数字信号处理试题及参考答案

合集下载

数字信号处理试卷及答案 两份

数字信号处理试卷及答案 两份

数字信号处理试卷及答案1一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。

2.线性时不变系统的性质有 律、 律、 律。

3.对4()()x n R n =的Z 变换为 ,其收敛域为 。

4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。

5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。

6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。

7.因果序列x(n),在Z →∞时,X(Z)= 。

二、单项选择题(每题2分, 共20分) 1.δ(n)的Z变换是( )A.1 B.δ(ω) C.2πδ(ω) D.2π 2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n ) 4.下面描述中最适合离散傅立叶变换DFT的是( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号( )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器 6.下列哪一个系统是因果系统( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( )A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z变换的收敛域为|z|>2,则该序列为()A.有限长序列 B.无限长序列 C.反因果序列 D.因果序列9.若序列的长度为M,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是( )A.N≥MB.N≤MC.N≤2MD.N≥2M10.设因果稳定的LTI系统的单位抽样响应h(n),在n<0时,h(n)= ( )A.0B.∞C. -∞D.1三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。

数字信号处理试卷及参考答案

数字信号处理试卷及参考答案

一、 填空题(本题满分30分,共含4道小题,每空2分)1. 两个有限长序列x 1(n),0≤n ≤33和x 2(n),0≤n ≤36,做线性卷积后结果的长度是 ,若对这两个序列做64点圆周卷积,则圆周卷积结果中n= 至 为线性卷积结果。

2. DFT 是利用nkN W 的 、 和 三个固有特性来实现FFT 快速运算的。

3. IIR 数字滤波器设计指标一般由 、 、 和 等四项组成。

4. FIR 数字滤波器有 和 两种设计方法,其结构有 、和 等多种结构。

二、判断题(本题满分16分,共含8道小题,每小题2分,正确打√,错误打×) 1. 相同的Z 变换表达式一定对应相同的时间序列。

( )2. Chirp-Z 变换的频率采样点数M 可以不等于时域采样点数N 。

( )3. 按频率抽取基2 FFT 首先将序列x(n)分成奇数序列和偶数序列。

( )4. 冲激响应不变法不适于设计数字带阻滤波器。

( )5. 双线性变换法的模拟角频率Ω与数字角频率ω成线性关系。

( )6. 巴特沃思滤波器的幅度特性必在一个频带中(通带或阻带)具有等波纹特性。

( )7. 只有FIR 滤波器才能做到线性相位,对于IIR 滤波器做不到线性相位。

( )8. 在只要求相同的幅频特性时,用IIR 滤波器实现其阶数一定低于FIR 阶数。

( )三、 综合题(本题满分18分,每小问6分)若x (n)= {3,2,1,2,1,2 },0≤n≤5, 1) 求序列x(n)的6点DFT ,X (k)=?2) 若)()]([)(26k X W n g DFT k G k==,试确定6点序列g(n)=?3) 若y(n) =x(n)⑨x(n),求y(n)=?四、 IIR 滤波器设计(本题满分20分,每小问5分)设计一个数字低通滤波器,要求3dB 的截止频率f c =1/π Hz ,抽样频率f s =2 Hz 。

1. 导出归一化的二阶巴特沃思低通滤波器的系统函数H an (s)。

数字信号处理试题和答案

数字信号处理试题和答案

一. 填空题1、一线性时不变系统,输入为x(n)时,输出为y(n);则输入为2x(n)时,输出为2y(n) ;输入为x(n-3)时,输出为y(n-3) 。

2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最高频率f max关系为:fs>=2f max。

3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X(e jw),它的N点离散傅立叶变换X(K)是关于X(e jw)的N 点等间隔采样。

4、有限长序列x(n)的8点DFT为X(K),则X(K)= 。

5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的交叠所产生的现象。

6.若数字滤波器的单位脉冲响应h(n)是奇对称的,长度为N,则它的对称中心是(N-1)/2 。

7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较窄,阻带衰减比较小。

8、无限长单位冲激响应(IIR)滤波器的结构上有反馈环路,因此是递归型结构。

9、若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 8 。

10、用窗函数法设计FIR数字滤波器时,过渡带的宽度不但与窗的类型有关,还与窗的采样点数有关11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的主值区间截断,而周期序列可以看成有限长序列的周期延拓。

12.对长度为N的序列x(n)圆周移位m位得到的序列用x m(n)表示,其数学表达式为x m(n)=x((n-m))N R N(n)。

13.对按时间抽取的基2-FFT流图进行转置,并将输入变输出,输出变输入即可得到按频率抽取的基2-FFT流图。

14.线性移不变系统的性质有交换率、结合率和分配律。

15.用DFT近似分析模拟信号的频谱时,可能出现的问题有混叠失真、泄漏、栅栏效应和频率分辨率。

16.无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,串联型和并联型四种。

17.如果通用计算机的速度为平均每次复数乘需要5μs,每次复数加需要1μs,则在此计算机上计算210点的基2 FFT需要10 级蝶形运算,总的运算时间是______μs。

