机械设计基础第四章考点

合集下载

机械设计基础 第4章

机械设计基础 第4章

4.2.2 从动件常用的运动规律
机械设计中所采用的从动件,其运动规 律的类型甚多。现以推程为例,就从动件 的速度、加速度及其冲击特性来介绍几种 常见的从动件的运动规律。
1 等速运动规律 从动件的运动速度为常数的运动规律,称为 等速运动规律。采用这种运动规律时,从 动件的位移s与凸轮转角φ成正比,其运动 曲线如图4.9所示,其中位移曲线为一过原 点的倾斜直线。由位移曲线,并根据位移、 速度、加速度之间的导数关系可得出如下 关系式
由图可知,加速度曲线是与横坐标相平行的水 平直线,速度曲线为斜直线,而位移曲线则是两 段光滑连接的抛物线,故等加速、等减速运动规 律又称为抛物线运动规律。在A、B、C三点处加 速度有突变,但其变化为有限值,由此而产生的 惯性力变化也为有限值。这种由加速度和惯性力 的有限变化对凸轮机构所造成的冲击、振动和噪 声要比刚性冲击小,称之为柔性冲击。尽管如此, 这种具有柔性冲击的运动规律也不适用于高速凸 轮机构中。 当用图解法设计凸轮轮廓时,通常需要绘制从 动件的位移曲线。由等加速、等减速运动规律的 位移方程可知,其位移曲线为抛物线,因此可按 抛物线画法进行作图。其作图方法如图4.11所示。
4.1.1 凸轮机构的应用
图4.1所示是一内燃机的配气机构。凸轮1是一 个具有变化向径的盘形构件,当凸轮回转时,随着 凸轮向径的变化,迫使气阀的推杆2在固定导路3 内作往复运动,以控制气阀的开启与闭合。 图4.2所示是利用靠模法车削手柄的移动凸轮 机构,凸轮1作为靠模被固定在床身上,滚轮2在 弹簧的作用下与凸轮轮廓紧密接触,当拖板3横向 移动时,和从动件相连的刀头便走出与凸轮轮廓 相同的轨迹,因而切削出复杂的工件外形。
取滚圆半径为R=h/2π,h为从动件的行程。 由图知滚圆上A点的转角θ与凸轮转角φ之间 的关系为 ,将R及θ的值代入式 中,并对时间求导数后,经整理 可得

