菲原胞答:使三个基矢的方向尽可能的沿空间对称轴的方向,以这样三个基矢为边作的平行六面体称为布喇菲原胞,结晶学原胞反映了晶体的对称性,它的体积是固体物理学原胞体积的整数倍,V=n Ω,其中n 是结晶学原胞所包含的结点数, Ω是固体物理学原胞的体积11.维格纳-赛兹原胞(W-S 原胞)答:以某一阵点为原点,原点与其它阵点连线的中垂面(或中垂线) 将空间划分成各个区域。

安徽大学期末试卷MK11-12固体物理试卷A考试试题参考答案及评分标准.pdf

安徽大学期末试卷MK11-12固体物理试卷A考试试题参考答案及评分标准.pdf

第 3 页 共3页
所以:
G2
=
2k ¢
G
=
2kG cos ®
=
2kG sin µ
)

=
2¼ 2
sin µ
)
2d sin µ
=
¸(1
分)。

2、证明T = 0K时,能量越低,一维自由电子气的能态密度越大,且每个电子的平均能量为
EF =3。
证明:
p
N (E)
=
2
¢
L 2¼
¢
2 dE =dk

==R2R0¼EL0EFF¢NN~m(2E(kE)=E)ddEE2¼m=~ LRR0pE0E1FEFE,E¡1可1==2见2 =,能E3F量(越2低分,)。能态密度越大(3
安徽大学期末试卷
安徽大学 20 11 —20 12 学年第 二 学期
《 固体物理 》(A 卷)考试试题参考答案及评分标准
一、填空题(每空 2 分,共 30 分)
1、以下对称素1; 2; 3; 4; 6; i; m; ¹3; ¹4; ¹6中无需独立存在的是 ¹3 和 ¹6 。 2、3C-SiC 具有类金刚石结构,则在其体现晶体对称性的一个单胞中包含 4 个 C 原子, 4 个 Si 原子。其晶格振动谱有 6 支色散关系曲线,其中声学支色散关系曲线数目为 3 , 光学支色散关系曲线数目为 3 。 3、晶体的低温热容量有两部分主要贡献,即晶格和电子。低温时,电子热容量正比于温度一 次方,这是因为贡献主要来自于某一特定能量附近的电子,该特定能量为 费米能 。 4、固体的四种基本结合类型分别为离子性结合、共价性结合、金属性结合、范德瓦尔斯结合。 5、能带论的三个基本近似为 绝热近似 、 单电子近似 、 周期场近似 。

2011上学期固体物理A卷答案

2011上学期固体物理A卷答案

湘潭大学 2011 年 上 学期 2009 级 微电子学专业 《固体物理导论》课程期末考试A 卷参考答案及评分标准一、 解释下列概念(每题3分,共30分)1、晶列:布拉伐格子的格点可以看成分列在一系列相互平行的直线系上,这些直 线系称为晶列。

2、赝势:在离子实的内部用假想的势能取代真实的势能,在求解薛定谔方程时,若不改变能量本征值和离子实之间区域的波函数,这个假想的势能就叫做赝势。

3、振动模:由简正坐标所表示的,体系中所有原子一起参与的共同振动,常常称为一个振动模。

4、倒格子:所谓“倒格子”是相对前述位置空间的晶格―“正格子”来说的。

“倒格子”中的每个格点对应于正格子中的一个晶面族;倒格子中从原点至某倒格点的矢量的方向,代表正格子中相应晶面族的法线方向;倒格子至该倒格点的矢量的模,则取正格子相应该晶面族面间距(格矢)的倒数,或该倒数的整倍数。

5、声子间的“碰撞”:利用“声子”的语言表述,即是不同格波之间的相互作用,表示为声子间的“碰撞”。

6、单电子近似:对于任何的单独的一个电子,是在位置固定的离子实和其它所有电子所形成的静态平均势场中运动,这就使得问题简化为单电子的运动问题,这种近似思想被称为单电子近似。

7、结合能:设想把分散的原子(离子或分子)结合成晶体,在这一过程中,将有一定的能量W 释放出来,称为结合能。

8、波包:波包指粒子在空间分布在r 0附近的Δr 范围内,动量取值为0k 附近的k 范围内,粒子的坐标和动量满足量子力学测不准关系。

9、轨道杂化:原子在成键时受到其他原子的作用,原有一些能量较近的原子轨道重新组合成新的原子轨道,使轨道发挥更高的成键效能,这叫做轨道杂化。

10、价带:通常是指半导体或绝缘体中,在0K 时能被电子占满的最高能带。

二、简答题(共35分)1、(12分)简述七大晶系和十四种布拉伐格子答:晶体结构可以按坐标系性质划分为有限种类的形式,即七大晶系。

每种晶系包括一种或数种特征性的原胞,共14种,称作“布拉伐格子”。

固体物理经典复习题及答案(供参考)