(完整word版)数字信号处理试卷及答案两份.docx

(完整word版)数字信号处理试卷及答案两份.docx

数字信号处理试卷及答案1一、填空题(每空1分, 共 10分)1.序列x(n)sin(3n / 5) 的周期为。

2.线性时不变系统的性质有律、律、律。

3.对x(n)R4(n)的Z 变换为,其收敛域为。

4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为。

5.序列 x(n)=(1 ,-2,0,3;n=0,1,2,3), 圆周左移 2 位得到的序列为。

6 .设LTI系统输入为x(n),系统单位序列响应为h(n) ,则系统零状态输出y(n)=。

7.因果序列x(n) ,在Z→∞时,X(Z)=。

二、单项选择题(每题 2 分 ,共 20分)1(.)A.1δ(n)B.δ ( ω)的ZC.2πδ (ω )变换D.2 π是2.序列x(1n)的长度为4,序列x(2n)的长度为3,则它们线性卷积的长度是()A. 3 B. 4 C. 6 D. 73.LTI系统,输入x(n)时,输出y( n);输入为3x( n-2),输出为()A. y (n-2)B.3y ( n-2)C.3y( n)D.y (n)4 .下面描述中最适合离散傅立叶变换DFT()的是A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过即可完全不失真恢复原信号() A. 理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D. 理想带阻滤波器6.下列哪一个系统是因果系统() A.y(n)=x(n+2) B.y(n)=cos(n+1)x (n) C.y(n)=x(2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括()A. 实轴B.原点C.单位圆D.虚轴8.已知序列 Z变换的收敛域为| z | >2 ,则该序列为() A. 有限长序列 B.无限长序列 C.反因果序列 D. 因果序列9.若序列的长度为M ,要能够由频域抽样信号X(k) 恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是()A.N≥ MB.N ≤MC.N≤ 2MD.N≥ 2M10.设因果稳定的LTI系统的单位抽样响应h(n) ,在 n<0时, h(n)=()A.0 B . ∞ C.-∞ D.1三、判断题(每题 1 分 ,共 10分)1 .序列的傅立叶变换是频率ω 的周期函数,周期是2 π。

数字信号处理教程试题及答案

数字信号处理教程试题及答案

数字信号处理教程试题及答案一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在括号内。

1.若一模拟信号为带限,且对其抽样满足奈奎斯特采样定理,则只要将抽样信号通过( )即可完全不失真恢复原信号。

A.理想低通滤波器B.理想高通滤波器C.理想带通滤波器D.理想带阻滤波器2.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( )A.y(n)=x 3(n)B.y(n)=x(n)x(n+2)C.y(n)=x(n)+2D.y(n)=x(n 2) 3..设两有限长序列的长度分别是M 与N ,欲用圆周卷积计算两者的线性卷积,则圆周卷积的长度至少应取( )。

A .M+NB.M+N-1C.M+N+1D.2(M+N) 4.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是( )。

A.N ≥MB.N ≤MC.N ≤2MD.N ≥2M5.直接计算N 点DFT 所需的复数乘法次数与( )成正比。

A.NB.N 2C.N 3D.Nlog 2N6.下列各种滤波器的结构中哪种不是FIR 滤波器的基本结构( )。

A.直接型B.级联型C.并联型D.频率抽样型7.第二种类型线性FIR 滤波器的幅度响应H(w)特点( ):A 关于0=w 、π、π2偶对称B 关于0=w 、π、π2奇对称C 关于0=w 、π2偶对称关于=w π奇对称D 关于0=w 、π2奇对称关于=w π偶对称8.适合带阻滤波器设计的是:( )A )n N (h )n (h ---=1 N 为偶数B )n N (h )n (h ---=1 N 为奇数C )n N (h )n (h --=1 N 为偶数D )n N (h )n (h --=1 N 为奇数9.以下对双线性变换的描述中不正确的是( )。

A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s 平面的左半平面单值映射到z 平面的单位圆内D.以上说法都不对10.关于窗函数设计法中错误的是:A 窗函数的截取长度增加,则主瓣宽度减小;B 窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关;C 为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加;D 窗函数法不能用于设计高通滤波器;二、填空题(每空2分,共20分)1. 用DFT 近似分析连续信号频谱时, _________效应是指DFT 只能计算一些离散点上的频谱。

数字信号处理试题和答案

数字信号处理试题和答案

一. 填空题1、一线性时不变系统,输入为x(n)时,输出为y(n);则输入为2x(n)时,输出为2y(n) ;输入为x(n-3)时,输出为y(n-3) 。

2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最高频率f max关系为:fs>=2f max。

3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X(e jw),它的N点离散傅立叶变换X(K)是关于X(e jw)的N 点等间隔采样。

4、有限长序列x(n)的8点DFT为X(K),则X(K)= 。

5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的交叠所产生的现象。

6.若数字滤波器的单位脉冲响应h(n)是奇对称的,长度为N,则它的对称中心是(N-1)/2 。

7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较窄,阻带衰减比较小。

8、无限长单位冲激响应(IIR)滤波器的结构上有反馈环路,因此是递归型结构。

9、若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 8 。

10、用窗函数法设计FIR数字滤波器时,过渡带的宽度不但与窗的类型有关,还与窗的采样点数有关11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的主值区间截断,而周期序列可以看成有限长序列的周期延拓。

12.对长度为N的序列x(n)圆周移位m位得到的序列用x m(n)表示,其数学表达式为x m(n)=x((n-m))N R N(n)。

13.对按时间抽取的基2-FFT流图进行转置,并将输入变输出,输出变输入即可得到按频率抽取的基2-FFT流图。

14.线性移不变系统的性质有交换率、结合率和分配律。

15.用DFT近似分析模拟信号的频谱时,可能出现的问题有混叠失真、泄漏、栅栏效应和频率分辨率。

16.无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,串联型和并联型四种。

17.如果通用计算机的速度为平均每次复数乘需要5μs,每次复数加需要1μs,则在此计算机上计算210点的基2 FFT需要10 级蝶形运算,总的运算时间是______μs。

