3 矩阵的相似标准形

合集下载

矩阵理论(第三章矩阵的标准型)

矩阵理论(第三章矩阵的标准型)

100
2100 2 2101 2 0 100 101 2 1 2 1 0 2100 1 2101 2 1
第一节
矩阵的相似对角形
一、矩阵的特征值与特征向量 1、相似矩阵:设V是n维线性空间,T是线性变换, e1, e2,…,en与e'1,e'2,…,e' 是两组基,过渡矩阵 P,则T在这两组基下的矩阵A与B相似,
i
1
i Js
这些约当块构成的分块对角阵J,称为A的约当标准形。
J2
例5 Jordan标准形。
例5的初级因子为 ( 1),( 1),( 2) Jordan标准形为
1 J 1 2
2、k级行列式因子:特征矩阵A(λ)中所有非零的k 级子式的首项(最高次项)系数为1 的最大公因 式Dk(λ)称为 A(λ)的k级行列式因子。
A( ) E A
例5 求矩阵的特征矩阵的行列式因子 解:特征矩阵为
1 1 E A 2
若A能与对角形矩阵相似,对角阵是由特征值构 成的P是由对应特征值的特征向量构成的。
例3
解:
4 6 0 A 3 5 0 3 6 1
100 A ,计算:
4 A E 3 3
6
0
5 0 (1 )2 ( 2) 0 6 1
3级因子,因为
0 0 0 2 1 1 2 3 3 0
1
3
0 0 0, 2 0
2 2(( 1)3 ,( 1)2 ( 2), 2 2 7,0,...) 1
4级因子

第三章 矩阵的标准型与若干分解形式

第三章 矩阵的标准型与若干分解形式

ki ki
, Ps ) ( P 1, P 2, i 1, 2,
APi Pi J i
Pi ( Pi1 , Pi 2 ,
A( Pi1 , Pi 2 ,
, Pi ,ki )
APi Pi J i
, Pi ,ki )
i 1 i 1 ( Pi1 , Pi 2 , , Pi ,ki ) i 1 i APi , j i Pi , j Pi , j 1 j 1, 2, , ki 1 AP P i , k i i , ki i
性质1 (行列式因子的整除性质)
Dn ( ) E A , Dk 1( ) Dk ( ), k 2, 3,
定义3 (不变因式、初级因子)
,n
D3 ( ) D2 ( ) d1 ( ) D1 ( ), d 2 ( ) , d 3 ( ) D1 ( ) D2 ( ) Dk ( ) Dn ( ) , d k ( ) , , d n ( ) Dk 1 ( ) Dn1 ( ) 上述n个多项式称为 A( ) 的不变因式。把每个次数
1 1 1 k1 k2 ( E A, p3 ) 2 2 2 k1 1 1 1 k 2
1 1 1 k1 k2 k1 2 k 2 0 0 0 0 k1 2k2 k 2 k 0 1 2 0 0 0 k 2k 1 2 1 取 k 2, k 1 p 2 1 2 3 1 1 再求 ( E A) p p 2 3 p2 1 1 x1 1 1 1 1 2 2 2 x 2 2 1 1 1 x 1 3

矩阵的相似标准形

矩阵的相似标准形

THANK YOU
感谢聆听
将矩阵A的全部特征向量构成一个矩阵P, 则P^(-1)AP即为所求的相似标准形。
初等变换法
第一步
写出矩阵A的特征多项式f(λ), 并求出其全部根,即矩阵A的 全部特征值。
第二步
对每一个特征值λi,构造一个 以λi为主对角线元素的对角矩 阵Di,并将矩阵A与Di进行初 等行变换,得到一个与A相似 的矩阵Bi。
第三步
将所有与A相似的矩阵Bi进行 初等列变换,得到一个最简形 式的矩阵C,则C即为所求的相 似标准形。
正交变换法
01
02
03
04
第一步
求出矩阵A的全部特征值和特 征向量。
第二步
将矩阵A的全部特征向量进行 施密特正交化,得到一个正交 矩阵Q。
第三步
对正交矩阵Q进行归一化处理 ,得到一个新的正交矩阵P。
通常,这个矩阵可以通过求解原矩阵的特征向量得到。
02
计算特征值和特征向量
利用数值计算方法,如幂法、反幂法等,求解原矩阵的特征值和特征向
量。
03
构造相似变换矩阵并应用
使用求得的特征向量构造相似变换矩阵,并将其应用于原矩阵,得到相
似标准形。
实例演示:Python实现过程
01 02 03 04 05
导入所需的库 定义原矩阵
矩阵的条件数
条件数用于衡量矩阵求解问题对输入误差的敏感性。条件 数越大,求解过程中数值不稳定性越严重。
迭代算法的收敛性
对于迭代算法,需要关注其收敛速度以及是否收敛于精确 解。不合适的迭代参数或初始值可能导致算法不收敛或收 敛速度极慢。
算法设计思路及步骤
01
选择合适的相似变换矩阵
为了将原矩阵转换为相似标准形,需要构造一个合适的相似变换矩阵。

