使用HCNR200线性光耦的原理与电路设计

合集下载

使用HCNR201线性光耦的原理与电路设计

使用HCNR201线性光耦的原理与电路设计

1. 线形光耦的研究设计光隔离是一种很常用的信号隔离形式。

常用光耦器件及其外围电路组成。

由于光耦电路简单,在数字隔离电路或数据传输电路中常常用到,如UART协议的20mA电流环。

对于模拟信号,光耦因为输入输出的线形较差,并且随温度变化较大,限制了其在模拟信号隔离的应用。

对于高频交流模拟信号,变压器隔离是最常见的选择,但对于支流信号却不适用。

一些厂家提供隔离放大器作为模拟信号隔离的解决方案,如ADI的AD202,能够提供从直流到几K的频率内提供0.025%的线性度,但这种隔离器件内部先进行电压-频率转换,对产生的交流信号进行变压器隔离,然后进行频率-电压转换得到隔离效果。

集成的隔离放大器内部电路复杂,体积大,成本高,不适合大规模应用。

模拟信号隔离的一个比较好的选择是使用线形光耦。

线性光耦的隔离原理与普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈。

这样,虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,这样,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。

市场上的线性光耦有几中可选择的芯片,如Agilent公司的HCNR200/201,TI子公司TOAS 的TIL300,CLARE的LOC111等。

这里以HCNR200/201为例介绍2. 芯片介绍与原理说明HCNR200/201的内部框图如下所示其中1、2引作为隔离信号的输入,3、4引脚用于反馈,5、6引脚用于输出。

1、2引脚之间的电流记作IF,3、4引脚之间和5、6引脚之间的电流分别记作IPD1和IPD2。

输入信号经过电压-电流转化,电压的变化体现在电流IF上,IPD1和IPD2基本与IF成线性关系,线性系数分别记为K1和K2,即K1与K2一般很小(HCNR200是0.50%),并且随温度变化较大(HCNR200的变化范围在0.25%到0.75%之间),但芯片的设计使得K1和K2相等。

复合励磁永磁同步发电机端电压采样隔离电路——线性光耦HCNR200的应用

复合励磁永磁同步发电机端电压采样隔离电路——线性光耦HCNR200的应用
收稿 日期 : 0. ・ . 2 51 1 0 05
邓醉杰
36
毁 。本文设计的端 电压采样隔离 电路 ( 以下简称 隔离 电路 ) 用了新 型 精密 线性 光耦 器件 H — 采 C N 20 R0 。线性光耦的隔离原理与普通光耦没有差 别, 只是将普通光耦的单发单收模式稍加改变 , 增 加一个用于反馈的光接受电路用于反馈 。线性光 耦 H N 20可 以较好地实现模拟量与数字量之 C R0 间的隔离 , 隔离线形度很好 , 输出跟随输入变化 ,
1k z高速可达成 :M z( ) 0H , 5 H ;4 传输 增益 : % 的 1 5 偏差 , 典型值为 1最小值为 0 8 , , .5最大值为 11 。 .5
o n a t a u lr HCNR2 o fLi e rOp i lCo p e c o
D n 批 ,Y iu , a gS od o a dZ o n eg eLh a Hun hu a , n hu
Ab ta t .l emia otg a l ga dioaigcruto o o n x i t n sr c I etr n lv l esmpi n lt i i f mp u d e ct i . } a n s n c c ao p r n n g e y c rn u e e ao s d sg e n ti p p r h r cpe o e ema e tma n tsn ho o sg n rtr i e in d i h s a e -te p n il ft i h n w l e ro t a o pe N鼢 e i a pi lc u lrHC n c i i l ic se n d te sh me o ad ae o ssmpy dsu s d。a h c e fh r w r f

线性光耦原理与电路设计,4-20mA模拟量隔离模块,PLC采集应用

线性光耦原理与电路设计,4-20mA模拟量隔离模块,PLC采集应用

1. 线形光耦介绍光隔离是一种很常用的信号隔离形式。

常用光耦器件及其外围电路组成。

由于光耦电路简单,在数字隔离电路或数据传输电路中常常用到,如UART协议的20mA电流环。

对于模拟信号,光耦因为输入输出的线形较差,并且随温度变化较大,限制了其在模拟信号隔离的应用。

对于高频交流模拟信号,变压器隔离是最常见的选择,但对于支流信号却不适用。

一些厂家提供隔离放大器作为模拟信号隔离的解决方案,如ADI的AD202,能够提供从直流到几K的频率内提供0.025%的线性度,但这种隔离器件内部先进行电压-频率转换,对产生的交流信号进行变压器隔离,然后进行频率-电压转换得到隔离效果。

集成的隔离放大器内部电路复杂,体积大,成本高,不适合大规模应用。

模拟信号隔离的一个比较好的选择是使用线形光耦。

线性光耦的隔离原理与普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈。

这样,虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,这样,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。

市场上的线性光耦有几中可选择的芯片,如Agilent公司的HCNR200/201,TI子公司TOAS的TIL300,CLARE的LOC111等。

这里以HCNR200/201为例介绍2. 芯片介绍与原理说明HCNR200/201的内部框图如下所示其中1、2引作为隔离信号的输入,3、4引脚用于反馈,5、6引脚用于输出。

