交流调速系统的发展现状

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

交流调速系统的发展现状

摘要:

随着电力电子器件的发展,以及对效率的追求,交流调速得到快速发展,加上新技术、新理论不断渗透到交流调速之中,使其不断呈现新的面貌。

关键词:交流调速;脉宽调制;

引言

近年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,交流传动与控制技术成为目前发展最为迅速的技术之一,电气传动技术面临着一场历

史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。电机交流变频调速技术是当今节电、改善工艺流程以提高产品质量

和改善环境、推动技术进步的一种主要手段。变频调速以其优异的调速和起制动性能,高效率、高功率因数和节电效果,广泛的适用范围及其它许多优点而被国内外公认为最有发展前途的调速方式。深入了解交流传动与控制技术的走向,具有十分积极的意义。

1•现代交流调速技术的发展

现代交流调速的法阵可分为几个阶段20世纪60年代中期,德国的A Schonung等人率先提出了脉宽调制变频的思想,他们把通信系统中的调制技术推广应用于变频调速中,为现代交流调速技术的发展和实用化开辟了新的道路。从此,交流调速理论及应用技术大致沿下述四个方面发展。

(1)电力电子器件的蓬勃发展

电力电子器件是现代交流调速装置的支柱,其发展直接决定和影响交流调速技术的发展。迄今为止,电力电子器件的发展经历了分立换流关断器件(第一代)一自关断器件(第二代)-功率集成电路PIC(第三代)一智能模块IPM (第四代)四个阶段。

20世纪80年代中期以前,变频装置功率回路主要采用晶闸管元件。装置的效率、可靠性、成本、体积均无法与同容量的直流调速装置相比。20世纪80年代中期以后用第二代电力电子器件GTR( Gia nt Tran sistor)、GTq Gate Turn

Off thyistor) 、VDMOS-IGBT(Insulated GateBipolar Transis2 tor) 等创造的变频装置在性能与价格比上可以与直流调速装置相媲美。随着向大电流、高电压、高频化、集成化、模块化方向继续发展,第三代电力电子器件是20世纪90年

代制造变频器的主流产品,中、小功率的变频调速装置(1 —100kw)主要是采用IGBT ,中、大功率的变频调速装置(1000 —10000kw)采用GTO器件。20世纪90年代至今,电力电子器件的发展进入了第四代。主要实用的第四代器件为:(1) 高压IGBT 器件,⑵ IGCT (In sulated Gate Con trolled 。由于GTR、GTO器件本身存在的不可克服的缺陷,功率器件进入第三代以来,GTR器件已被淘汰不再使用。进入第四代后,GTO器件也将被逐步淘汰。第四代电力电子器件模块化更为成熟。如智能化模块IPM、专用功率器件模块ASPM等。模块化功率器件将是21世纪主宰器件。需要指出的是,以上所述的全控型开关功率器件主要应用于异步电动机变频调速系统中,其原因众所周知。但是目前同步电动机变频调速系统中仍采用晶闸管,其原因也是众所周知的。一代电力电子器件带来一代变频调速装置,性价比一代高过一代。在人类社会进入信息化时代后,电力电子技术连同电力传动控制与计算机技术一起仍是21世纪最重要的两大技术。电压或电流

中的谐波分量,从而降低或消除了变频调速时电机的转矩脉动,提高了电机的

工作效率,扩大了调速系统的调速范围。

(2)脉宽调制(PWM)技术

脉宽调制(PWM)技术种类很多,并且正在不断发展之中。基本上可分为四类, 即等宽PWM法正弦PWM法(SPWM)、磁链追踪型PWM法及电流跟踪型PWM法。PWM技术的应用克服了相控原理的所有弊端,使交流电动机定子得到了接近正弦波形的电压和电流,提高了电机的功率因数和输出功率。现代PWM生成电路大多采用具有高度输出口HSO的单片机(如80196)及数字信号处理器DSP(Digital Signal Processor),通过软件编程生成PWM近年来,新型全数字化专用PWM^ 成芯片

HEF4752、SLE4520、MA818等达到实用化,并已实际应用。

(3)矢量变换控制技术及直接转矩控制技术

众所周知,直流电动机双闭环调速系统具有优良的静、动态调速特性,其根本原因在于作为控制对象的他励直流电动机电磁转矩能够容易而灵活地进行控制。而交流电动机是个多变量、非线性、强藕合的被控对象,作为变频系统的控制对象---- 它是否可以模仿直流电动机转矩控制规律而加以控制呢。1975年,德国学者F Blaschke提出了矢量变换控制原理,成功地解决了交流电动机电磁转矩

的有效控制,在定向于转子磁通的基础上,采用参数重构和状态重构的现代控制理论概念实现了交流电动机定子电流的励磁分量和转矩分量之间的解藕,实现了将交流电动机的控制过程等效为直流电动机的控制过程,在理论上实现了重大突破,从而使得交流调速的动态和静态性能完全可能同直流传动系统相媲美。矢量控制的关键是静止坐标轴与旋转坐标轴系之间的坐标接转矩控制也是一种很有前途的控制技术。目前,采用IG2 BT、IGCT的直接转矩控制方式的变频调速装置已广泛应用于工业生产及交通运输部门中。

(4)微型计算机控制技术

随着微机控制技术,特别是以单片微机及数字信号处理器DSP为控制核心的微机控制技术的迅速发展,现代交流调速系统的控制回路由模拟控制迅速走向数字控制。当今模拟控制器已被淘汰,全数字化的交流调速系统已普遍得到应用。数字化使得控制器对信息处理能力大幅度提高,许多难以实现的复杂控制,如矢量控制中的复杂坐标变换运算、解藕控制、滑模变结构控制、参数辨识的自适应控制等,采用微机控制器后便都解决了。高性能的矢量控制系统如果没有微机的支持是不可能真正实现的。此外,微机控制技术又给交流调速系统增加了多方面的功能,特别是故障诊断技术得到了完全的实现。

微机控制技术的应用提高了交流调速系统的可靠性和操作、设置的多样性和灵活性,降低了变频调速装置的成本和体积。以微处理器为核心的数字控制已成为现代交流调速系统的主要特征之一。用于交流调速系统的微处理器的发展经历了单片机(MCS) 一数字信号处理器(DSP) 一精简指令集计算机(Reduced In structio n Set ComputerRISC) 三个阶段。

2现代交流调速系统的类型

现代交流调速系统由交流电动机,电力电子功率交换器,控制器和检测器等四大部分组成。电力电子功率变换器,控制器,电量检测器集中于一体,称为变频器(变频调速装置)。交流电机的不同,繁衍出不同的交流调速系统。因此现代交流调速系统可分为异步电动机调速系统和同步电动机调速系统。目前较为常用的三种方案,他们是异步电动机交流调速系统:(1)异步电动机交流调速系统。(2)开关磁阻电动机的交流调速系统(3)同步电动机调速系统。

3交流调速系统之国内外发展

长期以来,我国的传动技术特别是交流调速技术与国外发达国家存在着较大的

相关文档
最新文档