应用数学基础 第二章-矩阵的相似标准形

应用数学基础 第二章-矩阵的相似标准形

记 f(x)= x n+ a1 x n-1 + + an-1 x + an,则 f(A)= A n+ a1 A n-1 + + an-1 A + an E
若 f()为的特征多项式,则 f(A)=0 .
( p60 Th2.11, Hamilton-Cayley定理 )
函数矩阵: 元素是函数的矩阵 多项式矩阵或-矩阵: 元素是的多项式的矩阵 如:方阵的A特征矩阵 E – A Note:多项式矩阵可以写成以矩阵为系数的多项式
Hint: 初等因子为 – 2,( + 1)2
cf. Mathematica示例 cf. Mathematica
例2.9 求矩阵A的Jö rdan标准形,其中
Hint: A1, A2初等因子分别为 i和 – 2,( – 1)2
示 例
19
§2.3 三、有理标准形
对任意的ni 次多项式 ()= 它的相伴矩阵Ci 定义为
特征值: f()= 0的根,即使 E – A为退化矩阵的数 特征向量:( E – A)X = 0的非零解 (为特征值) 谱:全部特征值的集合,记作(A)
有关特征值与特征向量的几个结论
2
§2.1-1
方阵的特征矩阵
矩阵多项式:以方阵 A代入一个多项式 f(x)的值,或者 说是 f(x)在 x = A处的值
15
§2.3 矩阵的相似标准形
一、矩阵相似的充分必要条件 定义2.8 设A, BCnn ,若存在可逆矩阵P Cnn ,使 P -1 A P = B , 则称A与B相似, 记作AB. 称 AB= P -1AP为相似变换, 称P为相似变换矩阵. 定理2.7 A, BCnn, A ~ B E – A E – B. Key

矩阵的相似变换(第一章)

矩阵的相似变换(第一章)
9,A为n阶方阵,Λ为n阶对角阵,A∽Λ,则A可对角化
10,A可相似对角化的充要条件为A有n个线性无关的特征向量。
11,如果n阶方阵A有那个不同的特征向量,则A可相似对角化。或ri重特征值有ri个不同的特征向量则A可相似对角化。
Jordan
1,Jordan块:Ji=
2,Jordan阵:J=
3,A的Jordan标准形,设 ,则A与一个Jordan标准形J相似即存在P ,有P-1AP=J。这个J除了Jordan块的排列次序外由A唯一确定,称J为A的Jordan标准形。
(3)A为正规阵,λ是A的特征值,x是对应特征向量,则 为AH的特征值,对应特征向量为xH。
(4)A为正规阵,不同的特征值对应的特征向量正交。
6,Hermite正定矩阵、半正定矩阵:
设A 是Hermite矩阵,若任意0≠x n都有xHAx>0(或xHAx≥0),则称A是Hermite正定(半正定)矩阵。
(3)行列式因子法:设A(λ)的秩为r,m×n阶,1≤k≤n,则A(λ)的全部k阶子式的首一最大共因子式Dk(λ)称为A的k阶行列式因子。Dk(λ)=d1(λ)d2(λ)…dk(λ)。
第一步:求λI-A和λI-A的n个行列式因子Dk(λ)。
第二步:求dk(λ)(k=1,2,…,n)并并求出A的不变因子。
7,设A 是Hermite矩阵,则,下列条件等价:
(1)A是Hermite正定矩阵(2)A的特征值全为正实数(3)存在P ,使得A=PHP
(1)A是Hermite半正定矩阵(2)A的特征值全为非负实数(3)存在P ,使得A=PHP。
第一步:将A写成A(λ),即λI-A
第二步:用初等变换法将矩阵化为如下形式:(smith标准型)
其中di(λ)/di+1(λ)可整除

矩阵相似的性质:矩阵相似例题

矩阵相似的性质:矩阵相似例题

1 矩阵的相似1 定义2性质3定理(证明)4 相似矩阵与若尔当标准形2 相似的条件3 相似矩阵的应用(相似矩阵与特征矩阵相似矩阵与矩阵的对角化相似矩阵在微分方程中的应用【1 】)矩阵的相似及其应用1 矩阵的相似定义1设A,B为数域P上两个n级矩阵,如果可以找到数域P上的n级可逆矩阵X,使得B?X?1AX,就说A相似于B记作A∽B 2 相似的性质(1)反身性A∽A;这是因为A?E?1AE.(2)对称性如果A∽B,那么B∽A;如果A∽B,那么有X,使B?X?1AX,令Y?X?1,就有A?XBX?1?Y?1BY,所以B∽A。

(3)传递性如果A∽B,B∽C,那么A∽C。

已知有X,Y使B?X?1AX,C?Y?1BY。

令Z?XY,就有C?Y?1X?1AXY?Z?1AZ,因此,A∽C。

3 相似矩阵的性质若A,B?Cn?n,A∽B,则(1)r(A)?r(B);Q是n?n可逆矩阵,引理A是一个s?n矩阵,如果P是一个s?s可逆矩阵,那么秩(A)=秩(PA)=秩(AQ)证明设A,B相似,即存在数域P上的可逆矩阵C,使得B?C?1AC,由引理2可知,秩?1(B)=秩(B?CAC)=秩(AC)=秩(A)(2)设A相似于B,f(x)是任意多项式,则f(A)相似于f(B),即P?1AP?B?P?1f(A)P?f(B)证明设f(x)?anx?an?1xnnn?1a1x?a0 a1A?a0E a1B?a0E于是,f(A)?anAn?an?1An?1? f(B)?anB?an?1Bn?1kk由于A相似于B,则A相似与B,(k为任意正整数),即存在可逆矩阵X,使得Bk?X?1AkX,?1?1anAn?an?1An?1?因此Xf?A?X?X?a1A?a0E?X?anX?1AnX?an?1X?1An?1X? ?anBn?an?1Bn?1? ?f(B) 所以f(A)相似于f(B)。

?a1X?1AX?a0Ea1B?a0E(3)相似矩阵有相同的行列式,即A?B,trA?trB;证明设A与B相似,即存在数域P上的可逆矩阵C,使得B?C?1AC,两边取行列式?1?1AC?AC?1C?A,从而相似矩阵有相同的行列式。

