地源热泵——供暖空调的绿色技术
地源热泵空调工作原理
地源热泵空调工作原理地源热泵供热空调系统是目前世界上先进的绿色空调系统。
热泵供热空调系统的工作原理是利用环境(空气、水和大地)中的低品味热量,经过热泵机组的工作而改变温度,进而实现对建筑物的供热和空调,同时还可以提供生活热水。
地源热泵系统通过循环液在封闭的地下埋管中流动,实现系统与大地之间的换热,利用大地岩土层中的可再生热能。
由于较深的底层中在未受干扰的情况下常年保持恒定的温度,与室外温度相比是冬暖夏凉,因此地源热泵可克服空气源热泵的技术障碍,且效率大大提高。
在热泵机组中消耗1KW的电能可以得到4KW以上的热量,即能效比大于4。
此外,它保持了地下水源热泵利用大地作为冷热源的优点,同时又不需要抽取地下水作为传热的介质,因此它是一种可持续发展的建筑节能新技术。
地源热泵空调工作流程地源热地下环路的(即地热换热器)埋管方式多种多样。
目前国外普遍采用的有垂直埋管和水平埋管地热器两种基本的配置形式。
垂直埋管地热换热器是在地层中垂直钻孔的地热换热器是在浅层土地中水平埋管。
地热换热器型式和结构的选取应根据实际工程以及给定的建筑场地条件来确定。
水平埋管占地面积大,而且水平埋管的地热换热器受地表气候变化的影响,效率较低,因此这种水平埋管的地源热泵空调系统在多数场合不适合中国人多地少的国情。
垂直环路地源热泵系统在工作中有三个必需的环路,有的还有第四个可供选择的预热生活热水的环路。
1、地下换热环路水或防冻剂溶液在地下循环的封闭加压环路。
冬季从周围土壤吸收热量,夏季向土壤释放热量,其循环由一台低功率的循环泵来实现。
2、制冷剂环路即在热泵机组内部的制冷循环,与空气源热泵相比,只是将空气—制冷剂换热器变成水—制冷剂热换器,其它结构基本相同。
3、空气环路把已调节好的空气分配到建筑物中去的环路。
送风机将空气送到空气分布系统,再根据各区域的热损失或得热,将它们分配到特定的区域去。
4、生活热水环路将水从生活热水箱送到过热蒸汽冷却器去进行循环的封闭加压环路,是一个可选的环路。
地源热泵原理
地源热泵是利用浅层地能进行供热制冷的新型能源利用技术,是热泵的一种,热泵是利用卡诺循环和逆卡诺循环原理转移冷量和热量的设备.地源热泵通常是指能转移地下土壤中热量或者冷量到所需要的地方.通常热泵都是用来做为空调制冷或者采暖用的.地源热泵还利用了地下土壤巨大的蓄热蓄冷能力,冬季地源把热量从地下土壤中转移到建筑物内,夏季再把地下的冷量转移到建筑物内,一个年度形成一个冷热循环.编辑本段地源热泵的由来地源一词是从英文“ground source”翻译而来,汉语的内涵则十分广泛,应包括所有地下资源的含义。
但在空调业内,目前仅指地壳表层(小于400米)范围内的低温热资源,它的热源主要来自太阳能,极少能量来自地球内部的地热能。
"地源热泵"的概念,最早于1912年由瑞士的专家提出,而该技术的提出始于英、美两国。
1946年美国在俄勒冈州的波兰特市中心区建成第一个地源热泵系统。
但是这种能源的利用方式没有引起当时社会各界的广泛注意,无论是在技术、理论上都没有太大的发展。
20世纪50年代,欧洲开始了研究地源热泵的第一次高潮,但由于当时的能源价格低,这种系统并不经济,因而未得到推广。
直到20世纪70年代初世界上出现了第一次能源危机,它才开始受到重视,许多公司开始了地源热泵的研究、生产和安装。
这一时期,欧洲建立了很多水平埋管式土壤源热泵,主要用于冬季供暖。
虽然欧洲是世界上发展地源热泵最成熟的地区,但是它也曾因为热泵专家不懂安装技术,安装工人又不懂热泵原理等因素,致使地源热泵的发展走了一段弯路。
随着科技的进步,关于能源消耗和环境污染的法律制订越来越严格,地源热泵的发展迎来了它的另一次高潮。
欧洲国家以瑞士、瑞典和奥地利等国家为代表,大力推广地源热泵供暖和制冷技术。
政府采取了相应的补贴政策和保护政策,使得地源热泵生产和使用范围迅速扩大。
上世纪80年代后期,地源热泵技术已经趋于成熟,更多的科学家致力于地下系统的研究,努力提高热吸收和热传导效率,同时越来越重视环境的影响问题。
绿色节能暖通空调技术在绿色建筑中的应用
绿色节能暖通空调技术在绿色建筑中的应用绿色节能暖通空调技术在绿色建筑中的应用是一种先进的环保技术,旨在减少能源消耗,降低排放,提高室内空气质量。
绿色建筑是指在设计、建造、运营和维护过程中,最大限度地减少对环境的影响,并为居住者提供健康、舒适的室内环境的建筑。
在绿色建筑中,暖通空调系统是一个重要的组成部分,占据能源消耗的很大比例。
采用绿色节能暖通空调技术对于实现绿色建筑的目标至关重要。
下面将介绍一些常见的绿色节能暖通空调技术及其在绿色建筑中的应用。
1. 高效节能暖通系统:采用高效节能的供暖、通风和空调设备可以显著降低能源消耗。
使用高效的空调机组、风机和泵,以及智能控制系统,可以根据室内外温度、湿度和人员活动情况来调节温度和湿度,实现能源的最优利用。
2. 热回收技术:热回收技术可以利用排出空气中的余热,为系统提供加热或制冷的能量。
常见的热回收技术包括换热器和热泵。
换热器可以用于将排出空气中的热量传递给进入新鲜空气,从而减少加热或制冷的能量消耗。
热泵则可以利用环境中的低温热量,通过压缩和膨胀过程,提供热量。
3. 地源热泵技术:地源热泵技术是一种利用地下或水体中的稳定温度作为热源或冷源的技术。
通过将热量从地下或水体中吸收或释放到建筑内部,可以实现供暖或制冷的效果。
地源热泵技术具有稳定、高效、环保的特点,适用于绿色建筑。
4. 自然通风和日光利用:绿色建筑通过合理布局和设计,提供良好的自然通风和充分利用自然光线的条件。
自然通风和日光利用可以减少电力消耗,降低能源费用,并提高室内舒适度。
5. 智能控制系统:智能控制系统可以通过传感器和智能算法,实时监测室内外温度、湿度、CO2浓度和人员活动情况,根据实际需求进行精确调节。
