极差方差数据处理公式

合集下载

excel中求极差和均方差的教程

excel中求极差和均方差的教程

本文整理于网络,仅供阅读参考
excel中求极差和均方差的教程
excel中求极差和均方差的教程:
求极差和均方差步骤1:极差不匀(又名相对极差)
求极差和均方差步骤2:极差是指一组数据的最大值与一组数据的最小值之差
求极差和均方差步骤3:相对极差一般是指极差(绝对极差)/数值平均值
求极差和均方差步骤4:可以使用公式
=round((max(a2:a4)-min(a2:a4))/average(a2:a4)*100,2)&"%"
如下图所示
求极差和均方差步骤5:平均差不匀(又名相对平均偏差):求极差和均方差步骤6:可以使用公式
=round(avedev(a1:a13)/average(a1:a13)*100,2)&"%"
如下图所示
求极差和均方差步骤7:均方差不匀(又名相对标准偏差):求极差和均方差步骤8:可以使用公式
=round(stdev(a1:a13)/average(a1:a13)*100,2)&"%"
如下图所示
看了excel中求极差和均方差的教程。

极差与方差的认识

极差与方差的认识

极差与方差的认识极差——定义:一组数据中的最大数据与最小数据的差叫做这组数据的极差.(1)极差是刻画数据离散程度的最简单的统计量,计算简单,易于理解,但它受极端值的影响较大.(2)极差只是利用了一组数据两端的信息,能够反映数据的波动范围,不能衡量每个数据的变化情况.举例:【例1】从甲、乙两种玉米苗中各抽10株,分别测得它们的株高如下:(单位:cm)甲:21423914192237414025乙:27164041164440402744根据以上数据分别求甲、乙两种玉米的极差.【解】甲的极差:42-14=28(cm);乙的极差:44-16=28(cm).方差——方差是反映一组数据的整体波动大小的特征的量.它是指一组数据中各个数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小.求一组数据的方差可以简记先求平均,再求差,然后平方,最后求平均数.一组数据x 1、x2、x3、…、x n的平均数为,则该组数据方差的计算公式为:举例:【例2】市体校准备挑选一名跳高运动员参加全市中学生运动会,对跳高运动队的甲、乙两名运动员进行了8次选拔比赛.他们的成绩(单位:m)如下:甲:1.70 1.65 1.68 1.69 1.72 1.73 1.68 1.67乙:1.60 1.73 1.72 1.61 1.62 1.71 1.70 1.75(1)甲、乙两名运动员的跳高平均成绩分别是多少?(2)哪位运动员的成绩更为稳定?【解析】本题是一道数据分析有关的实际问题,主要考查数据的平均数、方差的计算方法及处理数据的能力.根据平均数及方差的计算公式可得(1)==1.69(m),==1.68(m).(2)=0.0006(m2),=0.00315(m2),因为,所以甲稳定.。

数据分析极差和方差

数据分析极差和方差
异常值检测
如果一组数据的方差较大,可能存在异常值,需 要进一步检查。
预测模型评估
在预测模型中,可以使用历史数据的方差来评估 模型的预测准确性。
方差在数据分析中的作用
描述数据分布
方差可以用来描述数据分布的情况, 了解数据的集中趋势和离散程度。
比较数据集
决策依据
在数据分析中,方差可以作为决策的 依据,例如在市场调研中,可以根据 不同产品的方差大小来决定产品的市 场策略。
提高效率
数据分析有助于优化业务流程,提高工作效率,降低 成本。
极差和方差的定义
极差
极差是一组数据中的最大值和最小值之差,用于描述数 据的离散程度。
方差
方差是一组数据与其平均值之差的平方的平均值,用于 描述数据的离散程度。
02
极差
极差的计算方法
01 极差定义
极差是一组数据中最大值与最小值之差,用于衡 量数据的离散程度。
通过比较不同数据集的方差大小,可 以了解它们之间的差异。
04
极差和方差的比较
极差和方差的优缺点
极差 优点:计算简单,容易理解,能够反
映数据的变化范围。
缺点:对异常值敏感,容易受到极端 值的影响,不能反映数据的离散程度。
方差
优点:能够反映数据的离散程度,不 受极端值影响,可以用于比较不同数 据集的离散程度。
极差和方差的计算方法
目前极差和方差的计算方法主要是基于统计学的理论,未来可以 考虑结合机器学习算法,提高计算效率和准确性。
极差和方差的应用领域
目前极差和方差主要应用于统计学和数据分析领域,未来可以考虑 将其应用ห้องสมุดไป่ตู้其他领域,如金融、医学等。
极差和方差的优化算法
目前极差和方差的计算算法较为简单,未来可以考虑优化算法,提 高计算效率。