机械设计基础各章知识点

机械设计基础各章知识点

机械设计基础各章知识点第一章:机械设计基础概述机械设计基础是机械工程学科的基础内容,是机械设计的理论和基本方法。

它包含了机械设计的基本原理、基本方法和基本规范,并介绍了机械设计的基本流程和设计过程中常用的软件和工具。

机械设计基础的学习对于理解和掌握机械设计的核心思想和基本技能具有重要意义。

第二章:机械工程材料机械工程材料是机械设计中非常重要的一部分内容。

机械工程材料主要包括金属材料、非金属材料和复合材料。

金属材料包括钢、铁、铝、铜等,非金属材料包括陶瓷、聚合物等。

机械工程材料的选择应根据设计要求、使用条件和成本等因素进行综合考虑。

第三章:机械零件设计机械零件设计是机械设计中的关键环节。

机械零件设计应遵循设计规范和原则,确保零件的功能和性能满足设计要求。

机械零件设计需要考虑零件的材料选择、尺寸设计、工艺性和可制造性等问题。

在进行机械零件设计时,还需要考虑零件与其他零件的配合、连接和传递力的问题。

第四章:机械传动基础机械传动是机械设计中的常见问题,它是将动力从一个部件传递到另一个部件的过程。

机械传动有很多种形式,包括齿轮传动、链传动、皮带传动等。

机械传动的设计需要考虑传动效率、传动比、传动扭矩和传动功率等因素。

第五章:机械结构设计机械结构设计是机械设计的一个重要方面。

机械结构设计包括机架、支撑件、外壳等结构的设计。

机械结构的设计应考虑结构的刚性、强度、稳定性和装配性等因素。

第六章:机械设计中的涉及计算机械设计中经常涉及到各种各样的计算。

比如,机械设计中常用的计算有力学计算、热传导计算、流体力学计算等。

机械设计中的计算需要掌握相应的计算方法和工具,以确保设计的正确性和可靠性。

第七章:机械设计中的创新方法机械设计中的创新方法是提高设计质量和效率的关键。

机械设计中的创新方法包括设计思维、设计过程和设计工具等。

在机械设计中,创新方法可以提高设计的可操作性、可靠性和适应性,同时也能够减少设计的时间和成本。

总结:机械设计基础各章知识点涵盖了机械设计的核心内容和基本方法。

《机械设计基础》复习重点、要点总结

《机械设计基础》复习重点、要点总结

《机械设计基础》第1章机械设计概论复习重点1. 机械零件常见的失效形式2. 机械设计中,主要的设计准则习题1-1 机械零件常见的失效形式有哪些?1-2 在机械设计中,主要的设计准则有哪些?1-3 在机械设计中,选用材料的依据是什么?第2章润滑与密封概述复习重点1. 摩擦的四种状态2. 常用润滑剂的性能习题2-1 摩擦可分哪几类?各有何特点?2-2 润滑剂的作用是什麽?常用润滑剂有几类?第3章平面机构的结构分析复习重点1、机构及运动副的概念2、自由度计算平面机构:各运动构件均在同一平面内或相互平行平面内运动的机构,称为平面机构。

3.1 运动副及其分类运动副:构件间的可动联接。

(既保持直接接触,又能产生一定的相对运动)按照接触情况和两构件接触后的相对运动形式的不同,通常把平面运动副分为低副和高副两类。

3.2 平面机构自由度的计算一个作平面运动的自由构件具有三个自由度,若机构中有n个活动构件(即不包括机架),在未通过运动副连接前共有3n个自由度。

当用P L个低副和P H个高副连接组成机构后,每个低副引入两个约束,每个高副引入一个约束,共引入2P L+P H个约束,因此整个机构相对机架的自由度数,即机构的自由度为F=3n-2P L-P H (1-1)下面举例说明此式的应用。

例1-1 试计算下图所示颚式破碎机机构的自由度。

解由其机构运动简图不难看出,该机构有3个活动构件,n=3;包含4个转动副,P L=4;没有高副,P H=0。

因此,由式(1-1)得该机构自由度为F=3n-2P L-P H =3×3-2×4-0=13. 2.1 计算平面机构自由度的注意事项应用式(1-1)计算平面机构自由度时,还必须注意以下一些特殊情况。

1. 复合铰链2. 局部自由度3. 虚约束例3-2 试计算图3-9所示大筛机构的自由度。

解机构中的滚子有一个局部自由度。

顶杆与机架在E和E′组成两个导路平行的移动副,其中之一为虚约束。

机械设计基础课件第四章

机械设计基础课件第四章

§4.4 凸轮机构设计中应注意的问题
压力角允许值 (1)压力角选择原则 :
αmax≤[α]
(2)压力角许用值 推程: 直动从动件凸轮机构:[α]≤30° 摆动从动件凸轮机构:[α]≤30°~45° 回程:[α]=70°~80°
§4.4 凸轮机构设计中应注意的问题
2.压力角的校核 校核目的: 确保良好的运动特性。
§4.1 凸轮机构的应用和分类
绕线机构
1—盘形凸轮;2—引线杆;3—绕线轴
§4.1 凸轮机构的应用和分类
由以上的例子可知,凸轮机构有如下基本特性: 当凸轮转动时,借助于本身的曲线轮廓或凹槽迫使从动 杆作一定规律的运动,即从动杆的运动规律取决于凸轮轮 廓曲线或凹槽曲线的形状。
优点: 只需设计出适当的凸轮轮廓,便可使从动件得到任意的 预期运动,且结构简单、紧凑、设计方便。 缺点: 凸轮与从动件间为点或线接触,易磨损,只可用于传力 不大的场合;凸轮轮廓精度要求较高,需用数控机床进行加 工;从动件的行程不能过大,否则会使凸轮变得笨重。
4.4.1滚子半径的选取 (1)当理论轮廓曲线内凹时:
ρ=ρ0+rT
ρ0:理论轮廓曲率半径; rT:滚子半径;
ρ:实际轮廓的曲率半径。
无论rT取何值,凸轮工作轮廓 总是光滑曲线,即rT的大小可不受 ρ0的限制。
§4.4 凸轮机构设计中应注意的问0,实际轮廓
(2)运动方程: 等加速段的运动方程为:
s
1 2
a0t 2
2h
2 t
2
v
a0t
4h
2 t
a
a0
4h 2
2 t
§4.2 从动件的常用运动规律
根据运动线图的对称性,可得等减速段的运动方程为