智能控制系统可以提高能源利用效率,减少人工干预,并提供舒适的室内环境。
地源热泵原理
地源热泵原理
地源热泵是一种利用地热能进行空调供暖的环保节能设备,它通过地下的热能
来进行换热,实现了冬暖夏凉的效果。
地源热泵原理主要包括地热能的获取、热泵循环系统和室内外热交换三个方面。
首先,地源热泵的原理是利用地下的恒定温度来进行换热。
地下深处的温度一
般都是保持在10-18摄氏度,而地表的温度则会受到季节和气候的影响而波动。
地
源热泵通过地下的地热能来进行换热,利用地下温度的恒定性来实现冬暖夏凉的效果。
其次,地源热泵通过热泵循环系统来实现地热能的获取和利用。
热泵循环系统
由蒸发器、压缩机、冷凝器和节流阀等组成。
地下的地热能通过蒸发器吸收,然后通过压缩机进行压缩,提高温度,再通过冷凝器释放热量,最后通过节流阀降低压力,形成循环往复。
最后,地源热泵原理还包括室内外热交换过程。
室内外热交换是通过地源热泵
系统内的循环水来实现的,循环水在地下和室内外之间进行热交换,实现了冬暖夏凉的效果。
总的来说,地源热泵原理是利用地下的恒定温度来进行换热,通过热泵循环系
统和室内外热交换来实现地热能的获取和利用。
地源热泵的原理虽然看似复杂,但实际上是一种非常环保、节能的供暖方式,对于节能减排和环境保护具有重要意义。
希望大家能够更加了解地源热泵原理,积极推广和应用这一环保节能的技术。
地源热泵系统工程技术规范实施细则
地源热泵系统工程技术规范实施细则1. 引言地源热泵系统是一种利用地下热能进行空调供热与制冷的绿色能源系统。
为了保证地源热泵系统的安全可靠运行,提高系统能效,本文档制定了地源热泵系统工程的技术规范实施细则。
本细则适用于地源热泵系统的设计、建设、运行和维护。
2. 设计要求2.1 系统能耗要求 - 地源热泵系统应设计高效节能,能耗应符合国家相关标准;- 系统能效比应满足相关规定要求。
2.2 系统安全要求 - 地源热泵系统应符合国家安全标准; - 设备选型应具备相关认证和检测报告。
2.3 系统稳定性要求 - 地源热泵系统应具备稳定的运行能力; - 设备选型应考虑系统所处环境条件。
2.4 系统舒适性要求 - 地源热泵系统应能满足舒适度要求; - 系统的声音、振动应满足国家相关标准。
3. 设计方案3.1 地源热泵系统的选型要求 - 根据建筑用途和条件,综合考虑系统的能效比、负荷特性等因素进行选型; - 设计方案应提供设备的型号、技术参数和性能。
3.2 系统管道设计 - 地源热泵系统的管道布置应合理,方便维护和管理; - 管道的材质应符合相关规定。
3.3 系统控制设计 - 地源热泵系统的控制方式应考虑运行稳定性和节能; - 控制设备的选用应可靠、先进。
3.4 系统运行参数与调试 - 设计方案应提供系统的运行参数和调试方法; - 系统的运行参数应符合相关规定。
4. 工程施工4.1 施工现场安全要求 - 施工现场应符合国家相关安全规定; - 施工人员应熟悉设备操作和施工流程。
4.2 施工材料和设备要求 - 施工材料和设备应符合相关标准和规定; - 施工材料和设备的运输、存放、安装等应符合设计要求。
4.3 施工工艺要求 - 施工应按照设计方案进行; - 管道安装应符合相关规范。
4.4 施工质量控制 - 施工过程应进行质量检查; - 施工结束后应进行工程验收。
5. 运行与维护5.1 系统运行要求 - 地源热泵系统应定期进行运行检查; - 运行记录应做好归档。
地源热泵供暖方案
地源热泵供暖方案近年来,环境保护和节能减排成为了全球关注的焦点。
其中,供暖领域的能源消耗占据了很大的比重。
地源热泵供暖方案作为一种环保、高效的供暖方式,日益受到人们的关注和推崇。
一、地源热泵供暖的基本原理和优势地源热泵供暖利用地下土壤中储存的地热能量,通过热泵系统将低温热能转换为高温热能。
这种供暖方式有以下几个优势:1. 高效节能:地热能量稳定可靠,地源热泵能够将1单位的地热能量转化为3-4单位的热能,相较于传统的电采暖和燃气采暖,节能效果显著。
2. 环保低碳:地源热泵供暖过程中无烟尘、废气和噪音的排放,减少了对环境的污染,对改善空气质量和保护生态环境起到了积极的作用。
3. 稳定舒适:地源热泵供暖具有温度稳定、室温均匀的特点,可以满足人们对舒适室内环境的需求。
4. 综合运行成本低:尽管地源热泵供暖的初投资较高,但其长期运行成本较低,尤其在能源政策日益严格、燃气价格不断上涨的背景下,具有更为显著的经济优势。
二、地源热泵供暖方案的技术配置和应用地源热泵供暖的技术配置主要包括地热井、换热器、热泵主机以及室内分布系统等。
根据不同的场所和需求,地源热泵供暖方案可以选择垂直地热井和水平地热井。
垂直地热井是利用孔深为100米以上的钢管或塑料管穿透地下可生产热量的地层至地下,形成一个地热回灌系统,以达到充分吸收、循环使用地热能量的目的。
垂直地热井主要适用于空间有限、地热资源丰富的地区。
水平地热井是利用U型沟槽或螺旋式管道将低温制冷剂埋设在地下,利用地下土壤的稳定温度进行供热或制冷。
水平地热井相比于垂直地热井来说,施工和维护成本较低,适用于房地产开发以及大规模工业园区等。
除了地热井,地源热泵供暖还需要配备换热器、热泵主机等设备。
换热器用于将地热井中的低温热能传递给热泵主机,而热泵主机则通过压缩机和膨胀阀等设备,将低温热能转换为高温热能,并通过室内分布系统传送到各个供暖区域。
三、地源热泵供暖方案的发展前景和应用推广随着全球对能源环境的重视和绿色低碳的兴起,地源热泵供暖技术在各个领域得到了广泛的应用和推广。
绿色能源——地源热泵技术
改 变传 统 垃圾 处理 方式 , 统 一 中央 吸尘 、 使垃 圾 不 在房 问 停 留 , 统 一 中 央 分类 , 不 给细 菌滋 生 条件 。