数字信号处理试题和答案

数字信号处理试题和答案

一. 填空题1、一线性时不变系统,输入为 x(n)时,输出为y(n);则输入为2x(n)时,输出为 2y(n) ;输入为x(n-3)时,输出为 y(n-3) .2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最高频率fmax 关系为: fs>=2fmax.3、已知一个长度为N(de)序列x(n),它(de)离散时间傅立叶变换为X(e jw),它(de)N点离散傅立叶变换X(K)是关于X(e jw)(de) N 点等间隔采样 .4、有限长序列x(n)(de)8点DFT为X(K),则X(K)= .5、用脉冲响应不变法进行IIR数字滤波器(de)设计,它(de)主要缺点是频谱(de) 交叠所产生(de) 现象.6.若数字滤波器(de)单位脉冲响应h(n)是奇对称(de),长度为N,则它(de)对称中心是 (N-1)/2 .7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出(de)滤波器(de)过渡带比较窄 ,阻带衰减比较小 .8、无限长单位冲激响应(IIR)滤波器(de)结构上有反馈环路,因此是递归型结构.9、若正弦序列x(n)=sin(30nπ/120)是周期(de),则周期是N= 8 .10、用窗函数法设计FIR数字滤波器时,过渡带(de)宽度不但与窗(de) 类型有关,还与窗(de) 采样点数有关11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列(de) 主值区间截断 ,而周期序列可以看成有限长序列(de) 周期延拓 .12.对长度为N(de)序列x(n)圆周移位m位得到(de)序列用xm(n)表示,其数学表达式为xm (n)= x((n-m))NRN(n).13.对按时间抽取(de)基2-FFT流图进行转置,并将输入变输出,输出变输入即可得到按频率抽取(de)基2-FFT流图.14.线性移不变系统(de)性质有交换率、结合率和分配律.15.用DFT近似分析模拟信号(de)频谱时,可能出现(de)问题有混叠失真、泄漏、栅栏效应和频率分辨率.16.无限长单位冲激响应滤波器(de)基本结构有直接Ⅰ型,直接Ⅱ型, 串联型和并联型四种.17.如果通用计算机(de)速度为平均每次复数乘需要5μs,每次复数加需要1μs,则在此计算机上计算210点(de)基2 FFT需要 10 级蝶形运算,总(de)运算时间是______μs.二.选择填空题1、δ(n)(de)z变换是 A .A. 1B.δ(w)C. 2πδ(w)D. 2π2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最高频率fmax关系为: A .A. fs ≥ 2fmaxB. fs≤2 fmaxC. fs≥ fmaxD. fs≤fmax3、用双线性变法进行IIR数字滤波器(de)设计,从s平面向z平面转换(de)关系为s= C .A.1111zzz--+=-B.1111zzz---=+sC.11211zzT z---=+D.11211zzT z--+=-4、序列x1(n)(de)长度为4,序列x2(n)(de)长度为3,则它们线性卷积(de)长度是 ,5点圆周卷积(de)长度是 .A. 5, 5B. 6, 5C. 6, 6D. 7, 55、无限长单位冲激响应(IIR)滤波器(de)结构是 C 型(de).A. 非递归B. 反馈C.递归D. 不确定6、若数字滤波器(de)单位脉冲响应h(n)是对称(de),长度为N,则它(de)对称中心是 B .A. N/2B.(N-1)/2C. (N/2)-1D. 不确定7、若正弦序列x(n)=sin(30nπ/120)是周期(de),则周期是N= D .A. 2πB. 4πC. 2D. 88、一LTI系统,输入为 x(n)时,输出为y(n);则输入为2x(n)时,输出为;输入为x(n-3)时,输出为 .A. 2y(n),y(n-3)B. 2y(n),y(n+3)C. y(n),y(n-3)D. y(n),y(n+3)9、用窗函数法设计FIR数字滤波器时,加矩形窗时所设计出(de)滤波器,其过渡带比加三角窗时 ,阻带衰减比加三角窗时 .A.窄,小B. 宽,小C. 宽,大D. 窄,大10、在N=32(de)基2时间抽取法FFT运算流图中,从x(n)到X(k)需 B 级蝶形运算过程.A. 4B. 5C. 6D. 311.X(n)=u(n)(de)偶对称部分为( A ).A. 1/2+δ(n)/2 B. 1+δ(n) C. 2δ(n) D. u(n)- δ(n)12. 下列关系正确(de)为( B ).A.∑=-=nkk nnu) ()(δ B.∑∞=-=) ()(kk nnuδC.∑-∞=-=nkk nnu)()(δ D. ∑∞-∞=-=kk nnu)()(δ13.下面描述中最适合离散傅立叶变换DFT(de)是( B )A.时域为离散序列,频域也为离散序列B.时域为离散有限长序列,频域也为离散有限长序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散周期序列,频域也为离散周期序列14.脉冲响应不变法( B )A.无混频,线性频率关系B.有混频,线性频率关系C.无混频,非线性频率关系 D.有混频,非线性频率关系15.双线性变换法( C )A.无混频,线性频率关系B.有混频,线性频率关系C.无混频,非线性频率关系 D.有混频,非线性频率关系16.对于序列(de)傅立叶变换而言,其信号(de)特点是( D )A.时域连续非周期,频域连续非周期 B.时域离散周期,频域连续非周期C.时域离散非周期,频域连续非周期D.时域离散非周期,频域连续周期17.设系统(de)单位抽样响应为h(n),则系统因果(de)充要条件为( C )A.当n>0时,h(n)=0 B.当n>0时,h(n)≠0C.当n<0时,h(n)=0 D.当n<0时,h(n)≠018.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,则只要将抽样信号通过( A )即可完全不失真恢复原信号.A.理想低通滤波器B.理想高通滤波器C.理想带通滤波器D.理想带阻滤波器19.若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R3(n),则当输入为u(n)-u(n-2)时输出为( C ).