高炉渣的余热回收

合集下载

高炉渣余热利用技术的现状及发展趋势 余热发电

高炉渣余热利用技术的现状及发展趋势 余热发电

高炉渣余热利用技术的现状及发展趋势摘要:本文系统的分析了高炉渣湿法与干法处理工艺及其余热利用的国内外现状,简述了底滤法(OCP)、因巴法(INBA)、拉萨法(RASA)、图拉法(TYNA)等典型的水淬法工艺,总结了水淬渣方式存在的诸多弊端,对风淬法、双内冷却转筒粒化法、Merotec 熔渣粒化流化法、机械粒化法、连铸连轧法、化学法等干法处理技术的研究进展和发展现状进行了总结。

最后得出结论: 离心粒化等干式余热回收技术在利用高炉渣的高品质热源时,不会造成水资源的浪费, 不会产生硫化氢、二氧化硫等有害气体,在克服水渣法固有缺点的同时,还可以得到玻璃化程度高的高附加值成品渣,是今后高炉渣余热回收工艺的发展趋势。

关键词:高炉渣;余热利用;水淬;干式粒化1 前言中国目前是全球最大的钢铁生产国。

中国钢铁产量已连续16年保持世界第一,并且遥遥领先于其他国家。

同时伴随我国高炉冶炼生产排出的含丰富热能的高炉渣数量也是巨大的,从节能与环保以及提高钢铁厂的经济效益的角度来看,对高炉渣的热量进行回收和高炉渣的资源化利用是十分必要的。

炉渣的出炉温度一般在1400~1550℃之间。

每吨渣含(1260~1880)×103kJ的显热,相当于60kg标准煤的热值[1]。

每生产1吨生铁要副产0.3吨高炉渣,每生产1吨钢要副产0.13吨钢渣[2],以目前我国的钢铁产量6.83亿吨进行计算,可产生2.9亿吨以上的高炉渣和转炉渣,其显热量相当于1740万吨标准煤,尽管并非可以全部回收高炉渣的热能,但若能部分回收利用,其节能效益也是显著的,非常具有市场开发潜力。

就目前应用大量应用水淬技术情况来看,这部分高温热源显然是被浪费了,该高温热源就温度品质来说,完全符合高品位能源的要求,如果能回收这部分热量得以重新利用,就可以为社会和企业带来可观的经济、社会和环保效益。

开展余热余能的回收利用不仅是钢铁企业节约能源降低成本,提高竞争力的重要手段,而且也符合国家钢铁工业的政策要求。

高炉炉渣余热回收利用

高炉炉渣余热回收利用

高炉炉渣余热回收利用
标签:高炉渣余热回收
高炉炉渣出炉温度约为1450℃左右,通常是断续出渣,所以其热能的回收利用存在很大的难度,常见的高炉水淬处理后的只能回收炉渣10%的热量,其余90%的热量只能白白浪费。

目前,在国内外对高炉渣进行干式粒化处理的研究已进入中试阶段,效果较好,其方式分为普通式和流化床式两类。

1、普通式余热回收。

该法是先将液态高炉渣倒入一倾斜的渣沟里,液渣在渣沟末端流出时与下部出来的高速空气流接触,渣温从1550℃降到1000℃并被粒化后进入热交换器,然后在热交换器内渣冷却到300℃,热量得到回收。

该法可以回收热量40% -45%。

但相对流化床式还是偏低,且处理后渣粒度不均匀。

2、流化床式热回收。

流化床是利用空气作为流化气体,在处理过程中,钢渣颗粒与流化气体接触充分,接触面积增大,所以热交换比较充分,渣热回收率大大提高。

流化床式回收法有常规干式粒化法和熔融高炉渣粒化法两类,其中后者较为成熟,回收率可达70%。

其核心设备是熔融高炉渣粒化设备,回收热过程是:1)液态高炉渣粒从罩杯中甩出,通过与下部流化床上来的空气和水冷壁间的换热,完成回收约14%热量;2)高炉渣进而打在容器内壁,与水冷壁进行热交换,完成回收约23%热量;3)内壁反弹回来的高炉渣粒进入到一级流化床内,并与通过流化床
的空气和位于床层内的换热管间热交换冷却,完成回收约43%热量;4)一级流化床受热快速膨胀,热渣进入到二级流化床,节能型热交换,完成回收约20%热量。

该法日处理渣约7700t,过程中完全无水参与,节约了水资源,且渣粒均匀(小于2mm),适宜制造水泥。

熔融高炉渣粒化法处理高炉渣,可以实现环保和热能的双赢,值得大力推广。

高炉冲渣水余热回收的可行性分析

高炉冲渣水余热回收的可行性分析

高炉冲渣水余热回收的可行性分析文章结合高炉冲渣水的余热特点,提出了三种余热回收方案,并针对其可行性进行了分析。

标签:高炉;冲渣水;余热回收;可行性前言在当前经济全球化的背景下,能源危机的不断深化,使得节能降耗可持续发展受到了社会各界的广泛关注。

钢铁作为我国国民经济的支柱产业,同时也是耗能大户,在生产过程中,会产生大量的余热,以高炉冲渣水为例,其温度可以达到95℃左右,一般都是在进入空冷塔冷却后,对水资源进行循环利用,但是其中蕴含的热量却白白浪费,而且对于周边环境造成了热污染。