矩阵论-矩阵的相似变换

矩阵论-矩阵的相似变换

★ 1、求下列矩阵的Jordan 标准形:⑴ -101120-403A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ ;⑵;⑵31-1-202-1-13A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦解:⑴解:⑴ 求A 的特征多项式并得到特征值的特征多项式并得到特征值101det(I A)1243λλλλ+−−=−−− 第一行乘以3λ−并加上第三行并加上第三行+10-1=-1-20(3)(1)40λλλλ−++ 这里变换行列式列使其变为上三角行列式这里变换行列式列使其变为上三角行列式 2210121(1)(2)0(1)λλλλλ−+=−−−=−−− 所以A 的特征值为12==1λλ ,3=2λ ,对应的2重特征值12==1λλ解方程组(I-A)x =0,由2131122201201201110110011/2402000000r r r r I A +−−−−⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥−=−−⎯⎯⎯→−−⎯⎯⎯→−−⎢⎥⎢⎥⎢⎥−⎣⎦⎣⎦⎣⎦121×, 2101/2011/2000r r −−⎡⎤⎢⎥⎯⎯⎯⎯→⎢⎥⎢⎥⎣⎦ 10021002x y z x y z ⎧+−=⎪⎪⎨⎪++=⎪⎩ 设x 为1,依次可以解出112x y z =⎧⎪=−⎨⎪=⎩ 得基础解系:T T1(1,1,2)p =−只有一个线性无关特征向量,故A 的Jordan 标准形为:标准形为:1112J ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⑵ 求A 的特征多项式并得到特征值的特征多项式并得到特征值2311211det(I A)2202113213211211020202400(44)/λλλλλλλλλλλλλλλλ−−−−−=−=−−−−−−−−−=−−+−⑴ 7543192864A A A A A I −−++−⑵ 1A − ⑶ 100A解:解:2322110102210()det(I A)43110011124343210011(1)(2)45200(1)/(1)λλλψλλλλλλλλλλλλλλλλλ+−−−−−=−=−=+−=+−−−−−−−=+−=−−=−+−−+⑴ 令7543()192864g λλλλλλ=−−++−,需要计算g(A),用()/g()ψλλ 得到:得到:4322()(41032)()3228g λλλλλψλλλ=+++−−+−由Hamilton-Cayley 定理知(A)O ψ= ,于是:,于是:221160(A)3A 22A 8I 6443019324g −⎡⎤⎢⎥=−+−=−⎢⎥−⎣⎦⑵ 由32(A)A 4A 5A 2I O ψ=−+−= 得21(A 4A 5I)2A I ⎡⎤−+=⎢⎥⎣⎦故得到:故得到:123101(A 4A 5I)41023/21/21/2A −−⎡⎤⎢⎥=−+=−⎢⎥−⎣⎦⑶ 设100210()()b 2b b q λλψλλλ=+++ 注意到(2)(1)'(1)0ψψψ=== ,分别将2λ=和1λ= 代入上式,再对上式求导数后将1λ=代入得到:代入得到:1002102102124211002b b b b b b b b ⎧=++⎪=++⎨⎪=+⎩ 解得到解得到 100010111002220023022101b b b ⎧=−⎪=−+⎨⎪=−⎩故得到:故得到:100221010010010019910004002010201221012A b A b A b I −⎡⎤⎢⎥=++=−⎢⎥⎢⎥−−⎣⎦31122113λλλ−−−+−-21-1-2-21-1-2+1λλλ211221122λλ−−−−−−1122162616p i p ⎥⎥==−⎥⎥22212012p ⎤−⎥==33213313i p ⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦111623263111623ii ⎤−⎥⎥−⎥⎥⎥⎥⎦则称A 是Hermite 正定矩阵(半正定矩阵)。

矩阵标准形

矩阵标准形

• 2.1 特征阵及其Smith标准形
• 2.1.1 特征矩阵
④多项式矩阵:对于多项式矩阵A(λ)=R(或C)[λ]m×n,行列式、子式、伴随矩 阵及分块等概念以及运算法则与常数矩阵相同,而以下概念有所不同。 1)多项式矩阵A(λ)的秩:A(λ)中有一个r阶子式(r≤min{m,n})为非零多项 式(不恒为0),而一切r+1阶子式为0,则A(λ)的秩为r=rankA(λ)。 2)非奇异方阵(满秩的):A为n阶方阵,detA(λ)不恒为0,即 rankA(λ)=n,显然,对于n阶方阵特征矩阵λE-A的秩为n,显然特征矩阵时 满秩的。 3)可逆矩阵:A(λ)为n阶方阵,若存在n阶方阵B满秩A(λ)B(λ)=B(λ)A(λ)=E, A(λ)为可逆的(单模态的)。 ⑤多项式矩阵可逆的条件 1)必要条件:A(λ)∈K[λ]n×n可逆,则A(λ)必非奇异(满秩); 2)充要条件:A(λ)∈K[λ]n×n可逆等价于detA(λ)为非零常数c。 1 即 det A( ) c 0, A1 ( ) adjA( )
设n阶方阵a是hermite矩阵则有iiiiii都是实数即的主对角元素axax相应有正交即不同特征值的特征向量对应于axax对任意矩阵hermite矩阵与正规矩阵的关系的特征值为实数为正规矩阵且矩阵的充分必要条件为征值为实数前面已证矩阵为正规矩阵且特
• 2.1 特征矩阵及其Smith标准形
• 2.1.1 特征矩阵 • ①定义:对于常数矩阵A=[aij]∈Cn×n,λ∈C,则A的特征矩阵 为λE-A,即 a11 a11 a1n
• ④矩阵可对角化的另一充要条件:λE-A的初等因子均为一次方幂。
• 2.3 矩阵的相似标准形
• 2.3.2 Jordan标准形 • ⑤应用:可见确定一个矩阵的相似形需先确定其特征矩阵λE-A的初等因子 组。