(n) (n)(n)+R3(n-1) (n)+R2(n-1)20.下列哪一个单位抽样响应所表示(de)系统不是因果系统( D ) (n)=δ(n) (n)=u(n)(n)=u(n)-u(n-1) (n)=u(n)-u(n+1)21.一个线性移不变系统稳定(de)充分必要条件是其系统函数(de)收敛域包括( A ).A.单位圆B.原点C.实轴D.虚轴22.已知序列Z变换(de)收敛域为|z|<1,则该序列为( C ).A.有限长序列B. 无限长右边序列C.无限长左边序列D. 无限长双边序列23.实序列(de)傅里叶变换必是( A ).A.共轭对称函数B.共轭反对称函数C.奇函数D.偶函数24.若序列(de)长度为M,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足(de)条件是( A ).≥M ≤M≤2M ≥2M25.用按时间抽取FFT计算N点DFT所需(de)复数乘法次数与( D )成正比.26.以下对双线性变换(de)描述中不正确(de)是( D ).A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间(de)变换C.双线性变换把s平面(de)左半平面单值映射到z平面(de)单位圆内D.以上说法都不对27.以下对FIR和IIR滤波器特性(de)论述中不正确(de)是( A ).滤波器主要采用递归结构滤波器不易做到线性相位滤波器总是稳定(de)滤波器主要用来设计规格化(de)频率特性为分段常数(de)标准滤波器28、设系统(de)单位抽样响应为h(n)=δ(n-1)+δ(n+1),其频率响应为( A )A.H(e jω)=2cosω B. H(e jω)=2sinω C. H(e jω)=cosω D. H(e jω)=sin ω29. 若x(n)为实序列,X(e jω)是其离散时间傅立叶变换,则( C )A.X(e jω)(de)幅度合幅角都是ω(de)偶函数B.X(e jω)(de)幅度是ω(de)奇函数,幅角是ω(de)偶函数C.X(e jω)(de)幅度是ω(de)偶函数,幅角是ω(de)奇函数D.X(e jω)(de)幅度合幅角都是ω(de)奇函数30. 计算两个N1点和N2点序列(de)线性卷积,其中N1>N2,至少要做( B )点(de)DFT.A. N1B. N1+N2-1C. N1+N2+1D. N231. y(n)+(n-1) = x(n)与 y(n) = (n) + x(n-1)是( C ).A. 均为IIRB. 均为FIRC. 前者IIR,后者FIRD. 前者FIR, 后者IIR三.判断题1、在IIR数字滤波器(de)设计中,用脉冲响应不变法设计时,从模拟角频率向数字角频率转换时,转换关系是线性(de).(√)2.在时域对连续信号进行抽样,在频域中,所得频谱是原信号频谱(de)周期延拓.(√)n)所代表(de)序列一定是周期(de).(×)3、x(n)=cos(w4、y(n)=x2(n)+3所代表(de)系统是时不变系统. (√)5、用窗函数法设计FIR数字滤波器时,改变窗函数(de)类型可以改变过渡带(de)宽度.(√)6、有限长序列(de)N点DFT相当于该序列(de)z变换在单位圆上(de)N点等间隔取样.(√)H(Z)(de)极点在单位圆内.(×)8、有限长序列(de)数字滤波器都具有严格(de)线性相位特性.(×)9、x(n) ,y(n)(de)线性卷积(de)长度是x(n) ,y(n)(de)各自长度之和.(×)10、用窗函数法进行FIR数字滤波器设计时,加窗会造成吉布斯效应. (√)11、用频率抽样法设计FIR数字滤波器时,12、在IIR数字滤波器(de)设计中,用双线性变换法设计时,从模拟角频率向数字角频率转换时,转换关系是线性(de).(×)13.在频域中对频谱进行抽样,在时域中,所得抽样频谱所对应(de)序列是原序列(de)周期延拓.(√)14、有限长序列h(n)满足奇、偶对称条件时,则滤波器具有严格(de)线性相位特性.(√)15、y(n)=cos[x(n)]所代表(de)系统是线性系统.(×)16、x(n) ,y(n)(de)循环卷积(de)长度与x(n) ,y(n)(de)长度有关;x(n) ,y(n)(de)线性卷积(de)长度与x(n) ,y(n)(de)长度无关.(×)17、在N=8(de)时间抽取法FFT运算流图中,从x(n)到x(k)需3级蝶形运算过程.(√)18、用频率抽样法设计FIR数字滤波器时,基本思想是对理想数字滤波器(de)频谱作抽样,以此获得实际设计出(de)滤波器频谱(de)离散值.(√)19、用窗函数法设计FIR数字滤波器和用频率抽样法设计FIR数字滤波器(de)不同之处在于前者在时域中进行,后者在频域中进行.(√)20、用窗函数法设计FIR数字滤波器时,加大窗函数(de)长度可以减少过渡带(de)宽度,改变窗函数(de)种类可以改变阻带衰减.(√)函数H(Z)(de)极点在单位圆外.( × )22、一个线性时不变(de)离散系统,它是稳定系统(de)充分必要条件是:系统函数H(Z)(de)极点在单位圆内.( √ )23.对正弦信号进行采样得到(de)正弦序列必定是周期序列.( × )24.常系数差分方程表示(de)系统必为线性移不变系统.( × )25.序列(de)傅里叶变换是周期函数.( √ )26.因果稳定系统(de)系统函数(de)极点可能在单位圆外.( × )滤波器较之IIR 滤波器(de)最大优点是可以方便地实现线性相位.(√ )28. 用矩形窗设计FIR 滤波器,增加长度N 可改善通带波动和阻带衰减.( × )29. 采样频率fs=5000Hz,DFT(de)长度为2000,其谱线间隔为.( √ )三、计算题一、设序列x(n)={4,3,2,1} , 另一序列h(n) ={1,1,1,1},n=0,1,2,3(1)试求线性卷积 y(n)=x(n)h(n)(2)试求6点循环卷积.(3)试求8点循环卷积.二.数字序列 x(n)如图所示. 画出下列每个序列时域序列:(1) x(n-2); (2)x(3-n); (3)x[((n-1))6],(0≤n ≤5);(4)x[((-n-1))6],(0≤n ≤5); n12340.543210-1-2-3x(3-n)x[((n-1))]nn三.已知一稳定(de)LTI 系统(de)H(z)为)21)(5.01()1(2)(111------=z z z z H试确定该系统H(z)(de)收敛域和脉冲响应h[n].