机械设计基础第四章

机械设计基础第四章

讲解了零件在静载荷和动 载荷作用下的强度与刚度 设计方法和步骤,包括许 用应力与安全系数的确定 、载荷分析与计算、应力 分析与计算等。
阐述了摩擦、磨损和润滑 的基本原理和影响因素, 以及减少摩擦和磨损、提 高润滑效果的方法和措施 。
机械设计领域发展趋势探讨
智能化设计
随着人工智能和大数据技术的发展 ,机械设计将越来越智能化,能够 实现自动化设计、优化设计和智能 决策等功能。
模型实验设计
对于尺寸巨大或结构复杂的重要零件,尤其是初次设计的新型结构零件,在初步设计阶段 ,有时要按初步设计图制成一定比例的小尺寸模型,或者根据相似性原理制成模拟真实工 作条件的模型进行实验。
机械设计流程与步骤
设计流程
根据用户订货、市场需要和新科研成果制定设计任务。
初步设计。包括确定机械的工作原理和基本结构形式,进行运动设计、结构设计并 绘制初步总图以及初步审查等。
机械设计中的材 料选择
零件的强度与刚 度设计
摩擦、磨损与润 滑
介绍了机械设计的基本定 义、目的和任务,以及机 械设计的主要特点和要求 。
详细阐述了机械设计的一 般过程,包括设计准备、 方案设计、技术设计和施 工设计等阶段,以及各阶 段的主要任务和方法。
介绍了材料选择的原则、 方法和步骤,以及常用机 械工程材料的特性和应用 。
案例二
销连接的优化设计,通过改进销轴形状、增加定 位结构、采用自锁装置等措施提高连接的定位精 度和可靠性。
案例三
焊接连接的优化设计,通过选择合适的焊接方法 、优化焊缝形状、控制焊接变形等措施提高焊接 质量和效率。
07 总结与展望
第四章重点内容回顾
01
02
03
04
05

机械设计基础分章知识点

机械设计基础分章知识点

机械设计基础分章知识点第一章:机械设计概述机械设计是一门工程技术学科,主要研究机械系统的结构、工作原理、选材、制造工艺等方面内容。

它是机械工程学科的重要组成部分,对于各个行业的机械产品设计与开发具有重要意义。

第二章:材料力学基础在机械设计中,对材料的力学性能有着重要的考虑。

了解材料力学基础知识对于正确选择合适的材料、设计结构具有指导作用。

材料力学基础涉及弹性、塑性、疲劳等内容。

第三章:机械连接机械连接是机械设计中不可或缺的部分。

它包括螺栓连接、键连接、销连接等,具有固定和传递力的作用。

机械连接的设计需考虑连接强度、连接刚度和连接可靠性等因素。

第四章:轴系设计轴系设计主要涉及轴的强度计算、轴的选择和轴的配合等内容。

合理的轴系设计可以保证机械系统的正常运行,减少故障和失效。

第五章:机械零件设计机械零件设计是机械设计的重要组成部分。

它包括零件的尺寸设计、几何形状设计、加工工艺选择等内容。

合理的零件设计可以提高机械产品的性能和可靠性。

第六章:机械传动机械传动是机械设计中的关键部分。

它包括齿轮传动、带传动、链传动等多种形式。

机械传动的设计需要考虑传动比、传动效率和传动可靠性等因素。

第七章:机械弹性变形机械弹性变形是指机械在受到外力作用时产生的变形。

了解机械弹性变形的原因、计算方法等对于机械结构的设计和使用具有重要意义。

第八章:机械设计的优化机械设计的优化是指通过改变设计参数,使设计方案在满足设计要求的前提下,具有更好的性能和更低的成本等。

机械设计的优化需要综合考虑多个因素,包括力学性能、制造成本、使用寿命等。

第九章:机械设计的检验与试验机械设计的检验与试验是为了验证设计方案的可行性和性能是否满足要求。

它包括静态试验、动态试验和性能测试等内容。

合理的检验与试验可以及时发现问题,提高设计方案的可靠性。

第十章:机械设计的CAD与CAMCAD(计算机辅助设计)和CAM(计算机辅助制造)技术在机械设计中的应用越来越广泛。

机械设计基础第四章

机械设计基础第四章


对心尖端直动从动件 12 盘形凸轮机构

等速运动规律 等加速等减速运动规律 余弦加速度运动规律 正弦加速度运动规律
13
一、等速运动规律
h v2 常数 t1
h s2 v2 t t t1
a2 0
刚性冲击
14
从动件的速度有突变,加速度理论上
发生无穷突变,产生巨大的惯性力, 从而对凸轮机构造成强烈冲击。
轮廓的设计方法及步骤

凸轮机构的基圆半径与许用压力角有什么关系? 棘轮机构和槽轮机构各有什么特点? 槽轮机构有哪些主要参数?如何选取?
76
作业
85~86页: 4-2,4-3,4-4,4-5,4-9,4-11
77
rk<ρmin时,可画出完整的轮廓曲线β’
49
rk=ρmin时, ρ′=0
β’出现尖点 易磨损,从而改变预定的从动件运动规律
50
rk>ρmin时, ρ’<0 β’将出现交叉,在交 叉点以上部分的曲线 加工时将被切去,致 使从动件不能实现预 期的运动规律而发生 运动失真。
51
外凸时,rk min ,
3
内 燃 机 的 凸 轮 配 气 机 构
4
绕线机的凸轮绕线机构
5
缝纫机的凸轮拉线机构
6
移动凸轮机构
7
分类
按凸轮的形状分
盘形凸轮 移动凸轮 圆柱凸轮
8

