固体物理试题(B)附答案
初中固体物理试题及答案
初中固体物理试题及答案一、选择题(每题2分,共20分)1. 固体的三种基本类型是()。
A. 晶体、非晶体、准晶体B. 晶体、非晶体、多晶体C. 晶体、非晶体、单晶体D. 晶体、多晶体、准晶体答案:A2. 晶体的特点是()。
A. 无规则排列B. 规则排列C. 部分规则排列D. 完全无序排列答案:B3. 非晶体与晶体的主要区别在于()。
A. 原子排列方式B. 原子大小C. 原子种类D. 原子数量答案:A4. 晶体的熔点通常比非晶体的熔点()。
A. 低B. 高C. 相同D. 不可比较答案:B5. 准晶体是一种介于晶体和非晶体之间的固体,其特点是()。
A. 完全无序排列B. 长程有序但不具备周期性C. 规则排列D. 完全有序排列答案:B6. 晶体的X射线衍射图样是()。
A. 无规则的斑点B. 规则的点状图案C. 连续的曲线D. 无规则的条纹答案:B7. 固体的热膨胀系数是指()。
A. 固体在加热时体积不变B. 固体在加热时体积变化的比率C. 固体在冷却时体积变化的比率D. 固体在加热时质量变化的比率答案:B8. 固体的导电性主要取决于()。
A. 原子的质量B. 原子的排列方式C. 原子的体积D. 原子的数量答案:B9. 金属导电的原因是()。
A. 金属内部有自由移动的电子B. 金属内部有自由移动的原子C. 金属内部有自由移动的离子D. 金属内部有自由移动的分子答案:A10. 半导体的导电性介于()之间。
A. 金属和绝缘体B. 金属和非金属C. 非金属和绝缘体D. 金属和晶体答案:A二、填空题(每题2分,共20分)1. 晶体的三种基本类型是单晶体、多晶体和________。
答案:准晶体2. 晶体的原子排列具有________性。
答案:长程有序3. 非晶体的原子排列具有________性。
答案:短程有序4. 晶体的熔点较高是因为其内部________。
答案:原子排列紧密5. 准晶体的原子排列具有________性。
初中固体物理试题及答案
初中固体物理试题及答案一、选择题(每题2分,共20分)1. 固体物质的分子排列特点是:A. 无规则排列B. 规则排列C. 部分规则排列D. 完全无序排列答案:B2. 固体物质的分子间作用力是:A. 引力B. 斥力C. 引力和斥力D. 无作用力答案:C3. 下列物质中,属于晶体的是:A. 玻璃B. 橡胶C. 食盐D. 沥青答案:C4. 晶体与非晶体的主要区别在于:A. 颜色B. 形状C. 熔点D. 分子排列答案:D5. 固体物质的熔化过程需要:A. 吸收热量B. 放出热量C. 保持热量不变D. 无法判断答案:A6. 固体物质的硬度与下列哪项因素有关:A. 分子间作用力B. 分子质量C. 分子体积D. 分子形状答案:A7. 固体物质的导电性与下列哪项因素有关:A. 分子间作用力B. 分子运动速度C. 电子的自由移动D. 分子的排列方式答案:C8. 晶体的熔点与下列哪项因素有关:A. 晶体的纯度B. 晶体的颜色C. 晶体的形状D. 晶体的密度答案:A9. 固体物质的热膨胀现象说明:A. 分子间距离不变B. 分子间距离减小C. 分子间距离增大D. 分子间距离先增大后减小答案:C10. 固体物质的热传导性与下列哪项因素有关:A. 分子间作用力B. 分子运动速度C. 电子的自由移动D. 分子的排列方式答案:A二、填空题(每空1分,共20分)1. 固体物质的分子排列特点是________,而非晶体物质的分子排列特点是________。
答案:规则排列;无规则排列2. 固体物质的熔化过程中,分子间________,分子间距离________。
答案:作用力减弱;增大3. 晶体的熔点与________有关,而非晶体没有固定的熔点。
答案:晶体的纯度4. 固体物质的硬度与分子间________有关,分子间作用力越强,硬度越大。
答案:作用力5. 固体物质的热膨胀现象是由于温度升高,分子间距离________。
答案:增大三、简答题(每题10分,共30分)1. 简述晶体与非晶体的区别。
固体物理期末试卷及参考解答B
课程编号: 课程名称: 固体物理试卷类型:、卷 卷 考试时间: 120 分钟 1.什么是晶面指数?什么是方向指数?它们有何联系?2.请写出布拉格衍射条件,并写出用波矢和倒格矢表示的衍射条件。
3. 为什么组成晶体的粒子(分子、原子或离子)间的相互作用力除吸引力还要有排斥力?排斥力的来源是什么?4.写出马德隆常数的定义,并计算一维符号交替变化的无限长离子线的马德隆常数。
5.什么叫声子?长光学支格波与长声学支格波的本质上有何区别?6.温度降到很低时。
爱因斯坦模型与实验结果的偏差增大,但此时,德拜模型却与实验结果符合的较好。
试解释其原因。
7. 自由电子模型的基态费米能和激发态费米能的物理意义是什么?费米能与那些因素有关?8.什么是弱周期场近似?按照弱周期场近似,禁带产生的原因是什么?9. 什么是本征载流子?什么是杂质导电?10.什么是紧束缚近似?按照紧束缚近似,禁带是如何产生的?二、计算题(本大题共5小题,每小题10分,共50分) 1. 考虑一在球形区域内密度均匀的自由电子气体,电子系统相对于等量均匀正电荷背景有一小的整体位移,证明在这一位移下系统是稳定的,并给出这一小振动问题的特征频率。
2. 如将布拉维格子的格点位置在直角坐标系中用一组数),,(321n n n 表示,证明:对于面心立方格子,i n 的和为偶数。
3. 设一非简并半导体有抛物线型的导带极小,有效质量m m1.0=*,当导带电子具有k T 300=的平均速度时,计算其能量、动量、波矢和德布罗意波长。