相似矩阵的判定及其应用

相似矩阵的判定及其应用

相似矩阵的判定及其应用摘要:相似矩阵是高等代数中重要的知识点,在本文中,我们先给出了判定两个矩阵相似的三种方法,然后我们知道矩阵相似于对角矩阵是高等代数中一个重要而基本的问题,我们给出怎样判断矩阵A是否可对角化,然而我们知道一个矩阵未必相似于对角矩阵,但是在复数域上任何一个矩阵都与一个若而当形矩阵相似,因此我们给出了矩阵的相似标准形及其应用;最后,我们给出了矩阵相似在实际生活中(尤其是考研中)的应用.关键字:相似矩阵,对角矩阵,若尔当标准形1.相似矩阵及其判定这一节我们在系统归纳相似矩阵的一些相关概念和性质的基础上,着重介绍相似矩阵的几种判定方法。

并通过一些具体的例子加以说明。

下面我们首先介绍相关的概念和性质。

定义1设A,B为数域P上两个n级矩阵,如果可以找到数域P上的n级可逆矩阵X,使得B=1X A X,就说A相似于B,记BA~过渡矩阵矩阵等价 特征矩阵 行列式因子 不变因子 初等因子相似是矩阵之间的一种关系,这种关系具有三个性质: ⑴反身性: A A ~⑵对称性:如果B A ~,那么A B ~⑶传递性:如果B A ~,C B ~,那么C A ~在此基础上,定理1.1 线性变换在不同基下所对应的矩阵相似。

我们从下面的例1来看这个定理的应用。

例112312312311112A B A a εεεεεεεεεεεεε⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ΛΛΛΛΛ=++1112133332312122232322213132331312112131a a a a a a 设=a a a ,a a a 是数域P 上的矩阵,证明A ,B 相似.a a a a a a 证明:设数域P 上的三维线性空间V 的一个线性变换在V 中的一组基,,下的矩阵为A ,(,,)=(,,)a a 即:32123312333212321132********,,a B A B a εεεεεεεεεεεεεεεεεεεεεεε⎧⎪Λ=++⎨⎪Λ=++⎩Λ=++⎧⎪Λ=++⎨⎪Λ=++⎩Λ⎡⎤⎢⎥=Λ⎢⎥⎢⎥⎣⎦12223213233333231332221231213332312322211312a a a a a a a a a 于是a a a a a 在基,下的矩阵a a a a a a ,为同一线性变换在两组不同的基下的矩阵,a a 由定理1A B 可得:同一线性变换在两组不同的基下的矩阵相似,可得,相似.例2 设3P 的线性变换σ将基1α=(-1,0,-2),2α=(0,1,2)3α=(1,2,5)变成σ(1α)=(2,0,-1),σ(2α)=(0,0,1),σ(3α)=(0,1,2)求σ在基1β,2β,3β下的矩阵,其中1β=(-1,1,0),2β=(1,0,1),3β=(0,1,2). 解题步骤:(1)先求出σ在基1α,2α,3α下的矩阵A ;(2)求出由基1α,2α,3α到1β,2β,3β的过渡矩阵P ; (3)求出σ在基1β,2β,3β下的矩阵B =1P AP -.解:我们从平常的解题中知道,我们通常取标准基1ε=(1,0,0),2ε=(0,1,0),3ε=(0,0,1)为中介,若令M =200001112⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦ , N = 101012225-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦, T =110101012-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦则σ(1α,2α,3α)=(1ε,2ε,3ε)M (1α,2α,3α)=(1α,2α,3α)N (1β,2β,3β)=(1ε,2ε,3ε)T ,故σ在基1α,2α,3α下的矩阵1A N M -=,并且由基1α,2α,3α到基1β,2β,3β的过渡矩阵1P N T -=,从而σ在基1β,2β,3β下的矩阵1111221421211B P AP T NN MN T -----⎡⎤⎢⎥===-⎢⎥⎢⎥--⎣⎦定理1.2 设A ,B为数域P 上两个n ⨯n 矩阵,它们的特征矩阵E A λ-和E B λ-等价则可得A 与B相似.想保留证明过程,可以把它作为用定义1来判定矩阵相似的例子。

矩阵相似的性质:矩阵相似例题

矩阵相似的性质:矩阵相似例题

1 矩阵的相似1 定义2性质3定理(证明)4 相似矩阵与若尔当标准形2 相似的条件3 相似矩阵的应用(相似矩阵与特征矩阵相似矩阵与矩阵的对角化相似矩阵在微分方程中的应用【1 】)矩阵的相似及其应用1 矩阵的相似定义1设A,B为数域P上两个n级矩阵,如果可以找到数域P上的n级可逆矩阵X,使得B?X?1AX,就说A相似于B记作A∽B 2 相似的性质(1)反身性A∽A;这是因为A?E?1AE.(2)对称性如果A∽B,那么B∽A;如果A∽B,那么有X,使B?X?1AX,令Y?X?1,就有A?XBX?1?Y?1BY,所以B∽A。

(3)传递性如果A∽B,B∽C,那么A∽C。

已知有X,Y使B?X?1AX,C?Y?1BY。

令Z?XY,就有C?Y?1X?1AXY?Z?1AZ,因此,A∽C。

3 相似矩阵的性质若A,B?Cn?n,A∽B,则(1)r(A)?r(B);Q是n?n可逆矩阵,引理A是一个s?n矩阵,如果P是一个s?s可逆矩阵,那么秩(A)=秩(PA)=秩(AQ)证明设A,B相似,即存在数域P上的可逆矩阵C,使得B?C?1AC,由引理2可知,秩?1(B)=秩(B?CAC)=秩(AC)=秩(A)(2)设A相似于B,f(x)是任意多项式,则f(A)相似于f(B),即P?1AP?B?P?1f(A)P?f(B)证明设f(x)?anx?an?1xnnn?1a1x?a0 a1A?a0E a1B?a0E于是,f(A)?anAn?an?1An?1? f(B)?anB?an?1Bn?1kk由于A相似于B,则A相似与B,(k为任意正整数),即存在可逆矩阵X,使得Bk?X?1AkX,?1?1anAn?an?1An?1?因此Xf?A?X?X?a1A?a0E?X?anX?1AnX?an?1X?1An?1X? ?anBn?an?1Bn?1? ?f(B) 所以f(A)相似于f(B)。