数初中学极差公式

数初中学极差公式

数初中学极差公式
数初中学极差公式是一个非常重要的数学公式,它用来计算一组数据中最大值与最小值之间的差值。

极差公式的公式为:极差 = 最大值 - 最小值。

例如,对于以下一组数据:5、8、12、6、10,最大值为12,最小值为5,因此极差为12-5=7。

极差公式可以帮助我们快速准确地计算数据的离散程度,如果极差较小,说明数据比较集中,离散程度较小;而如果极差较大,说明数据比较分散,离散程度较大。

因此,在统计学中,极差是一个非常重要的指标。

除了极差公式外,还有其他一些用于计算数据离散程度的公式,如方差和标准差等。

这些公式在数据分析和研究中也非常常用。

掌握这些公式,能够更好地分析和理解数据,为决策提供更有力的支持。

- 1 -。

方差定义公式

方差定义公式

方差定义公式方差是统计学中常用的一个概念,用来度量一组数据的离散程度。

在统计学中,方差是一种衡量数据分散程度的方法,可以用来描述数据的离散程度和数据之间的差异。

方差的定义公式如下:方差= (∑(x-μ)²) / n其中,x表示数据集中的每个数据点,μ表示数据集的均值,n表示数据集的大小。

方差的计算步骤如下:1. 计算每个数据点与均值的差值;2. 将差值平方;3. 求所有差值平方的和;4. 将和除以数据集的大小。

方差可以用来判断数据的分散程度。

当方差较小时,表示数据点较接近均值,说明数据的集中程度较高;当方差较大时,表示数据点较远离均值,说明数据的分散程度较高。

方差的应用非常广泛。

在金融领域,方差被广泛用于衡量投资组合的风险。

方差越大,表示投资组合的价值波动越大,风险也就越高;相反,方差越小,表示投资组合的波动性越低,风险也就越小。

在质量控制方面,方差被用来衡量产品或过程的稳定性。

方差越大,表示产品或过程的质量波动越大,不稳定性越高;相反,方差越小,表示产品或过程的质量波动越小,稳定性越高。

除了方差,还有其他的衡量数据离散程度的方法,如标准差、极差等。

方差和标准差的计算方法很相似,只是最后一步计算时,方差是将和除以数据集的大小,而标准差是将和除以数据集大小的平方根。

方差的计算公式可以很好地帮助我们理解数据的分散程度,从而对数据进行分析和解释。

通过计算方差,我们可以得到一组数据的离散程度,从而更好地理解数据的特点和规律,为后续的分析和决策提供依据。

在实际应用中,我们可以利用方差来比较不同数据集之间的差异,找出离群值或异常值,评估模型的性能等。

通过对方差的计算和分析,我们可以更好地理解和应用统计学的方法,为实际问题的解决提供支持。

方差是统计学中常用的一个概念,用来度量一组数据的离散程度。

通过方差的计算和分析,我们可以更好地理解数据的特点和规律,从而为实际问题的解决提供依据。

方差的应用非常广泛,在金融、质量控制等领域都有重要的作用。

八年级数学下册第21章数据的整理与初步处理21.3极差方差与标准差习题课件华东师大版

八年级数学下册第21章数据的整理与初步处理21.3极差方差与标准差习题课件华东师大版
5
1×0.544 6=0.108 92≈0.11.
5
S乙2 甲0, 的极差为11.94-11.01=0.93,乙的极差为0.
1.(2012·达州中考)2011年达州市各县(市、区)的户籍人口统 计表如下:
则达州市各县(市、区)人口数的极差和中位数分别是( )
(A)145万人 130万人
(B)103万人 130万人
S甲2 S…乙2 .……………………7分 答:乙山上的杨梅产量较稳定.
看平均数,还要比较方 差的大小.
………………………………………………………………8分
【规律总结】
计算方差时的规律
【跟踪训练】
4.(2012·盐城中考)甲、乙、丙、丁四人进行射击测试,每人10
次射击的平均成绩恰好都是9.4环,方差分别是 S甲2 0.90,S乙2 1.22,
S丙2 0.43,S丁2 1.68.在本次射击测试中,成绩最稳定的是( )
(A)甲
(B)乙
(C)丙
(D)丁
【解析】选C.成绩的稳定性决定于方差的大小,方差越小的越稳
定,故选C.
5.已知一个样本1,3,2,5,4,则这个样本的标准差为________.
【解析】样本的平均数 x 1 3 1 4 2 5 3,
【规范解答】 (1)甲山上4棵树的产量分别为: 50千克、36千克、40千克、34千克, ∴甲山产量的样本平均数为: x 50 36 40 34… …40(…千…克…);…………………1分
4
乙山上4棵树的产量分别为: 36千克、40千克、48千克、36千克,
∴乙山产量的样本平均数为: x 36 40 48 36… …40…(千…克…);……………………2分
方差与标准差 【例2】(8分)王大伯几年前承办了甲、乙两片荒山,各栽100棵 杨梅树,成活98%,现已挂果,经济效益初步显现,为了分析收成情 况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如 折线统计图所示. (1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨 梅的产量总和;

极差方差标准差(整理)

极差方差标准差(整理)

北京四中撰稿:张扬责编:姚一民数据的波动一.基本知识点讲解:1.极差:是指一组数据中最大数据与最小数据的差。

极差=数据中的最大数-数据中的最小数2. 方差与标准差:S^2=[(x1-x的平均数)^2+(x2-x的平均数)^2+...+(xn-x的平均数)^2]设在一组数据x1 x2 x3……x n中各数据与它们的平均数的差的平方分别是(x1-)2, (x2-)2……(x n-)2,则他们的平均数:方差可以用来衡量这组数据的波动的大小,一组数据的方差越大,就说明这组数据的波动也越大,这波动的大小是指偏离平均数的大小。

3. 标准差:一组数据的方差的算术平方根叫做这组数据的标准差,用S来表示,即:标准差也只是来衡量一组数据波动大小的量,它虽然比计算方差多开一次平方,但它的度量单位与原数据的度量单位是一致的,所以有时用标准差比较方便。

4. 计算方差的三个公式公式①是方差的定义,一组数据的每个数都减去它们的平均数的平方,再求这些平方的和,比较麻烦,因此可用公式②以使计算过程较为简单,当不是整数时尤为简单。

接近这组数据的平均数的一个常数。

二.例题解析:(1)应用公式①例1. 计算数据9.9、9.7、10.3、9.8、9.8、10、10.1、10.4的方差与标准差。

解:例2. 甲乙两组进行投篮比赛,每组选派10名队员参加,每人投10次,每次投中的人数如下:甲组:7、6、8、8、5、9、7、7、6、7乙组:6、7、8、4、10、9、7、6、6、7求:甲、乙两组哪一组的投篮情况比较稳定解:∴甲乙两组的平均命中率相同,但甲组的投篮比较稳定,所以甲组的投篮情况较好。