解:系统有两个极点,其收敛域可能有三种形式,|z|<, <|z|<2, |z|>2 因为稳定,收敛域应包含单位圆,则系统收敛域为:<|z|<2 11111213/25.013/4)21)(5.01()1(2)(--------=---=z z z z z z H)1(232)()5.0(34)(--+=n u n u n h nn四.设x(n)是一个10点(de)有限序列x (n )={ 2,3,1,4,-3,-1,1,1,0,6},不计算DFT,试确定下列表达式(de)值. (1) X(0), (2) X(5), (3) ∑=90)(k k X ,(4)∑=-95/2)(k k j k X eπ解:(1)(2)(3)(4)五. x(n)和h(n)是如下给定(de)有限序列 x(n)={5, 2, 4, -1, 2}, h(n)={-3, 2, -1 }(1) 计算x(n)和h(n)(de)线性卷积y(n)= x(n) h(n); (2) 计算x(n)和h(n)(de)6 点循环卷积y 1(n)= x(n)⑥h (n); (3) 计算x(n)和h(n)(de)8 点循环卷积y 2(n)= x(n)⑧h (n); 比较以上结果,有何结论 解:(1)14][]0[190===∑=n Nn x X W 12][][]5[119180510-=-===⎩⎨⎧-=∑∑====奇偶奇数偶数n n n n n n x n x X n n W20]0[*10][][101]0[99===∑∑==x k X k X x k k 0]8[*10][][101]))210[((][]))[((2)10/2(92)10/2(910)/2(===-⇔--=-=-∑∑x k X ek X ex k X e m n x k j k k j k m N k j N πππ5 2 4 -1 2-3 2 15 2 4 -1 210 4 8 -2 4-15 -6 -12 3 -6-15 4 -3 13 -4 3 2y(n)= x(n) h(n)={-15,4,-3,13,-4,3,2} (2)5 2 4 -1 2-3 2 15 2 4 -1 210 4 8 -2 4-15 -6 -12 3 -6-15 4 -3 13 -4 3 22-13 4 -3 13 -4 3 2y 1(n)= x(n)⑥h (n)= {-13,4,-3,13,-4,3}(3)因为8>(5+3-1),所以y 3(n)= x(n)⑧h (n)={-15,4,-3,13,-4,3,2,0} y 3(n)与y(n)非零部分相同.十四. 已知系统函数2113.025.0125.02)(---+-+=z z z z H ,求其差分方程.解:2113.025.0125.02)(---+-+=zz z z H 2113.025.0125.02)()(---+-+=zz z z X z Y )25.02)(()3.025.01)((121---+=+-z z X z z z Y)1(25.0)(2)2(3.0)1(25.0)(-+=-+--n x n x n y n y n y十五.已知)1)(()81431)((121---+=+-z z X z z z Y ,画系统结构图.解:)1)(()81431)((121---+=+-z z X z z z Y 1111121125.0155.016)25.01)(5.01(1125.075.011)()()(-----------=--+=+-+==z z z z z z z z z X z Y z H直接型I :直接型II :级联型:并联型:x [ny [n ]x [n ]y [n ]x [n y [n ]n ]1.设下列系统()x n 是输入, ()y n 是输出.为非时变系统(de)是( B ). A. 2()()y n x n = B. 2()()y n x n = C. 0()()nm y n x n ==∑ D.()()y n x n =-2.设()x n , ()y n (de)傅里叶变换分别是(),()j j X e Y e ωω,则()()x n y n ⋅(de)傅里叶变换为( D ).A. ()()j j X e Y e ωω*B. ()()j j X e Y e ωω⋅ C .1()()2j j X e Y e ωωπ⋅ D. 1()()2j j X e Y e ωωπ* 3.设线性时不变系统(de)系统函数1111()1az H z az ----=-.若系统是因果稳定(de),则参数a (de)取值范围是( C ).A. 1a > B. 1a = C. 1a < D. 2a >4.设()x n (de)N 点DFT 为()X k .则()x n *(de)N 点DFT 为( A ).A. *()X N k -B. ()X kC. ()X k -D. ()X N k -.5.基-2(de)DIT-FFT 复数乘法为( D ).A. 2log 4N N B. 2log 3N N C.23log 8N N D. 2log 2NN 6.设下列系统, ()x n 是输入, ()y n 是输出.则系统是线性(de)是( A ). A. 2()()y n x n = B. 2()()y n x n = C. ()2()3y n x n =+ D. 3()()y n x n = 7.设()x n , ()y n (de)傅里叶变换分别是(),()j j X e Y e ωω,则()()x n y n *(de)傅里叶变换为( B ).A. ()()j j X e Y e ωω*B. ()()j j X e Y e ωω⋅ C .()()j j X e Y e ωω--* D.()()j j X e Y e ωω--⋅8.设线性时不变系统(de)系统函数1111()1a z H z az----=-.若系统是因果稳定(de),则参数a (de)取值范围是( C ).A. 1a > B. 1a = C.1a < D. 2a >9.设()x n (de)N 点DFT 为()X k .则)())((n R m n x N N +(de)N 点DFT 为( B ).A. ()X kB. )(k X W km -C. )(*k X W km -D. )(k X W km .10.基-4(de)DIT-FFT 复数乘法量为( D ).A. 2log 4N N B. 2log 3N N C.2log 2NN D. 23log 8N N。