对此,做好高炉冲渣水余热回收工作,是非常重要的。

1 高炉冲渣水余热特点高炉冲渣水余热的热源温度相对较低,但是流量巨大,而且由于水中蕴含相应的化学物质,对于普通钢材有着一定的腐蚀性,做好高炉冲渣水余热的回收工作,不仅能够有效减少能源的浪费,还可以保护周边环境,其重要性是不言而喻的。

在钢铁企业中,一般情况下,高炉冲渣水采用的是浊环水,能够减少对于水资源的消耗,但是其在冷却过程中大量的热量散失,造成了一定的浪费,而且冲渣过程中产生的二氧化硫、硫化氢等物质会在大气中形成酸雨,造成严重的环境污染,因此,如何对高炉冲渣水余热进行回收利用,是當前钢铁企业需要重点研究的课题。

2 高炉冲渣水余热回收方案从目前来看,对于高炉冲渣水余热的回收,主要是以下三种方案。

2.1 采暖在对高炉冲渣水进行沉淀过滤后,进行相应的水热交换,通过循环泵,将采暖水输送至采暖用户。

将余热回收用于采暖的方法,具有投资少、设备简单、散热少、余热利用率高等优点,不过也存在两个方面的问题,一是由于采用的是浊环水,容易出现感到堵塞和腐蚀的现象,维护起来比较困难,对于换热设备的要求较高;二是只能在冬季使用,无法全年回收余热。

因此,如果采用这种方案,经济效益相对较差,而且对于余热的回收利用率低。

2.2 发电在对高炉冲渣水进行沉淀、过滤等预处理后,导入换热器,此时冲渣水的温度降低到40-50℃,之后回归到高炉供冲渣使用,可以对一定的余热进行回收。

高炉冲渣水余热回收技术

高炉冲渣水余热回收技术

高炉冲渣水余热回收技术通过对高炉冲渣水余热回收利用的几种方式的对比,分析了传统换热设备在余热回收项目中的优缺点,并提出真空相变换热技术在冲渣水余热回收中的优势,其较好地解决了传统冲渣水换热器设备堵塞、耗损、腐蚀、结晶等一系列问题。

真空相变换热器有效地利用了此项技术,在钢厂高炉冲渣水余热回收利用中值得推广利用,具有广阔的应用前景,可以实现较好的经济效益和环保及社会效益。

标签:换热器;真空相变;高炉冲渣水;余热回收1 概述高温熔渣作为高炉炼铁的附属产物,其经过水淬工艺处理后将产生70~90℃的高温冲渣水,这些具有大量余热的冲渣水具有成分复杂、悬浮物多的特点,尤其是其中含有矿棉类纤维等成分,极易造成沉积钩挂、堵塞,同时其渣粒也会造成管道的严重磨损。

长期以来,人们采用直接或间接的换热器来利用冲渣水的余热,都达不到理想的换热及运行效果。

高炉冲渣水若直接作为采暖热水,会在采暖管道及散热器中产生淤积、堵塞;若间接换热,则同样会在传统的换热器中发生堵塞、腐蚀、结晶、磨损等问题,无法长周期有效使用。

综上,如何全面、有效地利用高炉冲渣水便成了一个亟待解决的现实问题。

2 真空相变换热技术简介由于水的沸点会随着压力的变化而相应地变化,所以,通过降低水所在周围环境的压力大小,从而使水在低压环境下沸腾,进而转化为水蒸气,这些水蒸气便可以被我们充分利用与循环水进行相变换热,从而达到了余热回收的目的。

2.1 高炉冲渣水的水质分析高炉冲渣水的余热回收具有其鲜明的特点,有必要对其水质进行简单地分析。

高炉渣的主要成分为CaO、SiO2、AL2O3等物质,冲渣水是高炉渣在1400℃左右的熔融状态下水淬形成的,故在其水淬过程中会将高炉渣的一些成分溶解在水中,再加上冲渣水作为冷却高炉渣的重复利用循环水,不断往复地冲渣过程中冲渣水也不断地被浓缩,从而使高炉渣中可以溶于水的物质达到了一个饱和的状态。

笔者从某钢厂冲渣水提供的水质报告得到以下数据。

高炉冲渣水余热回收解决方案-仟亿达

高炉冲渣水余热回收解决方案-仟亿达

仟亿达高炉冲渣水余热回收利用解决方案一、高炉冲渣水余热利用背景钢铁厂在高炉炼铁工艺中,产生的炉渣温度大约为1000℃。

目前,大多数炼铁企业的处理方法是:将此炉渣在冲渣箱内由冲渣泵提供的高速水流急冷冲成水渣并粒化,以供生产水泥之用。

这一过程中能够产生大量温度在80~95℃的热水。

通常,为了保证冲渣水的循环利用效果,需要将这部分冲渣水在沉淀过滤后引入空冷塔,降温到50℃以下再次循环冲渣。

这样就使得很大一部分热量在空冷塔中流失,既造成了能源的浪费,又对环境造成了热污染。

目前,高炉冲渣水余热回收利用技术主要应用于余热发电、冬季采暖和浴池用水。

二、高炉冲渣水余热利用解决方案2.1余热发电基本原理为:炼铁厂高炉冲渣水排出时温度为80~95℃,经沉淀清除杂质预处理后进人特殊设计的蒸发换热器和预热换热器,将高炉冲渣水热量传递给换热介质,温度降至约5O℃,再送回高炉冲渣,从而回收一定量的余热。