?a1X?1AX?a0Ea1B?a0E(3)相似矩阵有相同的行列式,即A?B,trA?trB;证明设A与B相似,即存在数域P上的可逆矩阵C,使得B?C?1AC,两边取行列式?1?1AC?AC?1C?A,从而相似矩阵有相同的行列式。

高等代数-相似标准型

高等代数-相似标准型

多项式矩阵与矩阵多项式_2
矩阵的运算: 相等: 加法: 数乘: 乘法运算: 行列式: 伴随矩阵:
例子
注1:
为s次矩阵多项式, 其行列式也可能为0
或常数.
例3:
注2: 例4:
分别为s, t次矩阵多项式, 但 也可能为0.
矩阵的初等变换与初等矩阵_1
定义: 对 矩阵 行初等变换
(1) 互换变换: 将
矩阵的法式_1
引理设 这里
则 且

即 的最大公因式.
矩阵的法式_2
定理设 是m×n 阶 矩阵, 则这里

首项系数为1的多项式, 且
矩阵的法式_3
注1 上面矩阵称为
的法式.
注2 r 称为
的秩.
注3
推不出 可逆.
注4
可逆
的法式为I
相抵于I.
矩阵的法式_4
推论1:任一n 阶可逆 矩阵可表为有限个初
问A是几阶矩阵? 求A的不变因子组.
初等因子_4
定理:设A , B∈Kn×n , 则A相似于B 有相同的初等因子组 .
复习
初等因子_5
引理: 若

引理: 若
,则
引理:若
,且
则 与 相抵.
初等因子_6
定理:设C上方阵A经过 列对角矩阵
初等变换化为下
其中 是首项系数为1的非零多项式. 将 在C[x]上分解为互不相同的一次因式方幂的 乘积 , 则所有这些一次因式的方幂(相同的按 出现次数计算)就是A的全部初等因子 .
最小多项式mA(λ)=最后一个不变因子
Jordan标准型_1
引理: r 阶矩阵
的初等因子组为(λ- λ0)r .
Jordan标准型_2

矩阵的相似标准形

矩阵的相似标准形
主子式与子式
a11 a12 a13 a14 a15
a21
a22
a23
a24
a25
a31
a32
a33
a34
a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55
a21 a22 a24 a31 a32 a34 a51 a52 a54
金品质•高追求 我们让你更放心! 12
返回
◆语文•选修\中国小说欣赏•(配人教版)◆
主子式与子式
a11 a12 a13 a14 a15
a21
a22
a23
a24
a25
a31 a41
a32 a42
a33 a43
a34 a44
a35 a45
a51 a52 a53 a54 a55
a22 a23 a25 a32 a33 a35 a52 a53 a55
返回
◆语文•选修\中国小说欣赏•(配人教版)◆
例4
设A
3 3
4 5
.求A1000.
C() 2 2 3
金品质•高追求 我们让你更放心! 19
返回
◆语文•选修\中国小说欣赏•(配人教版)◆
例5
1 2 2 已知A 1 0 3,求A100。
1 1 2
C() ( 1)( 1)2
金品质•高追求 我们让你更放心! 20
金品质•高追求 我们让你更放心! 25
返回
◆语文•选修\中国小说欣赏•(配人教版)◆
最小多项式
定义:矩阵A的次数最低的、最高次项系数为一的化零多项式 称为A的最小多项式.
性质1:若m(x),(x)分别是矩阵A的最小多项式、化零多项式, 则m(x) | (x).

矩阵的相抵与相似_09_07_09

矩阵的相抵与相似_09_07_09

I3 0 B → 0 0 Q
其中
P 0
0 0 0 1 − 4 5 9 2 − 9 1 − 3 0
17 9 − 14 9 P= 2 3 1 − 4
14 − 9 11 9 1 3 1 4
定义 对数 阶矩阵 ,若 n λ0 ∈ K ,存在非零列向量 α ∈ K ,使得 存在非零 非零列向量 设
A 为数域 K 上的一个 n
Aα = λ0α
则称 λ0 为矩阵 A 的一个特征值, α 为矩阵 的一个特征值 特征值, 的一个特征向量。 属于特征值 λ0 的一个特征向量。 特征向量
A的

(1)
2 m
f ( x) = a0 + a1 x + a2 x + L + am x
上的一元多项式, 阶矩阵, 是数域 K 上的一元多项式,A 为一个 n 阶矩阵, 定义
f ( A) = a0 I + a1 A + a2 A + L + am A
2
m
多项式。进一步, 为矩阵 A 的多项式。进一步,我们有
A ~ B ⇒ f ( A)
例 2 :设
1 1 A= 2 2
求A 。 解:由满秩分解公式可得
+
1 A = BC = [1 1] 2
于是其伪逆矩阵为
A = C (CC ) ( B B ) B
H H
+
H −1
−1
H
1 1 −1 1 −1 = ([1 1] ) ([1 2] ) [1 2] 1 1 2 1 1 1 1 1 = [1 2] = 10 1 10 2 2 1 10 = 1 10 1 5 1 5