数字信号处理试题及答案

数字信号处理试题及答案

数字信号处理试题及答案一、选择题(每题2分,共20分)1. 数字信号处理中,离散时间信号的数学表示通常采用______。

A. 连续时间函数B. 离散时间序列C. 连续时间序列D. 离散时间函数答案:B2. 在数字信号处理中,采样定理是由谁提出的?A. 傅里叶B. 拉普拉斯C. 香农D. 牛顿答案:C3. 下列哪一项不是数字滤波器的类型?A. 低通滤波器B. 高通滤波器C. 带通滤波器D. 线性滤波器答案:D4. 数字信号处理中,傅里叶变换的离散形式称为______。

A. 傅里叶级数B. 傅里叶变换C. 离散傅里叶变换(DFT)D. 快速傅里叶变换(FFT)答案:C5. 在数字信号处理中,频域分析通常使用______。

A. 时域信号B. 频域信号C. 频谱D. 波形答案:C二、填空题(每题2分,共20分)1. 数字信号处理中,对连续信号进行采样后得到的信号称为______。

答案:离散时间信号2. 离散时间信号的傅里叶变换是______的推广。

答案:连续时间信号的傅里叶变换3. 数字滤波器的系数决定了滤波器的______特性。

答案:频率响应4. 在数字信号处理中,信号的采样频率必须大于信号最高频率的______倍。

答案:25. 快速傅里叶变换(FFT)是一种高效的算法,用于计算______。

答案:离散傅里叶变换(DFT)三、简答题(每题10分,共30分)1. 简述数字信号处理与模拟信号处理的主要区别。

答案:数字信号处理涉及离散时间信号,而模拟信号处理涉及连续时间信号。

数字信号处理使用数字计算机进行信号处理,模拟信号处理则使用模拟电路。

2. 解释什么是采样定理,并说明其重要性。

答案:采样定理指出,为了能够无失真地从其样本重构一个带限信号,采样频率必须大于信号最高频率的两倍。

这一定理的重要性在于它为信号的数字化提供了理论基础。

3. 描述离散傅里叶变换(DFT)与快速傅里叶变换(FFT)之间的关系。

答案:离散傅里叶变换是将时域信号转换到频域的数学工具,而快速傅里叶变换是一种高效计算DFT的算法。

数字信号处理期末考试及习题答案

数字信号处理期末考试及习题答案

北京邮电大学电信工程学院<<数字信号处理>>期末考试试题范本
(2)
z >2
x(n)
=
[(1)n 3

2n
]u(n);
1 3
<
z
<2
x(n)=(
1)n 3
u
(n)
+
2n
u(−n

1);
z
<
1 3
x(n)=[2n

(1 )n 3
]u(−n
−1)
三、线性卷积 (12 分)
设信号 x(n) = [1,1,1,1,3,3,3,3,1] 通过 LTI 离散系统 h(n) = [1,-1,1],分别按 下列方法计算此离散系统的输出 y(n)。 (1) 采用时域线性卷积 (2) 采用 N = 6 的重叠保留(舍去)法
北京邮电大学电信工程学院<<数字信号处理>>期末考试试题范本
<<数字信号处理>>
班级 ______ 姓名 _______ 学号 ________ 成绩 ______
一、填空 (18分, 请直接写在此试题纸的空格处)
(1) 设 h(n)是一个线性非移变系统的单位取样响应。若该系统又是因果的,则 h(n)应满足
ϖ1
∫ ∫ =
1 2π
ϖ2
(e jϖ (α −n)
ϖ1
+ e− jϖ (α −n) )dϖ
=
π
(
1 n−
α
)
ϖ2 ϖ1
cos
ϖ
(
n

α
)dϖ
(n

α

数字信号处理试题及答案word版.doc

数字信号处理试题及答案word版.doc

数字信号处理 一、填空题(每空1分, 共10分) 1.序列()sin(3/5)xnn的周期为 10 。 2.线性时不变系统的性质有 交换律、 结合律、 分配律。

3.对4()()xnRn的Z变换为 411,01zzz ,其收敛域为 。 4.抽样序列的Z变换与离散傅里叶变换DFT的关系为 kNjeZ2 。 5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 {0,3,1,-2; n=0,1,2,3} 。