换热介质在换热器内吸收热量后变成80℃的过热蒸气,然后进入气轮机膨胀做功,带动发电机转动,输出电能。

做功后的换热介质变成低压过热蒸气,进入冷凝器放出热量,变成低温、低压的液体换热介质,然后由泵送至换热器中吸热,再次变成过热蒸气推动气轮机膨胀做功。

如此连续循环,将高炉冲渣水中的热量源源不断地提取出来,转换成电能。

图1、高炉冲渣水余热发电工艺流程图冷凝器冷却方式包括水冷式和风冷式2种。

其中,水冷式冷凝器投资较低,投资回收期较短,但运行过程需补充冷却水;风冷式冷凝器净发电量较少,但不需要冷却水,比较适合干旱缺水地区。

2.2螺杆膨胀机余热发电简介螺杆膨胀机是一种专门回收各种低品位热能发电的高新技术新型发电机组,具有通用性强、热能适用广、使用维护安全便捷、节能高效等技术特点,在不影响用户正常生产的前提下实现节能减排和经济增效的投运效果。

工业热液(75℃以上)的应用范围:热水温度150℃以上,可以直接用“螺杆膨胀动力机组+冷凝器”回收发电热水温度70-150℃范围,可以采用“双循环螺杆膨胀动力机组+冷凝器”回收发电图2、螺杆发电流程图2.3冬季采暖高炉冲渣水在渣池中沉淀后仍含有很多炉渣杂质,不能满足采暖系统水质要求,所以高炉冲渣水必须过滤才能进入采暖系统。

科技成果——高炉冲渣水直接换热回收余热技术

科技成果——高炉冲渣水直接换热回收余热技术

科技成果——高炉冲渣水直接换热回收余热技术适用范围钢铁行业冶金行业炼铁、炼铜等生产过程高炉冲渣水余热回收利用行业现状高炉炼铁熔渣经水淬后产生大量60-90℃的冲渣水,其中含有大量悬浮固体颗粒和纤维。

目前,我国高炉冲渣水余热主要采用过滤直接供暖及过滤换热供暖方式进行利用,但存在容易在管道或换热设备内发生淤积堵塞、过滤反冲频繁取热量少、产生次生污染等问题,无法长时间使用,因此多年来冲渣水余热未得到全面有效利用。

按照我国钢铁生产产量8亿t,按350kg渣比计算,由冲渣水带走的高炉渣的物理热量约占炼铁能耗的8%左右,能源浪费巨大。

该技术自2013年推广至今,已实施26座高炉,总供暖面积达1400多万平米,实现节能量20万tce/a,CO2减排约52万t/a。

成果简介1、技术原理高炉炼铁冲渣水含有大量60-90℃低品位热量,该技术采用专用冲渣水换热器,无需过滤直接进入换热器与采暖水换热,加热采暖水,用于采暖或发电,从而减少燃煤消耗并减少污染物的排放,达到节能减排的目的。

冷却后的冲渣水继续循环冲渣,对于带有冷却塔的因巴等冲渣工艺,可以关闭冷却塔进一步节约电能消耗;而对于没有冷却塔的冲渣工艺,冲渣水降温后减少了冲渣水蒸发量,进一步减少水消耗。