4. 对于原子间距为a ,由N 个原子组成的一维单原子链,在德拜近似下,(1)计算晶格振动频谱;(2)证明低温极限下,比热正比于温度T 。
5. 对原子间距为a 的由同种原子构成的二维密堆积结构,(1)画出前三个布里渊区;(2)求出每原子有一个自由电子时的费米波矢;(3)给出第一布里渊区内接圆的半径;(4)求出内接圆为费米圆时每原子的平均自由电子数;(5)平均每原子有两个自由电子时,在简约布里渊区中画出费米圆的图形。
高校物理专业固体物理学期末考试试卷及答案
高校物理专业固体物理学期末考试试卷及答案一、选择题(每题2分,共40分)1. 下列哪种材料是典型的固体?A. 水B. 空气C. 玻璃D. 油2. 表征物质导电性质的关键因素是:A. 导热系数B. 形变C. 导电子数D. 电阻率3. 相互作用力程远大于它的大小尺度的物质状态是:A. 液体B. 气体C. 等离子体D. 固体4. 根据原子内部粒子组织排列方式的不同,将固体分为晶体和非晶态,以下哪种属于非晶态?A. 钻石B. 石英C. 玻璃D. 铜5. 材料的抗拉强度指的是:A. 材料在拉伸过程中发生断裂的能力B. 材料的硬度C. 材料的耐磨性D. 材料的延展性(以下为第6题至第40题的选项省略)二、填空题(每题3分,共30分)1. 固体的最基本由原子、分子或离子组成的单位结构叫作_____________。
2. 点阵是固体晶体结构中原子、离子或分子的_____________组成的排列方式。
3. 若一堆物体在某种温度下开始熔化,则该温度即为该物质的_____________点。
4. 固体由于结构的紧密性,其密度通常较_____________。
5. 金属中导电电子为材料的_____________。
6. 非晶态材料的特点是_____________无规律的原子组织结构。
(以下为第7题至第30题的空格省略)三、问答题(共30分)1. 简述固体物理学研究的基本内容和意义。
解答:固体物理学研究的基本内容主要包括固体材料的结构、性质和应用等方面。
它通过研究固体的微观结构和宏观性质,探索物质内部的相互作用和运动规律,从而深入了解固体物质的特性和行为。
固体物理学的研究对于提高材料的功能和性能具有重要意义。
通过深入研究固体的结构和性质,我们可以开发出更好的材料,改善材料的导电、导热、机械强度等性能,为社会发展和工业生产提供重要支持。
同时,固体物理学的研究还能够为其他领域的科学研究提供基础和支撑,如电子学、光学、磁学等。
固体物理期末考试题及答案
固体物理期末考试题及答案一、选择题(每题2分,共20分)1. 晶体中原子排列的周期性结构被称为:A. 晶格B. 晶胞C. 晶面D. 晶向答案:A2. 描述固体中电子行为的基本理论是:A. 经典力学B. 量子力学C. 相对论D. 电磁学答案:B3. 以下哪项不是固体物理中的晶体缺陷:A. 点缺陷B. 线缺陷C. 面缺陷D. 体缺陷答案:D4. 固体物理中,晶格振动的量子称为:A. 声子B. 光子C. 电子D. 空穴答案:A5. 以下哪个不是固体的电子能带结构:A. 价带B. 导带C. 禁带D. 散射带答案:D二、简答题(每题10分,共30分)6. 解释什么是晶格常数,并举例说明。
晶格常数是晶体中最小重复单元的尺寸,通常用来描述晶体的周期性结构。
例如,立方晶系的晶格常数a是指立方体的边长。
7. 简述能带理论的基本概念。
能带理论是量子力学在固体物理中的应用,它描述了固体中电子的能量分布。
在固体中,电子的能量不是连续的,而是分成一系列的能带。
价带是电子能量较低的区域,导带是电子能量较高的区域,而禁带是两带之间的能量区域,电子不能存在。
8. 什么是费米能级,它在固体物理中有什么意义?费米能级是固体中电子的最高占据能级,它与温度有关,但与电子的化学势相等。
在绝对零度时,费米能级位于导带的底部,它决定了固体的导电性质。
三、计算题(每题15分,共30分)9. 假设一个一维单原子链的原子质量为m,相邻原子之间的弹簧常数为k。
求该链的声子频率。
解:一维单原子链的声子频率可以通过下面的公式计算:\[ \omega = 2 \sqrt{\frac{k}{m}} \]10. 给定一个半导体的电子亲和能为Ea,工作温度为T,求该半导体在该温度下的费米-狄拉克分布函数。
解:费米-狄拉克分布函数定义为:\[ f(E) = \frac{1}{e^{\frac{E-E_F}{kT}} + 1} \] 其中,E是电子的能量,E_F是费米能级,k是玻尔兹曼常数,T 是温度。
固体物理学考试题及答案
固体物理学考试题及答案一、选择题(每题2分,共20分)1. 固体物理学中,描述晶体中原子排列的周期性规律的数学表达式是()。
A. 布洛赫定理B. 薛定谔方程C. 泡利不相容原理D. 费米-狄拉克统计答案:A2. 固体中电子的能带结构是由()决定的。
A. 原子的核外电子B. 晶体的周期性势场C. 原子的核电荷D. 原子的电子云答案:B3. 在固体物理学中,金属导电的原因是()。
A. 金属中存在自由电子B. 金属原子的电子云重叠C. 金属原子的价电子可以自由移动D. 金属原子的电子云完全重叠答案:C4. 半导体材料的导电性介于导体和绝缘体之间,这是因为()。
A. 半导体材料中没有自由电子B. 半导体材料的能带结构中存在带隙C. 半导体材料的原子排列无序D. 半导体材料的电子云完全重叠答案:B5. 固体物理学中,描述固体中电子的波动性的数学表达式是()。
A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 热力学第一定律答案:A6. 固体中声子的概念是由()提出的。