矩阵相似的充分条件

矩阵相似的充分条件

矩阵相似的充分条件矩阵相似是线性代数中一个重要的概念,它描述了两个矩阵在某种意义下具有相同的性质。

在实际应用中,矩阵相似性质的研究具有重要的意义,例如在矩阵的对角化、矩阵的特征值和特征向量的求解等方面都有广泛的应用。

矩阵相似的定义是:设A和B是n阶矩阵,如果存在一个可逆矩阵P,使得P-1AP=B,则称A和B相似。

其中,P-1表示P的逆矩阵。

矩阵相似的充分条件有很多,下面我们将介绍其中的几个。

1. 特征值相同设A和B是n阶矩阵,如果A和B有相同的特征值,则A和B相似。

这个结论可以通过矩阵的特征值和特征向量的定义来证明。

设λ是A的一个特征值,v是A对应于λ的一个特征向量,则有Av=λv。

由于B和A有相同的特征值,所以存在一个向量u,使得Bu=λu。

令P=[v,u],则有P-1AP=B,因此A和B相似。

2. 秩相同设A和B是n阶矩阵,如果A和B的秩相同,则A和B相似。

这个结论可以通过矩阵的秩和零空间的定义来证明。

设r是A的秩,N(A)是A的零空间,N(B)是B的零空间,则有n=r+dim(N(A))=r+dim(N(B))。

由于A和B的秩相同,所以dim(N(A))=dim(N(B)),因此n=r+dim(N(A))=r+dim(N(B))=n。

这意味着N(A)和N(B)的维数相同,因此存在一个可逆矩阵P,使得P-1AP=B,因此A和B相似。

3. 矩阵的Jordan标准形相同设A和B是n阶矩阵,如果A和B的Jordan标准形相同,则A 和B相似。

这个结论可以通过矩阵的Jordan标准形的定义来证明。

设J(A)和J(B)分别是A和B的Jordan标准形,则存在可逆矩阵P1和P2,使得A=P1J(A)P1-1,B=P2J(B)P2-1。

由于J(A)和J(B)相同,所以存在一个可逆矩阵Q,使得J(A)=QJ(B)Q-1。

令P=P1Q,则有P-1AP=B,因此A和B相似。

4. 矩阵的行列式和迹相同设A和B是n阶矩阵,如果A和B的行列式和迹相同,则A和B 相似。

矩阵的标准形

矩阵的标准形

矩阵的标准形线性代数中涉及矩阵的标准形有三种,分别是等价标准形、相似标准形和合同标准形.虽然各种矩阵的标准形不同,但它们有一个不变量——秩不变.0.00r E A ⎡⎤−−−−−→⎢⎥⎣⎦一系列初等变换(1) 等价标准形与是同型矩阵,若经过一系列初等A B A 变换化为,则称与等价. 若,B B A ()R A r =则又由于对作一次初等行(列)变换相当A 于左(右)乘一个初等矩阵,而初等矩阵的A 乘积是可逆阵,从而对阶矩阵而言,m n ⨯A存在阶可逆方阵和阶可逆方阵,使m P n Q 000r E PAQ ⎡⎤=⎢⎥⎣⎦其中标准形的非负整数由原矩阵唯一确定.r 易见,矩阵的等价标准形唯一.(2) 矩阵的相似标准形设均为阶方阵,若存在可逆矩阵,,A B n P 1B P AP-=则称矩阵与相似.A B 为什么要讨论这一类标准形,是起源于实对称阵如何化为对角阵,进而通过对角阵研究原矩阵.使得是的特征值.A 1P AP -=Λ对角阵,其中{}12,,,n diag λλλΛ= 12,,,n λλλ 12.n AP P P λλλ⎡⎤⎢⎥⎢⎥=Λ=⎢⎥⎢⎥⎣⎦ 设是实对称阵,能否找到可逆阵(甚至A P 正交阵)使得7将按列分块,记,则有P []12,,,n P p p p = [][]121212,,,,,,n n n A p p p p p p λλλ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 即(1,2,,).i i i Ap p i n λ== 易见可逆矩阵的第列是实对称阵的特征P i A 值所对应的特征向量,这一表达式也正是方阵i λ的特征值与特征向量的定义起源.事实上,如何求矩阵的相似标准形,首先求矩阵的全部特征值,进而求所有特征值所对应的特征向量.教材中有结论:实对称阵必存在相似标准形.问题n一般阶方阵是否也存在相似标准形?几何重数代数重数只有两者相等时,原矩阵才可对角化.当然,这涉及到某个重特征值是否会对应k k 个线性无关的特征向量,即几何重数与代数重数之间恒有关系式:(3) 合同标准形使,则称与合同.TB C AC A B 对于同阶方阵与,若存在可逆阵,使A B C 虽然合同的定义是针对一般阶方阵定义的,n 但在实际应用中是用来研究二次型的主轴问题.因此,重点是以实对称矩阵为研究对象,而矩阵的相似标准形中有结论:.T P AP =Λ逆且)使得1T P P -=实对称阵必存在正交阵(正交阵一定可A P 是的全部特征值.12,,,n λλλ 即与合同。

【研究生课件应用数学基础】第三章 矩阵的相似标准形.ppt

【研究生课件应用数学基础】第三章 矩阵的相似标准形.ppt

1 0 0
i i 0
13.求二次型
f x1x1 ix1x2 ix2x1 ix2x3 ix3x2 x3x3
成为标准的酉矩阵,并判断f是否是正定二次型。
6
4I3.
1 0 2
1 0 0
6.设A
1
0
1
,
证明:当n
3时, An
An2
A2
I 3 , 并 求A100。
0 1 0
7.若A∈Cn×n满足A2+A=2In,则A与对角形矩阵相 似。
3
8.设A
1 2
51,
证明:B=2A4-12A3+19A2-29A+37I2
为可逆矩阵,并把B –1表示为A的多项式。
1 1 6
0 2 1
0 10
1
2.证明:A∈Cn×n与AT相似。
3.证明:下列矩阵
a 0 0 a 0 0 a 1 0 A 0 a 0,B 0 a 1,C 0 a 1
0 0 a 0 0 a 0 0 a
中的任何两个都不相似.
4.求下列矩阵的Jordan标准形:
3 1 0 0
第三章 矩阵的相似标准形
1.已知矩阵A,求I-A的等价标准形、不变因 子、行列式因子和初等因子:
2 1 0
0 1 1
(1)A 0 2 1;(2)A 1 0 1;
0 0 2
1 1 0
0 1 0 0 3 1 0 0
(3)
0 0 5
0 0 4
1 0 3
0 1 2
;
(4)
4 7 7
0 3 0
0 1 3
0
0
1
11.证明:
0
0

矩阵的相似标准形

矩阵的相似标准形

A(0 x) 0 ( Ax) 20 x.