(2)应用公式②例3. 甲、乙两人在相同条件下各射靶10次,各次命中环数如下:甲:4、7、10、9、5、6、8、6、8、8乙:7、8、6、6、7、8、7、8、5、9求甲、乙两人谁的射击成绩比较稳定解:(3)应用公式③例4. 求以下数据的方差(精确到0.1)10、13、9、11、8、10、11、12、8、14、10、9解:设a=10,每个数都减去10,有三:小结:1. 方差是以平均数为基数,揭示数据波动的大、小,所以首先要把平均数算准确。

数据的分析----极差、方差、标准差课件

数据的分析----极差、方差、标准差课件

-10)2 (15
-10)2
13.5
8

S
2小明<S
2 小华
小明的成绩比小华的成绩稳定
测试次数 小明 小华
1
2
3
4
5
6
7
8
5
9
10Leabharlann 101110
10
15
5
14 13
8
12
7
6
15
成绩 15 13 11
9
成绩 15
13
x 10 11 9
x 10
7
7
5
测试
1 2 3 4 5 6 7 8次数
X=1或6
小明和小华两人参加体育项目训练,近期的八次测试 成绩如下表所示.谁的成绩较为稳定?为什么?能通过 计算回答吗?
测试次数 1 2 3 4 5 6 7 8
小明
5 9 10 10 11 10 10 15
小华
5 14 13 8 12 7 6 15
分析: 从平均数来看:

x小明

5

9
10
10
15成绩 13
15成绩 13
11
x 10 11
9
9
x 10
7
7
5
测试
小1明2的3成4绩5分布6 散7 点8图次数
5 1 2 3 4 5 6 7 8 测试
小华的成绩分布散点图次数
解: S 2小明 (5 -10)2 (9 -10)2 (15 -10)2 6.5 8
S
2 小华
(5 -10)2 (14
小明的成绩分布散点图
5
测试 1234 5 6 7 8

极差、方差 数据分析-2

极差、方差 数据分析-2
1.什么是一组数据的极差? 极差反映了这组数据哪方面的特征?
一组数据中的最大值减去最小值所得的差叫 做这组数据的极差,极差反映的是这组数据 的变化范围或变化幅度.
2.什么是一组数据的方差? 方差反映了这组数据哪方面的特征? 各数据与平均数的差的平方的平均数叫做这组 数据的方差.
2 2 2 1 s x1 x x2 x xn x n 2
7.65 7.41 7.49 7.49 S乙 ≈0.002
2
X甲 7.54
∵ S甲 > S乙
2 2
X 乙 7.52
S甲 ≈0.01
∴乙种甜玉米的产量比较稳定
可以推测这个地区更适合种植乙种甜玉米
老师的烦恼
下星期三就要数学竞赛了,甲,乙两名同学只 能从中挑选一个参加。若你是老师,你认为挑 选哪一位比较适宜? 甲、乙两个同学本学期五次测验的数学成绩分别 如下(单位:分) 甲 乙
1.在方差的计算公式
1 2 2 S= [(x1-20) +(x2-20) + 10
2
+(x -20) ]中,
2 10
数字10和20分别表示(
A、样本的容量和方差
C
)
B、平均数和样本的容量
C、样本的容量和平均数
D、样本的方差和平均数
2.甲、乙两名学生在参加今年体育考试前各 做了 5次立定跳远测试,两人的平均成绩相同, 其中甲所测得成绩的方差是 0.005 ,乙所测得的 成绩如下: 2.20m,2.30m,2.30m,2.40m,2.30m, 那么甲、乙的成绩比较( B ) A.甲的成绩更稳定 B.乙的成绩更稳定 C.甲、乙的成绩一样稳定 D.不能确定谁的成绩更稳定
甲射击成绩与平均成绩的偏差的平方和: (7-8) +(8-8) +(8-8) +(8-8) +(9-8) = 2 乙射击成绩与平均成绩的偏差的平方和: (10-8) +(6-8) +(10-8) +(6-8) +(8-8) = 16

极差、方差与标准差

极差、方差与标准差

极差、方差与标准差要点1 极差一组数据中的最大数据和最小数据的差叫做极差.例1 八年级上学期数学考试成绩甲、乙两班最高分数与最低分数的情况如下:甲班:最高分100,最低分32;乙班:最高分100,最低分54;分别求甲、乙量班的极差.【析解】 极差=最大值-最小值:甲班68,乙班46.要点2 方差方差是各个数据与平均数之差的平方的平均数,即例2 求下列一组数据的方差(小数点后保留两位):50,55,96,98,65,100,70,90,85,100.【分析】 根据公式①,先求出平均数,再计算方差.解 平均数为x =101(50+55+96+98+65+100+70+90+85+100)=80.9, 方差为:s2=101[(50-80.9)2+(55-80.9)2+……+(100-80.9)2]=334.69.要点3 标准差标准差是方差的算术平方根,它的计算公式是:要点4 极差、方差与标准差联系与区别1、联系我们已经知道:描述一组数据的集中趋势的特征数有三个:平均数、中位数和众数. 而表示一组数据离散程度的特征数也有三个:极差、方差、标准差.一般情况下,一组数据的极差、方差或标准差越小,这组数据就越稳定。

2、区别“极差”是表示数据波动状况的量度之一,是用来反映一组数据变化范围的大小.极差只能反应一组数据中两个极端值之间的差异情况,对其他数据的波动情况不敏感.一般情况下,方差和标准差可以更为精细的刻画了数据的波动情况。

