电压电流互感器极性判断新方法
电流互感器极性检查现场测试常用方法
电流互感器极性检查现场测试常用方法陈冬蕾;燕宝峰;苟晓桐;赵磊【摘要】电流互感器在电力系统中占有重要地位,而电流互感器在安装以及接线过程中有可能出现极性错误,本文对电流互感器极性的测试方法进行了讨论,具有一定的实用参考价值.电流互感器是电力系统中常用的电力设备,通常用电流互感器将大电流变换成小电流,并利用互感器的变比关系配备适当的表计来进行测量,广泛应用于电力系统的继电保护、电能计量、远方测控、系统故障录波等方面.电流互感器绕组极性错误,需及时进行更改,否则会造成计量错误、保护装置拒动或误动等隐患.【期刊名称】《内蒙古石油化工》【年(卷),期】2015(000)008【总页数】3页(P66-68)【关键词】电流互感器;极性;变比【作者】陈冬蕾;燕宝峰;苟晓桐;赵磊【作者单位】天津大学电气与自动化工程学院,天津300072;天津大学电气与自动化工程学院,天津300072;中国能源建设集团有限公司新疆电力设计院,新疆乌鲁木齐830001;天津大学电气与自动化工程学院,天津300072【正文语种】中文【中图分类】TM450.7电流互感器是电力系统中常用的电力设备,通常用电流互感器将大电流变换成小电流,并利用互感器的变比关系配备适当的表计来进行测量,广泛应用于电力系统的继电保护、电能计量、远方测控、系统故障录波等方面。
电流互感器绕组极性错误,需及时进行更改,否则会造成计量错误、保护装置拒动或误动等隐患。
1 电流互感器极性检查现场测试常用方法新投运及运行中的电流互感器由于本身极性及二次绕组配线不正确,造成保护装置误动和拒动,由此而引发的事故时有发生。
因此在电力设备交接试验和预防性试验规程中对电流互感器极性检查有明确要求:GB 50150-2006《电气装置安装工程电气设备交接试验标准》[1]中9.0.8条款规定:“检查互感器的接线组别和极性,必须符合设计要求,并应与铭牌和标志相符”。
DL/T 596-1996《电力设备预防性试验规程》[2]中第七章相关条款规定:“电流互感器在大修后及必要时需进行极性检查,要求与铭牌标志相符”。
电流互感器二次出线的极性要求及确定方法
电流互感器二次出线的极性要求及确定方法[摘要] 分析了继电保护、计量、测量、故障录波等相关装置对电流互感器二次出线极性的要求,并介绍了极性确定步骤,最后给出了某电厂的发变组TA二次出线的极性配置示意图。
关键词电流互感器二次出线极性配合0 引言电气二次设备,如继电保护装置、测量装置、计量装置、安全自动装置等,都需要通过电流互感器来反映一次侧电流值,从而实现保护、测量等功能。
电流互感器的传递变换具有极性,其二次出线极性的确定将对相关电气二次设备功能的实现造成影响,特别是保护装置用TA 的二次出线极性出现错误时将导致保护的误动或拒动,严重时将危及一次设备乃至电网的安全。
1 电流互感器的二次出线极性要求GB1208-2006《电流互感器》规定:电流互感器中标有P1(L1)、S1(K1)的所有端子在同一瞬间具有同一极性,即P1(L1)与S1(K1)是同极性关系。
其中,P1、P2(L1、L2)在电流互感器的本体上有标注(变压器套管TA除外,需由设备厂方和单体试验方提供TA的一次指向信息);S1、S2(K1、K2)在电流互感器的二次接线端子处有标注。
值得注意的是,国外TA必须通过产品的出厂说明书和单体试验来获取极性信息。
1.1 与继电保护装置的配合1.1.1电流差动保护电流差动保护需要对一次设备各侧TA二次电流的矢量进行差流计算,因此需要综合考虑各侧TA极性的配合。
对于变压器差动保护中组别引起的相差,目前微机保护均通过软件来计算补偿,所以各侧TA二次接线均采用“Y”接法。
至于电流差动保护,由于各侧TA有0°和180°两种接线方式,因此要根据保护装置的具体要求来确定TA的极性。
表1为几种国内常见的电流差动保护的极性要求。
差流为矢量差:差流为矢量和:值得注意的是,TA极性的确定除了要满足保护所要求的“0°”或“180°接线方式外,还必须考虑TA与带方向的保护之间的配合问题。
【电力技术】电流、电压互感器极性的规定意义及检测方法
【电力技术】电流、电压互感器极性的规定意义及检测方法1相量的起因大家知道,我们的发电机原理是导体切割磁力线产生电动势,而发电机定子绕组的三相排列是按照三相平均分360度排列的,随着发电机转子的转动,感应出三相电动势。
发电机顺时针转动,就产生了A相超前B相1200的相位,B相超前C相1200的相位,C相超前A 相1200的相位,发电机每分钟转动3000转,那么每秒转数就是3000/60秒=50周,这个就是我们说的50HZ的来由,反过来,每转一周的时间(T=1/f)就是1/50=0.02秒就是20毫秒,也就是说完成一个360度的变化需要20毫秒。
下面我们可以形象的从相量图和波形图看出相位关系。