固体物理经典复习题及答案(供参考)

固体物理经典复习题及答案(供参考)⼀、简答题1.理想晶体答:内在结构完全规则的固体是理想晶体,它是由全同的结构单元在空间⽆限重复排列⽽构成的。

2.晶体的解理性答:晶体常具有沿某些确定⽅位的晶⾯劈裂的性质,这称为晶体的解理性。

3.配位数答: 晶体中和某⼀粒⼦最近邻的原⼦数。

4.致密度答:晶胞内原⼦所占的体积和晶胞体积之⽐。

5.空间点阵(布喇菲点阵)答:空间点阵(布喇菲点阵):晶体的内部结构可以概括为是由⼀些相同的点⼦在空间有规则地做周期性⽆限重复排列,这些点⼦的总体称为空间点阵(布喇菲点阵),即平移⽮量123d 、d 、h h h d 中123,,n n n 取整数时所对应的点的排列。

空间点阵是晶体结构周期性的数学抽象。

6.基元答:组成晶体的最⼩基本单元,它可以由⼏个原⼦(离⼦)组成,整个晶体可以看成是基元的周期性重复排列⽽构成。

7.格点(结点)答: 空间点阵中的点⼦代表着结构中相同的位置,称为结点。

8.固体物理学原胞答:固体物理学原胞是晶格中的最⼩重复单元,它反映了晶格的周期性。

取⼀结点为顶点,由此点向最近邻的三个结点作三个不共⾯的⽮量,以此三个⽮量为边作的平⾏六⾯体即固体物理学原胞。

固体物理学原胞的结点都处在顶⾓位置上,原胞内部及⾯上都没有结点,每个固体物理学原胞平均含有⼀个结点。

9.结晶学原胞答:使三个基⽮的⽅向尽可能的沿空间对称轴的⽅向,以这样三个基⽮为边作的平⾏六⾯体称为结晶学原胞,结晶学原胞反映了晶体的对称性,它的体积是固体物理学原胞体积的整数倍,V=n ,其中n 是结晶学原胞所包含的结点数, 是固体物理学原胞的体积。

10.布喇菲原胞答:使三个基⽮的⽅向尽可能的沿空间对称轴的⽅向,以这样三个基⽮为边作的平⾏六⾯体称为布喇菲原胞,结晶学原胞反映了晶体的对称性,它的体积是固体物理学原胞体积的整数倍,V=n ,其中n 是结晶学原胞所包含的结点数,是固体物理学原胞的体积11.维格纳-赛兹原胞(W-S 原胞)答:以某⼀阵点为原点,原点与其它阵点连线的中垂⾯(或中垂线) 将空间划分成各个区域。

固体物理学答案详细版

固体物理学答案详细版

《固体物理学》部分习题参考解答第一章1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。

从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a :对于面心立方,处于面心的原子与顶角原子的距离为:R f=2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b=2a 那么,Rf Rb1.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何?答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。

答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。

分别如图所示:1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213)答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。

因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此123o o o a n hda n kd a n id=== ……… (1) 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°由于a 3=–(a 1+ a 2)313()o o a n a a n =-+把(1)式的关系代入,即得()id hd kd =-+ ()i h k =-+根据上面的证明,可以转换晶面族为(001)→(0001),(133)→(1323),(110)→(1100),(323)→(3213),(100)→(1010),(010)→(0110),(213)→(2133)1.5 如将等体积的硬球堆成下列结构,求证球可能占据的最大面积与总体积之比为(1)简立方:6π(2(3)面心立方:6(4)六方密堆积:6(5)金刚石:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宝鸡文理学院试题
课程名称固体物理
适用时间2011年1月试卷类别
A
适用专业、年级、班
2008级物理教育专业
一、简答题(每题
6分,共6×5=30分)
1、试述离子键、共价键、金属键、范德瓦尔斯和氢键的基本特征。

2、试述晶态、非晶态、准晶、多晶和单晶的特征性质。

3、什么叫声子?对于一给定的晶体,它是否拥有一定种类和一定数目的声子?
4、周期性边界条件的物理含义是什么?引入这个条件后导致什么结果?如果晶体是无限大,q 的取值将会怎
样?
5、倒格子的实际意义是什么?一种晶体的正格矢和相应的倒格矢是否有一一对应的关系?二、试证明体心立方格子和面心立方格子互为正倒格子。