例3 甲、乙两支篮球队在一次联赛中,各进行10次比赛得分如下:甲队:100,97,99,96,102,103,104,101,101,100乙队:97,97,99,95,102,100,104,104,103,102求甲、乙两队的平均分和方差,并判断哪个队在比赛中的成绩较为稳定。

【分析】x 甲×=+++++++++110100979996102103104101101100()=1003. x 乙×=+++++++++11097979995102100104104103102()=1003.S 甲×…222211010010039910031001003=-+-++-[(.)(.)(.)] =5.61;S 乙×…22221109710039710031021003=-+-++-[(.)(.)(.)] =9.21;由此可以判断甲队在联赛中发挥更为稳定一些。

第二十章数据的分析(第3课时)极差与方差课件

第二十章数据的分析(第3课时)极差与方差课件

甲,乙两名射击手的测试成绩统计如下:
第一次 第二次 第三次 第四次 第五次
甲命中环数 乙命中环数
7 10
8 6
8 10
8 6
9 8
⑴ 请分别计算两名射手的平均成绩;
x =8(环) x =8(环)


甲,乙两名射击手的测试成绩统计如下:
第一次 第二次 第三次 第四次 第五次
甲命中环数 乙命中环数
7 10
C.平均数
D.方差
67 x 6 7
(1)6
6 6 6
6 6
6;
(6 6)2 (6 6)2 (6 6)2 (6 6)2 (6 6)2 (6 6) 2 (6 6) 2 s2 0 7
8 7 6 5 4 3 2 1 0
时代变迁,生活busy,科技创新,教学easy。了解更多,尽在为之易:
所以甲组成绩比较稳定。
1分 钟
方差的计算
传递数据的各种功能Βιβλιοθήκη 2• 清除4
• 输数据 • 出结果
1
• 调SD状 态
3
M+ 26-26.9 2 SD S-SUM ∑X SCL CLR 25-26.9 M+ 2 MODE 2 SHIFT1 MODE SHIFT 1 1 M+ =1 ÷1 10 ON= 29-26.9
时代变迁,生活busy,科技创新,教学easy。了解更多,尽在为之易:

区别
• 极差是用一组数据中的最大值与最小值的差来反映数据的变化范围,主要反映一 组数据中两个极端值之间的差异情况,对其他的数据的波动不敏感。 • 方差是用“先平均,再求差,然后平方,最后再平均”的方法得到的结果,主要 反映整组数据的波动情况,是反映一组数据与其平均值离散程度的一个重要指标, 每个数据的变化都将影响方差的结果,是一个对整组数据波动情况更敏感的指标。

极差和方差公式

极差和方差公式

极差和方差公式
极差和方差是统计学上常用的概念,用于描述一组数据的离散程度和分布情况。

极差指的是数据中最大值和最小值之间的差值,是反映数据集中程度的指标,越小表示数据越集中;方差则是衡量数据的离散程度,是各数据点与平均值之差的平方和的平均值,用来描述数据分散的情况,越小表示数据越稳定。

它们的计算公式如下:极差 = 最大值 - 最小值
方差 = [(每个数据点与平均值之差的平方和)/总数据点数]
其中,每个数据点与平均值之差的平方和可表示为∑(xi-μ),其中xi为第i个数据点,μ为所有数据的平均值。