2 十 大建筑 科 技 系统
朗诗 国际街 区一 期 l T程 采用 国际领 先 的建 筑 科 技 ,改 变传 统 住 宅观 念 , 创造最舒适 的居住环境 , 采用十大建筑科技系统。
2 . 3健 康全 新 风 系统
采 暖 制 冷 系 统 采 用
D 2 5 mm聚 乙 烯 ( P E )
管 , 利 用 工 程 桩 ( P H C) 作 为支撑 。
3 1 2地 源 热泵技 术 特 点 :
经过 除尘 、 消毒 、 除湿 等 多级 处理 的 新鲜 空 气 , 以略低 于室 内 的温 度并 以 小于 0 . 2 米/ 秒 的速 度 , 从 地面 踢脚 或 窗下 送 出 , 无噪 声 , 无 吹 风感 。
衡 。朗 诗 国际 街 区一 期工 程 中 的地 源 热泵
通 过预 埋 在混凝 土 楼板 中的均 布水 管 , 依 靠 常 温水 为 冷 热媒 来 进行 制 冷 制热。 夏 季送水 温 度为 2 0  ̄ C 左有, 回水 温 度为 2 6 %左 右 ; 冬 季送 水 温度 2 8 ℃左 右, 回水 温度 为2 0 ' C左右 , 温 差 加热 或制 冷 混凝 土 楼板 , 再 通 过楼 板 以 辐射 方 式 进 行传 热 , 调节 室 内温 度 。 该 系 统 温度 分 布 均匀 , 室 内 没有 机 械 转 动部 件 , 辐 射温 度 与 空 气 温度 相 差小 . 没 有 吹风 感且 空气 洁 净 , 安 静无 噪声 且不 占用室 内空 间。
绿色节能技术在机电安装工程中的应用
绿色节能技术在机电安装工程中的应用在当今社会,随着环保意识的不断提高和能源资源的日益紧张,绿色节能技术在各个领域的应用受到了广泛关注。
机电安装工程作为建筑工程中的重要组成部分,也在积极引入和应用绿色节能技术,以实现节能减排、降低成本、提高效率和可持续发展的目标。
一、绿色节能技术概述绿色节能技术是指在满足人们生产生活需求的同时,能够最大限度地减少能源消耗、降低环境污染、提高资源利用效率的一系列技术手段和方法。
这些技术涵盖了能源管理、设备优化、可再生能源利用、智能化控制等多个方面,旨在实现经济发展与环境保护的良性互动。
在机电安装工程中,常见的绿色节能技术包括:节能照明系统、高效空调系统、变频调速技术、能源回收利用技术、智能控制系统等。
这些技术的应用不仅能够降低机电设备的运行能耗,还能提高设备的性能和可靠性,为用户创造更加舒适、健康的环境。
二、绿色节能技术在机电安装工程中的具体应用(一)节能照明系统照明系统在机电安装工程中占据着较大的能耗比例。
采用绿色节能照明技术,如 LED 照明灯具、智能照明控制系统等,可以显著降低照明能耗。
LED 灯具具有高效、长寿、低能耗等优点。
相比传统的白炽灯泡和荧光灯管,LED 灯具能够在提供相同亮度的情况下,节省大量的电能。
同时,LED 灯具的寿命通常可达数万小时,大大减少了灯具更换的频率和成本。
智能照明控制系统则可以根据环境光照度、人员活动情况等自动调节照明亮度和开关状态。
例如,在自然光充足的区域自动降低照明亮度,在无人活动的区域自动关闭灯光,从而避免不必要的能源浪费。
(二)高效空调系统空调系统是机电安装工程中的另一个能耗大户。
绿色节能的空调技术主要包括变频空调技术、地源热泵技术、热回收技术等。
变频空调技术可以根据室内负荷的变化自动调整压缩机的运行频率,从而实现节能运行。
与定频空调相比,变频空调能够在不同负荷下保持较高的能效比,有效降低空调系统的能耗。
地源热泵技术利用地下浅层地热资源进行供热和制冷。
绿色建筑暖通空调设计的技术要点探析
绿色建筑暖通空调设计的技术要点探析2沈阳市和平区南京路辽宁沈阳 110000摘要:随着环保意识的强化,空调设计不仅要考虑自身的功能性,确保理想的制冷以及制热效果,还要融入节能技术,实现资源的高效利用。
基于这样的前提,相关设计人员在进行空调系统优化时需要以绿色设计作为基本原则:暖通空调系统绿色节能设计旨在提高空调系统的能效,提高能源利用率,降低能源消耗;综合考虑空调冷热源选型及可再生能源利用的节能、风系统及水输配系统的节能、综合考虑智能化控制及计量管理的节能、管道及保温系统的节能,以及管理维护的便捷性。
关键词:绿色建筑;暖通空调设计;技术1绿色建筑暖通空调设计原则1.1 循环利用在绿色建筑暖通空调设计环节,为控制施工成本、减少材料消耗量,必须遵循循环利用原则,在保证施工质量达标、满足技术标准的前提下,尽可能使用各类由废弃材料二次加工形成的,或具备回收利用价值的绿色材料。
因此,在开展返工作业,或材料破损时,可以将所产生的废料进行二次加工,从根源上减少建筑废弃物产生总量、控制施工材料的实际用量。
1.2 经济适用设计人员必须遵循经济适用原则,在制订建筑暖通空调设计方案时,应以降低系统施工成本、运行能耗,减少材料消耗量为主要目的,采取合理的设计措施。
例如,可选择在建筑墙体结构中额外铺设一层新型保温材料,这虽然会提高建筑工程的前期建设成本,但是可以改善建筑热工性能,从而在客观层面上降低建筑暖通空调系统的运行负荷、能耗,进而起到降低建筑总体使用成本的设计效果。
1.3 节约原则在制订绿色建筑暖通空调设计方案时,应遵循节约原则,在保证暖通空调系统质量达标、稳定运行的同时,尽量减少各类施工材料、设备配件的使用量,以及降低系统的实际运行负荷、电能消耗量。
为实现这一目标,需要设计人员综合分析已知工程信息,从暖通空调系统中的制冷子系统、水泵、风机等角度着手。
但是,节省设计原则并非指节省个别部件、材料,而是要求设计人员从全局统筹角度出发,对建筑暖通空调系统进行整体优化设计。
建筑工程施工中的绿色节能技术有哪些
建筑工程施工中的绿色节能技术有哪些在当今社会,随着环保意识的不断提高和资源短缺问题的日益凸显,绿色节能技术在建筑工程施工中的应用变得越来越重要。