当电动势作用在负载上时,由于负载的性质由电阻、电感、电容组成的阻抗决定,使得电流与电压之间表现出不同的相位:下面我们就沿着这个主线进一步分析相量在保护中的应用2电流、电压互感器减极性标记的含义及意义1电流、电压互感器减极性标记的含义及意电压互感器的接线及极性是保证全站所有保护相量正确的最基本的因素,所有需要判断方向的保护都必须首先要求电压极性正确,为了统一标准,我们现在规定:所有电压互感器不论是新投,还是因某种原因检修更换二次线,都必须保证电压互感器二次从极性端正出,也就是说电压互感器正极性。
请看如下示意图1-1:保证了电压互感器的正极性,就为我们在考虑变电站内各个保护装置的方向以及在带负荷测相量的时候,提供了一个基础,因为就算有的保护装置不需要判别方向,也需要通过电流、电压之间的相位关系来确定电流互感器极性是否正确,当做这个工作的时候,我们需要关注的是流经保护安装处的负荷性质、潮流流向、电压互感器极性,只有采集好全部信息,才能确定保护二次回路的接线的正确性。
因此,我们规定:要求电压互感器的正极性。
从上图中可以看出电压互感器一次电流从一次线圈的极性端流入,这个不是刻意做的,而是一次必须要这么接线,这是一次安装的工艺所必须的,那么二次线圈的引出线就必须从极性端引出,非极性端结成N线在主控室一点接地,这样就能保证电压互感器UA、UB、UC的正极性。
CT极性判别方法
判断电压电流互感器极性的新方法发布日期:2009-5-27 10:53:43 (阅2378次)关键词: 变压器互感器继电保护[摘要]应用克希霍夫定律(Kirchhoff''s Current Law)及二次回路接线原理,推导出一种判断电压和电流互感器极性的新方法,经与传统的检测方法进行对比,证明了其优越性和实用性,可供继保专业人员参考和运用。
[关键词]互感器继电保护克希霍夫定律(KCL)极性引言变压器和电流互感器在继电保护二次回路中起一、二次回路的电压和电流隔离作用,它们的一、二次侧都有两个及以上的引出端子,任何一侧的引出端子用错,都会使二次侧的相位变化180度,既影响继电保护装置正确动作,又影响电力系统的运行监控和事故处理,严重时还会危及设备及人身安全。
因此,正确判断变压器(电压互感器)和电流互感器的极性正确与否是一项十分重要的工作。
1 传统的极性检测方法1.1直流法电压和电流互感器的传统极性检测直流法可按图1接好线,使用干电池和高灵敏度的磁电式仪表进行测定。
检测极性时,将电池的正极接在一次线圈的K端上,而将磁电式仪表(如指针式电流表或毫伏表)的正极端接在二次线圈的K端上。
当开关S瞬间闭合时,仪表指针偏向右转(正方向),而开关S瞬间断开时,仪表指针则偏向左转(反方向),则表明所接互感器一、二次侧端子为同极性。
反之,为异极性。
1.2、交流法按图2所示接线,将互感器一、二次线圈的尾端L2、K2接在一起,在二次线圈上通入1~5V的交流电压,再用10V以下小量程交流电压表分别测量U2、U3,若U3=U1-U2,则L1、K1为同极性,若U3=U1+U2,L1、K1为异极性。
2 新极性检测方法该方法以KCL和二次接线原理为基本依据,强调注入电流作为引导检测过程的基本手段,将交流安培计的读数作为检测结果,来判断互感器的极性。
2.1原理根据KCL的描述: 在任何电路中的任意节点上流入该节点的电流总和等于流出该节点的电流总和,即Σi入=Σi出。
一种不拆变压器套管快速测量升高座电流互感器极性的简易方法
图1 变压器升高座结构图2 套管升高座TA极性测量原理图“一次加压升流法”[7-9]是将变压器低压侧短接接地,在高压侧加380V的电压,形成短路电流,通过对升高座电流互感器的二次绕组带负荷测试六角图校验其极性。
这种测试实际上只能作为保护投入运行的最后一道校验手段,用于确保其主变差动回路正确接线,工作中不能单纯的依靠这种方式。
而且随着我国建设的高速发展,变压器的容量越来越大,该测试方法在二次绕组产生的感应电流越来越小,普通伏安特性表的精度已达不到测量要求。
为固定值,式中,I随时间的关系如图3所示。
图3 电流变化曲线根据载流直导线的磁场计算方法,变压器升高座电流互感器中的磁场模型可以等效为如图4所示。
图4 升高座电流互感器的磁场计算模型把此直线电流看成电流元的集合,对直导线上的任一电流元,其大小为idl ,它到场点P的距离为r ,α为电流元与矢量之间的夹角[10],根据毕奥—萨伐尔定律,此电流元在P点所激发的磁感强度dB 的大小为(2)而dB 的方向由idlxr 确定。
很显然,每一个电流元在P点激发的方向都是一致的。
因此可直接由上式积分求总的磁场强度,由图4可知以下几何关系:(4) (5) (6)根据式(4)~式(6)可以得出:将式(4)、式(5)和式(7)代入式(3)推导出磁感应强度关系:考虑到升高座上端的引线长度远大于升高座电流互感的直径,可以将引线近似等效为半无限长的导线,此时P点的磁场强度大小可简化为:而磁场强度B 的方向总是沿套管电流互感器的切线方向。