方差常常和标准差一起使用,标准差是方差的平方根,用来进一步描述数据的分布情况。

- 1 -。

数学数据的波动极差和方差

数学数据的波动极差和方差

数据的波动——极差与方差一、一周知识概述1、极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差.极差能够反映数据的变化范围,生活中经常用到极差.说明:极差是最简单的一种度量数据波动情况的量,但它受极端值的影响较大.2、方差(1)在一组数据x1、x2、…、x n中,各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,通常用“s2”表示,即:(2)方差的计算方法:①定义法,就是用上面方差的定义公式进行计算;②原始数据简化计算法:;③新数据简化计算法:当一组数据中的数据较大且比较集中时,可以依照简化平均数的计算方法,将每个数据同时减去它们的平均数接近的常数a,得到一组新数据x′=x1-a,x′2=x2-a,…x′n=x n-a;那么13、标准差:方差的算术平方根叫做这组数据的标准差,即标准差=.详解:(1)极差、方差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小,方差越小的,波动越小,即与其平均值的离散程度较小,从而它比较稳定;极差计算方便,但只对极端值较为敏感;(2)求方差的步骤可以概括为:“先平均,再求差,然后平方,最后再平均”,得到的结果表示一组数据偏离平均值的情况;(3)方差的数量单位是原数据单位的平方.4、用计算器求一组数据的标准差、方差:具体操作应由不同型号的计算器的功能决定.二、典型例题剖析例1、在2005年的高考中,参加高考的考生年龄最大的68岁,年龄最小的是13岁,求2005年高考考生年龄的极差,说明了什么?你有什么感慨,用一句话表述.分析:极差=最大值-最小值.解答:年龄极差=68-13=55(岁)从年龄极差看,我国高考制度已日趋完善,考生不再受年龄诸多因素的限制.感慨:大学的校门永远向你敞开.例2、为了提高农副产品的国际竞争力,一些行业协会对农副产品的规格进行了划分.某外贸公司要出口一批规格为75 g的鸡腿,现有两个厂家提供货源,它们的价格相同,鸡腿的品质也相近.质检员分别从甲、乙两厂的产品中抽样调查了20只鸡腿,它们的质量如下(单位:g):甲厂:7574747673767577777474757576737673787772 乙厂:7578727774757379727580717677737871767375 把这些数据整理成图.(1)你能从图中估计出甲、乙两厂被抽取鸡腿的平均质量吗?(2)求出它们的平均质量,并在图中画出表示平均质量的直线;(3)从甲厂抽取的这20只鸡腿质量的最大值是多少?最小值又是多少?它们相差几克?乙厂呢?(4)如果只考虑鸡腿的规格,你认为外贸公司应购买哪个厂的鸡腿?与同学交流.分析:(1)根据数据组和分布图易估计这两个厂家鸡腿的平均质量,它们都接近75 g;(2)利用平均数可以表示一组数据的平均水平;(3)平均质量只能反映总体的集中趋势,并不能反映个体的变化情况.从上图看出,甲厂的产品更符合要求.解答:(1)估计平均质量都是75 g.(2)[(75-75)+(74-75)+…+(72-75)]+75=75[(75-75)+(78-75)+…+(75-75)]+75=75.(3)甲厂鸡腿质量的极差:78-72=6 (g);乙厂鸡腿质量的极差:80-71=9 (g).(4)应购买甲厂的鸡腿.方法总结:极差是刻画数据离散程度的一个统计量,极差越大,偏离平均数越大,产品的质量性能越不稳定.例3、从甲、乙两种玉米中各抽10株,分别测得它们的株高如下(单位:cm):甲:25414037221419392142乙:27164427441640401640问:(1)哪种玉米的苗长得高?(2)哪种玉米的苗长得齐?分析:长得高和长得齐是两个不同的概念,看哪种玉米的苗长得高,只要比较甲、乙两种玉米的平均高度即可;要比较哪种玉米苗长得整齐,只要看两种玉米的苗高的方差即可.解答:(1) (25+41+40+37+22+14+19+39+21+42)=×300=30(cm).(27+16+44+27+44+16+40+40+16+40)=×310=31(cm).因为,所以乙种玉米的苗长得高.(2) [(25-30)2+(41-30)2+(40-30)2+…+(42-30)2]= ×1042=104.2(cm2)[(27-31)2+(16-31)2+(44-31)2+…+(40-31)2]= ×1288=128.8(cm2) 因为,所以甲种玉米的苗长得整齐.例4、设一组数据x1,x2, (x)n,其标准差为sx,另一组数据3x1+a,3x2+a, (3x)n+a,其标准差为s y,求s x与s y的关系式.分析:分别利用标准差的计算公式进行整体代换.解答:设x1、x2…xn的平均数为,则3x1+a,3x2+a, (3x)n+a的平均数为3+a.点评:一组数据x1,x2, (x)n的方差为s2,则x1±b,x2±b,…x n±b的方差为s2;ax1±b,ax2±b,…ax n±b的方差为a2s2.方法技巧:方差反映了数据的波动大小,在实际问题中,如长得是否速度一致,是否稳定等都是波动的体现,方差越大,波动越大.例5、为迎接世界无烟日的到来,小明对10名戒烟成功者戒烟前和戒烟5星期后的体重作了认真统计,(1)求这(2)求这10人在戒烟前和戒烟后的体重的方差;(3)通过上述数据,你能得到什么结论?分析:用计算器求一组数据的平均数、方差,要严格按教材上的说明和不同型号的计算器的不同功能进行操作,否则极易出错;问题(3)具有一定的开放性,要注卷找出数学问题与实际问题的结合点,确定思考的方向,并用简洁和准确的语言加以表述.解答:(1)将数据按大小重新排列:戒烟前:52,52,55,55,60,60,64,67,69,80;戒烟后:52,54,55,57,58,62,67,68,70,81;用计算器求得:=61.4(kg), =62.4(kg).(2) =70.44, =73.84.(3)从戒烟前后两组数据的统计量知:①从平均数看戒烟后这10人的平均体重增加了l kg;②从方差看,戒烟后数据的波动比戒烟前数据的波动大,说明戒烟对不同的人所发生的变化程度是不同的,通过对这两组数据的统计分析,得出结论:吸烟有害健康,戒烟对身体健康是有益的.例6、竞赛中成绩谁优谁次,并说明理由.分析:这是一道开放型问题,要判断这两个组竞赛成绩的优次,应从众数、方差、中位数、高分段人数等多角度分析.解答:(1)甲组成绩的众数为90分,乙组成绩的众数为70分,从成绩的众数比较看,甲组成绩好些;(2) [2(50-80)2+5(60-80)2+10(70-80)2+13(80-80)2+14(90-80)2+6(100-80)2]=172同理可算出=256.因为,所以甲组成绩较乙组成绩好.(3)甲、乙两组成绩的中位数、平均数都是80分,其中甲组成绩在80分以上的有33人,乙组成绩在80分以上的有26人,从这一角度看甲组的成绩总体较好.(4)从成绩统计表看,甲组成绩高于90分的人数为14+6=20(人),乙组成绩高于90分的人数为12+12=24(人).所以乙组成绩集中在高分段的人数多,同时乙组得满分的人数比甲组得满分的人数多6人,从这一角度看,乙组的成绩较好.方法总结:(1)解这类题目要抓住问题中的关键词语,全方位地进行必要的计算,而不能习惯性地仅由方差的大小决定哪一组的优劣,应从实际出发做多角一度的分析;(2)要在恰当地作出评估后组织好正确的语言作出结论;(3)这类开放型题是知识的综合运用,必须要有扎实的功底、综合解题的能力和较好的语言表述能力.。