采用该技术,无需过滤,工艺流程短,运行及维护成本低,取热过程仅仅取走渣水热量,不影响高炉正常运行,无次生污染,整体运行可靠,适宜于长周期运行。

2、关键技术(1)直接换热技术。

开发了专用冲渣水换热器,解决了纤维钩挂堵塞和颗粒物淤积堵塞问题,冲渣水无需过滤即可直接进入换热器与采暖水进行换热。

(2)抗磨损技术。

冲渣水含有大量固体颗粒物,不仅容易淤积堵塞,而且极易磨损,该技术通过板型、材质、结构、流速等方面的控制解决了磨损问题。

(3)自动运行控制技术。

根据高炉规模和冲渣工艺的不同特点,研发了系列工艺流程与之配套,大型高炉两侧冲渣的切换技术以及可靠的直接换热技术保证了自动运行的可实施性。

高炉熔渣余热回收技术发展过程及趋势

高炉熔渣余热回收技术发展过程及趋势

高炉熔渣余热回收技术发展过程及趋势随着工业化进程的不断发展,高炉熔渣余热回收技术也在不断地发展和完善。

本文将从技术发展的历程和未来趋势两方面来探讨高炉熔渣余热回收技术的发展。

一、技术发展的历程高炉熔渣余热回收技术是一种利用高炉熔渣余热进行能量回收的技术。

它的发展历程可以分为以下几个阶段:1、初期阶段高炉熔渣余热回收技术最初是在20世纪初期开始出现的。

当时,人们主要采用的是换热器来回收高炉熔渣的余热。

然而,这种技术存在着很多问题,例如换热器的效率低、易受污染等。

2、中期阶段20世纪50年代,人们开始尝试采用“干法”和“湿法”两种方式来回收高炉熔渣的余热。

其中,“干法”主要是采用热风炉或热气轮机等设备来回收余热,而“湿法”则是采用热水或蒸汽等介质来回收余热。

这些技术在当时已经相对成熟,但仍存在着一些问题,如能量回收效率低、设备成本高等。

3、现代阶段进入21世纪后,高炉熔渣余热回收技术得到了更加广泛的应用和推广。

此时,人们开始采用先进的技术手段,如热泵、超临界流体回收等,来提高余热回收效率和设备的可靠性。

同时,人们也开始注重技术的环保性和经济性,力求实现能源的可持续利用。

二、未来趋势未来,高炉熔渣余热回收技术将呈现以下几个趋势:1、高效化随着科技的不断进步,高炉熔渣余热回收技术的效率将会得到进一步提高。

未来,人们将会采用更加先进的技术手段,如超临界流体回收、热泵等,来提高余热回收效率,实现更加高效的能量回收。

2、环保化在未来,高炉熔渣余热回收技术将更加注重环保性。

人们将会采用更加环保的技术手段,如低温余热回收、废热再利用等,来减少对环境的污染,实现绿色能源的利用。

3、智能化未来,高炉熔渣余热回收技术将更加智能化。

人们将会采用先进的智能控制系统,来实现设备的自动化操作和监控。

同时,人们也将会利用大数据和人工智能等技术,对设备的运行状态进行实时监测和分析,以实现设备的优化运行和维护。

总之,高炉熔渣余热回收技术是一项非常重要的能源回收技术。

高炉冲渣水余热回收技术的创新与应用

高炉冲渣水余热回收技术的创新与应用

高炉冲渣水余热回收技术的创新与应用高炉熔融炉渣的温度高达1400℃~1500℃,其热量大,属于高品质的余热资源。

我国高炉渣的处理工艺主要采用水淬处理,大量高温炉渣通过冲渣水进行冷却,产生大量温度为70℃~85℃的热水。

通常,为了保证冲渣水的循环利用,需要将这部分冲渣水沉淀过滤后引入空冷塔,降温到50℃以下再次循环冲渣,或自然降温后继续循环冲渣。

这个过程损失了大量的热量,既造成了能源的浪费,又对环境造成了污染。

高炉冲渣水作为一种废热能源,因其温度稳定、流量大的特点,正逐渐成为余热回收利用的研究热点。

目前,对冲渣水余热的回收方式有利用冲渣水采暖、浴池用水和余热发电。

冲渣水余热发电是一种最有价值的研发方向,但因其技术要求相对较高,投资回收期较长,目前还处于研究开发阶段。

利用冲渣水采暖或作浴池用水,已经被北方地区的部分钢厂使用,并带来较好的经济效益。

高炉水渣含有CaO、SiO2、MgO、Al2O3和少量的Fe2O3,pH值大于7,呈弱碱性。

高炉水渣杂质在冲渣水中以固体颗粒或悬浮物的形式存在,日积月累,杂质会使采暖系统中的管道、阀门、散热器发生大面积淤积、堵塞,所以高炉冲渣水作为采暖热源时不适于直接使用。

通过间接换热的形式重复利用冲渣水进行采暖或作为浴池用水是高炉冲渣水利用的技术点,而高炉冲渣水专用换热器适用于换热介质在高悬浮物、高黏度等恶劣工况下的实体应用。

冲渣水余热回收出利器冲渣水专用换热器是由螺旋状扁管换热元件制造而成的新型高效换热器,螺旋扁管的截面为椭圆形,其管内外流道均呈螺旋状,获得国家实用新型专利。

该换热器在使用过程中具有以下特点:压降小。

管壳式换热器在壳程为了减少死区和短路设置了一定数量的折流板,相应地增加了阻力,而螺旋扁管的应用使得壳程中介质的曲折流动变为直接螺旋流动,没有死区,不必设置折流板。

取消折流板降低了阻力,并大大提高了热传递效率。

冲渣水专用换热器和螺旋板式换热器的压降≤30kPa,而板式换热器和固定管板式换热器的压降均为50kPa~100kPa。

高炉富氢冶金渣余热回收及综合利用方案(二)

高炉富氢冶金渣余热回收及综合利用方案(二)

高炉富氢冶金渣余热回收及综合利用方案一、实施背景随着全球对能源和环境问题的关注度不断提高,钢铁工业作为高能耗、高排放的行业,急需进行产业结构改革和绿色发展。

高炉富氢冶金渣余热回收及综合利用是其中的重要环节。

本方案旨在通过开发高效、环保的富氢冶金渣余热回收技术,实现钢铁工业的节能减排和资源循环利用。

二、工作原理高炉富氢冶金渣余热回收及综合利用方案主要采用富氢冶金渣显热回收技术,通过热交换器将冶金渣中的余热转化为高压水蒸气,再利用蒸汽发电或者供热,实现能源的二次利用。