假设升高座电流互感器铁心截面积为匝数为N 匝,如图5所示。
图5 感应电压示意图则流过的磁通量为:(10)二次绕组产生的感应电压为:(11)根据式(11)可知,从变压器绕组首端施加一个逐渐增大的直流电流,升高座电流互感器的二次绕组会感应一个同极性的电压,且施加的电流参数越大,二次侧的电压也越大,就更容易测出。
2.2 测试系统i iLl dlI 0r 0rβ2β1βαPti 2ΦN图6 测试系统结构示意图其中,测量装置的直流电流发生器通过测试电流输出接口接到被试的变压器绕组两端,输出一个由0快速增大直至稳定的直流电流,通过人机交互模块可以选择电流大小;升高座电流互感器的二次绕组接电压采样输入接口,在该直流电对变压器绕组充电的暂态过程中,采集二次绕组的电压信号;将采集到的电压信号经过信号放大滤波处理电路处理,效滤除杂散的干扰电压,放大输入信号的幅值;然后将放大的信号输入到模数转换器,把模拟信号转换为数字信号,并将数据存储到缓存区供计算机系统处理;计算机通过测量电压的数值范围进行极性判定,并将测量结果至显示器。
用直流法检测并判断电流互感器电压互感器的极性及进行绝缘试验
用直流法检测并判断电流互感器电压互感器的极性及进行绝缘试验一、用直流法检测并判断电流互感器、电压互感器的极性及进行绝缘试验:1、用万用表测量互感器极性的步骤:首先询问考官互感器是否退出运行⑴、准备材料:绝缘手套、放电棒、毛巾、三根测试线,一块万用表,一块2500V兆欧表、螺丝刀一把、短接线、电池、沙纸。
⑵、检查绝缘手套是否完好,如坏,征询监考老师,如监考教师说怎么办,回答说换新的。
⑶、检查接地线,两端都要检查,如一端掉,戴绝缘手套接好。
⑷、对电流互感器进行放电,先放一次侧,后放二次侧,各个接线端纽都要进行放电,放电后,手套放在放电棒上以备下次再用。
⑸、用沙纸对电流互感器一次、二次接线端纽进行除锈,用毛巾对电流互感器一次、二次接线端纽和外壳进行清扫。
⑹、检查万用表,用螺丝刀对万用表进行静态调0。
⑺、把红色测试线接在万用表+端纽上,黑色测试线接到*端纽上,两线搭接,表计打到Ω档和100Ω档位上进行动态调0。
⑻、用仪表对电流互感器一次、二次接线端纽进行导通。
⑼、把万用表红色测试线另一端接二线的S1接线桩上,黑色测试线的另一端接到S2接线桩上。
⑽、把电池的红色线接到电流互感器一次P1接线桩上,黑色线接到P2接线桩上。
按红色电池按纽三次,看表指针偏转方向,正偏为减极性。
把测试结果写在答题纸上。
⑾、戴绝缘手套双手握放电棒未端进行放电,一次、二次各接线桩都要进行放电。
拆除接线。
处,用完后打到空档装好。
⑶、测量前必须挂接地,进行放电处理。
⑷、测量完取下接线时戴上绝缘手套。
⑸、测三次极性。
2、测量互感器的绝缘电阻:⑴、在测量极性后已经对电流互感谢器进行放电,先对2500V兆欧表外观进行检查,红色测试线接仪表L端纽上,黑色测试线接在仪表E端纽上,摇动兆欧表先进行开路检查,指针是否指向∞,后慢摇请监考老师帮忙进行短路检查,看指针是否回零。
然后用熔丝将一次侧和二次侧分别短接起来。
⑵、把兆欧表黑色测试线的一端接在电流互感器的二次接线桩上,摇动仪表请监考老师戴好绝缘手套帮忙在把红色的测试线另一端接在一次接线桩上测试1分钟读出指针所指的数值,把红色测试线拿开,停止摇动仪表。
低压电流互感器的校验方法 互感器常见问题解决方法
低压电流互感器的校验方法互感器常见问题解决方法在进行电流误差试验之前,通常需要检查极性和退磁等主面特性。
1、极性检查电流互感器一次绕组标志为P1、P2,二次绕组标志为S1、S2、若P1、S1是同名端在进行电流误差试验之前,通常需要检查极性和退磁等主面特性。
1、极性检查电流互感器一次绕组标志为P1、P2,二次绕组标志为S1、S2、若P1、S1是同名端,则这种标志叫减极性。
一次电流从P1进,二次电流从S1出。
极性检查很简单,除了可以在互感器校验仪上进行检查外,还可以使用直流检查法。
2、电流互感器退磁检查电流互感器在电流蓦地下降的情况下,互感器铁芯可能产生剩磁。
如电流互感器在大电流情况下蓦地切断、二次绕组蓦地开路等。
互感器铁芯有剩磁,使铁芯磁导率下降,影响互感器性能。
长期使用后的互感器都应当退磁。
互感器检验前也要退磁。
退磁就是通过一次或二次绕组以交变的励磁电流,给铁芯以交变的磁场。
从0开始渐渐加大交变的磁场(励磁电流)使铁芯达到饱和状态,然后再渐渐减小励磁电流到零,以除去剩磁。
对于电流互感器退磁,一次绕组开路,二次绕组通以工频电流,从零开始渐渐加添到确定的电流值(该电流值与互感器的设计测量上限有关,一般为额定电流的20—50%左右。
可以这样判定,假如电流蓦地急剧变大,此时表示铁芯以进入磁饱和阶段)。
然后再将电流缓慢降为零,如此重复2—3次。
在断开电源前,应将一次绕组短接,才断开电源。
铁芯退磁完成。
此方法称开路退磁法。
对于有些电流互感器,由于二次绕组的匝数都比较多。