中位数、极差、算数平均差和方差

中位数、极差、算数平均差和方差

何为中位数、极差、算数平均差和方差?把数据按大小数据排列,排在正中间的一个数即为中间数,用符号X 表示。

当数据的个数为奇数时,中位数就是正中间的数值,单n 为偶数时,则中位数为中间两个数的算术平均值。

R :极差就是数据中最大和最小值的差,又称全距,用符号R 表示。

R=Xmax-Xmin式中;Xmax 表示数据中的最大值:Xmin 表示数据中的最小值。

算数平均差是指 n 个数据中,每一个数值X i 与平均值之差的绝对值之和,除与数据个数。

δ=nX X X X X X n )()()(21-+⋅⋅⋅⋅⋅⋅+-+- =n X Xi ∑-)(式中:δ——算数平均差X 1——各检测数据X ——检测数据的算数平均值n ——检测数据的个数方差数n 各数据中每个数值与算数平均值之差的平凡的平均值,又称均方差。

它实际上是标准偏差的平方值,用公司表示为:S 2=2)(1∑-X Xi N算数平均值和加权平均值的计算公式?算数平均值计算公式:X=nX n X X X in ∑=+⋅⋅⋅++21 式中:X i ——各个变量的数值Σ——表示求和N ——总体的个数及测量值的个数加权平均值计算公式:M=n n n f f f x f x f x f +⋅⋅⋅+++⋅⋅⋅++212211=∑∑ii i f x f 式中;)(21n f f f f ⋅⋅⋅表示各个相应变量值的次数(即所谓权数)。

作为质量统计的总体基本特征是什么?1同质性;即总体中的所有单位(个体)都必须具有某一共同的性质2大量性;即单位数目要足够多3差异性(波动性):即描述总体单位性质的数值时可变的(或者说是波动的)上述三个特征必须同时具备,才能形成质量统计总体,缺一不可。

偏差有几种表示方法?何为标准偏差?偏差常用极差、算数平均值、标准偏差、方差四种表示方法。

标准偏差时人们总结合推到出来的一个衡量总体分散程度的度量值,又称均方根差。

其推导过程是:设有n 个数据,计算出其算数平均值,将总体中各个数据减去平均值,即得离差(Xi-X )。

人教版初中数学八年级下第二十章 数据的分析极差和方差

人教版初中数学八年级下第二十章 数据的分析极差和方差

甲同学成绩与平均成绩的偏差的平方和:
(85-90)2+(90-90)2+(90-90)2 +(90-90)2 + (95-90)2 = 50
乙同学成绩与平均成绩的偏差的平方和:
(95-90)2+(85-90)2+(95-90)2 +(85-90)2 +(90-90)2 = 100
上述各偏差的平方和的大小还与什么有关?
4、计算下列各组数据的方差: (1)6 6 6 6 6 6 6; 6 0 (2)5 5 6 6 6 7 7; 6 4/7 (3)3 3 4 6 8 9 9 ;6 44/7 (4)3 3 3 6 9 9 9 ;6 54/7
小明的烦恼
在学校,小明本学期五次测验的数学成绩和英语 成绩分别如下(单位:分)
成绩(分)
下图中画出折线统计图; 100
⑶ 现要挑选一名同学参加竞
95
90
赛,若你是老师,你认为挑 85
考 试
选哪一位比较适宜?为什么? 80
次 数
0 1 2 345
甲 85 90 90 90 95
乙 95 85 95 85 90
_
_
x甲 90(分) x乙 90(分)
甲同学成绩与平均成绩的偏差的和:
25
23 22
20
23 21
14 10
24 20
19 16
25
23 22
20
23 21
(1)乌鲁木齐的气温的最大值、最小值各是多少?温差是多少?
广 州呢?
气温 最大值 最小值 温差
乌鲁木齐 广州
24℃ 25℃
10℃ 20℃
14℃ 5℃
(2)你认为两个地区的气温情况怎样? 乌鲁木齐的气温变化幅度较大,广 州的气温变化幅度较小.

专题17方差极差标准差综合题(原卷版)

专题17方差极差标准差综合题(原卷版)