(0 20 ) x 0.
而x0, 0(1 0 ) 0. 得 0 0或0 1.
注意:0和1不一定同时是幂等矩阵的特征值, 比如E是幂等矩阵, 但其特征值只有1.
二 有关特征值的几个定理
定理2.1 相似的矩阵具有相同的特征多项式, 也有相同的特征值. 证明: 设A∽B, 则存在可逆矩阵P, 使得
令=0, 得 A (1)n 12 n ,

A (1)n A
A 12 n .
从定理可以看出, 若A的特征值有一个为零, 则|A|=0. 反之亦成立.
推论 矩阵A可逆A的特征值全不为零.
定理2.4 若n阶可逆方阵A的特征值为1, 2, …, n,则A1的特征值为
1 1 ,1 2 ,1 n . 证明: 由定理2.3, 1 1 ,1 2 ,1 n 有意义.
定义 tr(A)=a11+a22+…+ann称为A的迹.
计算n阶矩阵A的特征值与特征向量的步骤:
1. 解特征方程| EA|=0, 求出n个特征值(r重
根算r个);
2. 对每一i, 求(iEA)x=0的非零解xi是属于i
的特征向量.
例1 求三阶方阵 1 1 0
A 4 3 0 1 0 2
解: 特征方程
得一般解为
x1 x3
x
2
2 x3
x3 x3
取基础解系
1 2
1
因此A的属于2= 3=1的全部特征向量是
k(1, 2, 1), (k 0).
例2 求矩阵
1 B 2
2 1
2 2
的特征值和特征向量.
2 2 1
解: 特征方程
1 2 2

第四章 矩阵的相似标准形

第四章 矩阵的相似标准形

第四章 矩阵的相似标准形复方阵在相似意义下的标准形——Jordan 标准形(B A B AP P ~1⇔=-)。

第一节 特征值 特征向量如果存在任意的一组基n ααα,,,21 ,使=),,,(21n f ααα ),,,(21n ααα ),,,(21n d d d d ,则n i d f i i i ,,2,1,)( ==αα。

定义1.1 设),hom(V V f ∈,V 为数域F 上的线性空间,若存在F ∈λ以及非零向量V ∈ξ,使得 λξξ=)(f则称λ是线性变换f 的特征值,ξ为f 对应于特征值λ的特征向量。

例如:1 是恒等变换I 的特征值;0是零变换O 的特征值,一切非零向量都是他们的特征向量。

设V 为n 维线性空间,n ααα,,,21 为V 的一组基,f 在该组基下的矩阵为A ,ξ的坐标向量为X ,则)(ξf 的坐标向量为AX ,于是存在0≠ξ,使得⇔=λξξ)(f 存在0≠X ,使得⇔=X AX λ存在0≠X ,使得⇔=-0)(X I A λ0=-A I λ。

因此,f 的特征值即是特征方程0=-A I λ在数域F 上的根;特征值λ对应的特征向量ξ的坐标向量X 就是齐次线性方程组0)(=-X A I λ的非零解。

定义1.2 设n n C A ⨯∈,n 次多项式0)(=-=A I C λλ称为矩阵A 的特征多项式;称0)(=-=A I C λλ的根为矩阵A 的特征值,记矩阵A 的特征值集为)(A λ;称满足X AX λ=的非零向量X 为矩阵A 的特征向量(属于特征值λ)。

定理1.1 若B A ~,则A 与B 有相同的特征多项式。

证 由B A ~知,B AP P =-1,于是A I AP P I B I -=-=--λλλ1。

定理1.2 设n n ij a A ⨯=)(,则∑=--+=-nk k n k k nb A I 1)1(λλλ。

其中A b k =的所有k 阶主子式之和,特别)(1A tr b =,A b n =。

实三元阵的块对角相似实标准形

实三元阵的块对角相似实标准形

4 3







3 实三元 阵的块 对 角相似 实标 准形 定理
一 3
1 O 依 矩 阵 的 相 似 标 准 形 理 论 , q 。时 由 义 的 实 三 元 阵 A 有 相 似 标 准 形 为 当 ≠ 1 , z 定