若接受开路退磁法,开路的绕组可能产生高电压。
因此可以在二次绕组接上较大的电阻(额定阻抗的10—20倍)。
一次绕组通以电流,从零渐变到互感器一次绕组的允许的最大电流,再渐变到零,如此重复2—3次。
由于接有负载铁芯可能不能完全退磁。
由于一次绕组的最大电流有限制,过大的话可能烧坏一次绕组。
假如接有负载的二次绕组产生电压不是过高的话,可以加大二次绕组的负载电阻。
电流互感器极性的接法及其测试方法
电流互感器极性的接法及其测试方法发布时间:2023-02-24T05:21:42.114Z 来源:《中国电业与能源》2022年第19期作者:李国军[导读] 电流互感器为变电站内的二次设备提供电流的测量数据李国军广东电网有限责任公司河源源城供电局广东河源 517000摘要:电流互感器为变电站内的二次设备提供电流的测量数据,其中电流互感器的极性时其重要特性之一,其正确性直接关系到保护、测量、计量的准确性,一旦电流互感器极性存在错误,会给变电站安全稳定运行造成严重影响。
因此在电流互感器投运必须进行极性测试,以防接线错误导致极性弄反。
本文介绍了直流法、交流法等极性测试方法,讨论了各种方法的特点,推荐使用电流法作为现场测试的优先选项。
在电流互感器投运后还需进行带负荷测试作为最后一道防线,对功角关系进行判断以确保电流互感器的极性完全正确。
关键词:电流互感器;极性;电流法;带负荷测试1 引言电流互感器是变电站中常用的一种电力设备,它将较大的一次电流转换为较小的二次电流,经过的适当变比关系给继电保护装置、测控装置、电能计量装置提供电流的测量数据。
电流互感器绕组极性一旦错误,则会造成保护装置拒动或误动、测量或计量错误等严重后果,因此务必保证电流互感器的组别以及极性正确。
对于电流互感器在新投运、技改大修后或者其他必要情况时,必须对电流互感器进行极性检查。
本文阐述了变电站内电流互感器极性的接法,并对现场电流互感器极性测试的方法进行了讨论,具有一定的实用参考价值。
2 电流互感器极性的接法2.1 变压器电流互感器极性的接法变压器二次设备需要电流测量数据的设备一般包括保护、测控、母线差动以及计量等,电流互感器各个绕组的二次侧分别用电缆接入对应的装置中,以220kV变压器电流互感器为例,如下图所示,其中电流互感器极性端P1均指向母线侧。
图1 220kV变压器电流互感器二次绕组分布对于变压器的差动保护,其电流的正方向,是指电流从母线流入变压器。
电流互感器极性测试方法
电流互感器极性测试方法摘要:介绍一种新型便携式电流互感器极性测试仪,该测试仪由大容量可充电蓄电池、电压监视器、信号发生采集及分析装置、蓄电池充电装置等组成,具有操作方便,可循环使用及环保等优点。
使用该测试仪,无需重复更换电池,由单人操作即能实现各电压等级电流互感器极性测试工作。
关键词:便携;三相;电流互感器;极性1 研究背景1.1 电流电流互感器工作原理电流电流互感器原理和我们电力系统中的变压器一样,依据电磁感应原理,所不同的是,电流电流互感器的工作环境更趋近于理想化,一次侧和二次侧之间的能量交换不多,更多的是测量功能,其简图如图1所示。
它的工作原理是串接在电路中,通过电磁感应,将一次侧的大电流按一定的变比一定的极性变为二次侧的小电流,将各准确等级绕组按规范要求串入各保护测量回路。
使一次侧通过电流,二次侧将指针式万用表的电流档串入系统。
也就是干电池法测量电流电流互感器的极性。
具体的操作方法是,检测极性时,模拟电流互感器一次侧流过电流,分别短接干电池的正负端到电流电流互感器一次侧的P1\P2;将指针式电流表的两端分别接到电流电流互感器二次输出端。
通过接通瞬间在电流互感器一次侧产生的电流,使仪表指针正偏或者反偏来判断电流互感器极性的正确与否。
该种方法存在的问题:①变压器线圈或大容量电流电流互感器(750kV套管电流电流互感器)具有很大的电感,故使用常规的小容量电池,指针式万用表的指针偏转不明显;②短接干电池时,干电池快速放电,损耗大,寿命短,余下废旧干电池污染环境,且不可持续利用;③短接法仅能对电流互感器单相进行就地极性测试工作,不具备室内对整个回路进行准确测试功能;④数字式万用表的读数一闪而过,不易判断极性接线是否正确。
2.2 研究的必要性为了解决上述问题,降低工作过程中的风险,简化试验流程,方便调试班组进行极性测试工作,需要研究制作一种新型简易的便携式电流电流互感器极性测试装置。
2.3 主要研究内容迫切需要研究制作一种新型简易的电流电流互感器极性测试装置,方便调试班组进行极性测试工作。
12直流法判断互感器的极性(整理)