专题17 方差、极差、标准差(综合题)知识点:极差、方差和标准差1.极差一组数据中 ,称为极差,极差= 细节剖析:极差是 ,它受 的影响较大.一组数据极差越小,这组数据就越 2.方差方差是 .方差的计算公式是:,其中,是,,…的 细节剖析:(1)方差反映的是一组数据 的情况.方差越大,数据的 越大;方差越小,数据的波动 .(2)一组数据的每一个数都 同一个常数,所得的一组新数据的方差 (3)一组数据的每一个数据都变为原来的倍,则所得的一组新数据的方差变为原来的倍. 3.标准差方差的算术平方根叫做这组数据的标准差,用符号表示,即:;标准差的数量单位与原数据一致.4.极差、方差和标准差的联系与区别联系:极差与方差、标准差都是表示 .区别:极差表示 ,它受 的影响较大;方差反映了 .方差越大,稳定性也 ;反之,则稳定性 .所以一般情况下只求 用极差,在考虑到 时用方差.2s ()[]222212)(...)(1x x x x x x nS n -++-+-=x 1x 2x n x k 2k s 易错点拨易错题专训一.选择题1.(2021秋•汝州市期末)描述一组数据的离散程度,我们还可以用“平均差”.在一组数x1、x2、x3、…、x n中,各数据与它们的平均数x的差的绝对值的平均数,即T=(|x1﹣x|+|x2﹣x|+…+|x n﹣x|)叫做这组数据的“平均差”.“平均差”也能描述一组数据的离散程度,“平均差”越大说明数据的离散程度越大,稳定性越小.现有甲、乙两组数据,如表所示,则下列说法错误的是()甲12 13 11 15 13 14乙10 16 10 18 17 7 A.甲、乙两组数据的平均数相同B.乙组数据的平均差为4C.甲组数据的平均差是2D.甲组数据更加稳定2.(2021秋•青羊区期末)甲、乙、丙、丁四人进行射击测试,他们在相同条件下各射击10次,成绩(单位:环)统计如表:甲乙丙丁平均数9.7 9.6 9.6 9.7方差0.25 0.25 0.27 0.28如果从这四人中,选出一位成绩较好且状态稳定的选手参加比赛,那么应选()A.甲B.乙C.丙D.丁3.(2022春•定海区期末)若一组数据x1+1,x2+1,…,x n+1的平均数为17,方差为2,则另一组数据x1+2,x2+2,…,x n+2的平均数和方差分别为()A.17,2 B.18,2 C.17,3 D.18,34.(2021秋•历下区期中)在2020东京奥运会女子10米气步枪的项目中,杨倩以251.8环的好成绩一举夺冠,为中国体育代表团斩获奥运首金.现将决赛淘汰阶段中国选手杨倩每一轮(两轮之和)的数据进行汇总,并进行一定的数据处理作出以下表格.姓名第1轮第2轮第3轮第4轮第5轮第6轮第7轮总计杨倩20.9 21.7 21.0 20.6 21.1 21.3 20.5 147.1 根据表格信息可以得到杨倩在决赛淘汰阶段成绩的极差和中位数分别为多少()A.1.1,20.6 B.1.2,20.6 C.1.2,21.0 D.1.1,21.35.(2020秋•泰山区期末)甲,乙两个班参加了学校组织的“国学小名士”国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是()参加人数平均数中位数方差甲40 93 92 5.2乙40 93 94 4.7 A.甲、乙两班的平均水平相同B.甲、乙两班竞赛成绩的众数相同C.甲班的成绩比乙班的成绩稳定D.甲班成绩优异的人数比乙班多6.(2021•天心区模拟)去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数(单位:千克)及方差S2(单位:千克2)如下表所示.今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()甲乙丙丁24 24 23 20S2 1.9 2.1 2 1.9 A.甲B.乙C.丙D.丁二.填空7.(2021秋•开江县期末)某班有50人,一次数学测试后,老师对测试成绩进行了统计.由于小颖没有参加此次集体测试,因此计算其他49人的平均分为92分,方差s2=23.后来小颖进行了补测,成绩是92分,则该班50人的数学测试成绩的方差(填“变小”、“不变”、“变大”).8.(2021秋•福田区期末)新兴农场果农随机从甲、乙、丙三个品种的枇杷树中各选10棵,每棵产量的平均数(单位:千克)及方差(单位:千克2)如下表所示,他准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是.甲乙丙44 44 42S2 1.7 1.5 1.7 9.(2021秋•巨野县期末)在对一组样本数据进行分析时,小华列出了方差的计算公式:S2=,由公式提供的信息,①样本的容量是4,②样本的中位数是3,③样本的众数是3,④样本的平均数是3.5,则说法错误的是(填序号)10.(2022春•黄陵县期末)甲、乙两地6月上旬的日平均气温如图所示,则甲、乙两地这10天日平均气温的方差大小关系为S甲2S乙2(填>或<)11.(2021秋•莱州市期中)跳远运动员李强在一次训练中,先跳了6次的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9(单位:m).这六次成绩的平均数为7.8,方差为.如果李强再跳两次,成绩分别为7.6,8.0,则李强这8次跳远成绩与前6次的成绩相比较,其方差.(填“变大”、“不变”或“变小”)12.(2021秋•海曙区校级期末)已知一组数据的方差s2=[(x1﹣6)2+(x2﹣6)2+(x3﹣6)2+(x4﹣6)2],那么这组数据的总和为.三.解答题13.(2021秋•中牟县期末)为增强防疫意识,某初中在元旦举行了疫情防控知识竞赛活动,现从本校甲、乙两班中各随机抽取10名同学的测试成绩进行整理、描述和分析,如图所示:班级平均数/分中位数/分众数/分方差乙班83.7 82 46.21甲班83.7 86 13.21 请将乙班学生成绩按从小到大的顺序写在横线上.(1)两组数据的平均数、中位数、众数、方差如上表所示,请补充完整.(2)根据上述数据,请从两个不同角度评价甲班与乙班掌握防疫知识的情况.14.(2021秋•平顶山期末)某校为了改善学生伙食,准备午餐为学生提供鸡腿.现有A、B两家副食品厂可以提供规格为75g的鸡腿,而且它们的价格相同,品质也相近.质检人员分别从两家随机各抽取10个,记录它们的质量(单位:g)如下:A加工厂74 74 74 75 73 77 78 72 76 77B加工厂78 74 77 73 75 75 74 74 75 75并对以上数据进行整理如下:平均数中位数众数方差A加工厂a74.5 c 3.4B加工厂75 b75 2根据以上分析,回答下列问题:(1)统计表中a=;b=;c=;(2)根据以上信息估计B加工厂加工的100个鸡腿中,质量为75g的鸡腿有多少个?(3)如果考虑鸡腿的规格,学校应该选购哪家加工厂的鸡腿?说明理由.15.(2021秋•渭城区期末)某学校从九年级同学中任意选取40人,平均分成甲、乙两个小组进行“引体向上”体能测试,根据测试成绩绘制出如下的统计表和统计图(成绩均为整数,满分为10分).甲组成绩统计表成绩7 8 9 10人数 1 9 5 5 请根据上面的信息,解答下列问题:(1)m=,甲组成绩的众数是,乙组成绩的中位数是;(2)已知甲组成绩的方差s=0.81,求出乙组成绩的方差,并判断哪个小组的成绩更加稳定?16.(2021秋•乾县期末)某中学开展“唱歌”比赛活动,八(1),八(2)班各选出5名选手参加复赛,5名选手的复赛成绩(满分为100分),如图所示:(1)根据图示填写下表:班级中位数/分众数/分八(1)班85八(2)班100 (2)通过计算得知八(2)的平均成绩为85分,请计算八(1)的平均成绩.(3)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好.(4)经计算八(1)班复赛成绩的方差为70,请计算八(2)班复赛成绩的方差,并说明哪个班学生的成绩比较稳定.17.(2021秋•新民市期末)某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.(1)根据图示填写下表:平均数/分中位数/分众数/分A校85B校85 100(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.18.(2022春•宁武县期末)市体校射击队要从甲、乙两名射击队员中挑选一人参加省级比赛,因此,让他们在相同条件下各射击10次,成绩如图所示.为分析成绩,教练根据统计图算出了甲队员成绩的平均数为8.5环、方差为1.05,请观察统计图,解答下列问题:(1)先写出乙队员10次射击的成绩,再求10次射击成绩的平均数和方差;(2)根据两人成绩分析的结果,若要选出总成绩高且发挥稳定的队员参加省级比赛,你认为选出的应是,理由是:.19.(2021秋•驻马店期末)某校八年级学生开展踢毽子比赛活动,每班派5名学生参加.按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个),经统计发现两班总分相等,此时有学生建议,可通过考查数据中的其他信息作为参考.请你回答下列问题:1号2号3号4号5号总分甲班100 98 110 89 103 500乙班86 100 98 119 97 500(1)根据上表提供的数据填写下表:班级参加人数优秀率中位数方差甲 5乙 5(2)根据以上信息,你认为应该把冠军奖状发给哪一个班级?简述理由.20.(2021•锡林浩特市校级模拟)我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.平均分(分)中位数(分)众数(分)方差(分2)初中部a85 b s初中2高中部85 c100 160(1)根据图示计算出a、b、c的值;(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?(3)计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定.。