A. 爱因斯坦B. 德拜C. 玻尔D. 费米答案:B7. 固体中电子的费米能级是指()。
A. 电子在固体中的最大能量B. 电子在固体中的最小能量C. 电子在固体中的平均水平能量D. 电子在固体中的动能答案:A8. 固体物理学中,描述固体中电子的分布的统计规律是()。
A. 麦克斯韦-玻尔兹曼统计B. 费米-狄拉克统计C. 玻色-爱因斯坦统计D. 高斯统计答案:B9. 固体中电子的能带理论是由()提出的。
A. 薛定谔B. 泡利C. 费米D. 索末菲答案:D10. 固体中电子的跃迁导致()的发射或吸收。
A. 光子B. 声子C. 电子D. 质子答案:A二、填空题(每题2分,共20分)1. 固体物理学中,晶体的周期性势场是由原子的______产生的。
答案:周期性排列2. 固体中电子的能带结构中,导带和价带之间的能量区域称为______。
答案:带隙3. 金属导电的原因是金属原子的价电子可以______。
2010-2011(1)《固体物理》试卷B附答案
c/2 a 2r
原子所处的环境与体内原子的不同,从而造成边界处原子的振动状态应 该和内部原子有所差别。考虑到边界对内部原子振动状态的影响,波恩 和卡门引入了周期性边界条件。其具体含义是设想在一长为的有限晶体 边界之外,仍然有无穷多个相同的晶体,并且各块晶体内相对应的原子 的运动情况一样,即第个原子和第个原子的运动情况一样,其中=1, 2,3…。 引入这个条件后,导致描写晶格振动状态的波矢只能取一些分立的 不同值。 如果晶体是无限大,波矢的取值将趋于连续。 4、金属自由电子论作了哪些假设?得到了哪些结果? 解:金属自由论假设金属中的价电子在一个平均势场中彼此独立,如 同理想气体中的粒子一样是“自由”的,每个电子的运动由薛定谔方程来 描述;电子满足泡利不相容原理,因此,电子不服从经典统计而服从量 子的费米-狄拉克统计。根据这个理论,不仅导出了魏德曼-佛兰兹定 律,而且而得出电子气对晶体比热容的贡献是很小的。 5、简立方、面心立方、体心立方的基本特征: 简立方的基本特征:晶胞常数为a,包括一个原子,半径为r,点阵内最 近原子距离为a,配位数为6。故,则致密度为: 面心立方基本特征: 晶胞常数为a,包括四个原子,半径为r,点阵内最近原子距离为,配位 数为12。故,则致密度为: 体心立方基本特征: 晶胞常数为a,包括两个原子,半径为r,点阵内最近原子距离为,配位 数为8。故,则致密度为: 密排六方基本特征:晶胞常数为a,包括六个原子,半径为r,点阵内最 近原子距离为 a=2r,配位数为12。,则, 则致密度为:
三、已知由个相同原子组成的一维单原子晶格格波的态密度可表示为
(15) 。 式中是格波的最高频率。求证它的振动模总数恰好等于。 解:由题意可知该晶格的振动模总数为 (3分) (2分) (5分) 四、由个原子(离子)所组成的晶体的体积可写成。式中为每个原子 (离子)平均所占据的体积;为粒子间的最短距离;为与结构有关的常 数。试求下列各种结构的值:求:简单立方点阵;面心立方点阵;体心 立方点阵;金刚石点阵; NaCl点阵;(15分) 解:(1)在简单立方点阵中,每个原子平均所占据的体积,故; (2)在面心立方点阵中,每个原子平均所占据的体积,故; (3)在体心立方点阵,每个原子平均所占据的体积,故; (4)在金刚石点阵中,每个原子平均所占据的体积,故; (5)在NaCl点阵中,每个原子平均所占据的体积;故。
大学固体物理试题及答案
大学固体物理试题及答案一、选择题(每题5分,共20分)1. 下列关于晶体结构的描述,错误的是:A. 晶体具有规则的几何外形B. 晶体内部的原子排列是无序的C. 晶体具有各向异性D. 晶体具有固定的熔点答案:B2. 固体物理中,描述电子在晶格中运动的方程是:A. 薛定谔方程B. 牛顿运动方程C. 麦克斯韦方程D. 热力学第一定律答案:A3. 固体中,电子能带的宽度与下列哪个因素有关?A. 电子的电荷B. 电子的质量C. 晶格的周期性D. 电子的自旋答案:C4. 金属导电的原因是:A. 金属内部存在自由电子B. 金属内部存在空穴C. 金属内部存在离子D. 金属内部存在分子答案:A二、填空题(每题5分,共20分)1. 晶体的周期性结构可以用_________来描述。
答案:晶格常数2. 能带理论中,电子在能带之间跃迁需要吸收或释放_________。
答案:光子3. 根据泡利不相容原理,一个原子轨道内最多可以容纳_________个电子。
答案:24. 半导体的导电性介于金属和绝缘体之间,其原因是半导体的_________较窄。
答案:能带间隙三、简答题(每题10分,共30分)1. 简要说明什么是费米能级,并解释其在固体物理中的重要性。
答案:费米能级是指在绝对零度时,电子占据的最高能级。
在固体物理中,费米能级是描述电子分布状态的重要参数,它决定了固体的导电性、磁性等物理性质。
2. 解释为什么金属在常温下具有良好的导电性。
答案:金属具有良好的导电性是因为其内部存在大量的自由电子,这些电子可以在电场作用下自由移动,形成电流。
3. 什么是超导现象?请简述其物理机制。
答案:超导现象是指某些材料在低于某一临界温度时,电阻突然降为零的现象。
其物理机制与电子之间的库珀对形成有关,这些库珀对在低温下能够无阻碍地流动,从而实现零电阻。
四、计算题(每题15分,共30分)1. 假设一个一维晶格,晶格常数为a,电子的有效质量为m*,求电子在第一能带的最低能级。
固体物理试题及答案