[ ]一矩 p 口,个 户 它 对 i是角
中 图 分 类 号 : 5. 1 01 12 文 献 标 识 码 : A
由矩 阵 的 相 似标 准形 理 论 可 知 : 个 ”阶 复 数矩 阵都 与一 个 J ra 每 odn矩 阵 相 似 , 所 谓 J ra 即 od n相 似 标 准 形 ; 于 实 对 称 矩 对 阵 的 情 形 . 更 好 的 实 对 角 相 似 标 准 形 矩 阵结 论 . 文 对 于 文 献 [ ] 有 本 1 中所 给 出一 种 特 殊 类 型 的 矩 阵 一 实 元 阵 , n 3的情 在
摘 要 : 基于提 出的实 ” 元阵定义 , 一3的情形 , 对 根据实三元阵特征值计算公式 , 并利用原先已建立的三元
数 概 念 及 其 运算 性 质 , 导出 了 实 三元 阵 的 一 种 特殊 形 式 的相 似 标 准 形 —— 块 对 角 相 似 实 标 准 形 . 推
关键词 : , 实 元阵 ; 三元阵 ; 变换 ; 特征 块对角相似实标 准形
实 一 元 阵 由一 个 实 数 确 定 为 A 一 a ] 实 二 元 阵 、 三元 阵 、 四 元 阵 分 别 由 2个 、 个 、 个 有 序 实 数 确 定 为 ; 实 实 3 4
f 1 “ ~ “3 一 日2
A ( aA I 一 I ! 。 、 一 ! a ) — ?“ nA ; 。 ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求 f的特征值、特征向量。
整理ppt
10
特征多项式的计算
定义:假设矩阵 A aij nn ,第1 i1 i2 ik n
行,则 A 的第 i1, i2 , , ik 行,第 i1, i2 , , ik 列交 叉处的元素构成的 k 阶子式称为 A 的一个 k 阶
主子式。
整理ppt
11
主子式与子式
a21
a22
a23
a24
a25
a31 a41
a32 a42
a33 a43
a34 a44
a35 a45
a51 a52 a53 a54 a55
a22 a23 a25 a32 a33 a35 a52 a53 a55
整理ppt
13
特征多项式的计算
定 理 2 : 设 A a ij n n,则
下的矩阵是 BP1AP.
整理ppt
8
例1
x y f H(o C 3,m C 3)定义 X为 (x,y,: z)T, f ( X ) x y 2 z
求 f的特征值、特征向量。
整理ppt
9
例2
f Ho (C 2 m 2,C 22)定义 X 为 C 2 : 2, f (X)11 11X
整理ppt
18
例4
设A33 54.求A100.0
C()223
整理ppt
19
例5
1 2 2 已知A1 0 3,求A100。
1 1 2
C()(1)(1)2
整理ppt
20
最小多项式
定 义 : 矩 阵 A 的 次 数 最 低 的 、 最 高 次 项 系 数 为 一 的 化 零 多 项 式 称 为 A 的 最 小 多 项 式 .
则称 0 是 f 的特征值,
是相应于特征值 0 的特征向量。
整理ppt
5
线性变换的可对角化问题
设V 是 n 维线性空间, f 是线性空间V 上的 线性变换,则存在V 的基使得 f 的矩阵是对角阵 当且仅当 f 有 n 个线性无关的特征向量。
整理ppt
6
线性变换的特征值、特征向量的计算
设 f 在 V 的 基 1,2 , ,n 下 的 矩阵 是 A , 若 0 F , V 在基1,2 , ,n 下的坐标是 x0 ,则 f () 在基1,2 , ,n 下的坐标是 Ax0 。故 f () 0 Ax0 0 x0 , 即: 是 f 的属于特征值 0 的特征向量
整理ppt
21
定理5
设 m (x ),C (x )分 别 是 矩 阵 A 的 最 小 多 项 式 和 特 征 多 项 式 ,
则 m (x )|C (x ) , 并 且 , 对 0 C ,m (0 ) 0 C (0 ) 0 。
第三章
矩阵的相似标准形
整理ppt
1
矩阵与线性变换
本章的目的: 对给定的矩阵,找一最简单的矩阵与之相似。 对给定的线性空间上的线性变换,找线性空间的一
组基,使得线性变换的矩节 特征值与特征向量
假设 A 是 n 阶方阵, 0 是数,若存在 n 维
列向量 ,使得 , 且 A 0
a11 a12 a13 a14 a15
a21
a22
a23
a24
a25
a31
a32
a33
a34
a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55
a21 a22 a24 a31 a32 a34 a51 a52 a54
整理ppt
12
主子式与子式
a11 a12 a13 a14 a15
命题 A: (aij)nn的 若特1 征 ,2, 值 ,n,则 为
n
tr(A) i,
n
A
i 1
i
.
i1
推论 A ,B 相 :似 若 t(rA ), t(rB )则 A ,B .
整理ppt
15
例3 a1
b1
设a2, b2, AH.求A的特征值。
an
bn
2 .r(A) B r(A )r,(B );
整理ppt
17
第二节 Hamilton-Cayley定理
定 理 3 : 设 A F n n ,C () I A . 则 C ( A ) O .
定 理 4 : 设 f H o m ( V , V ) , C ( ) 是 f 的 特 征 多 项 式 , 则 C ( f ) O .
Sc引 hu理 r A : Cnn对 ,存在U 酉 使U 矩 得 HA阵 是 U 上三
则称 0 是 A 的特征值,
是 A 的属于特征值 0 的特征向量。
整理ppt
3
矩阵的相似对角化
假设 A 是 n 阶方阵,则 A 相似于对角阵的 充分必要条件是 A 有 n 个线性无关的特征向量
特征向量。
整理ppt
4
线性变换的特征值、特征向量
设 f 是线性空间V 上的线性变换,假设
0 F , V 。若 f () 0
I A n b 1n 1 b 2n 2 b n 1 b n
其中 bj , (1)j ( A的 j阶主子式)
n
特别地b1, aii, bn (1)n A. i1
整理ppt
14
矩阵的迹
n
定 义 : 设 A (a ij)n n ,称 a ii为 A 的 迹 , 记 为 tr(A ). i 1
I A n b 1n 1 b 2n 2 b n 1 b n
n
特别地b1, aii, bn (1)n A.
i1
整理ppt
16
化零多项式
设 f(x)是 多 项 式 。 若 f(A)O, 则 A的 特 征 值 均 是 f(x)0的 根 .
例:已知A2A.证明: A的特征值只能是0或 1。
性 质 1 : 若 m ( x ) ,( x ) 分 别 是 矩 阵 A 的 最 小 多 项 式 、 化 零 多 项 式 , 则 m ( x )| ( x ) .
性质2:任意矩阵的最式 小是 多唯 项一的 性质 3:如果矩 A,B阵 相似,A,则 B有相同的最小多项式。
定义:(线性变换的小 最多项式)
当且仅当 x0 是 A 的属于特征值 0 的特征向量。
整理ppt
7
定理1
若 A,BCnn是相似I的 A , I则 B.
注: 1.定理的逆命题不成立;
2.可定义线性变换的特多征项式。
特 别 是 ,若 f H o m ( V ,V )在 基 1 ,2 , ,s 下 的 矩 阵 是 A ,
则 f在 新 的 基 (1 ',2 ', , s ') (1 ,2 , , s)P
相关文档
最新文档