6.设LTI系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= ()()()ynxnhn

7.因果序列x(n),在Z→∞时,X(Z)= x(0) 。

二、单项选择题(每题2分, 共20分) 1.δ(n)的Z变换是 ( A )A.1 B.δ(ω) C.2πδ(ω) D.2π 2.序列x1(n)的长度为4,序列x2(n)的长度为3,则它们线性卷积的长度是 ( C )A. 3 B. 4 C. 6 D. 7 3.LTI系统,输入x(n)时,输出y(n);输入为4x(n-5),输出为 ( B ) A. y(n-2) B.3y(n-2) C.3y(n) D.4y(n-5) 4.下面描述中最适合离散傅立叶变换DFT的是 ( D ) A.时域为离散序列,频域为连续信号 B.时域为离散周期序列,频域也为离散周期序列 C.时域为离散无限长序列,频域为连续周期信号 D.时域为离散有限长序列,频域也为离散有限长序列 5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 ( A )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器 6.下列哪一个系统是因果系统 ( B )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n) 7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( c ) A. 实轴 B.原点 C.单位圆 D.虚轴 2

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字信号处理期末复习题 一、单项选择题(在每个小题的四个备选答案中选出一个正确答案,并将正确答案的号码写在题干后面的括号内,每小题1分,共20分) 1.要从抽样信号不失真恢复原连续信号,应满足下列条件的哪几条( ① )。 (Ⅰ)原信号为带限 (Ⅱ)抽样频率大于两倍信号谱的最高频率 (Ⅲ)抽样信号通过理想低通滤波器 ①.Ⅰ、Ⅱ ②.Ⅱ、Ⅲ ③.Ⅰ、Ⅲ ④.Ⅰ、Ⅱ、Ⅲ 2.在对连续信号均匀采样时,若采样角频率为Ωs,信号最高截止频率为Ωc,则折叠频率为( ④ )。 ①Ωs ②.Ωc ③.Ωc/2 ④.Ωs/2 3.若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R3(n),则当输入为u(n)-u(n-2)时输出为( ② )。 ①.R3(n) ②.R2(n) ③.R3(n)+R3(n-1) ④.R2(n)-R2(n-1) 4.已知序列Z变换的收敛域为|z|>1,则该序列为( ② )。 ①.有限长序列 ②.右边序列 ③.左边序列 ④.双边序列 5.离散系统的差分方程为y(n)=x(n)+ay(n-1),则系统的频率响应( ③ )。 ①当|a|<1时,系统呈低通特性 ②.当|a|>1时,系统呈低通特性 ③.当0 ④.当-16.序列x(n)=R5(n),其8点DFT记为X(k),k=0,1,…,7,则X(0)为( ④ )。 ①.2 ②.3 ③.4 ④.5 7.下列关于FFT的说法中错误的是( ① )。 ①.FFT是一种新的变换 ②.FFT是DFT的快速算法 ③.FFT基本上可以分成时间抽取法和频率抽取法两类 ④.基2 FFT要求序列的点数为2L(其中L为整数) 8.下列结构中不属于FIR滤波器基本结构的是( ③ )。 ①.横截型 ②.级联型 ③.并联型 ④.频率抽样型 9.已知某FIR滤波器单位抽样响应h(n)的长度为(M+1),则在下列不同特性的单位抽样响应中可以用来设计线性相位滤波器的是( ④ )。 ①.h[n]=-h[M-n] ②.h[n]=h[M+n] ③.h[n]=-h[M-n+1] ④.h[n]=h[M-n+1] 10.下列关于用冲激响应不变法设计IIR滤波器的说法中错误的是( ④ )。 ①.数字频率与模拟频率之间呈线性关系 ②.能将线性相位的模拟滤波器映射为一个线性相位的数字滤波器 ③.容易出现频率混叠效应 ④.可以用于设计高通和带阻滤波器 11.利用矩形窗函数法设计FIR滤波器时,在理想特性的不连续点附近形成的过滤带的宽度近似等于( ① )。 ①.窗函数幅度函数的主瓣宽度 ②.窗函数幅度函数的主瓣宽度的一半 ③.窗函数幅度函数的第一个旁瓣宽度 ④.窗函数幅度函数的第一个旁瓣宽度的一半 12.连续信号抽样序列在( ① )上的Z变换等于其理想抽样信号的傅里叶变换。 ①单位圆 ②.实轴 ③.正虚轴 ④.负虚轴 13.一个线性移不变系统稳定的充分必要条件是其系统函数的收敛域包含( ① )。 ①单位圆 ②.原点 ③.实轴 ④.虚轴 14.已知某FIR滤波器单位抽样响应h(n)的长度为(M+1),则在下列不同特性的单位抽样响应中可以用来设计线性相位滤波器的是( ① )。 ①.h[n]=-h[M-n] ②.h[n]=h[M+n] ③.h[n]=-h[M-n+1] ④.h[n]=h[M-n+1] 15.序列x(n) = nR4(n),则其能量等于( ③ )。 ①.5 ②.10 ③.14 ④.20 16.以下单位冲激响应所代表的线性移不变系统中因果稳定的是( ③ )。 ①.h(n) = u(n) ②.h(n) = u(n +1) ③.h(n) = R4(n) ④.h(n) = R4(n +1) 17.下列序列中z变换收敛域包括z = 0的是( ③ )。 ①.u(n) ②.-u(n) ③.u(-n) ④.u(n-1) 18.实序列的傅里叶变换必是( ① )。 ①.共轭对称函数 ②.-.共轭反对称函数 ③.线性函数 ④.双线性函数 19.已知序列x(n) =δ(n),10点的DFT[x(n)] = X(k)(0 ≤k ≤ 9),则X(5) =( 1 )。 ①.10 ②.1 ③.0 ④.-10 20.欲借助FFT算法快速计算两有限长序列的线性卷积,则过程中要调用( ③ )次FFT算法。 ①.1 ②.-.2 ③.3 ④.4 21.不考虑某些旋转因子的特殊性,一般一个基2 FFT算法的蝶形运算所需的复数乘法及复数加法次数分别为( ① )。 ①.1和2 ②.-.1和1 ③.2和1 ④.2和2 22.因果FIR滤波器的系统函数H(z)的全部极点都在( ① )处。 ①.z = 0 ②.z = 1 ③.z = j ④.z =∞ 23.线性相位FIR滤波器主要有以下四类 ①h(n)偶对称,长度N为奇数 ②.-h(n)偶对称,长度N为偶数 ③h(n)奇对称,长度N为奇数 ④h(n)奇对称,长度N为偶数 则其中不能用于设计高通滤波器的是( ③ )。 24、序列u (n)的Z变换及收敛域为( ① ) ①1zz,1<|z|≤∞ ②1zz,1< |Z|<∞ ③1,0≤|z|≤∞ ④1, 0≤| z|<∞ 25、序列(41)n u (n)的Z变换及收敛域为( ① ) ①41zz,41<|z|<∞ ②41zz,|z|<41