这些技术不仅有助于减少建筑施工对环境的负面影响,还能提高建筑的能源利用效率,降低运营成本,为人们创造更加舒适、健康的居住和工作环境。
接下来,让我们一起了解一下建筑工程施工中常见的绿色节能技术。
一、太阳能技术太阳能作为一种取之不尽、用之不竭的清洁能源,在建筑施工中的应用越来越广泛。
太阳能热水器是最常见的应用之一,它通过太阳能集热器将太阳能转化为热能,为建筑提供热水。
此外,太阳能光伏发电技术也逐渐得到应用,通过在建筑屋顶或外墙安装光伏板,将太阳能转化为电能,供建筑内部使用。
在施工过程中,合理规划太阳能设备的安装位置和角度,能够最大限度地提高太阳能的利用效率。
二、地源热泵技术地源热泵技术是利用地下浅层地热资源实现供热和制冷的高效节能技术。
在冬季,地源热泵从地下吸收热量,通过热泵系统将热量提升后为建筑供暖;在夏季,地源热泵将建筑内的热量转移到地下,实现制冷。
与传统的空调系统相比,地源热泵具有高效节能、运行稳定、环境友好等优点。
在施工中,需要进行专业的地质勘察和地下换热系统的安装,确保系统的正常运行。
三、雨水收集与利用技术雨水是一种宝贵的水资源,在建筑施工中可以通过雨水收集系统将雨水收集起来,经过处理后用于建筑施工中的混凝土养护、场地冲洗、绿化灌溉等。
雨水收集系统通常包括雨水收集管道、蓄水池、过滤设备和供水系统等。
通过合理设计雨水收集系统的规模和布局,可以有效地提高雨水的利用率,减少对市政供水的依赖。
四、节能门窗技术门窗是建筑能耗的重要部位,采用节能门窗技术可以显著降低建筑的能耗。
节能门窗通常具有良好的隔热性能和密封性能,能够有效地阻止热量的传递和空气的渗透。
常见的节能门窗材料有断桥铝、中空玻璃、LowE 玻璃等。
在施工中,要确保门窗的安装质量,保证门窗与墙体之间的密封良好,避免出现缝隙导致能量损失。
地源热泵系统
地源热泵系统1、引言地源热泵系统是一种高效节能型并能实现可持续发展的新技术。
这种技术是将土壤等地下蓄热体中的能量用于建筑物的热交换,从而利用低品位能源来实现节能的目的。
地源热泵一般不会污染地下水,不会引起地面沉降;可以通过调整换热器的埋置深度,避免对浅层土壤中的微生物环境造成破坏。
合理利用自然资源,减少常规能源消耗,地源热泵越来越呈现其独特的优势,并成为一种高效节能、无污染的可再生能源系统。
地源热泵系统可用于空调系统的冷热源。
2、地源热泵技术概述地源热泵(GSHP- ground source heat pumps)大致分为三类,即土壤热泵、地下水源热泵和地表水源热泵。
地源热泵属于人工冷热源,可以取代锅炉或城市供热管网等系统。
冬季它从土壤、地下水或者地表水中取热,向建筑物供暖;夏季它将普通空调系统携带的热量向土壤、地下水或者地表水释放,从而实现建筑物制冷;同时,它还可供应生活用水,可谓一举三得,是一种有效的利用能源的方式。
3、地源热泵工作原理在制冷工况下,压缩机4对冷媒做功,使其进行汽-液转化的逆卡诺循环。
冷媒在蒸发器7内蒸发,将空调系统所携带的建筑物内的热量吸收至冷媒中,在冷媒循环的同时再通过冷凝器3内冷媒的冷凝,由水路循环将冷媒所携带的热量吸收,最终由水路循环通过埋地盘管1转移至地下水或土壤里。
在室内热量不断转移至地下的过程中,通过空调系统末端装置8,以13℃以下的冷风的形式为房间供冷。
在制热工况下,压缩机4对热媒做功,并通过换向阀5将热媒流动方向换向。
由地下的水路循环通过盘管1吸收地下水或土壤里的热量,通过冷凝器3(此时转为蒸发器)内热媒的蒸发,将水路循环中的热量吸收至热媒中,在热媒循环的同时再通过蒸发器7(此时转为冷凝器)内热媒的冷凝,将热媒所携带的热量转移至空调系统。
在地下的热量不断转移至室内的过程中,并通过末端装置8,以35℃以上热风的形式向室内供暖。
当空调系统回路、热泵机组、地源水系统回路三部分分置时,所组成的系统为地源热泵空调系统;当空调系统回路与热泵机组合二为一,地源水系统回路延伸至建筑物内时,所组成的系统为地源水环热泵空调系统。
地源热泵技术在绿色建筑中的应用研究
地源热泵技术在绿色建筑中的应用研究绿色建筑是指在设计、建造和运行过程中有效利用资源、减少环境对人类危害的建筑。
近年来,随着人们对环保意识的增强,绿色建筑越来越受到重视。
地源热泵技术作为一种清洁、高效、可再生能源利用技术,对于实现绿色建筑的节能减排目标具有重要意义。
一、地源热泵技术的原理及应用范围地源热泵是利用地下土壤或地下水中的储能作为热源或热井,通过热泵系统将低温热量提升至适宜的温度,用于供暖、制冷和热水等。
地源热泵技术的应用范围十分广泛,不仅可以用于家庭、商业建筑的供暖制冷,还可以应用于工业、农业生产中的热水供应等领域。
二、地源热泵技术在绿色建筑中的优势1. 高效节能:地源热泵系统能够利用低温能源实现供暖制冷,比传统的锅炉、空调系统节能高效。
2. 环保清洁:地源热泵技术不会产生废气、废水等有害物质,对环境污染较小。
3. 可再生资源:地下土壤或地下水是可以再生的资源,地源热泵系统利用这些资源实现供暖制冷,更加可持续。
4. 适应性强:地源热泵技术适用于各种建筑类型,无论是低层别墅还是高层商业大厦,都可以采用地源热泵系统。
三、地源热泵技术在绿色建筑中的应用案例1. 北京国家会议中心:该项目采用了地源热泵技术进行供暖制冷,通过地下水循环系统,实现了建筑的节能环保运行。
2. 上海环球金融中心:作为上海的标志性高层建筑,环球金融中心采用地源热泵系统进行空调供暖,有效节约了能源消耗。
3. 广州保利中心:该建筑项目引入地源热泵技术,通过地下热井实现了全年稳定的供暖制冷效果,为建筑提供了节能环保的解决方案。
四、地源热泵技术在绿色建筑中的发展趋势随着人们对环境保护意识的增强,未来绿色建筑中地源热泵技术将得到更广泛的应用。