固体物理试题及答案一、选择题(每题2分,共10分)1. 固体物理中,晶体的周期性结构是通过哪种方式描述的?A. 电子云B. 原子轨道C. 布洛赫定理D. 费米面答案:C2. 以下哪种材料不属于半导体材料?A. 硅B. 锗C. 铜D. 砷化镓答案:C3. 在固体物理中,能带理论描述的是:A. 电子在固体中的自由运动B. 电子在固体中的局域化C. 电子在固体中的能级分布D. 电子在固体中的跃迁过程答案:C4. 固体中的声子是:A. 一种基本粒子B. 一种准粒子C. 一种实际存在的粒子D. 一种不存在的粒子答案:B5. 以下哪种效应与超导现象无关?A. 迈斯纳效应B. 约瑟夫森效应C. 霍尔效应D. 量子隧穿效应答案:C二、填空题(每题2分,共20分)1. 固体物理中,描述电子在周期性势场中的运动的定理是______。
答案:布洛赫定理2. 固体中的能带结构是由______决定的。
答案:电子波函数3. 在固体中,电子的费米能级是______。
答案:电子占据的最高能级4. 固体中的电子输运性质可以通过______来描述。
答案:电导率5. 固体中的晶格振动可以用______来描述。
答案:声子6. 固体中的电子-声子相互作用会导致______。
答案:电子散射7. 固体中的能隙是指______。
答案:价带顶部和导带底部之间的能量差8. 超导体的临界温度是指______。
答案:超导相变发生的温度9. 固体中的霍尔效应是由于______。
答案:电子在磁场中的偏转10. 固体中的磁阻效应是由于______。
答案:电子在磁场中的运动受到阻碍1. 简述固体物理中能带理论的基本思想。
答案:能带理论的基本思想是将固体中的电子视为在周期性势场中运动的量子粒子。
由于周期性势场的存在,电子的能级不再是离散的,而是形成了连续的能带。
这些能带决定了固体的电子结构和性质,如导电性、磁性和光学性质等。
2. 描述固体中的声子是如何产生的。
答案:固体中的声子是由于晶格振动的量子化而产生的准粒子。
2014年武汉科技大学考研试题613固体物理(B卷)和标准答案
六、一维周期场,电子的波函数 应当满足布洛赫定理。若晶格常数为 ,电子的波函数为 ,试求电子在该状态的波矢。(25分)
硕士研究生入学考试试题参考答案(B)
一、略
二、解:粒子面密度 (d是面间距,是粒子体密度),面间距:
姓名:报考专业:准考证号码:
密封线内不要写题
2014年攻读硕士学位研究生入学考试试题
科目名称:固体物理(□A卷√B卷)科目代码:613
考试时间:3小时满分:150分
可使用的常用工具:□无√计算器√直尺√圆规(请在使用工具前打√)
注意:所有答题内容必须写在答题纸上,写在试题或草稿纸上的一律无效(h1h2h3)是晶面{100}和{111}时, 取最小值 ,这时面上的粒子密度最大. (上述晶面对应于结晶学原胞的{111}面)。此时 , ,
三、已知结合能公式 ,且 , , , , 则
四、模式密度的一般表示式 对一维单原子链 则
五、解: ,
六、解:在一维周期势场中运动的电子波函数满足 ,由此得
一、名词解释(共5小题,每小题5分,共25分)
1、固体物理学原胞2、晶体的内能3、声学波4、费米面5、布洛赫电子
二、试求面心立方晶格中粒子密度最大的晶面,并计算这个最大面密度的表达式.(25分)
三、已知立方 的晶格常数为 ,试计算其结合能 (焦耳/摩尔)(25分)
四、证明由N个质量为m的相同原子组成的一维单原子晶格,每单位频率间隔内的振动模式数为 。(25分)
初中固体物理试题及答案
初中固体物理试题及答案一、选择题(每题2分,共20分)1. 下列物质中,属于晶体的是:A. 玻璃B. 食盐C. 沥青D. 橡胶答案:B2. 晶体和非晶体的主要区别在于:A. 硬度B. 密度C. 熔点D. 内部原子排列答案:D3. 晶体熔化时,其温度:A. 升高B. 降低C. 不变D. 先升高后降低答案:C4. 下列物质中,熔点最高的是:A. 冰B. 铜C. 铁D. 钨答案:D5. 晶体和非晶体的熔化过程都需要:A. 吸热B. 放热C. 既不吸热也不放热D. 先吸热后放热答案:A6. 晶体和非晶体在凝固过程中的区别在于:A. 晶体放热,非晶体吸热B. 晶体吸热,非晶体放热C. 晶体和非晶体都放热D. 晶体和非晶体都吸热答案:C7. 晶体和非晶体在凝固过程中,晶体会:A. 释放热量B. 吸收热量C. 既不吸热也不放热D. 先吸热后放热答案:A8. 晶体和非晶体在凝固过程中,非晶体会:A. 释放热量B. 吸收热量C. 既不吸热也不放热D. 先吸热后放热答案:B9. 晶体和非晶体在凝固过程中,晶体和非晶体都会:A. 体积膨胀B. 体积缩小C. 体积不变D. 先膨胀后缩小答案:B10. 晶体和非晶体在凝固过程中,晶体和非晶体都会:A. 释放热量B. 吸收热量C. 既不吸热也不放热D. 先吸热后放热答案:A二、填空题(每空1分,共10分)11. 晶体的内部原子排列具有_________性,而非晶体的内部原子排列具有_________性。
答案:规则;无规则12. 晶体在熔化过程中,温度_________,而非晶体在熔化过程中,温度_________。
答案:不变;升高13. 晶体在凝固过程中,会_________热量,而非晶体在凝固过程中,会_________热量。
答案:释放;吸收14. 晶体和非晶体在凝固过程中,体积都会_________。
答案:缩小15. 晶体和非晶体在凝固过程中,都会_________热量。
初中固体物理试题及答案
初中固体物理试题及答案一、选择题(每题3分,共30分)1. 物体的内能与温度有关,温度升高,内能增大。