同时,蒸汽还可以用于生产过程中的其他环节,如石灰石分解、矿石焙烧等,进一步提高了能源利用效率。

三、实施计划步骤1. 收集高炉冶金渣:将高炉冶炼产生的冶金渣收集起来,准备下一步处理。

2. 渣水分离:将冶金渣中的水分和渣进行分离,得到富氢冶金渣。

3. 余热回收:将富氢冶金渣中的余热通过热交换器转化为高压水蒸气。

4. 蒸汽利用:将高压水蒸气用于发电、供热或者生产工艺中,实现能源的二次利用。

5. 渣综合利用:将渣进行综合利用,如制备微晶玻璃、生产矿渣水泥等。

四、适用范围本方案适用于钢铁企业中的高炉车间、烧结车间、连铸车间等,能够有效地将冶金渣中的余热回收利用,提高能源利用效率,同时减少环境污染。

五、创新要点1. 开发高效、环保的富氢冶金渣余热回收技术,提高能源回收率;2. 将回收的余热转化为高压水蒸气,再用于发电、供热或生产工艺中,实现能源的二次利用;3. 将冶金渣进行综合利用,制备微晶玻璃、矿渣水泥等高附加值产品;4. 采用先进的自动化控制系统,实现整个工艺流程的智能化控制,提高生产效率和产品质量;5. 针对不同车间的实际情况,提供个性化的解决方案,满足企业的实际需求。

六、预期效果1. 提高能源利用效率:通过回收冶金渣中的余热并二次利用,能够提高能源利用效率20%以上。

2. 减少环境污染:采用本方案能够减少冶金渣的排放量,减轻对环境的污染。

3. 降低生产成本:通过回收和二次利用能源,能够降低企业的生产成本,提高经济效益。

高炉冲渣水余热回收应用_高红红_介宏_管风军

高炉冲渣水余热回收应用_高红红_介宏_管风军

高炉冲渣水作为一种低温废热源,具有温度稳定、流量大、热容量大的特点,充分利用冲渣水余热,已成为一个研究课题。

目前我国高炉炉渣处理工艺主要是水淬渣工艺方式。

高炉内1400~1500℃的高温炉渣,经渣口流出,在经渣沟进入冲渣流槽时,以一定的水量、水压及流槽坡度,使水与熔渣流成一定的交角,冲击淬化成合格的水渣。

由冲渣水带走的高炉渣的物理热量占炼铁能耗的8%左右,循环水池的水温范围75~85℃,属于工业低温废热源,如果不加以利用,这部分能量就会被浪费,并造成热污染,但是高炉冲渣水中含有大量渣滓,有较大颗粒物,也有细微的渣棉,且腐蚀性强,所以高炉冲渣水余热回收是一个工艺系统工程,不是仅靠过滤器或者换热器就能解决的,而是需要过滤技术、换热技术、阻垢技术及系统设计等多种技术有机结合。

1项目概况某公司有高炉一座,容积为1260m 3,高炉设计利用系数2.5,设计日产铁量为3150t ,采用INBA 法处理高炉铁渣。

INBA 法是卢森堡保尔-沃特公司开发的先进渣处理技术,被国内宝钢、武钢、鞍钢、本钢等钢铁公司的高炉广泛采用,INBA 法的工艺过程为:高炉熔渣由熔渣沟流入粒化塔经压力水进行水淬,再用转鼓脱水器脱水,生成的水渣脱水后落到筒内皮带机上运出,冲渣热水经冷却塔冷却后循环使用。

该公司于2013年8月份开始对冲渣水余热回收利用进行可行性研究及立项,于2013年9月份开始进行土建施工建设,通过建设高炉冲渣水余热换热站,将高炉冲渣水的余热回收供暖,该项目于2013年11月15日建成投运。

该公司高炉冲渣水余热换热站建成投运后,可以为厂区提供15万m 2的供暖面积,同时可以停运原来用于供暖的燃煤锅炉。

2冲渣水情况该公司高炉日产水渣1260t ,渣铁比为0.35~0.45,冲渣水流量为1000m 3/t ,渣水平均温度为70~85℃。

高炉每天平均出铁13次,平均每次出渣时间为70~90min 。

冲渣水水质呈弱碱性,浊度为40.8mg/L,冲渣水水质化验情况见表1。

高炉富氢冶金渣余热回收及综合利用方案(一)

高炉富氢冶金渣余热回收及综合利用方案(一)

高炉富氢冶金渣余热回收及综合利用方案一、实施背景随着全球对能源和环境问题的关注度不断提高,钢铁工业作为高能耗、高排放的行业,急需进行产业结构改革和绿色发展。

高炉富氢冶金渣余热回收及综合利用是其中的重要环节。

本方案旨在通过开发高效、环保的富氢冶金渣余热回收技术,实现钢铁工业的节能减排和资源循环利用。

二、工作原理高炉富氢冶金渣余热回收及综合利用方案采用两级回收技术,分别在炉渣和高炉煤气中进行。

炉渣余热回收方面,通过渣罐、渣流控制阀等设备,控制渣流温度和流量,使炉渣在流入热交换器时实现充分的热交换;煤气余热回收方面,将高炉煤气引入余热锅炉进行热交换,生成蒸汽用于发电或生产工艺。