(20分)
三、一维晶格,晶格由两种离子组成,间距为R 0,计算晶格的
Madelung 常数α。

(15分)
四、用钯靶K
X 射线投射到NaCl 晶体上,测得其一级反射的掠射角为
5.9°,已知NaCl 晶胞中Na +
与Cl

的距离为 2.82×10-10m ,晶体密度为
2.16g/cm 3。

求:
(1)X 射线的波长;(2)阿伏加德罗常数。

(20分)
五、写出量子谐振子系统自由能,证明在经典极限,自由能为:(15分)
KT
hw KT
U F q q
o ln
宝鸡文理学院试题参考答案与评分标准
课程名称
固体物理



间 2011年1月
试卷类别 A
适用专业、年级、班07物理教育
一、简答题(每小题
6分,5×6=30分)
1、试述离子键、共价键、金属键、范德瓦尔斯和氢键的基本特征。

解:(1)离子键:无方向性,键能相当强;
(2)共价键:饱和性和方向性,其键能也非常强;
(3)
金属键:有一定的方向性和饱和性,其价电子不定域于2个原子实之间,而是在整个晶体中巡游,处于
非定域状态,为所有原子所“共有”;(4)范德瓦尔斯键:依靠瞬时偶极距或固有偶极距而形成,其结合
力一般与
7
r 成反比函数关系,该键结合能较弱;
(5)氢键:依靠氢原子与
2个电负性较大而原子半径较
小的原子(如O ,F ,N 等)相结合形成的。

该键也既有方向性,也有饱和性,并且是一种较弱的键,其
结合能约为50kJ/mol 。

2、试述晶态、非晶态、准晶、多晶和单晶的特征性质。

解:晶态固体材料中的原子有规律的周期性排列,或称为长程有序。

非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。

准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。

另外,晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。

3、什么叫声子?对于一给定的晶体,它是否拥有一定种类和一定数目的声子?
解:声子就是晶格振动中的简谐振子的能量量子,它是一种玻色子,服从玻色-爱因斯坦统计,即具有能量为
)(q w j 的声子平均数为
1
1)
()
/()(T k q w j B j e
q n 对于一给定的晶体,它所对应的声子种类和数目不是固定不变的,而是在一定的条件下发生变化。

4、周期性边界条件的物理含义是什么?引入这个条件后导致什么结果?如果晶体是无限大,q 的取值
将会怎样?
解:由于实际晶体的大小总是有限的,总存在边界,而显然边界上原子所处的环境与体内原子的不同,从而造成边界处原子的振动状态应该和内部原子有所差别。

考虑到边界对内部原子振动状态的影响,
波恩和卡门引入了周期性边界条件。

其具体含义是设想在一长为Na 的有限晶体边界之外,仍然有无穷
多个相同的晶体,并且各块晶体内相对应的原子的运动情况一样,即第j 个原子和第j tN
个原子的运
动情况一样,其中
t =1,2,3…。

引入这个条件后,导致描写晶格振动状态的波矢q 只能取一些分立的不同值。

如果晶体是无限大,波矢
q 的取值将趋于连续。

5、倒格子的实际意义是什么?一种晶体的正格矢和相应的倒格矢是否有一一对应的关系?
解:倒格子的实际意义是由倒格子组成的空间实际上是状态空间(波矢K 空间),在晶体的X 射线
衍射照片上的斑点实际上就是倒格子所对应的点子。

设一种晶体的正格基矢为
1a 、2a 、3a ,根据倒格子基矢的定义:
]
[2]
[2][2213
13
2321a a b a a b a a b 式中
是晶格原胞的体积,即
][32
1a a a ,由此可以唯一地确定相应的倒格子空间。

同样,
反过来由倒格矢也可唯一地确定正格矢。

所以一种晶体的正格矢和相应的倒格矢有一一对应的关系。

二、试证明体心立方格子和面心立方格子互为正倒格子。

(20分)
解:我们知体心立方格子的基矢为:
)
(2
)(2)
(23
21k j i a k j i a k j i a a a a
(3分)
根据倒格子基矢的定义,我们很容易可求出体心立方格子的倒格子基矢为:
)
(2]
[2)(2
][2)(2][221
3
132321j i a a b k i
a a
b k j a a b a
a a (5分)
由此可知,体心立方格子的倒格子为一面心立方格子。

同理可得出面心立方格子的倒格子为一体心立方格子,所以体心立方格子和面心立方格子互为正倒格子。

(2分)
三、一维晶格,晶格由两种离子组成,间距为
R 0,计算晶格的Madelung 常数α。

(15分)
解:任取某一离子为原点,根据
N
j j
a 1
1(+代表与参考离子异号,
-代表与参考离子同号)。

相关文档
最新文档