这是因为()A. 物体的机械能增大B. 分子的动能增大C. 分子的势能增大D. 分子的动能和势能都增大2. 物质的三态变化中,下列哪种变化是吸热的?()A. 凝固B. 液化C. 升华D. 凝华3. 晶体和非晶体的主要区别在于()A. 颜色B. 硬度C. 熔点D. 有无规则的几何外形4. 以下哪种物质在常温下是固体?()A. 水银B. 酒精C. 氧气D. 冰5. 晶体熔化时,温度保持不变,这是因为()A. 吸收热量,温度升高B. 吸收热量,温度不变C. 放出热量,温度不变D. 放出热量,温度降低6. 物质由固态变为液态的过程叫做()A. 凝固B. 液化C. 熔化D. 升华7. 物质由气态直接变为固态的过程叫做()A. 凝固B. 液化C. 凝华D. 升华8. 物质由液态变为固态的过程叫做()A. 凝固B. 液化C. 熔化D. 凝华9. 物质由固态直接变为气态的过程叫做()A. 凝固B. 液化C. 升华D. 凝华10. 物质由液态变为气态的过程叫做()A. 凝固B. 液化C. 熔化D. 蒸发二、填空题(每空2分,共20分)11. 物质的三态变化中,由固态变为液态的过程叫做______,由液态变为固态的过程叫做______。
12. 晶体在熔化过程中,吸收热量,但温度保持______,而非晶体在熔化过程中,吸收热量,温度会______。
13. 物质由液态变为气态的过程叫做______,这个过程需要______热量。
14. 物质由气态变为液态的过程叫做______,这个过程会______热量。
15. 物质由固态变为气态的过程叫做______,这个过程需要______热量。
三、简答题(每题10分,共20分)16. 请简述晶体和非晶体在熔化过程中的主要区别。
17. 请解释为什么冬天室外的水管容易破裂。
四、实验题(每题15分,共30分)18. 实验目的:探究晶体熔化时温度的变化情况。
固体物理考题及答案二
目的:考核基本知识。
1、晶格常数为的体心立方晶格,原胞体积等于 C 。
A. B. C. D.2、面心立方密集的致密度是 B 。
A. 0.76 B. 0.74 C. 0.68 D. 0.623、表征晶格周期性的概念是 A 。
A. 原胞或布拉伐格子B. 原胞或单胞C. 单胞或布拉伐格子D. 原胞和基元4、晶格常数为的一维单原子链,倒格子基矢的大小为 D 。
A. B. C. D.5、晶格常数为a 的简立方晶格的(010)面间距为 A 。
A. aB. 3aC. 4aD. 5a6、晶格振动的能量量子称为 CA. 极化子B. 激子C. 声子D. 光子7、由N 个原胞组成的简单晶体,不考虑能带交叠,则每个s 能带可容纳的电子数为 C 。
A. N/2B. NC. 2ND. 4N8、二维自由电子的能态密度,与能量的关系是正比于 B 。
A. B. C. D.9、某种晶体的费米能决定于 C 。
A. 晶体的体积B. 晶体中的总电子数C. 晶体中的电子浓度D. 晶体的形状10、晶体结构的实验研究方法是 A 。
A. X 射线衍射B. 中子非弹性散射C. 回旋共振D. 霍耳效应1、波矢空间与倒格空间(或倒易空间)有何关系? 为什么说波矢空间内的状态点是准连续的?波矢空间与倒格空间处于统一空间, 倒格空间的基矢分别为, 而波矢空间的基矢分别为, N1、N2、N3分别是沿正格子基矢方向晶体的原胞数目.倒格空间中一个倒格点对应的体积为,波矢空间中一个波矢点对应的体积为,即波矢空间中一个波矢点对应的体积, 是倒格空间中一个倒格点对应的体积的1/N. 由于N 是晶体的原胞数目,数目巨大,所以一个波矢点对应的体积与一个倒格点对应的体积相比是极其微小的。
也就是说,波矢点在倒格空间看是极其稠密的。
因此, 在波矢空间内作求和处理时,可把波矢空间内的状态点看成是准连续的。
2、在甚低温下, 德拜模型为什么与实验相符?在甚低温下, 不仅光学波得不到激发, 而且声子能量较大的短声学格波也未被激发, 得到激发的只是声子能量较小的长声学格波. 长声学格波即弹性波. 德拜模型只考虑弹性波对热容的贡献. 因此, 在甚低温下, 德拜模型与事实相符, 自然与实验相符.3、解释导带、满带、价带和带隙对于导体:电子的最高填充能带为不满带,称该被部分填充的最高能带为导带,在电场中具有被部分填充的能带结构的晶体具有导电性。
固体物理学基础知识训练题及其参考答案
固体物理学基础知识训练题及其参考答案《固体物理》基础知识训练题及其参考答案说明:本内容是以黄昆原着、韩汝琦改编的《固体物理学》为蓝本,重点训练读者在固体物理方面的基础知识,具体以19次作业的形式展开训练。
第一章作业1:1.固体物理的研究对象有那些答:(1)固体的结构;(2)组成固体的粒子之间的相互作用与运动规律;(3)固体的性能与用途。
2.晶体和非晶体原子排列各有什么特点答:晶体中原子排列是周期性的,即晶体中的原子排列具有长程有序性。
非晶体中原子排列没有严格的周期性,即非晶体中的原子排列具有短程有序而长程无序的特性。
3.试说明体心立方晶格,面心立方晶格,六角密排晶格的原子排列各有何特点试画图说明。
有那些单质晶体分别属于以上三类。
答:体心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体的体心位置还有一个原子。
常见的体心立方晶体有:Li,Na,K,Rb,Cs,Fe等。
面心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体每个表面的中心还都有1个原子。
常见的面心立方晶体有:Cu, Ag, Au, Al等。