未来地源热泵技术将更加智能化,通过智能控制系统实现能源的最优利用,提高系统的运行效率。
同时,地源热泵技术也将更加注重与建筑整体设计的结合,实现整体节能效果的最大化。
五、结论地源热泵技术作为绿色建筑中的重要组成部分,具有高效节能、环保清洁、可再生资源利用等优势,将在未来得到更广泛的应用。
地泵热源供暖原理
地泵热源供暖原理
地源热泵技术,是一种利用浅层常温土壤中的能量作为能源的高效节能、无污染、低运行成本的既可采暖又可制冷、并可提供卫生热水的新型空调技术。
地源热泵系统是利用地下土壤常年温度相对稳定的特性,通过埋入建筑物周围的地耦管与建筑物内部完成热交换的装置。
冬季通过热泵将大地中的低位热能提高品位对建筑物供暖,同时把建筑物内的冷量储存至地下,以备夏季制冷使用;夏季通过热泵将建筑物内的热量转移到地下对建筑物进行降温,同时储存热量,以备冬季制热时使用。
如果夏热冬冷地区制冷和采暖天数基本一致,冷暖负荷大致相同,使用同一系统,可以充分发挥地下储能的作用,同时还能供应生活热水。
因此地源热泵技术被称为二十一世纪的“绿色空调技术”, 地源热泵中央空调系统也成为目前中央空调方案中的最佳选择。
地源热泵供暖原理:
地源热泵系统在制热状态下,地源热泵机组内的压缩机对冷媒做功,并通过四通阀将冷媒流动方向换向。
由室外地能换热系统吸收地下水或土壤里的热量,通过水源热泵机组系统内冷媒的
蒸发,将水路循环中的热量吸收至冷媒中,在冷媒循环的同时再通过冷媒/空气热交换器内冷媒的冷凝,由空气循环将冷媒所携带的热量吸收。
在地下的热量不断转移至室内的过程中,以室内采暖空调末端系统向室内供暖。
地源热泵技术包含了抽地下水方式、埋管方式、抽取湖水或江河水方式等,抽取湖水或江河水方式造价最低,埋管方式最贵,但最好。
只要有足够的场可地埋设管道(地下冷热交换装置)或政府允许抽取地下水的就应该优先考虑选择地源热泵中央空调。
地源热泵中央空调如此节能是因为地源热泵技术借助了地下的能量,地下的能量还是来至于太阳能。
地源热泵工作原理图讲解
地源热泵工作原理图讲解(总3页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除地源热泵工作原理图讲解地源热泵工作原理图讲解今天为大家介绍一下关于地源热泵以及地源热泵工作原理的详细讲解。
地源热泵是一种绿色技术,地源热泵工作原理是利用地热资源将低位能量转化成高位能量从而达到节能的目的,地源热泵能效比一般可以达到5以上,比普通的中央空调要节能40%以上,目前我国也在大力倡导地源热泵中央空调系统,很多专家认为,地源热泵将是中央空调的未来和趋势。
地源热泵为什么如此节能呢,这要从地源热泵工作原理说起,地源热泵主要是利用了地能和水能,和太阳能一样,他们都是免费可再生能源。
下面安徽绿能通过地源热泵原理图为大家详细介绍一下地源热泵工作原理,看看地源热泵是如何节能的。
地源热泵原理简述作为自然现象,正如水由高处流向低处那样,热量也总是从高温流向低温,用著名的热力学第二定律准确表述:“热量不可能自发由低温传递到高温”。
但人们可以创造机器,如同把水从低处提升到高处而采用水泵那样,采用热泵可以把热量从低温抽吸到高温。
所以地源热泵实质上是一种热量提升装置,它本身消耗一部分能量,把环境介质中贮存的能量加以挖掘,提高温位进行利用,而整个热泵装置所消耗的功仅为供热量的三分之一或更低,这就是地源热泵节能的原理。
地源热泵原理图地源热泵工作原理地源热泵系统是从常温土壤或地表水(地下水),冬季从地下提取热量,夏季把建筑的热量又存入地下,从而解决冬夏两季采暖和空调的冷热源。
夏季通过机组将房间内的热量转移到地下,对房间进行降温,同时储存热量,以备冬用。
冬季通过热泵将土壤中的热量转移到房间,对房间进行供暖,同时储存冷量,以备夏用,大地土壤提供了一个很好的免费能量存贮源泉,这样就实现了能量的季节转换。
地源热泵原理图冬季地源热泵工作原理冬天热泵中制冷剂正向流动,压缩机排出的高温高压R22气体进入冷凝器向集水器中的水放出热量,相变为高温高压的液体,再经热力膨胀阀节流降压变为低温低压的液体进入蒸发器,从地下循环液中吸取低温热后相变为低温低压的饱和蒸汽后进入压缩机吸气端,由压缩机压缩排出高温高压气体完成一个循环。
地源热泵系统的两种技术路线
近十年,作为一种清洁、环保、节能的可再生能源技术,地源热泵技术在中国得到很大发展。
即使在经济危机来临的日子,地源热泵的安装总量仍保持着每年20%以上的增速。
目前,地源热泵系统主要有欧系和美系两种技术路线。
定义与优劣势从学术上讲,地源热泵是指一种利用少量高位能,实现从低位能向高位能转移的热泵空气调节系统;而通俗意义上,地源热泵是指一种通过浅层土壤(或地下水)进行热交换的,既可供暖又可制冷,并可提供生活用水的,高效、节能、无污染的空气调节系统。
通常,地源热泵消耗1kW 的能量,用户可以得到4kW以上的热量或冷量;同时,由于以0〜200m的浅层岩土体作为低温热源,并且不排放任何废气、废水、废渣,地源热泵是一种理想的“绿色技术”。
从能量转换角度来说,地源热泵是利用浅层岩土体作为蓄热体并利用其中的能量,而这些能量主要来源于太阳能和地热能,是一种用之不尽的可再生能源。
地源热泵节能节电,供暖时可节能40%〜60%,制冷时可节电30%〜50%;运行费用低,供暖时可节省50%〜70%的运行费用,制冷时可节省30%〜50%。
但是,地源热泵的初装费较高,并需要可供热交换用的土壤、地表水或地下水,推广受到以上条件的限制。
地源热泵系统分为室内系统和室外系统两个部分,其中室内系统有分散式和中央式两类。
中央式系统与传统的中央空调系统的室内部分相同,由主机和末端装置构成,这种室内系统在中国和欧洲被广泛采用。
分散式系统通常没有主机,热泵系统同风系统或水系统合二为一,机组小型化,分布于各个空调分区,每个分区单独工作,这种系统在北美地区被广泛使用,2000年后才逐步在中国得到应用。