江苏省电力行业《农网配电营业工》职业技能鉴定操作考核评分标准(考评员用)江苏省电力行业《农网配电营业工》职业技能鉴定操作考核(考评员评分用)姓名准考证号操作开始时间结束时间江苏省电力行业《农网配电营业工》职业技能鉴定操作考核任务书1、操作项目直流法判断互感器的极性(仅用于配电运行方向)2、操作时间本项作业时间 30分钟3、操作说明(1)独立操作;(2)现场提供高压电流互感器、高压电压互感器各一只;(3) 对互感器外观进行检查,标识清晰,外表应无损伤;(4)用直流法正确测试高压电流互感器或高压电压互感器的极性;(5)正确使用工器具;(6)现场电子式万用表、指针式万用表、5号电池;(7)否决项:工作中未做好安全防护措施,发生安全违章,损坏计量设备或仪器仪表,即取消考核,并作零分处理;(8)时间到应立即停止操作,整理工具材料离开操作场地。
江苏省电力行业《农网配电营业工》职业技能鉴定操作直流法判断互感器的极性姓名准考证号电流互感器、电压互感器极性试验记录单互感器极性试验记录:试验人:试验日期:直流法判断互感器的极性(整理)一、工器具准备及安全检查1、250V兆欧表1只,万用表1只,兆欧表、万用表测试连接线各两条(红色黑色),电源盒一只,放电棒一根,绝缘手套两只,一字起一把,砂纸一张,抹布一条,裸铜线三根。
2、检查兆欧表、万用表外观是否完好,对兆欧表进行开路、短路检查,检查绝缘手套有无合格证,试验标签是否过期(六个月一次),有无漏气现象;检查放电棒有无合格证,试验标签是否过期(1年一次)二、询问老师互感器处在什么状态?老师答:此时互感器处在检修状态。
这时检查(电流、电压)互感器有无接地,(注意:不要碰触电流、电压互感器)三、互感器导通检查1、取绝缘手套戴上,将放电棒的接地端夹在互感器的外壳接地上,依次用放电棒的顶端(带接地电阻)和直接接地端钮对电流器P1P2I S1I S2桩头进行放电,再对电压互感器A 、B 、a1、 b1、a2、 b2、进行放电。
电压互感器的极性检测方法
浅谈电压互感器的极性检测方法摘要:介绍电压互感器原理,二次回路短路的影响,极性常规检查方法,电容式电压互感器极性检查方法。
关键词:电压互感器极性检测方法电容式电压互感器中图分类号: tm451文献标识码:a 文章编号: 1 概述⑴定义:电压互感器是一个带铁心的变压器。
它主要由一、二次线圈、铁芯和绝缘组成。
当在一次绕组上施加一个电压u1时,在铁芯中就产生一个磁通φ,根据电磁感应定律,则在二次绕组中就产生一个二次电压u2。
改变一次或二次绕组的匝数,可以产生不同的一次电压与二次电压比,这就可组成不同比的电压互感器。
电压互感器是电力系统运行中重要设备组成之一,是交流系统中一次系统和二次系统间联络元件,用于传递系统电压信息供给测量仪器、仪表和保护、控制装置等,工作原理与变压器基本相同。
⑵分类①按安装地点可分为户内式和户外式。
35kv及以下多制成户内式;35kv以上则制成户外式。
②按相数可分为单相和三相式,35kv及以上不能制成三相式。
③按绕组数目可分为双绕组和三绕组电压互感器,三绕组电压互感器除一次侧和基本二次侧外,还有一组辅助二次侧,供接地保护用。
④按绝缘方式可分为干式、浇注式、油浸式和充气式。
干式电压互感器结构简单、无着火和爆炸危险,但绝缘强度较低,只适用于6kv以下的户内式装置;浇注式电压互感器结构紧凑、维护方便,适用于3kv~35kv户内式配电装置;油浸式电压互感器绝缘性能较好,可用于10kv以上的户外式配电装置;充气式电压互感器用于sf6全封闭电器中。
⑤此外,还有电容式电压互感器,电容式电压互感器实际上是一个单相电容分压管,由若干个相同的电容器串联组成,接在高压相线与地面之间,它广泛用于110kv~330kv的中性点直接接地的电网中。
从电压互感器的原理特性上不难看出,电压互感器二次侧不允许短路。
由于电压互感器内阻抗很小,二次回路短路时,会出现很大的电流,将损坏二次设备甚至危及人身安全。
为此,国家电网公司《电业安全工作规程》10.14.1强调“严格防止带电电压互感器二次回路短路或接地”。
电压互感器极性问题分析
电压互感器极性问题分析摘要:电压互感器的极性问题是电力系统容易引发保护或其他安全自动装置出现误动误判的重要原因之一,不管是电流还是电压,极性错误都将导致较为严重的后果.我司下辖的小白塔电站在进行机端PT等屏柜改造完成后进行了并网前一次和二次核相检查,核相过程中发现数据异常,经过全面分析和检查,最终锁定故障点是PT装置极性错误,并进行了改接处理,于后续实验中顺利完成核相数据测试,避免了该问题引发事故或扩大问题。
关键词:互感器极性相位分析引言2021年3月18日晚,小白塔水电站在完成4号和5号发电机机端励磁变开关柜改造后进行了一系列试验,以确保机组并网万无一失,当进行到二次相位核查时,测值数据异常,经过现场细致分析和检查后发现柜内新安装的机端母线电压互感器极性错误,改接正确后恢复正常,并在随后的同期操作中成功并入系统网络。
电压互感器Potential transformer 简称PT,Voltage transformer也简称VT(后面直接用PT)在电力系统中主要用来耦合一次和二次系统,作为连接高压和低压的中间设备,一般有测量(用于数据显示)、计量(用于电度累计)、保护(用于继电保护)等几种功能。