六角密排晶格:以ABAB形式排列,第一层原子单元是在正六边形的每个角上分布1个原子,且在该正六边形的中心还有1个原子;第二层原子单元是由3个原子组成正三边形的角原子,且其中心在第一层原子平面上的投影位置在对应原子集合的最低凹陷处。
常见的六角密排晶体有:Be,Mg,Zn,Cd等。
4.试说明, NaCl,金刚石,CsCl, ZnS晶格的粒子排列规律。
答:NaCl:先将两套相同的面心立方晶格,并让它们重合,然后,将一套晶格沿另一套晶格的棱边滑行1/2个棱长,就组成Nacl晶格;金刚石:先将碳原子组成两套相同的面心立方体,并让它们重合,然后将一套晶格沿另一套晶格的空角对角线滑行1/4个对角线的长度,就组成金刚石晶格;Cscl::先将组成两套相同的简单立方,并让它们重合,然后将一套晶格沿另一套晶格的体对角线滑行1/2个体对角线的长度,就组成Cscl晶格。
固体物理考试试卷2(广工大版、附有参考答案)
23
J K 1 )
(15 分)
m N AZ
M
10.5 103 6.02 10 23 1 5.86 10 28 (m 3 ) 3 107.87 10
3 2 n 3 3 2 5.86 10 28 1.20 1010 (m 1 )
2 2kF (1.055 10 34 ) 2 (1.20 1010 ) 2 3. 费米能量 E F 8.80 10 19 J 5.50eV 31 2me 2 9.11 10
倒格子基矢:
3 a j 2 ai 2
3 a j ck 2 ai 2
3 ca j 2 caj 2 i
3 a ai j ck 2 2 a2 c 2 3 b1 2 2 i 3j 3a 3 2 ca 2 3 a c k 2 ai 2 j 2 3 c a1 b2 2 2 i 3j 3a 3 2 ca 2 3 a 3 a 2 ai 2 j 2 ai 2 j a2 a1 2 k b3 2 2 c 3 2 ca 2
的平衡距离 r0 。
参考答案: 令
u (r ) r
r r0
12 6 0 12 13 12 7 0 得,原子间平衡距离 r0 1 (m) r0 r0
10. 阐述半导体能带结构的基本特征。
参考答案:价带为满带,价带与导带之间存在较窄的禁带,其宽度较绝缘体的窄。
i ( qna t ) U 2 n (na ) A1e i[ q ( na d ) t ] 其中方程特解为 ,将其代入上述方程得: U 2 n 1 (na ) A2 e
固体物理经典复习题及答案(供参考)
固体物理经典复习题及答案(供参考)⼀、简答题1.理想晶体答:内在结构完全规则的固体是理想晶体,它是由全同的结构单元在空间⽆限重复排列⽽构成的。
2.晶体的解理性答:晶体常具有沿某些确定⽅位的晶⾯劈裂的性质,这称为晶体的解理性。
3.配位数答: 晶体中和某⼀粒⼦最近邻的原⼦数。
4.致密度答:晶胞内原⼦所占的体积和晶胞体积之⽐。
5.空间点阵(布喇菲点阵)答:空间点阵(布喇菲点阵):晶体的内部结构可以概括为是由⼀些相同的点⼦在空间有规则地做周期性⽆限重复排列,这些点⼦的总体称为空间点阵(布喇菲点阵),即平移⽮量123d 、d 、h h h d 中123,,n n n 取整数时所对应的点的排列。
空间点阵是晶体结构周期性的数学抽象。
6.基元答:组成晶体的最⼩基本单元,它可以由⼏个原⼦(离⼦)组成,整个晶体可以看成是基元的周期性重复排列⽽构成。
7.格点(结点)答: 空间点阵中的点⼦代表着结构中相同的位置,称为结点。
8.固体物理学原胞答:固体物理学原胞是晶格中的最⼩重复单元,它反映了晶格的周期性。
取⼀结点为顶点,由此点向最近邻的三个结点作三个不共⾯的⽮量,以此三个⽮量为边作的平⾏六⾯体即固体物理学原胞。
固体物理学原胞的结点都处在顶⾓位置上,原胞内部及⾯上都没有结点,每个固体物理学原胞平均含有⼀个结点。
9.结晶学原胞答:使三个基⽮的⽅向尽可能的沿空间对称轴的⽅向,以这样三个基⽮为边作的平⾏六⾯体称为结晶学原胞,结晶学原胞反映了晶体的对称性,它的体积是固体物理学原胞体积的整数倍,V=n Ω,其中n 是结晶学原胞所包含的结点数, Ω是固体物理学原胞的体积。
10.布喇菲原胞答:使三个基⽮的⽅向尽可能的沿空间对称轴的⽅向,以这样三个基⽮为边作的平⾏六⾯体称为布喇菲原胞,结晶学原胞反映了晶体的对称性,它的体积是固体物理学原胞体积的整数倍,V=n Ω,其中n 是结晶学原胞所包含的结点数, Ω是固体物理学原胞的体积 11.维格纳-赛兹原胞(W-S 原胞)答:以某⼀阵点为原点,原点与其它阵点连线的中垂⾯(或中垂线) 将空间划分成各个区域。
固体物理期末试卷及参考解答208-b (2)
课程编号: 课程名称: 固体物理试卷类型:卷 考试形式:开 考试时间: 120 分钟 一、简答题(本大题共10小题,每小题5分,共50分)1.什么是晶面指数?什么是方向指数?它们有何联系?2.请写出布拉格衍射条件,并写出用波矢和倒格矢表示的衍射条件。
3. 为什么组成晶体的粒子(分子、原子或离子)间的相互作用力除吸引力还要有排斥力?排斥力的来源是什么?4.写出马德隆常数的定义,并计算一维符号交替变化的无限长离子线的马德隆常数。
5.什么叫声子?长光学支格波与长声学支格波的本质上有何区别?6.温度降到很低时。
爱因斯坦模型与实验结果的偏差增大,但此时,德拜模型却与实验结果符合的较好。
试解释其原因。
7. 自由电子模型的基态费米能和激发态费米能的物理意义是什么?费米能与那些因素有关?8.什么是弱周期场近似?按照弱周期场近似,禁带产生的原因是什么?9. 什么是本征载流子?什么是杂质导电?10.什么是紧束缚近似?按照紧束缚近似,禁带是如何产生的?二、计算题(本大题共5小题,每小题10分,共50分)1. 考虑一在球形区域内密度均匀的自由电子气体,电子系统相对于等量均匀正电荷背景有一小的整体位移,证明在这一位移下系统是稳定的,并给出这一小振动问题的特征频率。