1、2引脚之间的电流记作IF,3、4引脚之间和5、6引脚之间的电流分别记作IPD1和IPD2。

输入信号经过电压-电流转化,电压的变化体现在电流IF上,IPD1和IPD2基本与IF成线性关系,线性系数分别记为K1和 K2,即K1与K2一般很小(HCNR200是0.50%),并且随温度变化较大(HCNR200的变化范围在0.25%到0.75%之间),但芯片的设计使得 K1和K2相等。

基于光耦合器HCNR200的电流检测电路设计分享

基于光耦合器HCNR200的电流检测电路设计分享

基于光耦合器HCNR200的电流检测电路设计分享
作为光耦合器家族中的成员之一,HCNR200型号的光耦在很多通讯电路系统中都担任着重要作用。

此前我们曾经就这一光耦合器的工作原理进行过简要分析,在今天的文章中,我们将会为大家分享两种基于HCNR200光耦合器的电流检测电路设计方案,希望能够通过本文的分享,对各位工程师的设计研发工作带来一定帮助。

 光电导模式中的电流检测电路设计方案
 在光电导工作模式下,我们所设计的这一基于光耦合器HCNR200的电流检测电路如下图图1所示。

从下图中我们可以看到,在这一电流检测电路系统中,信号为正极性输入,正极性输出。

在该系统的隔离电路中,R1调节初级运算放大器的输入偏置电流的大小,C1起反馈作用,同时滤除了电路中的毛刺信号,可以避免HCNR200中脆弱的LED受到意外冲击。

 图1 光电导模式下的电流检测电路
 但是,这一电流检测电路也有一个缺陷,那就是当随着频率的提高,阻抗将变小,通过光耦合器HCNR200的初级电流增大,增益随之变大,因而,C1的引入对通道在高频时的增益有一定影响。

虽然减小C1的值可以拓展带宽,但是会影响初级运算放大器的增益,同时,初级运算放大器输出的较大毛刺信号不易被滤除,这是需要重点注意的。

而电阻R3在该电路系统中可以控制LED的发光强度,对控制通道增益会起一定作用。

 光电压模式中的电流检测电路设计方案
 在光电压工作模式下,我们所设计的这一基于光耦合器HCNR200的电流。

使用线性光耦HCNR200制作交流电压测量模块

使用线性光耦HCNR200制作交流电压测量模块

使用线性光耦HCNR200制作交流电压测量模块测量范围:幅值30V测量精度:0.5%误差电路自行设计,要求写好设计报告,制作出实物模块。

参考原理见/hiwxzh/blog/item/e145eff1965a43bba40f52a7.html1. 线性光耦介绍光隔离是一种很常用的信号隔离形式。

常用光耦器件及其外围电路组成。

由于光耦电路简单,在数字隔离电路或数据传输电路中常常用到,如UART协议的20mA电流环。

对于模拟信号,光耦因为输入输出的线形较差,并且随温度变化较大,限制了其在模拟信号隔离的应用。

对于高频交流模拟信号,变压器隔离是最常见的选择,但对于支流信号却不适用。

一些厂家提供隔离放大器作为模拟信号隔离的解决方案,如ADI的AD202,能够提供从直流到几K的频率内提供0.025%的线性度,但这种隔离器件内部先进行电压-频率转换,对产生的交流信号进行变压器隔离,然后进行频率-电压转换得到隔离效果。

集成的隔离放大器内部电路复杂,体积大,成本高,不适合大规模应用。

模拟信号隔离的一个比较好的选择是使用线形光耦。

线性光耦的隔离原理与普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈。

这样,虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,这样,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。

市场上的线性光耦有几中可选择的芯片,如Agilent公司的HCNR200/201,TI 子公司TOAS的TIL300,CLARE的LOC111等。

这里以HCNR200/201为例介绍2. 芯片介绍与原理说明HCNR200/201的内部框图如下所示其中1、2引作为隔离信号的输入,3、4引脚用于反馈,5、6引脚用于输出。

1、2引脚之间的电流记作IF,3、4引脚之间和5、6引脚之间的电流分别记作IPD1和IPD2。

输入信号经过电压-电流转化,电压的变化体现在电流IF上,IPD1和IPD2基本与IF成线性关系,线性系数分别记为K1和K2,即K1与K2一般很小(HCNR200是0.50%),并且随温度变化较大(HCNR200的变化范围在0.25%到0.75%之间),但芯片的设计使得K1和K2相等。

模拟光耦HCNR200、HCNR201应用笔记

模拟光耦HCNR200、HCNR201应用笔记

HCNR200和HCNR201模拟光电耦合器SPICE电路仿真应用笔记AN5545Jamshed Namdar Khan,安华高科技(Avago Technologies)隔离应用产品事业部光电耦合器应用工程师介绍本应用笔记的目的是展示PSpice软件如何通过使用安华高科技(Avago Technologies)提供的PSpice宏模型精确预测和仿真Avago公司HCNR200和HCNR201模拟光电耦合器的行为,聚焦集成电路仿真程序(SPICE, Sim-ulation Program with Integrated Circuit Emphasis)目前被认为是模拟电路设计工程师不可或缺的工具。