根据绕组数量区分有两圈、三圈、四圈等几种,实际由需求决定圈数。
1小白塔水电站现场情况1.1 小白塔站PT主接线情况小白塔电站选用了两组四圈电压互感器,一组为励磁系统测量专用,使用了全星型接线,另一组用于机组机端电压测量、机端输出功率计量、机组后备保护,同时取A、B两相接入同期装置用于机组同期。
单独一组开口三角线圈用于机端接地检测。
(见图一)图1 小白塔电站机端PT接线图图2 小白塔电站4、5号机改造后接线图小白塔站共5台发电机组,其中1-3号发电机并接于6kVⅠ母,4-5号机组并接于6kVⅡ母,机组并网时需通过机端PT和6kV母线PT进行捕捉比较。
设备改造之后,必须确定一次和二次接线的正确性,检测PT的功能完好,这就需要分别进行一次和二次核相。
电流互感器测量极性的几种方法
电流互感器在交接及大修前后应进行极性试验,以防在接线时将极性弄错,造成在继电保护回路上和计量回路中引起保护装置错误动作和不能够正确的进行测量,所以必须在投运前做极性试验。
测量电流互感器的极性的方法很多,我们在工作时常采用的有以下三种试验方法:①直流法;
②交流法;③仪器法。
1直流法
用1.5~3V干电池将其正极接于互感器的一次线圈L1,L2接负极,互感器的二次侧K1接毫安表正极,负极接K2,接好线后,将K合上毫安表指针正偏,拉开后毫安表指针负偏,说明互感器接在电池正极上的端头与接在毫安表正端的端头为同极性,即L1、K1为同极性即互感器为减极性。
如指针摆动与上述相反为加极性。
2交流法
将电流互感器一、二次线圈的L2和二次侧K2用导线连接起来,在二次侧通以1~5V 的交流电压(用小量程),用10V以下的电压表测量U2及U3的数值若U3=U1-U2为减极性。
U3=U1 U2为加极性。
注意:在试验过程中尽量使通入电压低一些,以免电流太大损坏线圈,为了读数清楚电压表尽量选择小一些,变流比在5以下时采用交流法测量比较简单准确,对变流比超过10的互感器不要采用这种方法进行测量,因为U2的数值较小U3与U1的数值接近,电压表的读数不易区别大小,所以在测量时不好辨别,一般不宜采用此法测量极性。
3仪表法
一般的互感器校验仪都有极性指示器,在测量电流互感器误差之前仪器可预先检查极性,若指示器没有指示则说明被试电流互感器极性正确(减极性)。
电压电流互感器极性判断新方法
引言变压器和电流互感器在继电保护二次回路中起一、二次回路的电压和电流隔离作用,它们的一、二次侧都有两个及以上的引出端子,任何一侧的引出端子用错,都会使二次侧的相位变化180度,既影响继电保护装置正确动作,又影响电力系统的运行监控和事故处理,严重时还会危及设备及人身安全。
因此,正确判断变压器(电压互感器)和电流互感器的极性正确与否是一项十分重要的工作。
1 传统的极性检测方法1.1直流法电压和电流互感器的传统极性检测直流法可按图1接好线,使用干电池和高灵敏度的磁电式仪表进行测定。
检测极性时,将电池的正极接在一次线圈的K端上,而将磁电式仪表(如指针式电流表或毫伏表)的正极端接在二次线圈的K 端上。
当开关S瞬间闭合时,仪表指针偏向右转(正方向),而开关S瞬间断开时,仪表指针则偏向左转(反方向),则表明所接互感器一、二次侧端子为同极性。
反之,为异极性。
1.2、交流法将互感器一、二次线圈的尾端L2、K2接在一起,在二次线圈上通入1~5V 的交流电压,再用10V以下小量程交流电压表分别测量U2、U3,若U3=U1-U2,则L1、K1为同极性,若U3=U1+U2,L1、K1为异极性。
2 新极性检测方法该方法以KCL和二次接线原理为基本依据,强调注入电流作为引导检测过程的基本手段,将交流安培计的读数作为检测结果,来判断互感器的极性。
2.1原理根据KCL的描述: 在任何电路中的任意节点上流入该节点的电流总和等于流出该节点的电流总和,即Σi入=Σi出。
当某一节点趋于无穷大的极限情况时,KCL可以推广至任意用一闭合面(虚线表示与纸平面的相交线)所包围的电路部分。
该闭合面S包围了部分电路,并与支路1、2、3相交,应用KCL定律可得i1-i3-i2=0。
下面讨论一种特殊状态,当初始时刻电路中无电流通过时,如果强制性地使某一闭合面包围的部分电路中流入一定量的相对于初始状态额外的电流,由于离开包围部分电路的任一闭合面的各支路的电流的代数和为零,所以必有同量的电流流出那部分电路,则可在流出的闭合面的另一支路上串联一只交流安培计测量。
电流互感器的二次接线方式和电流互感器的极性判断
电流互感器的二次接线方式和电流互感器的极性判断以双圈变压器差动保护接线为例,简要说明如何判断电流互感器极性以及正确的零序电流互感器二次接线。
新安装设备的实验报告中,往往是各种实验技术数据都很全,所有实验都合格,唯独没有电流互感器极性及接线方面的记录,由于验收工作欠仔细,且电流互感器极性及接线方面出些差错,不容易被发现,结果在设备运行后,在某一特定条件下暴露出问题,造成保护误动或拒动。