2. 如将布拉维格子的格点位置在直角坐标系中用一组数),,(321n n n 表示,证明:对于面心立方格子,i n 的和为偶数。
3. 设一非简并半导体有抛物线型的导带极小,有效质量m m 1.0=*,当导带电子具有k T 300=的平均速度时,计算其能量、动量、波矢和德布罗意波长。
4. 对于原子间距为a ,由N 个原子组成的一维单原子链,在德拜近似下, (1)计算晶格振动频谱;(2)证明低温极限下,比热正比于温度T 。
5. 对原子间距为a 的由同种原子构成的二维密堆积结构, (1)画出前三个布里渊区;(2)求出每原子有一个自由电子时的费米波矢; (3)给出第一布里渊区内接圆的半径;(4)求出内接圆为费米圆时每原子的平均自由电子数;(5)平均每原子有两个自由电子时,在简约布里渊区中画出费米圆的图形。
大学固体物理试题及答案
大学固体物理试题及答案一、选择题(每题2分,共20分)1. 固体物理中,晶格振动的量子化描述中,声子是()。
A. 电子的量子化B. 光子的量子化C. 晶格振动的量子化D. 磁场的量子化答案:C2. 能带理论中,价带和导带之间的区域称为()。
A. 能隙B. 能级C. 能带D. 能区答案:A3. 在固体中,电子的自由度不包括()。
A. 位置B. 动量C. 能量D. 质量答案:D4. 固体物理中,金属的自由电子模型是由哪位科学家提出的?()A. 薛定谔B. 泡利C. 德鲁德D. 海森堡答案:C5. 固体物理中,半导体的能带结构中,导带和价带之间的能隙称为()。
A. 能隙B. 能级C. 能带D. 能区答案:A6. 晶格常数是指()。
A. 晶格中原子间的平均距离B. 晶格中原子间的最大距离C. 晶格中原子间的最小距离D. 晶格中原子间的任意距离答案:A7. 固体物理中,费米能级是指()。
A. 最高占据能级的电子能量B. 最低未占据能级的电子能量C. 电子从导带跃迁到价带所需的能量D. 电子从价带跃迁到导带所需的能量答案:B8. 固体物理中,布拉格反射定律描述的是()。
A. X射线在晶体中的衍射现象B. 电子在晶体中的衍射现象C. 光在晶体中的反射现象D. 声波在晶体中的反射现象答案:A9. 固体物理中,超导现象是指()。
A. 材料在低温下电阻突然消失的现象B. 材料在高温下电阻突然消失的现象C. 材料在低温下电阻突然增加的现象D. 材料在高温下电阻突然增加的现象答案:A10. 固体物理中,霍尔效应是指()。
A. 电流通过导体时,导体两端产生电压的现象B. 电流通过导体时,导体两侧产生磁场的现象C. 电流通过导体时,导体内部产生电场的现象D. 电流通过导体时,导体内部产生磁场的现象答案:B二、填空题(每题2分,共20分)1. 固体物理中,晶格振动的量子化描述中,声子是晶格振动的_______。
答案:量子化2. 固体物理中,金属的自由电子模型中,电子被视为_______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宝鸡文理学院试题
课程名称 固体物理 适 用 时 间 2010年1月12日 试卷类别 B 适用专业、年级、班06级物理教育1-3班
一、简要回答以下问题:(每小题6分,共30分)
2、试述离子键、共价键、金属键、范德瓦尔斯和氢键的基本特征。
5、金属自由电子论作了哪些假设?得到了哪些结果?
3、什么叫声子?对于一给定的晶体,它是否拥有一定种类和一定数目的声子?
1、试述晶态、非晶态、准晶、多晶和单晶的特征性质。
4、周期性边界条件的物理含义是什么?引入这个条件后导致什么结果?如果晶体是无限大,
q 的取值将会怎样?
二、(20分)
利用刚球密堆模型,求证球可能占据的最大体积与总体积之比为
(1)简单立方π / 6;(2 / 6;
(3 / 6(4 / 6;(5 / 16。
三、(10分)
已知由N 个相同原子组成的一维单原子晶格格波的态密度可表示为
2122)(2)(--=
ωωπωρm N 式中m ω是格波的最高频率。
求证它的振动模总数恰好等于N 。
四、(20分)
试证明体心立方格子和面心立方格子互为正倒格子。
五、计算题 (每小题10分,2×10=20分)
用钯靶K α X 射线投射到NaCl 晶体上,测得其一级反射的掠射角为5.9°,已知NaCl
晶胞中Na +与Cl -的距离为2.82×10-10m ,晶体密度为2.16g/cm 3。
求: (1)、X 射线的波长;
(2)、阿伏加德罗常数。
宝鸡文理学院试题参考答案与评分标准
课程名称 固体物理学 适 用 时 间 2010年1月 12日 试卷类别 B 适用专业、年级、班 06物理教育1、2、3班
注意事项
一、简要回答以下问题(每小题6分,5×6=30分)
1.试述离子键、共价键、金属键、范德瓦尔斯和氢键的基本特征。
解:(1)离子键:无方向性,键能相当强;(2)共价键:饱和性和方向性,其键能也非常强;(3)金属键:有一定的方向性和饱和性,其价电子不定域于2个原子实之间,而是在整个晶体中巡游,处于非定域状态,为所有原子所“共有”;(4)范德瓦尔斯键:依靠瞬时偶极距或固有偶极距而形成,其结合力一般与 成反比函数关系,该键结合能较弱;(5)氢键:依靠氢原子与2个电负性较大而原子半径较小的原子(如O ,F ,N 等)相结合形成的。
该键也既有方向性,也有饱和性,并且是一种较弱的键,其结合能约为50kJ/mol 。
2. 金属自由电子论作了哪些假设?得到了哪些结果?