按从动件的结构型式分
尖顶从动件
构造简单、易磨损、用于仪表机构
滚子从动件
磨损小,应用广
平底从动件
受力小、润滑好,用于高速传动
9

按从动件的运动方式分
※ 从动件在反转时依次占据的位置均是偏距圆的切线55

《机械设计基础》第六版重点、复习资料

《机械设计基础》第六版重点、复习资料

《机械设计基础》第六版重点、复习资料《机械设计基础》第六版重点、复习资料《机械设计基础》知识要点绪论;基本概念:机构,机器,构件,零件,机械第1章:1)运动副的概念及分类2)机构自由度的概念3)机构具有确定运动的条件4)机构自由度的计算第2章:1)铰链四杆机构三种基本形式及判断方法。

2)四杆机构极限位置的作图方法3)掌握了解:极限位置、死点位置、压力角、传动角、急回特性、极位夹角。

4)按给定行程速比系数设计四杆机构。

第3章:1)凸轮机构的基本系数。

2)等速运动的位移,速度,加速度公式及线图。

3)凸轮机构的压力角概念及作图。

第4章:1)齿轮的分类(按齿向、按轴线位置)。

2)渐开线的性质。

3)基本概念:节点、节圆、模数、压力角、分度圆,根切、最少齿数、节圆和分度圆的区别。

4)直齿轮、斜齿轮基本尺寸的计算;直齿轮齿廓各点压力角的计算;m = p /π的推导过程。

5)直齿轮、斜齿轮、圆锥齿轮的正确啮合条件。

第5章:1)基本概念:中心轮、行星轮、转臂、转化轮系。

2)定轴轮系、周转轮系、混合轮系的传动比计算。

第9章:1)掌握:失效、计算载荷、对称循环变应力、脉动循环变应力、许用应力、安全系数、疲劳极限。

了解:常用材料的牌号和名称。

第10章: 1)螺纹参数d、d1、d2、P、S、ψ、α、β及相互关系。

2)掌握:螺旋副受力模型及力矩公式、自锁、摩擦角、当量摩擦角、螺纹下行自锁条件、常用螺纹类型、螺纹联接类型、普通螺纹、细牙螺纹。

3)螺纹联接的强度计算。

第11章: 1)基本概念:轮齿的主要失效形式、齿轮常用热处理方法。

2)直齿圆柱齿轮接触强度、弯曲强度的计算。

3)直齿圆柱齿轮、斜齿圆柱齿轮、圆锥齿轮的作用力(大小和方向)计算及受力分析。

第12章: 1)蜗杆传动基本参数:m a1、m t2、γ、β、q、P a、d1、d2、V S及蜗杆传动的正确啮合条件。

2)蜗杆传动受力分析。

第13章: 1)掌握:带传动的类型、传动原理及带传动基本参数:d1、d2、L d、a、α1、α2、F1、F2、F02)带传动的受力分析及应力分析:F1、F2、F0、σ1、σ2、σC 、σb 及影响因素。