相对模拟光电耦合器数据表参数或规格,良好的宏模型应该精确预测电路性能,PSpice或SPICE仿真是任何设计工程师成功完成设计项目一个必备并且不可或缺的工具,电路仿真有助于原始设计概念的发想,从而允许工程师调整并优化原型电路取得最佳可能电路性能。

电路仿真的最大优势在于建构实体硬件或进行性能测试前可以先行验证并改善设计,极小化花费在原型测试的时间和相关费用成本。

为何需要仿真?不管电路仿真可以如何进行或带来什么,有一点它绝不可能做到的是为你提供实际的电路设计,因此我们首先列举几个吸引设计工程师进行电路仿真的原因。

进行电路仿真的主要动力是极小化预测目标电路设计性能的时间,相较于实际建立和进行原型测试等效电路的评估,使用SPICE电路进行评估所使用的时间相对上非常微小,另外,这些电路仿真也可以在各种不同温度、偏置条件以及零组件数值和误差条件下多次进行,但耗费时间仅为进行电路试验板设计并于工作台上进行评估的数分之一。

在进行光电耦合器SPICE仿真时,首先应该了解的是软件并无法仿真光电耦合器的两个基本特性,设计工程师使用光电耦合器主要有两个理由,分别是绝缘和隔离,SPICE软件并无法对这两个主要关键光电耦合器功能建立模型。

使用HCNR200线性光耦的原理与电路设计

使用HCNR200线性光耦的原理与电路设计

1. 线形光耦的研究设计1. 线形光耦介绍光隔离是一种很常用的信号隔离形式。

常用光耦器件及其外围电路组成。

由于光耦电路简单,在数字隔离电路或数据传输电路中常常用到,如UART协议的20mA电流环。

对于模拟信号,光耦因为输入输出的线形较差,并且随温度变化较大,限制了其在模拟信号隔离的应用。

对于高频交流模拟信号,变压器隔离是最常见的选择,但对于支流信号却不适用。

一些厂家提供隔离放大器作为模拟信号隔离的解决方案,如ADI的AD202,能够提供从直流到几K的频率内提供0.025%的线性度,但这种隔离器件内部先进行电压-频率转换,对产生的交流信号进行变压器隔离,然后进行频率-电压 转换得到隔离效果。

集成的隔离放大器内部电路复杂,体积大,成本高,不适合大规模应用。

模拟信号隔离的一个比较好的选择是使用线形光耦。

线性光耦的隔离原理与普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接 受电路用于反馈。

这样,虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,这样,就可以通过反馈通路的非线性来抵消直通通路的非 线性,从而达到实现线性隔离的目的。

市场上的线性光耦有几中可选择的芯片,如Agilent公司的HCNR200/201,TI子公司TOAS的TIL300,CLARE的LOC111等。

这里以HCNR200/201为例介绍2. 芯片介绍与原理说明HCNR200/201的内部框图如下所示其中1、2引作为隔离信号的输入,3、4引脚用于反馈,5、6引脚用于输出。

1、2引脚之间的电流记作IF,3、4引脚之间和5、6引脚之间的电流分别记 作IPD1和IPD2。

输入信号经过电压-电流转化,电压的变化体现在电流IF上,IPD1和IPD2基本与IF成线性关系,线性系数分别记为K1和 K2,即K1与K2一般很小(HCNR200是0.50%),并且随温度变化较大(HCNR200的变化范围在0.25%到0.75%之间),但芯片的设计使得 K1和K2相等。

复合励磁永磁同步发电机端电压采样隔离电路--线性光耦HCNR200的应用

复合励磁永磁同步发电机端电压采样隔离电路--线性光耦HCNR200的应用

复合励磁永磁同步发电机端电压采样隔离电路--线性光耦
HCNR200的应用
邓醉杰;叶丽花;黄守道;周健
【期刊名称】《防爆电机》
【年(卷),期】2006(041)002
【摘要】本文设计了复合励磁永磁同步发电机端电压采样隔离电路,简要介绍了新型线性光耦器件HCNR200的工作原理,也给出了隔离电路的硬件电路图、参数计算公式及其注意事项.通过实验证明该电路正确实用.
【总页数】3页(P36-38)
【作者】邓醉杰;叶丽花;黄守道;周健
【作者单位】湖南大学电气与信息工程学院,湖南长沙,410082;湖南大学电气与信息工程学院,湖南长沙,410082;湖南大学电气与信息工程学院,湖南长沙,410082;湖南大学电气与信息工程学院,湖南长沙,410082
【正文语种】中文
【中图分类】TM313
【相关文献】
1.复合励磁稀土永磁同步发电机的设计及应用分析 [J], 刘晓燕;赵静
2.复合励磁稀土永磁同步发电机的设计及应用分析 [J], 刘晓燕;赵静;
3.复合励磁永磁同步发电机励磁控制器的设计 [J], 叶丽花;黄守道;任光法;邓醉杰
4.双电压复合励磁稀土永磁同步发电机设计研究 [J], 黄守道;肖红霞;任光法;范瑞