解:金属自由论假设金属中的价电子在一个平均势场中彼此独立,如同理想气体中的粒子一样是“自由”的,每个电子的运动由薛定谔方程来描述;电子满足泡利不相容原理,因此,电子不服从经典统计而服从量子的费米-狄拉克统计。
根据这个理论,不仅导出了魏德曼-佛兰兹定律,而且而得出电子气对晶体比热容的贡献是很小的。
3. 什么叫声子?对于一给定的晶体,它是否拥有一定种类和一定数目的声子?
解:声子就是晶格振动中的简谐振子的能量量子,它是一种玻色子,服从玻色-爱因斯坦统计,即具有能量为 的声子平均数为11
)()/()(-=T k q w j B j e q n η
对于一给定的晶体,它所对应的声子种类和数目不是固定不变的,而是在一定的条件下发生变化。
4.试述晶态、非晶态、准晶、多晶和单晶的特征性质。
解:晶态固体材料中的原子有规律的周期性排列,或称为长程有序。
非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。
准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。
另外,晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。
5. 周期性边界条件的物理含义是什么?引入这个条件后导致什么结果?如果晶体是无限大, 的取值将会怎样?
解:由于实际晶体的大小总是有限的,总存在边界,而显然边界上原子所处的环境与体内原子的不同,从而造成边界处原子的振动状态应该和内部原子有所差别。
考虑到边界对内部原子振动状态的影响,波恩和卡门引入了周期性边界条件。
其具体含义是设想在一长为 的有限晶体边界之外,仍然有无穷多个相同的晶体,并且各块晶体内相对应的原子的运动情况一样,即第 个原子和第 个原子的运动情况一样,其中 =1,2,3…。
引入这个条件后,导致描写晶格振动状态的波矢 只能取一些分立的不同值。
如果晶体是无限大,波矢 的取值将趋于连续。
二、利用刚球密堆模型,求证球可能占据的最大体积与总体积之比为(20分)
(1)简单立方6
π;(2)体心立方83π;(3)面心立方62π(4)六角密积62π;(5)金刚石163π。
解:(1)在简立方的结晶学原胞中,设原子半径为R ,则原胞的晶体学常数R a 2=,则简立方的致密度(即球可能占据的最大体积与总体积之比)为:
6)
2(3413
413333πππα=⋅=⋅=R R a R (4分) (2)在体心立方的结晶学原胞中,设原子半径为R ,则原胞的晶体学常数3/4R a =,则体心立方的致密度为:
83)3/4(3423
423
3
33πππα=⋅=⋅=R R a R (4分) (3)在面心立方的结晶学原胞中,设原子半径为R ,则原胞的晶体学常数R a 22=,则面心立方的致密度为:
6
2)22(3423
4433
33πππα=⋅=⋅=R R a R (4分) (4)在六角密积的结晶学原胞中,设原子半径为R ,则原胞的晶体学常数R a 2=,R a c )3/64()3/62(==,则六角密积的致密度为:
62)3/64(4
)2(3634643634623
23πππα=⋅⋅=⋅⋅=R R R c a R (4分) (5)在金刚石的结晶学原胞中,设原子半径为R ,则原胞的晶体学常数R a )3/8(=,则金刚石的
致密度为:
163)3/8(3483
48333
33πππα=⋅=⋅=R
R a R (4分)
三、已知由N 个相同原子组成的一维单原子晶格格波的态密度可表示为(10分)
2122)(2)(--=ωωπ
ωρm N 。
式中m ω是格波的最高频率。
求证它的振动模总数恰好等于N 。
解:由题意可知该晶格的振动模总数为
()m
N d ωρωω=
⎰ (3分) 122202()m m N d ωωωωπ--=⎰(2分)
N N N m m =-==)02
(2arcsin 20ππωωπω (5分) 四、试证题 (20分)
证明体心立方格子和面心立方格子互为正倒格子。
解:我们知体心立方格子的基矢为:
⎪⎪⎪⎩
⎪⎪⎪⎨⎧-+=+-=++-=)(2)(2)
(2321k j i a k j i a k j i a a a a (8分) 根据倒格子基矢的定义,我们很容易可求出体心立方格子的倒格子基矢为:
⎪⎪⎪⎩
⎪⎪⎪⎨⎧+=Ω⨯=+=Ω⨯=+=Ω⨯=)(2][2)(2][2)(2][2213132321j i a a b k i a a b k j a a b a a a ππππππ (10分) 由此可知,体心立方格子的倒格子为一面心立方格子。
同理可得出面心立方格子的倒格子为一体心立方格子,所以体心立方格子和面心立方格子互为正倒格子。
(2分)
五、计算题
用钯靶αK X 射线投射到NaCl 晶体上,测得其一级反射的掠射角为5.9°,已知NaCl 晶胞中Na +与
Cl -
的距离为2.82×10-10m ,晶体密度为2.16g/cm 3。
求:
(1)X 射线的波长;(2)阿伏加德罗常数。
(20分) 解:(1)由题意可知NaCl 晶胞的晶胞参数10
101064.510
82.22--⨯=⨯⨯=a m ,又应为NaCl 晶胞为面心立方结构,根据面心立方结构的消光规律可知,其一级反射所对应的晶面族的面指数为(111),而又易求得此晶面族的面间距为 10102221111026.331064.5111--⨯=⨯=++=
a d m (5分)
又根据布拉格定律可知: 91011110702.69.5sin 1026.32sin 2--⨯=⨯⨯==οθλd m (5分)
(2)由题意有以下式子成立
NaCl A M a N =⋅ρ4
3
(5分) ∴ 23310364458.5 6.03810(5.6410) 2.1610
NaCl A M N a ρ-⨯===⨯⨯⨯⨯ (5分)。