机械设计基础第4章

机械设计基础第4章

第四章凸轮机构在各种机器中,尤其是自动化机器中,为实现各种复杂的运动要求,常采用凸轮机构,其设计比较简便。

只要将凸轮的轮廓曲线按照从动件的运规律设计出来,从动件就能较准确的实现预定的运动规律。

本章将着重研究盘状凸轮轮廓曲线绘制的基本方法和凸轮设计中的相关问题。

§4—1 凸轮机构的应用与分类一、凸轮机构的应用凸轮机构的组成凸轮是一个具有曲线轮廓或凹槽的构件。

凸轮通常作等速转动,但也有作往复摆动或移动的。

从动件是被凸轮直接推动的构件。

凸轮机构就是由凸轮、从动件和机架三个主要构件所组成的高副机构。

图4-1所示为内燃机配气凸轮机构。

当具有一定曲线轮廓的凸轮1以等角速度回转时,它的轮廓迫使从动作2(阀杆)按内燃机工作循环的要求启闭阀门。

图4-2为自动机床上控制刀架运动的凸轮机构。

当圆柱凸轮1回转时,凸轮凹槽侧面迫使杆2运动,以驱动刀架运动。

凹槽的形状将决定刀架的运动规律。

内燃机,配气机构凸轮一般作连续等速转动,从动件可作连续或间歇的往复运动或摆动。

凸轮机构广泛用于自动化和半自动化机械中作为控制机构。

但凸轮轮廓与从动件间为点、线接触而易磨损,所以不宜承受重载或冲击载荷。

凸轮机构的特点1)优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,且机构简单紧凑。

2)缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。

二、凸轮机构的分类凸轮机构的类型很多,通常按凸轮和从动件的形状、运动形式分类。

⒈按凸轮的形状分类(1)盘形凸轮它是凸轮的最基本型式。

这种凸轮是一个绕固定轴转动并且具有变化半径的盘形零件,如图4-1。

(2)移动凸轮当盘形凸轮的回转中心趋于无穷远时,凸轮相对机架作直线运动,这种凸轮称为移动凸轮。

在以上两种凸轮机构中,凸轮与从动件之间的相对运动均为平面运动,故又统称为平面凸轮机构。

(3)圆柱凸轮(圆柱凸轮是一个在圆柱面上开有曲线凹槽,或是在圆柱端面上作出曲线轮廓的构件,它可看作是将移动凸轮卷于圆柱体上形成的。

机械设计基础 第4章齿轮机构(4-56)讲解

机械设计基础     第4章齿轮机构(4-56)讲解
2)z↑→ε↑(∵ z↑→ r↑→ra ↑→ AE↑→ε ↑) z→∞时,ε →εmax=1.982
3)ha *↑→ ra ↑→αa↑→ε↑; 4)a′↑→α′↑→ε↓。
§4—6 渐开线齿轮的切齿原理
齿轮的加工方法很多,有铸造、热轧、冲压、模锻、 粉末冶金和切削法等,其中最常用的是切削法。
渐开线齿轮的切齿方法按加工原理的不同,可分为: 成形法(仿形法):分铣削法、拉削法和冲压法;
1、刀具及其齿形 刀具的选择依据——按被加工齿轮的m、α。而齿数z 由机床的传动系统来保证。
1)齿条插刀 (又称梳齿刀) : 标准齿条型刀具
其齿形与标准齿条相似,只是齿顶比标准齿条高出 c*m(如图4-13),以切出轮齿齿根部分的过渡曲线。
齿顶线 中线
齿根线
刀具顶线 齿顶线 中线
齿根线
刀具顶线 齿顶线
2、切削过程中的运动(以插齿为例) 1)范成运动
齿条插刀:刀具的节线与被加工齿轮齿坯的分度圆相 切并作纯滚动的运动——刀具移动v =ωr = ωm z / 2。
齿轮插刀:刀具的节圆与齿坯节圆相切并作纯滚动的 运动—— i =ω0 /ω= z /z0)
2)切削运动(↑↓):刀具沿齿轮毛坯轴向的切齿运动。 3)让刀运动(←→):插齿刀具返回时,为避免擦伤已
(常来加工大模数m>20的齿轮和人字齿轮)。 铣刀轴向剖面形状——与齿轮齿槽的齿廓形状完全相同;
刀具刀号的选择——按被加工齿轮的m、α、z 。
这种切齿方法简单,不需要专用机床,但生产率低、精度差, 故仅适用于单件生产及精度要求不高的场合。
2、拉刀(broaching tool)拉齿
拉刀拉齿主要用来拉削内齿轮,拉刀的形状与齿轮齿 槽形状相同。因拉刀的制造成本高,故它适用于批量生产 的情况。

机械设计基础第四章平面机构运动简图及自由度

机械设计基础第四章平面机构运动简图及自由度
2) 2) F≥1时,原动件数大于机构自由度,机构遭到 破坏;原动件数小于机构自由度,机构运动不确定。 只有当原动件数目等于机构自由度数时,机构才有 确定的运动。
三、计算机构自由度时应注意的几种情况
1)复合铰链
由三个或三个以上构件组成的轴线重合的转动副称为复合铰链。
由m个构件组成的复合铰链应含有(m-1)个转动副。
两构件用运动副联接后,彼此的相对运动受到某些约束。每个 低副引入两个约束,每个高副引入一个约束。
设某平面机构,除机架外共有n个活动构件,又有pL个 低副和pH个高副,根据自由构件的自由度、运动副引入 的约束,活动构件之间的关系,可以得出平面机构自由 度的计算公式如下:
平面机构的自由度 F = 3n - 2PL – PH
一、构件及其自由度
一个自由构件作平面运动时, 具有三个独立运动;沿x轴和y轴 的移动以及绕垂直于xOy平面内 任一点A转动。
一个作平面运动的自由构件 具有三个自由度。
二、运动副与约束
运动副:机构中两构件直接接触的可动联接。
运动副元素:两构件上参加接触而构成运动的部分, 如点、线、面。 约 束:两构件用运动副联接后,彼此的相对运动受 到某些限制。
b.两构件上某两点间 的距离在运动过程中 始终保持不变时;
c.联接构件与被联接 构件上联接点的轨迹 重合时;
虚约束经常发生的场合:
d.机构中对运动不起作用的对称部分。
e.两构件组成若干个轴线互相重合的转动副.
采用虚约束是为了改善构件的受力情况; 传递较大功率;或满足某种特殊需要。
例题1
n=8 Pl=11 Ph=1 F=1
§4.2.2 平面机构运动简图
机构运动简图是用规定的运动副符号及代表构件的线条来表 示机构的运动特性,并按一定的比例画成的简单图形。并利 用机构运动简图对机构进行结构、运动和动力等分析。