5.复合励磁稀土永磁同步发电机辅助电励磁部分的研究与设计 [J], 肖慧慧;黄守道;葛照强
因版权原因,仅展示原文概要,查看原文内容请购买。

基于线性光耦HCNR200的电流检测电路设计与实现

基于线性光耦HCNR200的电流检测电路设计与实现

基于线性光耦HCNR200的电流检测电路设计与实现浙江大学生仪学院生物医学工程 **** 学号******[摘要]本文主要介绍了惠普公司的高线性度模拟光耦HCNR200的基本结构及工作原理。

利用该器件设计了一种模拟信号隔离来对医疗设备中电流检测的硬件电路,较好地解决了设备中高电压、强电流很容易串入低压器件会将其烧毁的问题。

线性光耦HCNR200可以较好地实现模拟量与数字量之间的隔离,隔离电压峰值达8000V;输出跟随输入变化,线性度达0.01%。

在高稳定性、高线性度的模拟信号隔离的场合具有广泛的应用前景。

[关键词]线性光耦HCNR200 模拟隔离电流检测1 引言在自动化检测系统、计算机数据采集系统、医疗设备控制系统等诸多工业测量中,光隔离是一种很常用的信号隔离形式。

常用光耦器件及其外围电路组成。

由于光耦电路简单,在数字隔离电路或数据传输电路中常常用到,如UART协议的20mA电流环。

对于模拟信号,光耦因为输入输出的线形较差,并且随温度变化较大,限制了其在模拟信号隔离的应用。

在信号采集的过程中,各种干扰信号都会随着被测量信号进入数字控制系统,这些信号迭加在有用的被测信号上会使测量的准确度降低,造成控制系统的不稳定。

为了实现电平线性转换以及不把现场的电噪声干扰引入到数字控制系统中来,必须将被测电路和控制电路在电气上实现隔离,光电隔离法和隔离放大器法是两种常用的模拟信号隔离方法。

隔离放大器内部集成有高性能的输入输出放大器、调制解调器、信号耦合变压器等单元器件,通常采用磁耦合方法使放大器的输出和输入之间没有电气联系,从而隔离了干扰源,抑制了干扰信号,完成对信号的放大。

隔离放大器具有完全浮动的输入端和独立隔离的输出端,并有良好的线性度和稳定性,还有较高的隔离电压和共模抑制比。

但是隔离放大器对于支流信号却不适用,价格比较高,只适用于要求较高的场合。

光电隔离是常用且方便有效的隔离方法,它是通过光电之间的相互转换,并利用光作为媒介进行信号传输,在电气上使测量系统与现场信号完全隔离。

线性光偶HCNR200的原理与电路设计

线性光偶HCNR200的原理与电路设计

线性光偶HCNR200的原理与电路设计孙鹏在电气测量、测试以及控制中,常常需要对高电压、强电流等模拟量进行采集。

如果模拟量(高压、强电流)与数字量之间没有电气隔离,那么,高电压、强电流很容易串入低压器件,并将其烧毁,因而必须对两种信号进行隔离。

光隔离是一种很常用的信号隔离形式,常用光耦器件及其外围电路组成。

但是,一般的光偶器件都是面向数字信号的,具有开、关二值性,对于模拟信号的隔离,需要使用线形光耦。

线性光耦的隔离原理与普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈。

这样,虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。

HCNR200是Agilent 公司生产的一款线性光耦,它可以较好的实现模拟量与数字量之间隔离,隔离电压峰值达8000伏,输出跟随输入变化,线性度达0.01%。

1、HCNR200/201简介线性光耦HCNR200的内部结构如图 1所示。

它由发光二极管D1(1、2引脚)、反馈光电二极管D2(3、4引脚)、输出光电二极管D3(5、6引脚)组成。

1、2引脚之间的电流记作I F ,3、4引脚之间和5、6引脚之间的电流分别记作I PD1和I PD2。

当有I F 流过时,D1发出红外光(伺服光通量 )。

该光分别照射在D2、D3上,产生控制电流I PD1和输出电流I PD2。

D1两端的输入信号经过电压-电流转化,电压的变化体现在电流I F 上,I PD1和I PD2基本与I F 成线性关系,线性系数分别记为K1和K2,即:FPD F PD I I K I I K 2211,== 对于HCNR200,K 1与K 2为0.005,并且随温度变化较大(HCNR200的变化范围在0.0025到0.0075之间),但芯片的设计使得K 1和K 2相等。

在实际应用中,人们真正关心的是线性光偶电路的传输增益:K 3=K 2/K 1,对于HCNR200,K 3的典型值为1。

线性光耦hcnr 中文

线性光耦hcnr 中文

1. 线形光耦介绍光隔离是一种很常用的信号隔离形式。

常用光耦器件及其外围电路组成。

由于光耦电路简单,在数字隔离电路或数据传输电路中常常用到,如UART协议的20mA 电流环。

对于模拟信号,光耦因为输入输出的线形较差,并且随温度变化较大,限制了其在模拟信号隔离的应用。

对于高频交流模拟信号,变压器隔离是最常见的选择,但对于支流信号却不适用。

一些厂家提供隔离放大器作为模拟信号隔离的解决方案,如ADI的AD202,能够提供从直流到几K的频率内提供0.025%的线性度,但这种隔离器件内部先进行电压-频率转换,对产生的交流信号进行变压器隔离,然后进行频率-电压转换得到隔离效果。