根据换热方式不同,室外系统可以分为利用土壤换热的封闭式地源热泵系统和利用地下水、地表水及人工再生水换热的开放式地源热泵系统。
封闭式地源热泵系统是指通常所说的埋管式地源热泵系统,开放式地源热泵系则为通常所说的水源热泵系统。
技术路线发展史根据室内和室外系统形式不同,目前地源热泵有两种技术路线:美系的土-气(水)型地源热泵技术和欧系的水-水型地源热泵技术。
供暖设备的新技术与发展趋势
供暖设备的新技术与发展趋势随着科技的不断进步与人们对居住环境的要求不断提高,供暖设备也在不断地创新与发展。
新技术的引入不仅提升了供暖设备的能效和舒适度,还对环境保护和资源利用起到了积极的促进作用。
本文将介绍一些当前供暖设备领域的新技术,并探讨其未来的发展趋势。
一、智能供暖系统随着物联网技术的迅猛发展,智能供暖系统成为了供暖设备领域的一大趋势。
智能供暖系统通过连接各个组件,实现对供暖设备的远程监控和控制。
居住者可以通过智能手机或其他终端设备,随时随地对供暖系统进行调节和控制,实现个性化的温度调整和能源管理。
此外,智能供暖系统还可以通过学习用户的习惯和喜好,提供个性化的供暖服务,提高供暖效果的满意度。
二、地源热泵技术地源热泵技术是一种利用地下热能进行供暖的技术。
它通过地下热能回收系统,将地下的热能转化为供暖能源。
地源热泵技术具有高效节能、环保无污染的特点,可以显著降低供暖系统的能耗和排放量。
此外,地源热泵技术还可以用于夏季的制冷,实现一机多用的效果。
虽然地源热泵技术在初期投资上较高,但其长期运行成本较低,具有较高的投资回报率,逐渐受到人们的关注和青睐。
三、太阳能供暖太阳能供暖是一种利用太阳能进行供暖的技术。
太阳能集热器可以将太阳辐射能转化为热能,然后通过热交换器将热能传递给供暖系统。
太阳能供暖具有清洁、可再生的优点,可以有效减少对传统能源的依赖,降低能源消耗和环境污染。
随着太阳能技术的不断进步和成本的逐渐降低,太阳能供暖在未来必将成为一种主流的供暖方式。
四、储能供暖技术储能供暖技术是一种将电能转化为热能进行供暖的技术。
利用储能装置(如电池、超级电容等),储能供暖技术可以根据需求将电能转化为热能,并将热能储存起来。
储能供暖技术具有灵活性强、能源利用率高的特点,可以根据用户的实际需求进行能量调配和供暖控制。
此外,储能供暖技术还可以与可再生能源相结合,实现绿色能源的高效利用。
五、智能温度控制技术智能温度控制技术是一种通过传感器和智能控制系统来实现室内温度精确控制的技术。
新型绿色节能技术在建筑工程施工中的应用
新型绿色节能技术在建筑工程施工中的应用随着社会经济的不断发展和城市化进程的加快,建筑工程的规模和数量在不断增加。
建筑行业对能源消耗的需求也随之增长,为了降低对环境的影响,提高建筑的节能性能,新型绿色节能技术在建筑工程施工中得到了广泛的应用。
本文将就新型绿色节能技术在建筑工程施工中的应用进行介绍和分析。
一、太阳能利用技术太阳能是一种清洁、可再生的能源,被广泛应用于建筑工程施工中。
在建筑设计过程中,相关的太阳能利用技术可以被运用到建筑的方方面面。
太阳能光伏板可以安装在建筑的屋顶或墙面上,通过吸收阳光的能量来转化为电能,供给建筑内部的电力系统使用。
太阳能热水器也可以被安装在建筑的屋顶上,利用太阳能的热量来加热建筑内部的热水供应系统。
太阳能利用技术的应用不仅可以降低建筑的能源消耗,还可以减少对传统能源的依赖,从而降低环境压力和空气污染。
二、地源热泵技术地源热泵技术是一种利用地下能源进行空调和供暖的技术。
通过在地下埋设地热换热器和地热循环系统,可以将地下的温度变化利用起来,用于建筑的空调和供暖系统中。
相比传统的空调和供暖系统,地源热泵技术不仅可以提高能源利用率,减少对传统能源的依赖,还可以降低建筑的运行成本。
在建筑工程施工中,地源热泵技术可以通过合理设计和施工,将地热循环系统和建筑的空调、供暖系统有机地结合起来,从而实现节能和环保的目的。
四、高效节能材料在建筑工程施工中,选择高效节能材料是实现建筑节能的重要手段之一。
高效节能材料具有优良的保温隔热性能和耐久性,并且可以有效地减少建筑在使用过程中的能源消耗。
在建筑设备和材料的选用过程中,可以选择高效隔热保温材料、高效节能窗户、节能型灯具等产品,从而提高建筑的节能性能。
在建筑工程施工中,应充分重视高效节能材料的选择和使用,将新型绿色节能材料应用到建筑的设计和施工中,从而实现节能和环保的目的。
五、智能化控制技术智能化控制技术是一种通过现代信息技术来实现建筑设备和系统的智能化控制和管理的技术。
地源热泵技术在暖通工程中的应用
地源热泵技术在暖通工程中的应用摘要:目前,我国的暖通工程建设有了很大进展,在暖通工程中,地源热泵技术发挥着重要的作用。
地源热泵系统是一种以浅层地热能资源为冷热源,进行能量转换的供热空调系统。
浅层地热能资源,是指蕴藏于地表以下一定深度范围内(一般为200m)岩土体、地下水或地表水中具有开发利用价值的热能,其温度一般低于25℃,是近年来被密切关注及快速开发利用的清洁、环保型新能源。
浅层地热能资源不受地域、资源等限制,具有储量大、分布广、零排放、可持续利用等优点,是一种绿色、环保的可再生能源。
本文首先对地埋管地源热泵系统概述,其次探讨地源热泵技术应用优势,最后就地源热泵施工技术在暖通工程中的具体应用进行研究,以供参考。
关键词:地源热泵系统;冷负荷;热负荷;空调系统引言当前环境保护理念逐步深人,传统的暖通系统已难以满足环保要求,因此很多建筑暖通工程中引人地源热泵技术,这种技术主要采用可再生能源,可以显著减少能源资源的使用量,并且不会释放有害气体,不会污染周边环境,具有广阔的应用前景。