机械设计基础复习精要:第4章 齿轮机构

机械设计基础复习精要:第4章 齿轮机构

第4章 齿轮机构4.1考点提要4.1.1 重要的基本术语及概念齿廓啮合基本定律、共轭齿廓、渐开线性质和方程、渐开线齿轮啮合的可分性、齿轮的基本参数(模数,压力角,齿顶高系数,顶隙系数,齿数)、啮合线、啮合角、压力角、齿轮各部分名称及相互关系、标准齿轮的定义、齿轮的正确啮合条件,齿轮的连续平稳传动条件、重合度、根切、变位齿轮、标准安装、非标准安装、正确安装、当量齿轮。

4.1.2 标准直齿轮标准齿轮是指分度圆上有标准压力角和标准模数,齿顶高和齿根高符合标准且分度圆上齿厚等于齿槽宽的齿轮。

不同时具备这三个条件就不是标准齿轮。

要熟悉四个圆即齿顶圆,分度圆,齿根圆,基圆;三个弧长即齿距,齿厚,齿槽宽和三高即齿顶高,齿根高和全齿高。

熟悉相关的运算,牢记相应的算式。

对标准齿轮而言,我们定义齿厚和齿间相等的圆为定义标准参数的圆,即分度圆。

如果分度圆上齿距p ,齿数Z ,直径d ,则有:d pZ π= 或 Z p d π=可见:p/π是无理数。

以这样的数作为计算参数很不方便。

我们规定p/π的值为标准值(采用整数和有理数)并称之为模数。

从而使之成为齿轮的基本参数。

齿轮的另一个标准参数是分度圆上的压力角α,国家标准是20o ,从渐开线方程算式αcos r r b =可知:若压力角太小,虽能使传动省力,但分度圆和基圆就半径相差较小,齿形太直,齿根强度往往不够,若压力角太大,对传动不利,分度圆和基圆就半径相差较大,齿形太弯曲肥厚。

除上述参数外,齿顶高系数和齿顶隙系数也是不可少的。

前者规定了齿轮齿顶高与模数的关系h*a m ;后者使齿根高比齿顶高多一个与模数相关的值C*m ,从而使齿顶高和齿根高也成为标准值。

此外,齿数也是基本参数。

齿数变化则分度圆等四个圆的大小都变化。

但三个高和三个弧长都只和模数有关,不会随齿数而变化。

4.1.3内齿轮和齿条的特点(1)内齿轮的齿槽和轮齿分别相当于外齿轮的轮齿和齿槽(2)齿顶圆半径小于齿根圆半径(3)内齿轮的齿顶圆大于基圆4.1.4 齿条有以下特点:(1) 齿条齿廓为直线,齿廓上各点的压力角均为标准值,且等于齿条齿廓的倾斜角(齿形角)。

机械设计基础 第4章 螺纹连接

机械设计基础  第4章 螺纹连接
14
圆柱管螺纹
牙型角为=55的英制螺纹,内、外螺纹旋合后无径向间 隙。螺纹副本身不具密封性,连接要求密封时,可压紧被连接 件螺纹副外的密封面,也可在密封面间添加密封物。多用于压 力为1.568Pa以下的水、煤气管路,润滑和电线管路系统。
15
2.矩形螺纹
牙型角为0 ,传动效率高于其他螺纹,但牙根强度低,精 确制造困难,对中精度低,未标准化,逐渐被梯形螺纹代替。
第四章
连接的分类
螺纹连接
1.按机械工作时被连接零(部)件间是否有相对运动分 静连接 连接 动连接 2.按能否拆开分 可拆连接 螺纹连接、键连接,销连接、型面连接 焊接、粘接和铆接等
1
螺纹连接、键连接、花键连接、销连接 导向平键连接、导向花键连接及各种运动副
连接
不可拆连接
d2
4.1
螺纹的主要参数和常用类型 螺纹的形成及其分类
43
5.自攻螺钉——由螺标准,扁,厚
45
圆螺母+止退垫圈——带有缺口,应用时带翅垫圈内舌嵌入
轴槽中,外舌嵌入圆螺母的槽内,螺母即被锁紧
46
7.垫圈
平垫圈
斜垫圈
h
d1 d2
47
4.4
螺栓连接的强度计算
螺栓连接强度计算的目的是:根据强度条件确定螺 栓直径或校核其强度 ,而螺栓和螺母的螺纹牙及其他各 部分尺寸均按标准选定。 普通螺栓连接在工作时,螺栓主要承受轴向力(包 括预紧力),故又称受拉螺栓。 铰制孔用螺栓连接工作时,螺栓只承受横向力,又称 受剪螺栓。
受力时被连接件接合面间不 应相对滑移失效,预紧力F 的大 小根据板件的静力平衡条件可得 :
F f s zm k f FR (即F
k f FR f s zm