集成的隔离放大器内部电路复杂,体积大,成本高,不适合大规模应用。

模拟信号隔离的一个比较好的选择是使用线形光耦。

线性光耦的隔离原理与普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈。

这样,虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,这样,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。

市场上的线性光耦有几中可选择的芯片,如Agilent公司的HCNR200/201,TI子公司TOAS的TIL300,CLARE的LOC111等。

这里以HCNR200/201为例介绍2. 芯片介绍与原理说明HCNR200/201的内部框图如下所示其中1、2引作为隔离信号的输入,3、4引脚用于反馈,5、6引脚用于输出。

1、2引脚之间的电流记作IF,3、4引脚之间和5、6引脚之间的电流分别记作IPD1和IPD2。

输入信号经过电压-电流转化,电压的变化体现在电流IF上,IPD1和IPD2基本与IF成线性关系,线性系数分别记为K1和K2,即K1与K2一般很小(HCNR200是0.50%),并且随温度变化较大(HCNR200的变化范围在0.25%到0.75%之间),但芯片的设计使得K1和K2相等。

线性光耦原理与电路设计,4-20mA模拟量隔离模块,PLC采集应用

线性光耦原理与电路设计,4-20mA模拟量隔离模块,PLC采集应用

1. 线形光耦介绍 光隔离是一种很常用的信号隔离形式。

常用光耦器件及其外围电路组成。

由 于光耦电路简单,在数字隔离电路或数据传输电路中常常用到,如 UART 协议的 20mA 电流环。

对于模拟信号,光耦因为输入输出的线形较差,并且随温度变化 较大,限制了其在模拟信号隔离的应用。

对于高频交流模拟信号,变压器隔离是最常见的选择,但对于支流信号却不 适用。

一些厂家提供隔离放大器作为模拟信号隔离的解决方案, 如ADI 的AD202 能够提供从直流到几K 的频率内提供0.025%的线性度,但这种隔离器件内部先 进行电压-频率转换,对产生的交流信号进行变压器隔离,然后进行频率-电压 转 换得到隔离效果。

集成的隔离放大器内部电路复杂,体积大,成本高,不适合大 规模应用。

模拟信号隔离的一个比较好的选择是使用线形光耦。

线性光耦的隔离原理与 普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变, 增加一个用于反 馈的光接 受电路用于反馈。

这样,虽然两个光接受电路都是非线性的,但两个 光接受电路的非线性特性都是一样的, 这样,就可以通过反馈通路的非线性来抵 消直通通路的非 线性,从而达到实现线性隔离的目的。

市场上的线性光耦有几中可选择的芯片,如 Agile nt 公司的HCNR200/201 TI 子公司TOAS 勺TIL300,CLARE 勺LOC111等。

这里以HCNR200/20伪例介绍 2. 芯片介绍与原理说明HCNR200/20的内部框图如下所示图表T HCNR2Q0/201内部结构其中1、2引作为隔离信号的输入,3、4引脚用于反馈,5、6引脚用于输出。

1、2引脚之间的电流记作IF ,3、4引脚之间和5、6引脚之间的电流分别记 作 IPD1和IPD2。

输入信号经过电压-电流转化,电压的变化体现在电流IF 上, IPD1 和IPD2基本与IF 成线性关系,线性系数分别记为 K1和K2,即K — —4 K — 'FDt厂 77’K1与K2 一般很小(HCNR20是0.50%),并且随温度变化较大(HCNR20的 变化范围在0.25%到0.75%之间),但芯片的设计使得 K1和K2相等。

模拟光耦HCNR200、HCNR201应用笔记

模拟光耦HCNR200、HCNR201应用笔记

HCNR200和HCNR201模拟光电耦合器SPICE电路仿真应用笔记AN5545Jamshed Namdar Khan,安华高科技(Avago Technologies)隔离应用产品事业部光电耦合器应用工程师介绍本应用笔记的目的是展示PSpice软件如何通过使用安华高科技(Avago Technologies)提供的PSpice宏模型精确预测和仿真Avago公司HCNR200和HCNR201模拟光电耦合器的行为,聚焦集成电路仿真程序(SPICE, Sim-ulation Program with Integrated Circuit Emphasis)目前被认为是模拟电路设计工程师不可或缺的工具。

相对模拟光电耦合器数据表参数或规格,良好的宏模型应该精确预测电路性能,PSpice或SPICE仿真是任何设计工程师成功完成设计项目一个必备并且不可或缺的工具,电路仿真有助于原始设计概念的发想,从而允许工程师调整并优化原型电路取得最佳可能电路性能。