三、实施计划步骤1. 对现有的高炉冶金渣输送系统进行改造,增加渣罐和渣流控制阀,以便实现渣流温度和流量的精确控制。

2. 在渣罐下方设置热交换器,将炉渣引入热交换器,进行充分的热交换,将热能转化为蒸汽。

3. 将高炉煤气引入余热锅炉,进行二次热交换,生成蒸汽并送入汽轮机发电。

4. 对生成的蒸汽进行压缩冷凝,形成冷凝水,重复利用于生产过程。

四、适用范围本方案适用于各种类型的高炉冶炼工艺,特别适用于富氢冶金渣的处理。

在实际应用中,本方案可与现有的高炉煤气发电系统相结合,形成完整的能源回收及综合利用体系。

五、创新要点1. 采用两级回收技术,提高了余热回收效率。

2. 通过控制渣流温度和流量,实现了渣流的有效控制和热交换的优化。

3. 将高炉煤气引入余热锅炉进行二次热交换,提高了能源的利用率。

4. 形成了完整的能源回收及综合利用体系,实现了资源的最大化利用。

六、预期效果本方案的实施可带来显著的环保和经济效益。

一方面,通过回收和利用高炉冶金渣余热和煤气余热,可大幅降低能源消耗和排放,提高能源利用效率;另一方面,本方案的实施可减少废渣的产生,减轻了环境压力,同时提高了企业的经济效益。

具体预期效果如下:1. 能源消耗降低:通过回收和利用高炉冶金渣余热和煤气余热,可减少能源消耗约30%。

高炉冲渣水直接换热余热回收技术

高炉冲渣水直接换热余热回收技术

高炉冲渣水直接换热余热回收技术
炉炼铁熔渣经水淬后产生大量 60-95℃冲渣水,蕴含了巨大热量,但其中含有大量固体颗粒和矿物纤维,并具有腐蚀性,很难利用其热量,三十年来国内外众多钢铁企业尝试利用冲渣水余热采暖,但仍未得到全面有效利用,特别是大型高炉未见应用。

天津华赛尔历时多年反复研究、试验取得了突破性成果,开发出全球独创、世界领先的“高炉冲渣水直接换热余热回收技术”,本技术系统冲渣水不设置沉淀过滤装置、直接进入“冲渣水换热器”与采暖水进行换热,技术优势在于:全水量取热、回收热量大、流程简单、易于操作,可实现无人值守运行;与高炉冲渣系统无缝对接不干扰高炉运行,适用于各种水冲渣工艺;一个采暖季连续不停车运转;占地小,易于实施;只取热量,无次生污染;运行成本低,维护量小。

“高炉冲渣水直接换热余热回收技术”已获得国家专利 13 项,其中 4 项发明专利,并已成功实施了 20 座高炉的冲渣水余热回收项目用于供热,其中 19 座炼铁高炉,1 座铜冶炼炉,两座 4350 立方米大型炼铁高炉,总供热面积达到 1200 万平米。

其技术成熟、可靠,适用范围广,既可远距离大规模应用于城市集中供热,也可以小规模应用于厂区内供热和生活热水供应;既可应用大型高炉,也可应用于小高炉;既可用炼铁,也可用于炼铜等冶金行业。

高炉冲渣水余热回收的利用技术概述

高炉冲渣水余热回收的利用技术概述

高炉冲渣水余热回收的利用技术概述随着能源的不断应用和开发,在世界范围内,能源问题已经成为我们发展过程中的重要问题。

我国作为世界范围内的能源大国,占据着世界上第二多的能源资源,但是我国的人均能源储量还不到世界平均水平的一半,总体来看,我国的能源人均占有量还处在较为落后的状态,和世界上的发达国家还有很大的距离。

在能源的使用效率问题上我国也存在着较大的差距。

基于上述差距,我国现阶段的能源问题就是要节约能源,提升能源的利用效率。

作为我国的经济发展的根基,我国的钢铁行业在我国的经济发展过程中扮演着非常重要的角色,发挥着巨大的作用。

但是钢铁行业在我国的发展过程中也存在着诸多的缺点。

例如对我国的能源消耗过大,同时对我国的环境危害过大等。

钢铁行业在推动能源转变的过程中会产生余热以及余能。

在现阶段我国在余热以及余能的回收以及利用问题上还存在很多的问题,利用效率很低。

虽然在实际的回收过程中,大部分的余热以及余能能够被回收,但是占据很大比例的低温余热还是没有充分地回收利用,根据有关部门的数据分析,这一部分的回收利用为零。

例如在生产过程中的高炉冲渣水产生的余热就白白地流失浪费了。

因此我国的钢铁行业在这一方面的发展前景非常好,有很大的发展潜力。

在我国的钢铁行业的高温炼铁相关工艺中,产生的炉渣温度能够达到1000℃,高温通常应用在水泥的生产过程中。

高温冲渣水具有3个主要的特点。

第一个特点是有较低的热源温度;第二个特点是流量巨大;第三个特点是对普通材质的钢材具有严重的腐蚀。

高温冲渣水一半情况下采用自然冷却的方式进行冷却处理。

在实际的操作过程中还有很多的利用方式,本文针对利用的主要方式进行阐述和分析。

1 高温冲渣水的应用一:采暖应用通常情况下,在冬季高温冲渣水能够达到53℃,在极寒的天气下水温还是能够达到49℃以上,我们通过合理的采暖布局并且配置相关的供暖设施,能够将室内的供暖温度控制在17℃以上。