机械设计基础第4章

机械设计基础第4章
机械设计基础第4章
V带轮的结构
带轮的结构一般由轮缘、 轮毂、轮辐等部分组成。轮缘 是带轮具有轮槽的部分。
轮槽的形状和尺寸与相应 型号的带截面尺寸相适应。并 规定梯形轮槽的槽角φ为32°、 34°、36°和38°四种,都小
于V带两侧面的夹角40°。这
是为了使胶带能紧贴轮槽两侧。 带轮的基准直径是指与所配
动率ε表示:
12d d 1 n 1d d 2 n 2 d d 1 n 1 d d 2 n 2
1
d d 1 n 1
d d 1 n 1
机械设计基础第4章
考虑弹性滑动影响而得出的传动比公式表示如下:
i n1 dd2
n2 dd1(1)
式中, n1、 n2为主、 从动轮转速, 单位为r/min; dd1、
机械设计基础第4章
带轮直径 d>300mm 时,采用轮 辐式
机械设计基础第4章
4.3 带传动工作能力分析
4.3.1 带传动中的受力分析
张紧状态: 带两边拉力相等→ 张紧力F0
工作状态: 带两边拉力不相等(通过带所受摩擦力分析得知)
拉力增加→紧边 F0↗F1 紧边拉力 拉力减少→松边 F0↘F2 松边拉力
sin
2
,所以V带比平带
承载能力大。
(3)α 增大,Fmax 增大。因为α1< α2,故打滑首先发生在小
带轮上 ,一般要求α1≥120°,至少不小于90°。
2
1
(4)当F>Fmax 时,带传动发生打滑而失效,故应避免。 机械设计基础第4章
4.3.2 带传动的应力分析
带传动工作时,带中的应力由以下三部分组成:
第4章 带传动与链传动
4.1 带传动概述 4.2 普通V带和V带轮 4.3 带传动的工作能力分析 4.4 V带传动的设计 4.5 带传动的安装、维护和张紧 4.6 链传动概述 4.7 滚子链及其链轮 4.8 链传动的运动特性 4.9 滚子链传动的设计计算 4.10 链传动的布置、张紧和润滑

机械设计基础第4章

机械设计基础第4章
• 1.对心直动尖顶凸轮轮廓绘制
如图4-25a所示,已知某对心直动尖顶从动件盘形凸轮机构的基圆
半径为r0,凸轮以角速度沿逆时针方向转动,行程为h,推程运
动角=〖120°〗^,远休止角s = 60°,回程运动角′=90°,
近休止角s′=90°,凸轮的位移曲线如图4-25b所示。下面用作
图法求凸轮轮廓。
高副接触的实例,用凸轮来控制进、排气阀门的启闭。
• 3.利用几何形状来维持接触
(1)槽凸轮机构:如图4-8a所示,凸轮轮廓曲线做成凹槽,从动件的
滚子置于凹槽中,依靠凹槽两侧的轮廓曲线使从动件与凸轮在运动过
程中始终保持接触。
(2)等宽凸轮机构:如图4-8b所示,从动件做成矩形框架形状,而凸
轮廓线上任意两条平行切线间的距离都等于框架上下两侧的宽度,因
(1)直动从动件
如图4-5所示,从动件作往复直线移动。
(2)摆动从动件
如图4-6所示,从动件作往复摆动。
• 三、凸轮与从动件维持高副接触的方式
• 1.利用重力维持接触
利用重力使从动件与凸轮轮廓始终保持接触的凸轮机构,又称为
力封闭型凸轮机构。
• 2.利用弹簧力维持接触
如图4-7所示发动机凸轮机构的基本形式,它是利用弹簧力来维持
(2)滚子从动件
如图4-5b所示,示为平底从动件,从动件与凸轮轮廓
之间为线接触,接触处易形成油膜,润滑状况好。
(4)球面从动件
如图4-5d所示,从动件为一球面。球面从动件
克服了尖底从动件的尖底易磨损的缺点。在工程中的应用也较多。
• 3.按从动件的运动形式分类
第四章
凸轮机构
第一节 凸轮机构概述
• 一、凸轮机构的组成和特点
• 1. 凸轮机构的组成