1地埋管地源热泵系统概述地埋管地源热泵系统,是将蕴藏于地表以下一定深度范围内(一般为200m)土壤、卵石、岩石和含水层作为地埋管地源热泵系统的冷热源,在冬季供热时,把储存在地热能中的低温热量吸取出来,经水源热泵机组处理后输送至建筑物内采暖,此时地热能为“热源”;在夏季供冷时,通过水源热泵机组或冷水机组把建筑物内的热量转换出来,释放到地表浅层中的土壤、卵石、岩石和含水层中,此时地热能为“冷源”。
地埋管地源热泵系统组成:水源热泵机组、冷水机组、地源循环泵、空调循环泵、冷却塔、定压补水设备、水处理设备、阀门及管件、地埋管换热器、空气处理设备、节能控制系统。
2地源热泵技术应用优势(1)节能环保角度。
地源热泵系统运行过程中使用的能源均为可再生能源,主要利用地表浅层土壤热源实现建筑室内温度调节,整个热交换与热传输过程能源消耗量较低。
(2)经济性角度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地源热泵——供暖空调的绿色技术出处:作者:张峰珠节能网2005年08月03日摘要:地源热泵系统是一种节能、环保、高效的能源利用技术,它充分发挥了浅层岩体的储冷储热作用,实现对建筑物的供暖和制冷,是一种典型的绿色技术。
本文对地源热泵技术进行了阐述,介绍了地源热泵的原理及发展历史,分析了其形式及优点,对其与常规空调技术的技术特点及投资和运行费用进行了比较,分析了制约其发展的主要问题,并提出了地源热泵技术在中国的发展前景和展望。
关键词:地源热泵供暖空调冷热源绿色技术近年来随着资源和环境的问题日益严重,在满足人们健康、舒适要求的前提下,合理利用自然资源,保护环境,减少常规能源消耗,已成为暖通空调行业需要面对的一个重要问题。
地源热泵空调系统通过吸收大地(包括土壤、井水、湖泊等)的冷热量,冬季从大地吸收热量,夏季从大地吸收冷量,再由热泵机组向建筑物供冷供热而实现节能,是一种利用可再生能源的高效节能、无污染的既可供暖又可制冷的新型空调系统。
在中国,煤作为主要能源, 煤炭在我国能源体系中占主导地位,长期以来,煤炭在我国能源生产结构、消费结构中一直占有绝对主导地位,尽管近年来,比例略有下降,但仍保持在65%以上,并再次呈现出上升的迹象。
2002年煤炭在我国能源生产结构、消费结构中的比例分别由2001年的68.6%和65.3%上升为70.7%和66.1%【1】。
特别在冬季,在国内的农村和部分城市几乎全部靠煤取暖。
煤是各种能源中污染环境最严重的能源,只有减少城市地区煤的使用,城市大气污染问题是才可能得到解决。
现在各地都在采取措施控制燃煤的数量,选用电采暖、燃油或者燃气采暖等措施,但都存在运行费用高、资源不足和排放CO2这些问题。
受能源、特别是一次性能源与环保条件的限制,传统的燃油、燃煤中央空调方式将逐步受到制约。
从降低运行费用、节省能源、减少排放CO2排放量来看,地源热泵技术是一个不错的选择。
地源热泵不需要人工的冷热源,可以取代锅炉或市政管网等传统的供暖方式和中央空调系统。
冬季它代替锅炉从土壤、地下水或者地表水中取热,向建筑物供暖;夏季它可以代替普通空调向土壤、地下水或者地表水放热给建筑物制冷。
同时,它还可供应生活用水,可谓一举三得,是一种有效地利用能源的方式。
地源热泵(ground source heat pumps, GSHP)系统包括三种不同的系统:以利用土壤作为冷热源的土壤源热泵,也有资料文献成为地下耦合热泵系统(ground-coupled heat pump systems, GCHPs)或者叫地下热交换器热泵系统(ground heat exchanger, GHPs);以利用地下水为冷热源的地下水热泵系统(ground water heat pumps, GWHPs);以利用地表水为冷热源的地表水热泵系统(surface-water heat pumps, SWHPs)。
1.地源热泵的工作原理系统通过地源热泵将环境中的热能提取出来对建筑物供暖或者将建筑物中的热能释放到环境中去而实现对建筑物的制冷,夏季可以将富余的热能存于地层中以备冬用;同样,冬季可以将富余的冷能贮存于地层以备夏用。
这样,通过利用地层自身的特点实现对建筑物、环境的能量交换。
在制冷状态下,地源热泵机组内的压缩机对冷媒做功,使其进行汽-液转化的循环。
通过蒸发器内冷媒的蒸发将由风机盘管循环所携带的热量吸收至冷媒中,在冷媒循环的同时再通过冷凝器内冷媒的冷凝,由水路循环将冷媒所携带的热量吸收,最终由水路循环转移至地下水或土壤里。
在室内热量不断转移至地下的过程中,通过风机盘管,以13℃以下的冷风的形式为房间供冷。
在制热状态下,地源热泵机组内的压缩机对冷媒做功,并通过换向阀将冷媒流动方向换向。
由地下的水路循环吸收地下水或土壤里的热量,通过冷凝器内冷媒的蒸发,将水路循环中的热量吸收至冷媒中,在冷媒循环的同时再通过蒸发器内冷媒的冷凝,由风机盘管循环将冷媒所携带的热量吸收。
在地下的热量不断转移至室内的过程中,以35℃以上热风的形式向室内供暖。
系统实际上是指通过将传统的空调器的冷凝器或蒸发器延伸至地下,使其与浅层岩土或地下水进行热交换,或是通过中间介质(如防冻液)作为热载体,并使中间介质在封闭环路中通过在浅层岩土中循环流动,从而实现利用低温位浅层地能对建筑物内供暖或制冷的一种节能、环保型的新能源利用技术。
该技术可以充分发挥浅层地表得储能储热作用,达到环保、节能双重功效,而被誉为“21世纪最有效的空调技术”。
2.地源热泵的发展历史地源热泵的概念最早出现在1912年瑞士的一份专利文献中。
开放式地下水热泵系统在20世纪30年代被成功应用。
20世纪50年代欧洲和美国掀起了研究地源热泵(GSHP)的第一次高潮,美国爱迪生电子学院最早研究闭式环路热泵系统,印地安纳洲的印地安纳波利斯是最早安装闭式环路地源热泵系统的。