其工作原理如图1所示。

利用冲渣水进行供暖是一种能源再利用,除了增加必要的供暖设备等投资外,这种方式的供暖不使用或者消耗能源,供暖费用消耗不大。

高炉渣破碎及余热回收过程的数值模拟的开题报告

高炉渣破碎及余热回收过程的数值模拟的开题报告

高炉渣破碎及余热回收过程的数值模拟的开题报告一、研究背景高炉渣是钢铁工业生产过程中产生的废弃物,其主要成分为硅酸盐和氧化物,包含有价金属成分,如铁、镍、铜、锌等,同时也含有一定量的热能。

高炉渣中的有价金属成分可以进行回收利用,而其中的热能可以被用来提供生产过程中需要的热源,在一定程度上降低了能源消耗。

因此,高炉渣的破碎与余热回收研究具有重要的工业应用价值。

二、研究内容本次研究将重点探讨高炉渣破碎及余热回收过程,运用数值模拟方法对高炉渣的破碎和余热回收进行仿真模拟。

具体研究内容如下:1.高炉渣的物理特性分析,包括渣石粒径、渣石硬度、渣石密度等;2.高炉渣破碎过程的数值模拟,考虑渣石打击力、撞击频率、破碎效率等因素,建立高炉渣破碎数值模型;3.高炉余热回收过程的数值模拟,考虑渣石热容、热传导、热对流等因素,建立高炉余热回收数值模型;4.对数值模拟结果进行分析,比较不同参数下的高炉渣破碎和余热回收效果,评估其在工业应用中的可行性和经济性。

三、研究方法和技术路线1.物理实验方法:对高炉渣进行实验研究,确定其物理特性参数。

2.数值模拟方法:建立高炉渣破碎及余热回收数值模型,并利用计算机模拟软件对模型进行仿真模拟。

3.技术路线:(1)高炉渣物理特性参数实验测定;(2)根据实验结果建立高炉渣破碎及余热回收数值模型;(3)利用计算机软件对数值模型进行仿真模拟;(4)对不同参数下的模拟结果进行分析,制定实验验证方案;(5)对模拟结果与实际值进行对比分析,评估高炉渣破碎及余热回收效果。

四、研究意义本次研究的主要意义在于:1.能够深入了解高炉渣的特性参数及物理状况,为高炉渣的破碎和余热回收提供可靠的数据支持。

2.通过数值模拟技术,可以更加直观地呈现高炉渣的破碎和余热回收过程,研究其影响因素,为进一步优化破碎和回收过程提供理论依据。

3.高炉渣的破碎和余热回收在钢铁行业中具有重要的现实意义,其研究成果可为提高钢铁生产效率、降低能源消耗等方面提供技术支持。

高炉冲渣余热回收的可行性分析

高炉冲渣余热回收的可行性分析
粒化, 这一 过程 中能够产生 = =
采暖用户l
图 1 冲 渣水 余 热 用于 冬 季 采 暖 的 工 艺 流 程
热少、 冲渣水余热利用率高等优点 , 但也存在如下缺
点 :) 备上 , 1设 京唐 钢铁 公 司高炉 冲渣采 用 浊环水 , 容易 发生 堵塞 、 腐蚀 管道 等现象 , 维护 困难 , 以对 所
发 电机转 动 , 对外输 出 电能。做 功后 的工 质变成 低
高炉冲渣水余热进行回收利用 , 将会创造很大的经
济效益 。
2 余 热 回收方案
21 用 于采暖 .
将高炉冲渣水余热 回收用于冬季采暖…, 其工 作原理 如 图 1 所示 。 将高炉冲渣水沉淀过滤后 , 进行水一 水热交换 , 再通过 循环泵将采 暖水送 至采暖用户 。将余热 回收
将 高 炉 冲渣 水余 热 回 收用 于发 电 , 工作 原 其
理如 图 2 所示 。
却塔进行降温散热 , 冷却后再次循环冲渣。高炉 冲
渣 水采 用 的是浊环 水 , 从一 定程 度上 节约 了工业 用 新水 , 然而大量 的蒸汽外排及 热量散失 , 也造成 了一
定 的浪费 , 并且 冲渣产生 的蒸汽 中含有 二氧化硫 、 硫 化氢 , 放到大气 中形成酸雨 , 排 污染环境 。如果能 将
23 用于淡化海水 .
续 循环 , 热水 中的热量源 源不断地 提取 出来 , 换 将 转 成高 品位 的 电能 。 将 高炉 冲渣水 中的余 热用 于发 电 , 需要 购置 汽
力工程专业 。现为首钢京唐 钢铁 联合有限责任公司能源部专 业工 程师 , 从事热能工作。
轮机、 发电机、 凝汽器、 大功率凝结水泵等大型设备 ,
低 温热 水 。冲渣水 在沉 淀过 滤后 引入 空冷 塔 , 却 冷 后 再次循 环 冲渣 , 循 环过程 中冲渣蒸 汽 的热量 没 但 有 得到有 效利 用 , 而是 通过冷 却塔 将大 量热 量通 过