机械设计基础第4章PPT

机械设计基础第4章PPT
机械设计基础
1
2
机械设计基础 常用机构 概论
3
带传动和链 传动
4
齿轮传动
5
蜗杆传动
6
轮系及减速 器
7
8
9
螺纹联接与 轴的设计及
螺旋传动
轮毂连接
轴承
10
联轴器和离 合器
11
弹簧
12
机械的平衡 与调速
目录 / CONTENTS
第4章
齿轮传动
第4章 齿轮传动
学习目标
• 知识学习目标 ●了解齿轮机构的类型及功用 ●理解齿廓啮合基本定律、渐开线的性质和齿廓的啮合特性 ●掌握渐开线直齿圆柱齿轮啮合传动需要满足的条件 ●了解范成法切齿的基本原理和根切现象产生的原因,掌握不发
法向力
Fn=
Fn1
=
Fn2
=
Ft cos
18
4.6直齿圆柱齿轮传动的设计
4.6.1 直齿圆柱齿轮传动的受力分析
第4章 齿轮传动
各力方向 判定
(1)在主动轮上的圆周力Ft1 与其回转方向相反;在从动 轮上的圆周力Ft2与其回转方 向相同。
(2) 两轮的径向力Fr1、Fr2的 方向均是由啮合点指向各自 的轮心。
19
4.6直齿圆柱齿轮传动的设计
4.6.2直齿圆柱齿轮承载能力计算
1. 齿面接触疲劳强度计算
1)齿面接触疲劳强度的设计公式
KT1(i 1)
d ≥76.63 d [ H ]2 i
第4章 齿轮传动
2)齿面接触强度校核公式
бH 671
KT1(i 1) bd12 i
≤[бH] (MPa)
2. 齿根弯曲疲劳强度计算
响,将设计出的模数加大10%~30%。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章齿轮机构
考点:1.齿廓啮合基本定律2.渐开线的五条特性3.渐开线齿廓的四个特点4.齿轮各种名称、参数和计算 5.直齿圆柱齿轮的啮合条件6.重合度的概念和计算7.齿轮的加工方法8.根切
1.一对外啮合齿轮的中心距恒等于其半径之和,角速度比恒等于其节圆半径的反比。

2.渐开线的五条特性
(1)当发生线从位置一滚到位置二时,因它与基圆之间为纯滚动,没有相对滑动,所以BK=AB的弧长。

(弧长等于发生线)
(2)当发生线在位置二沿基圆滚动时,B点是它的速度瞬心,因此直线BK时渐开线上K点的法线,且线段BK为其曲率半径,B点为其曲率中心。

又因为发生
线始终切于基圆,故渐开线上任意一点的法线必与基圆相切。

(基圆切线是法
线)
(3)渐开线齿廓上某点的法线(压力方向线),与齿廓上该点的速度方向线所夹的锐角αk,称为该点的压力角。

今以r b表示基圆半径,渐开线齿廓上各点压力
角不等,向径rk越大(即K点离轮心越远),其压力角越大。

(4)渐开线的形状取决于基圆的大小。

(曲线形状基圆定)
(5)基圆之内无渐开线。

(基圆内无渐开线)
3.渐开线啮合的四个特点
(1)可分性。

一对渐开线齿轮制成之后基圆半径是不能改变的,即使两轮的中心距稍有改变,其角速度比仍然保持不变。

(2)直线N1N2就是渐开线齿廓的啮合线。

齿廓接触点的轨迹称为啮合线,接触齿廓的公法线是两基圆的内公切线N1N2,因此直线N1N2就是渐开线齿廓的啮
合线。

(3)渐开线齿轮传动中啮合角为常数。

在数值上等于渐开线在节圆上的压力角。

(4)齿轮之间、轴与轴承之间压力的大小和方向均不变。

啮合角不变表示齿廓间压力方向不变,若齿轮传递的力矩恒定,则齿轮之间、轴与轴承之间压力的大小
和方向均不变。

4.齿轮的各种名称参数和计算见课本P56-58.P66.
5.两轮的模数和压力角必须分别相等,齿侧间隙等于0,分度圆与节圆重合。

6.重合度=实际啮合线段/ 啮合点间距。

重合度越大,齿轮平均受力越小,传动越平稳。

齿轮连续传动的条件是重合度大于1。

例(可能考这样的题):一对重合度为1.5的齿轮,走了15mm,问其中多少mm是单啮合,多少是双啮合?
解:1.5小数点后面的数乘以2即0.5*2=1,即在1.5中有1是双啮合,1.5-1=0.5为单啮合。

则在15mm中有10mm是双啮合,5mm为单啮合。

7.齿轮的加工方法主要有成形法和范成法。

8.标准齿轮是否发生根切取决于其齿数的多少。

标准齿轮欲避免根切,其齿数必须大于
或等于不根切的最少齿数z min=17。

相关文档
最新文档