极差,方差,标准差的概念

极差,方差,标准差的概念

极差,方差,标准差的概念平均差:平均差是表示各个变量值之间差异程度的数值之一。

指各个变量值同平均数的离差绝对值的算术平均数。

标准差:是离均差平方的算术平均数的平方根,用σ表示。

标准差是方差的算术平方根。

方差:方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。

概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。

统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。

极差:极差又称范围误差或全距(Range),以R表示,是用来表示统计资料中的变异量数(measures of variation),其最大值与最小值之间的差距,即最大值减最小值后所得之数据。

是指一组数据内的最大值和最小值之间的差异.区别:1、平均差是说明集中趋势的,标准差是说明一组数据的离中趋势的.平均差是反应各标志值与算术平均数之间的平均差异,是各个数据与平均值差值的绝对值的平均数;标准差是离均差平方和平均后的方根,更能反映一个数据集的离散程度。

2、方差是每个数减去平均数的平方的和,标准差是把方差除以我们的关注的事物的个数,方差=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2],标准差=方差的算术平方根。

3、平均差是总体所有单位与其算术平均数的离差绝对值的算术平均数。

方差是各个数据与其算术平均数的离差平方和的平均数。

联系:极差越大,平均差的代表性越小,反之亦然;标准差越大,平均差的代表性越小,反之亦然,方差的算术平方根=标准差。

扩展资料:方差的统计学意义当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。

因此方差越大,数据的波动越大;方差越小,数据的波动就越小。

样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。

极差和方差

极差和方差
我们可以用一组数据中的最大值减去最小值所得的差来反 映这组数据的变化范围。用这种方法得到的差称为极差
极差=最大值-最小值
问:2001年2月下旬上海的气温的极差是多少? 2002年同期的上海的气温的极差又是多少?
问题1:你会计算一组数据的变化范围吗?怎么算?
极差: 一组数据中的最大数据与最小数据的差 极差= 最大值-最小值. 作用:极差能够反映数据的变化范围.
则甲的平均数是 9 ,乙的平均数是 9 .
你认为派 去参加比赛比较合适? 请结合计算加以说明.
1.数据 x1、x2、x3、的平均数是3,
则2
x1、2
x2
、2
x 的平均数是_6__ 3
.
2.数据 x1、x2、x3、x4 平均数是2,方差是2,则
3 x1 1、3 x2 1、3 x3 1、3 x4 1
的平均数是_5__, 方差是 __1_8__ .
164
2
165 8
3
166
167
165

x乙
163
164
2
165
166
167
2
168
166
8
s2 甲
(163165)2( 164165)2
8
( 167
165)2
1.5
s2 乙
(163166)2
(164166)2
8
(168166)2
2.5
s s
2 甲
2,

甲芭蕾舞团女演员的身高更整齐.
小明的烦恼
例1、在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团 表演了舞剧《天鹅湖》,参加表演的女演员的身高 (单位:cm)分别是 甲团 163 164 164 165 165 165 166 167 乙团 163 164 164 165 166 167 167 168 哪个芭蕾舞团女演员的身高更整齐?

极差计算公式excel

极差计算公式excel

在Excel中,可以使用以下公式来计算数据集的极差:
如果你的数据集以列的形式排列,例如数据位于A1到A10单元格中,可以使用以下公式:
=MAX(A1:A10) - MIN(A1:A10)
这将计算A1到A10范围内的最大值和最小值之间的差值,即极差。

如果你的数据集以行的形式排列,例如数据位于A1到J1单元格中,可以使用以下公式:
=MAX(A1:J1) - MIN(A1:J1)
这将计算A1到J1范围内的最大值和最小值之间的差值,即极差。

请注意,极差是一种简单的统计指标,它只考虑了最大值和最小值之间的差异,并没有考虑其他数据点的分布情况。

在某些情况下,极差可能并不完全代表数据的变异程度。

如果你需要更全面地分析数据的变异性,可以考虑使用其他统计指标,如方差、标准差或四分位数范围等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档