电路仿真的最大优势在于建构实体硬件或进行性能测试前可以先行验证并改善设计,极小化花费在原型测试的时间和相关费用成本。

为何需要仿真?不管电路仿真可以如何进行或带来什么,有一点它绝不可能做到的是为你提供实际的电路设计,因此我们首先列举几个吸引设计工程师进行电路仿真的原因。

进行电路仿真的主要动力是极小化预测目标电路设计性能的时间,相较于实际建立和进行原型测试等效电路的评估,使用SPICE电路进行评估所使用的时间相对上非常微小,另外,这些电路仿真也可以在各种不同温度、偏置条件以及零组件数值和误差条件下多次进行,但耗费时间仅为进行电路试验板设计并于工作台上进行评估的数分之一。

在进行光电耦合器SPICE仿真时,首先应该了解的是软件并无法仿真光电耦合器的两个基本特性,设计工程师使用光电耦合器主要有两个理由,分别是绝缘和隔离,SPICE软件并无法对这两个主要关键光电耦合器功能建立模型。

线性光耦

线性光耦
1、必须充分认识到光耦为电流驱动型器件,要合理选择反馈电路中所使用的运放,必须保证运放拥有合适的 负载能力,以便在正常工作时驱动。
2、当采用普通光耦器件时,要尽量采用多光耦器件,而不要采用单光耦器件,因为多个光耦集成在一片芯片 上有利于从材料及工艺的角度保证多个光耦之间特性趋于一致,而正是由于多个光耦特性的一致才保证了反馈对 改善线性的作用。
2.另一种线性光耦是反馈型器件。其作用原理是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的 光接受电路用于反馈。这样虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,这 样,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。与前面介绍过的普 通光耦器件线性化使用的原理类似,只不过它在生产工艺上采取了一定措施,使同一片器件中的2个光耦的特性更 加趋于一致。这种器件例如德州仪器公司曾经出品现已停产的TIL300A,CLARE公司生产的LOC系列线性光耦,惠 普公司生产的HCNR200/201线性光耦等。
线性光耦器件又分为两种:无反馈型和反馈型;
1.无反馈型线性光耦器件实际上是在器件的材料和生产工艺上采取一定措施(使得光耦器件的输入输出特性 的非线性得到改善。但是,由于发光二极管和光电三极管的固有特性,改善十分有限。这种光耦器件主要用于对 线性区的范围要求不大的情况,例如开关电源的电压隔离反馈电路中经常使用的PC816A和NEC2501H等线性光耦。 由于开关电源在正常工作时的电压调整率不大,通过对反馈电路参数的适当选择,就可以使光耦器件工作在线性 区。但由于这种光耦器件只是在有限的范围内线性度较高,所以不适合使用在对测试精度以及范围要求较高的场 合。
线性光耦
一种用于模拟信号隔离的光耦器件
01 定义

基础分享 HCNR200光耦合器典型电路分析

基础分享 HCNR200光耦合器典型电路分析

基础分享HCNR200光耦合器典型电路分析
在昨天的文章中,我们结合光耦合器HCNR200的基本结构,为大家简
要分析了一下这种线性光耦的工作原理。

作为一种比较常见的线性光耦合器,HCNR200在很多电路的设计中都得到了应用,因此,今天我们将会结合这一线性光耦的实际电路应用情况,来分析一下该种型号的光耦在实际应用过程中的工作运行情况。

下图所示为用HCNR200实现一个简单隔离放大器的基
本应用电路。

 HCNR200光耦合器应用电路图
 通过对上图所提供的HCNR200线性光耦合器应用电路进行分析,我们可
以看到,在该种隔离放大器的应用电路中,运算放大器Al构成负反馈放大电路,PDl接在A1的输入端,完成对LED输出光信号的检测,并自动调整通过LED的电流,以补偿LED光强随温度变化引起的非线性,因此该反馈放
大器主要用于稳定LED的光输出并使其线性化。

运算放大器A2构成电流电压转换电路A2和及R2将IPD2转换为电压输出。

电阻R3为LED的限流电阻,C1、C2为起反馈作用,用于改善电路的高频特性,提高电路的稳定性,消除自激振荡,滤除电路中的毛刺信号,降低电路的输出噪声,其容值可根据电路的频率特性来选取。

设IED两端的电压为VLED,A1输出端电压为Vo1,根据运放“虚短”和“虚断”特性,可以得出公式:
 由上文中所提供的公式我们可以看到,IPD1仅仅决定于Vin以及R1的值,与LED的输出光强特性无关。

该隔离放大器电路的Vout与Vin也成线性关。

线性光耦HCNR200中文数据手册

线性光耦HCNR200中文数据手册

3.3.3 HCNR200/201性能描述HCNR200/201是一种高线性度模拟光电耦合器,如图3-7所示,它由一个AlGaAs 制作成的高性能发光二极管和两个结构相同的光电二极管组成。

发光二极管具有稳定的光输出,可用来监控。

两个光电二极管可以同时接收发光二极管输出的信号。

HCNR200/201采用先进的封装形式,保证了光耦的高线性度和稳定的增益特性。

图 3-7 HCNR200封装图HCNR200/201可以用于隔离模拟信号,具有良好的稳定性、线性度、频带宽和低成本等特性。

HCNR200/201具有非常灵活的特性,可设计相应的应用电路,能够在许多不同的模式下进行操作,包括:单极/双极、ac / dc和反向/正向。

HCNR200/201很好的解决了许多模拟隔离问题。

HCNR200/201产品特点有非线性度高,数值为0.01%;HCNR200传递增益(IPD2 / IPD1•K3)为±15%,HCNR201的传递增益为±5%;增益温度系数为-65ppm /℃;带宽> 1兆赫;封装形式分为8引脚DIP和贴片两种;HCNR200/201允许灵活的电路设计。