高炉渣干法处理及余热利用

高炉渣干法处理及余热利用

高炉渣干法处理及余热利用高炉渣是冶炼生铁时从高炉中排出的废物,当炉温达到1400—1600℃时,炉料熔融,矿石中的脉石、焦炭中的灰分和助溶剂和其他不能进入生铁中的杂质形成以硅酸盐和铝酸盐为主浮在铁水上面的熔渣。

中国目前是全球最大的钢铁生产国。

中国钢铁产量已连续16年保持世界第一,并且遥遥领先于其他国家, 中国钢铁产量约占世界总量的49%。

同时伴随我国高炉冶炼生产排出的含丰富热能的高炉渣数量也是巨大的,从节能与环保以及提高钢铁厂的经济效益的角度来看,对高炉渣的热量进行回收和高炉渣的资源化利用是十分必要的。

炉渣的出炉温度一般在1400~1550℃之间。

每吨渣含(1260~1880)×103kJ的显热,相当于60kg标准煤的热值。

每生产1吨生铁要副产0.3吨高炉渣,每生产1吨钢要副产0.13吨钢渣,以目前我国的钢铁产量7亿吨进行计算,可产生3亿吨以上的高炉渣和转炉渣,其显热量相当于1800万吨标准煤,尽管并非可以全部回收高炉渣的热能,但若能部分回收利用,其节能效益也是显著的,非常具有市场开发潜力。

就目前应用大量应用水淬技术情况来看,这部分高温热源显然是被浪费了,该高温热源就温度品质来说,完全符合高品位能源的要求,如果能回收这部分热量得以重新利用,就可以为社会和企业带来可观的经济、社会和环保效益。

开展余热余能的回收利用不仅是钢铁企业节约能源降低成本,提高竞争力的重要手段,而且也符合国家钢铁工业的政策要求。

在我国的钢铁工业“十二五”发展规划中明确指出要大力发展清洁生产和循环经济,积极研发和推广使用节能减排和低碳技术,加强废弃物的资源化综合利用。

在节能减排方面提出以下几个重要指标,单位工业增加值能耗和二氧化碳排放分别下降18%,重点统计钢铁企业平均吨钢综合能耗低于580千克标准煤,吨钢耗新水量低于4.0立方米,吨钢二氧化硫排放下降39%,吨钢化学需氧量下降7%,固体废弃物综合利用率97%以上。

在钢铁工业的节能减排技术方面重点提到了高炉渣、钢渣等显热回收利用技术、冶金渣综合利用技术和余热余压综合利用技术等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高炉渣的余热回收
G20179038 于博文
烟气
铁矿石+焦炭+石灰石
BF
铁水 冷却
熔融炉渣
高炉炉渣
• 采用贫铁矿炼铁时,每吨生铁产出1.0~1.2t高炉矿渣; • 用富铁矿炼铁时,每吨生铁只产出0.25t高炉矿渣。 • 2012年高炉渣量为2.3亿吨。
干法粒化余热回收法
Байду номын сангаас
日本钢管和三菱重工联合开发了转炉渣风碎粒化余热回收系统
转杯法 利用高速旋转的转杯(盘)将倾倒在 转杯(盘)上的熔渣粒化,再对高温 渣粒进行余热回收。
化英 余国 热钢 回铁 收公 系司 统和 诺 丁 汉 大 学 联 合 开 发 了 高 炉 渣 转 杯 风 淬 粒
较为传统的高温渣粒余热回收方法 是气固换热回收高温空气,而日本 研究者提出了采用吸热的化学反应 回收炉渣余热。 CH4+H2O 3H2+CO 目前, 结合干法粒化的炉渣余热 化学反应回收还处在理论研究阶 段,没有试验研究的报道。
高温炉渣余热回收存在的问题主要是㶲回收效率很低。 虽然工业试验的热回收效率都在60%以上,甚至超过80%,但㶲回收 效率只有40%左右,表明回收的余热品质较低。 炉渣余热回收与干熄焦很相似,两者都要回收高温固体显热。 CDQ的 余热回收效率约为80%,远高于炉渣余热回收的平均水平。 如果实现炉渣余热回收工业化经济运行,余热的㶲回收效率必需大大 提高。 理想的高炉渣余热回收应在封闭系统中高效回收炉渣余热,同时产生 高附加值粒化渣。这两个目标对炉渣余热回收工业化经济运行缺一不 可。 研究同时提高炉渣余热㶲回收效率和粒化炉渣附加值,将是炉渣余热 回收需要解决的关键问题。
相关文档
最新文档