1 正确的电流互感器的二次接线方式(1)变压器按Y/△-11接线时,两侧电流之间有30。
的相位差,即同相的低压侧电流超前高压侧电流30。
,为了消除这一不平衡电流,差动保护的电流互感器二次侧应采用△/Y接线,如图2所示。
根据电流相位关系做出向量图,因2组电流互感器的二次线电流同相位,若不考虑其它因素的影响,流入差动继电器的各相电流均应为0。
变压器高压侧即原边一次线圈接成Y,则与其对应的高压侧电流互感器二次接线应接成△型,将A相电流互感器的负端子与B相电流互感器的正端子联接后,引出a相线电流;B相负端子与C相正端子联接后,引出b相线电流;C相负端子与A相正端子联接后,引出c相线电流。
变压器低压侧,即副边一次线圈接成△,则与其对应的低压侧电流互感器二次接线应接成Y型。
如电流互感器为减极性,并假定靠母线侧为正,电流互感器的正端子联接在一起,作为中性线。
二次引出线分别接在a、b、c各相负端子上。
2电流互感器的极性判断电流互感器一次和二次线圈间的极性,应按减极性标注,如图1所示,L1和K1为同极性端子(L2和K2也为同极性端子)。
标注电流互感器极性的方法是在同极性端子上注以“*”号,从图1可以看出,当一次电流从极性端子L1流入时,在二次绕组中感应出的电流应从极性端子K1流出。
(2)一般的过电流保护只靠动作时限获得选择性,但对双侧电源线路和环形网络,不能满足选择性的要求,为实现保护的选择性,在各电流保护上加装一方向元件,便构成方向过流保护。
阐述电流互感器极性测试新方法
阐述电流互感器极性测试新方法随着社会的发展和科学技术的进步,继电保护设备的自动化程度越来越高。
然而电流互感器极性测试、变比测试等工作大部分还在延续传统的方法,存在自动化程低、耗时、费力等缺点。
电流互感器极性测试新方法的研究就是为了CT 极性测试工作而进行的。
1 问题分析和目标设定1.1 问题分析电流互感器极性测试是新上电流互感器或电流互感器重新安装后必须进行的试验项目,传统极性测试的方法是用9V干电池的正、负极分别接在电流互感器一次侧的极性端和非极性端并做搭、拉试验,同时在电流互感器二次侧接电流表或万用表的mA档观察指针的偏转方向。
上述方法在现场作业中需一人观察指针偏转,一人搭拉试验,一人监护,共需三人才完成。
一组CT三相均有保护、计量、测量三组电流互感器线圈,则试验人员最少需搭拉九次,电流互感器二次侧需更改九次接线,相当繁琐。
并且当电流互感器变比较大时(大于600/5),二次侧的感应电流很小,几乎无法使指针偏移,若再使用万用表的毫安档就无法判断电流互感器极性是否正确。
1.2 设定目标经过上述对传统电流互感器极性测试分析,我们将通过研究一种电流互感器极性测试新方法,研制出一种电流互感器极性测试仪,希望正确测出变比4000/5以内的电流互感器的极性,满足110kV变电站内所有CT极性测试的需要,将就地电流互感器极性试验人数减少为2人,将搭拉次数减少为3次,并达到测试仪体积小、易携带、操作方便、指示直观等目的。
我们将电流互感器极性测试仪分割为以下研究对象:(1)研制电流互感器二次信号接收电路;(2)信号处理电路的研制;(3)指示电路的研制。
2 方案选择2.1 电流互感器二次信号接收电路的设计为了获得电流互感器二次信号,我们有三种信号获取方案:(1)直接接入信号处理回路;(2)通过小的电流互感器接入;(3)通过电容进行峰值保持后接入。
测试电流互感器极性时,在电流互感器一次侧用9V干电池进行搭拉操作,电流互感器二次侧的感应电流、电压都很小,但是感应时间却只有5~6μs。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F面讨论一种特殊状态, 当初始时刻电路中无电流通过时, 女口果强制性地使
某一闭合面包围的部分电路中流入一定量的相对于初始状态额外的电流,由于离
开包围部分电路的任一闭合面的各支路的电流的代数和为零,所以必有同量的电
流流出那部分电路,则可在流出的闭合面的另一支路上串联一只交流安培计测
量。那么,当被包围的部分电路为电压和电流互感器的内部电路时, 则其中任两 相的同极性或异极性将影响流出包围的互感器内部电路电流的大小, 然后结果将 体现在交流安培计的读数上。下面以电流互感器的星形和三角形两种连接情况帚"
具体说明。
2.2星形回路检测
5.2直流法的优点
对于单个单相电压或电流互感器的极性判断, 直流法具有原理简单, 测量设 备接线简便,操作不复杂等优点。适用于单个互感器极性的检测和判断。
5.3交流法的优点
当互感器的变比在5以下,用交流法检测极性既简单又准确, 当变比较大时, 由于U1和U3数值很接近,电表较难判断,因此不宜采用。
方法,经与传统的检测方法进行对比,证明了其优越性和实用性,可供继保专业人员参考和运用。
明二次闭合面所围电路中的感应电势相互抵消,两相互为异极性(即a y异端