③zz411 41<|z|<∞ ④zz411|Z|<41 26、序列x(n)= (21)|n| 的Z变换及收敛域为( ③ ) ①)21)(1()411(zzz |z|<21 ②)21)(211()411(zzz|z|<21 ③)21)(211()411(zzz 21<|z|<2 ④ )21)(1()411(zzz 21<|z|<2 27、若X(z)=22111zz, |z|>|21|,则X(z)的Z反变换为( ④ ) ①x (n)=(21) n+1u(n+1)-(21)n-1 u(n-1) ②x(n)=(21)n-1u(n+1)-(21)n+1 u(n-1) ③x(n)=(21)n-1u(n-1)-(21)n+1u(n+1) ④x(n)=(21)n-1u(n-1)-(21)n+1u(n) 28、序列x(m),h(m)分别如图所示,y(n)=x(n)*h(n),则y(4)为( ③ ) ①23 ②25 ③ 3 ④ 5

29、下面信号流图表示的系统函数为( ① ) ①H(z)=21141321211zzz ② H(z)=12121141321zzz ③H(z)=21141321211zzz ④ H(z)=12121141321zzz 30、下面信号流图表示的系统函数为( ④ )

0 1 2 3 1/2 3/2 1 x(m) m 0 1 2 3 1 h(m) m

y(n) z-1 z-1 -1/4

2/3 1/2

x(n) y(n) z-1 z-1 -3 -2 x(n) z-1 ① H(z)=﹣1+z-1+5 z -2-6 z -3 ② H(z)=1+3 z -1-z -2-6 z -3 ③ H(z)=1-3 z -1+5 z -2-6 z -3 ④ H(z)=1-z -1-5 z -2+6 z -3 31、若x(n)是长度为N的实序列,且DFT[x(n)] =X(k),x(n)= x(N- n),则有( ② ) ① X(k)=﹣X(N-k) ② X(k)= X(N-k) ③ X(k)=﹣X*( N-k) ④ X(k)=﹣X(N+k) 32、对实信号进行谱分析,若要求谱分辨率F≤50Hz,则最小记录时间Tpmin应为 ( ③ ) ①0.5S ② 0.05S ③ 0.02S ④ 0.2S 33、对实信号进行谱分析,若信号最高频率为fc=10KHz,则最大采样间隔Tmax应为( ③ ) ① 0.1×10-3S ② 0.01×10-3S ③ 0.5×10-3S ④0.05×10-3S 34、对于N=8点的基IFFT运算,在进行位倒序后,地址单元A(4)中存放的是输入序列x(n)中的哪一个值( ① ) ① x(1) ② x(2) ③ x(4) ④ x(0) 35、已知x(n)=δ(n),N点的DFT[x(n)]=X(k),则X(5)=( ② )。 ①.N ②.1 ③.0 ④.- N 40、已知DFT[x(n)]=X(k),下面说法中正确的是( ② )。 ①.若x(n)为实数偶对称函数,则X(k)为虚数奇对称函数 ②.若x(n)为实数奇对称函数,则X(k)为虚数奇对称函数 ③.若x(n)为虚数偶对称函数,则X(k)为虚数奇对称函数 ④.若x(n)为虚数奇对称函数,则X(k)为虚数奇对称函数 36、如图所示的运算流图符号是( )基2 FFT算法的蝶形运算流图符号。 ①.按频率抽取 ②.按时间抽取 ③.两者都是 ④.两者都不是 37、直接计算N点DFT所需的复数乘法次数与( ② )成正比。 ①.N ②.N2 ③.N3 ④.Nlog2N 38、下列各种滤波器的结构中哪种不是I I R滤波器的基本结构( ④ )。

相关文档
最新文档