图 3-8 HCNR200内部管脚图HCNR200/201主要应用在低成本的模拟信号隔离、工业过程控制、电子反馈回路、监测电机电源电压、医疗等领域。

其内部结构图如图3-8所示。

图3-8说明了HCNR200/201是一种高线性度的光耦。

它由一个发光二极管(LED)和两个同种工艺的光电二极管组成。

其中一个光电二极管(PD1)在隔离电路的输入部分,另一个光电二极管(PD2)构成隔离电路的输出部分。

由于光耦的封装,使每一个光电二极管可从LED上接收大致相同数量的光线。

放大器与PD1组成的外部反馈电路可用来监控发光二极管(LED)发出的光,并且可以补充流过LED的电流起到对LED的调节作用。

使得LED输出的光信号更加稳定,当PD2接收到光信号后,可以再通过另一个运算放大器把接收到的电流信号转化为电压信号。

线性光耦原理与电路设计40719

线性光耦原理与电路设计40719

[电路技术] 排版要求:图片要重新制作。

线性光耦原理与电路设计1. 线形光耦介绍光隔离是一种很常用的信号隔离形式。

常用光耦器件及其外围电路组成。

由于光耦电路简单,在数字隔离电路或数据传输电路中常常用到,如UART协议的20mA电流环。

对于模拟信号,光耦因为输入输出的线形较差,并且随温度变化较大,限制了其在模拟信号隔离的应用。

对于高频交流模拟信号,变压器隔离是最常见的选择,但对于支流信号却不适用。

一些厂家提供隔离放大器作为模拟信号隔离的解决方案,如ADI的AD202,能够提供从直流到几K的频率内提供0.025%的线性度,但这种隔离器件内部先进行电压-频率转换,对产生的交流信号进行变压器隔离,然后进行频率-电压转换得到隔离效果。

集成的隔离放大器内部电路复杂,体积大,成本高,不适合大规模应用。

模拟信号隔离的一个比较好的选择是使用线形光耦。

线性光耦的隔离原理与普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈。

这样,虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,这样,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。

市场上的线性光耦有几中可选择的芯片,如Agilent公司的HCNR200/201,TI子公司TOAS的TIL300,CLARE的LOC111等。

这里以HCNR200/201为例介绍2. 芯片介绍与原理说明HCNR200/201的内部框图如下所示其中1、2引作为隔离信号的输入,3、4引脚用于反馈,5、6引脚用于输出。

1、2引脚之间的电流记作IF,3、4引脚之间和5、6引脚之间的电流分别记作IPD1和IPD2。

输入信号经过电压-电流转化,电压的变化体现在电流IF上,IPD1和IPD2基本与IF成线性关系,线性系数分别记为K1和K2,即K1与K2一般很小(HCNR200是0.50%),并且随温度变化较大(HCNR200的变化范围在0.25%到0.75%之间),但芯片的设计使得K1和K2相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.线形光耦的研究设计
1. 线形光耦介绍
光隔离是一种很常用的信号隔离形式。

常用光耦器件及其外围电路组成。

由于光耦电路简单,在数字隔离电路或数据传输电路中常常用到,如UART协议的20mA电流环。

对于模拟信号,光耦因为输入输出的线形较差,并且随温度变化较大,限制了其在模拟信号隔离的应用。

对于高频交流模拟信号,变压器隔离是最常见的选择,但对于支流信号却不适用。

一些厂家提供隔离放大器作为模拟信号隔离的解决方案,如ADI的AD202能够提供从直流到几K的频率内提供0.025%的线性度,但这种隔离器件内部先进行电压-频率转换,对产生的交流信号进行变压器隔离,然后进行频率-电压转换得到隔离效果。

集成的隔离放大器内部电路复杂,体积大,成本高,不适合大规模应用。

模拟信号隔离的一个比较好的选择是使用线形光耦。

线性光耦的隔离原理与
普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈。

这样,虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,这样,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。

市场上的线性光耦有几中可选择的芯片,如Agile nt公司的HCNR200/201
TI子公司TOAS勺TIL300,CLARE勺LOC111等。

这里以HCNR200/20伪例介绍
2. 芯片介绍与原理说明
HCNR200/20的内部框图如下所示
其中1、2引作为隔离信号的输入,3、4引脚用于反馈,5、6引脚用于输出。