直到20世纪70年代,世界石油危机使得人们关注节能、高效用能,地源热泵的研究进入了又一次高潮,这时瑞典的研究人员开始将塑料管应用在闭式环路地源热泵系统上,地源热泵的推广应用迅速展开。
经过近50年的发展地源热泵技术在北美和欧洲已非常成熟,是一种被广泛采用的热泵空调系统。
针对地源热泵机组、地热换热器,系统设计和安装有一整套标准、规范、计算方法和施工工艺。
在美国地源热泵系统占整个空调系统的20%,是美国政府极力推广的节能环保技术。
到1997年底,美国有超过3万台GSHP系统在家庭、学校和商业建筑中应用,每年约提供8000~11000GWh的终端能量,另据地源热泵协会统计,美国有600多所学校安装有GSHP。
目前美国地源热泵的销售数量以每年20%的速度递增,2000年全美销售数量达40万台【2】~【3】。
在实际工程应用中,北美对地源热泵应用偏重于全年冷热联供,采用闭式水环热泵系统(WLHP);欧洲国家偏重于冬季供暖,往往采用热泵站方式集中供热供冷。
我国气候条件与美国比较相似,所以北美的方式对我国更具借鉴意义。
在我国,地源热泵的研究起始于20世纪80年代,最近5年该项技术成了国内建筑节能及暖通界热门的研究课题,也开始应用于工程实践,与此相关的热泵产品应运而生,掀起了一股"地热空调"的热潮。
在研究领域,过去几年里国内许多大学先后建立了地源热泵实验台,进行了地下埋管换热器与地面热泵设备联合运行的实验。
研究工作主要集中在以下几个方面:(1)地下埋管换热器的传热模型和传热研究;(2)夏季瞬态工况数值模拟的研究;(3)热泵装置与部件的仿真模型的理论和实践研究;(4)地源热泵空调系统制冷工质替代研究;(5)其他能源如太阳能、水电等与地热源联合应用的研究;(6)地源热泵系统的设计和施工;(7)地源热泵系统的经济性能和运行特性的研究;(8)地源热泵系统与埋地换热器的技术经济性能匹配方面机组整体性能的研究;(9)土壤热物性及土壤导热系数的试验研究等等。
随着研究的深入,我们的地源热泵研究工作者在全国范围内举行了各种交流探讨会。
中国制冷学会第二专业委员会主办了“全国余热制冷与热泵技术学术会议”;1988年中科院广州能源研究所主办了“热泵在我国应用与发展问题专家研讨会”【4】;中国能源研究会地热专业委员会于1994年9月6日至8日在北京召开了第四次全国地热能开发利用研讨会;从90年代开始,每届全国暖通制冷学术年会上都有“热泵应用”的专题;2000年6月19~23日,中美地源热泵技术交流会在北京召开,会议介绍了地源热泵技术,国外的应用状况和在中国的推广;山东建筑工程学院地源热泵研究所与山东建筑学会热能动力专业委员会联合发起并承办“国际地源热泵新技术报告会”于2003年3月17日在山东建筑工程学院举行,加强了国内外地源热泵先进技术的交流。
在工程应用方面,1996年至2000年间在山东、河南、北京、辽宁、河北、江苏、上海等地建成了地源热泵工程,发展速度很快,地源热泵技术正被越来越多的人们所了解。
3.地源热泵系统形式3.1 土壤热交换器地源热泵土壤热交换器地源热泵(图2.(a),(b))是利用地下岩土中热量的闭路循环的地源热泵系统。
通常称之为“闭路地源热泵”,以区别于地下水热泵系统,或直接称为“地源热泵”。
它通过循环液(水或以水为主要成分的防冻液)在封闭地下埋管中的流动,实现系统与大地之间的传热。
地下耦合热泵系统在结构上的特点是有一个由地下埋管组成的地热换热器(geothermal heat exchanger, 或ground heat exchanger)。
地热换热器的设置形式主要有水平埋管和垂直埋管两种。
水平埋管形式是在地面开1~2米深的沟,每个沟中埋设2、4或6根塑料管。
垂直埋管的形式是在地层中钻直径为0.1~0.15 m的钻孔,在钻孔中设置1组(2根)或2组(4根)U型管并用灌井材料填实。
钻孔的深度通常为40~200m。
现场可用的地表面积是选择地热换热器形式的决定性因素。
竖直埋管的地热换热器可以比水平埋管节省很多土地面积,因此更适合中国地少人多的国情。
管沟或竖井中的热交换器成并联连接,再通过集管进入建筑中与建筑物内的水环路相连接。
在液体温度较低时,系统中需加入防冻液,北方地区应用时应特别注意。
3.2 地下水地源热泵地下水源热泵(图2.(c))的热源是从水井或废弃的矿井中抽取的地下水。
经过换热的地下水可以排入地表水系统,但对于较大的应用项目通常要求通过回灌井把地下水回灌到原来的地下水层。
水质良好的地下水可直接进入热泵换热,之后将井水回灌地下,这样的系统称为开式系统。
由于可能导致管路阻塞,更重要的是可能导致腐蚀发生,通常不建议在地源热泵系统中直接应用地下水。
开式系统在适当的地下水条件和建筑物参数下是一个有吸引力的选择方式,但必须谨慎的使用。
实际工程中更多采用闭式环路的热泵循环水系统,即采用板式换热器把地下水和通过热泵的循环水分隔开,以防止地下水中的泥沙和腐蚀性杂质对热泵的影响。
通常系统包括带潜水泵的取水井和回灌井。
板式热交换器采取小温差换热的方式运行,根据温度和地下水深度的不同,可以在很大程度上抵消开式系统在性能上的优势。
由于地下水温常年基本恒定,夏季比室外空气温度低,冬季比室外空气温度高,且具有较大的热容量,因此地下水热泵系统的效率比空气源热泵高,COP值一般在3~4.5,并且不存在结霜等问题。
最近几年地下水源热泵系统在我国得到了迅速发展。
无论是深井水,还是地下热水都是热泵的良好低位热源。
地下水位于较深的地方,由于地层的隔热作用,其温度随季节气温的波动很小,特别是深井水的水温常年基本不变,对热泵的运行十分有利。
3.3 地表水地源热泵地表水地源热泵系统(图2.(d))由潜在水面以下的、多重并联的塑料管组成的热交换器取代了土壤热交换器,与土壤热交换地源热泵一样,它们被连接到建筑物中,并且在北方地区需要进行防冻处理。