相接),若指针偏转较大,则说明两相感应电势相互迭加,两相互为同极性(即
a、y同端相接)。
另注入电流再测, 并将二次检测结果写入表2中,以此来判断该组电流互感 器三角形连接的极性。
4新方法的应用
新方法可以广泛应用于电力系统继电保护装置的安装、 调试、定时检验及故 障处理中去。
再取A、C两相注入电流,如图5接线,并同样根据中性线上安培计的读数
来判断A、C两相极性的异同。然后将两组结果结合起来并对照表1便可判断出
该组星形连接互感器的极性。
显然从表1可知若测得A、B和A、C两组两相极性均相同,则A、B、C
三相极性相同;若A、B两相极性相同,A、C相异,贝U C极为异极性;A、B两
相极性相异,而A、C相同,则B相为异极性;若A、B与A、C均相异,则A
相为异极性。
3三角形回路检测
与星形回路相同,先断开一次侧隔离刀闸,任取两相在一次侧线圈的首或未
端同时接地,并在此两相一次侧另一端串接一升流装置。 在二次侧串接一安培计。
同样用升流装置注入电流并同时观察安培计。 若安培计的指针不动或微偏,则说
知某两相互为同极性, 则另两组两相组合的极性关系必为一同一异;若检测知某 两相互为异极性, 则另两组两相组合的极性关系必一致, 要么均为同极性, 要么 均为异极性。从而三角形接线情况如表3所示:
5新旧方法比较
5.1新法优点
在现场三相一组的电压或电流互感器连接的极性检测中, 新法具有测量次数
少,测量准确度高,判断依据简单直观,操作方便,可大幅度提高检测工作的效 率,是较高级的极性检测方法。 适用于三相连接的继电保护二次回路中的电压或 电流互感器的极性测定。
在检测之前,须断开一次隔离刀闸,确保电流互感器内部电路处于无电流状
态。任选电流互感器的 两相,在一次侧线圈的L端同时接地,K端串接一升流装
置。在二次侧的中性线n上串接一只交流安培计。用升流装置向其中注入定量的
交流电流,电流大小及安培计的量程可由电流互感器的变比确定。数量级约在
10-1A至1A之间。同时观察安培计的变化和读数。由于另一单相未注流的原方
2新极性检测方法
该方法以KCL和二次接线原理为基本依据,强调注入电流作为引导检测过
程的基本手段,将交流安培计的读数作为检测结果,来判断互感器的极性。
2.1原理
根据KCL的描述:在任何电路中的任意节点上流入该节点的电流总和等于
流出该节点的电流总和,即 工入二工出。当某一节点趋于无穷大的极限情况时,
Kcl可以推广至任意用一闭合面(虚线表示与纸平面的相交线)所包围的电路
电保护 克希霍夫定律(KCL)极性 引言 变压器和电流互感器在继电保护二次回路中起一、二次回路的电压和电流 隔离作用,它们的一、二次侧都有两个及以上的引出端子,任何一侧的引出端子用错,都会使二次侧的相位变化180度, 既影响继电保护装置正确动作,又影响电力系统的运行监控和事故处理,严重时还会危及设备及人身安全。因此,正确
4.1星形连接方面的应用
可应用于现场继电保护自动装置的极性检验, 无需将每组三相电压或电流互 感器接线解开成单个互感器进行检测, 因此可减轻工作量, 大幅度提高实验工作 效率。
4.2三角形连接方面的应用
可根据判断的极性确定电压或电流互感器二次回路的三角形接线顺序。 用于 检查三角回路接线错误, 使得故障的排除显得尤为清楚方便。 由表2可知,若测
开路,在二次星形回路中电流继电器线圈阻抗相对很高,
所以二次回路的电流13
很小,近似为零。此时若安培计的指针不动或微偏(读数
IA也约为零),则说
明此两相的二次电路在闭合面包围下其电流近似成环流,
安培计所在的中性线n
上电流的流入和流出量相等,即此两相极性相同。若安培计指针偏转较大(读数
IA约为211),则说明其二次电流均流入中性线n,此两极性相异。
1传统的极性检测方法
1.1直流法
电压和电流互感器的传统极性检测直流法可按图1接好线,使用干电池和高
灵敏度的磁电式仪表进行测定。检测极性时,将电池的正极接在一次线圈的K
端上,
而将磁电式仪表(如指针式电流表或毫伏表)的正极端接在二次线圈的K
端上。
当开关S瞬间闭合时,仪表指针偏向右转(正方向),而开关S瞬间断
引言
变压器和电流互感器在继电保护二次回路中起一、 二次回路的电压和电流隔
离作用,它们的一、二次侧都有两个及以上的引出端子, 任何一侧的引出端子用
错,都会使二次侧的相位变化180度,既影响继电保护装置正确动作,又影响电
力系统的运行监控和事故处理, 严重时还会危及设备及人身安全。 因此,正确判
断变压器(电压互感器)和电流互感器的极性正确与否是一项十分重要的作。
开时,
仪表指针则偏向左转(反方向),则表明所接互感器一、二次侧端子为同
极性。
反之,为异极性。
1.2、交流法
将互感器一、二次线圈的尾端L2、K2接在一起,在二次线圈上通入1~5V
的交流电压,再用10V以下小量程交流电压表分别测量U2、U3,若U3=U1-U2,
则L1、K1为同极性,若U3=U1+U2,L1、K1为异极性。