1、2引脚之间的电流记作IF , 3、4引脚之间和5、6引脚之间的电流分别记作IPD1和IPD2。

输入信号经过电压-电流转化,电压的变化体现在电流IF上,IPD1 和IPD2基本与IF成线性关系,线性系数分别记为K1和K2,即
K —―皿K—‘皿工
K1与K2 一般很小(HCNR20是0.50%),并且随温度变化较大(HCNR20的变化范围在0.25%到0.75%之间),但芯片的设计使得K1和K2相等。

在后面可以看到,在合理的外围电路设计中,真正影响输出/输入比值的是二者的比值K3, 线性光耦正利用这种特性才能达到满意的线性度的。

HCNR200口HCNR20的内部结构完全相同,差别在于一些指标上。

相对于HCNR200 HCNR20提供更高的线性度。

米用HCNR200/20进行隔离的一些指标如下所示:
* 线性度:HCNR200 0.25%, HCNR201 0.05%;
* 线性系数K3: HCNR200 15% HCNR201 5%
*温度系数:-65ppm/oC;
*隔离电压:1414V;
*信号带宽:直流到大于1MHz
从上面可以看出,和普通光耦一样,线性光耦真正隔离的是电流,要想真正隔离电压,需要在输出和输出处增加运算放大器等辅助电路。

下面对HCNR200/20的典型电路进行分析,对电路中如何实现反馈以及电流-电压、电
压-电流转换进行推导与说明。

3. 典型电路分析
Agile nt公司的HCNR200/20的手册上给出了多种实用电路,其中较为典型的一种如下图所示:
设输入端电压为Vin ,
输出端电压为Vout,光耦保证的两个电流传递系数分别为
K1、K2,显然,,和之间的关系取决于和之间的关系。

将前级运放的电路提出来看,如下图所示:
图表3 HCNR200/201反馈电路
设运放负端的电压为,运放输出端的电压为,在运放不饱和的情况下二者满足下面的关系:
Vo=Voo-GVi
其中是在运放输入差模为0时的输出电压,G为运放的增益,一般比较大
HCNR200/201典型电路
忽略运放负端的输入电流,可以认为通过R1的电流为IP1,根据R1的欧姆定律得:
(2)
通过R3两端的电流为IF,根据欧姆定律得:
其中,为光耦2脚的电压,考虑到LED导通时的电压()基本不变,这里的作为常数对待。

根据光耦的特性,即
K1=IP1/IF ⑷
将和的表达式代入上式,可得:
上式经变形可得到:
人几-K屆(乙-乙)
将的表达式代入(3)式可得:
『工尺几-
欲用%-乙)
1吆—%—N+Gj如创K只G +凤
- & )為+ K、RQ(%- %)+ GR兀- GK睥 J- 乙) _ 站鸟G + R貝
.(%-S厂网<
尽瓦尽G +尽尽
考虑到G特别大,则可以做以下近似:
匚出Hm几=lim少"一叫J砥+&念匕n G—^ao
G T® &心R& + &他
可见,在上述电路中,输出和输入成正比,并且比例系数只由K3和R1、R2确定。

一般选R仁R2达到只隔离不放大的目的。

4. 辅助电路与参数确定
上面的推导都是假定所有电路都是工作在线性范围内的,要想做到这一点需
要对运放进行合理选型,并且确定电阻的阻值。

4.1运放选型
运放可以是单电源供电或正负电源供电,上面给出的是单电源供电的例子。

为了能使输入范围能够从o到VCC需要运放能够满摆幅工作,另外,运放的工作速度、压摆率不会影响整个电路的性能。

TI公司的LMV321单运放电路能够
满足以上要求,可以作为HCNR200/201的外围电路。

4.2阻值确定
电阻的选型需要考虑运放的线性范围和线性光耦的最大工作电流IFmax。

K1这样,输出与输入电压的关系如下:
已知的情况下,IFmax又确定了IPD1的最大值IPDImax这样,由于Vo的范围最小可以为0,这样,由于
考虑到IFmax大有利于能量的传输,这样,一般取
另外,由于工作在深度负反馈状态的运放满足虚短特性,因此,考虑IPD1的限制,这样,
R2的确定可以根据所需要的放大倍数确定,例如如果不需要方法,只需将R2=R1即可。

另外由于光耦会产生一些高频的噪声,通常在R2处并联电容,构成低通滤
波器,具体电容的值由输入频率以及噪声频率确定。

4.3参数确定实例
假设确定Vcc=5V,输入在0-4V之间,输出等于输入,采用LMV321运放芯片以及上面电路,下面给出参数确定的过程。

*确定IFmax:HCNR200/20的手册上推荐器件工作的10mA左右;
*确定R3:手册上的光耦二极管的压降为1.6V,所以
R3=(5V-1.6V)/10mA=340
*因为手册上的K仁IP1/IF系数是从0.25%到0.75%,典型值是0.5%,取最
小值为0.25%,贝U IP仁K1*IF=0.5%*10mA=0.05mA
*确定R1:若输入电压范围是0-5V,贝U R1=5V/0.05mA=100K
* 确定R2: R2=R1=100K
5.总结
本文给出了线性光耦的简单介绍以及电路设计、参数选择等使用中的注意事项与参考设计,并对电路的设计方法给出相应的推导与解释,供广大电子工程师参考。

相关文档
最新文档