量子点的性质、合成及其表面修饰研究

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

量子点的性质、合成及其表面修饰研究

【摘要】近年来,量子点作为一种重要材料在多个领域成为研究热点,本文分别从量子点的性质、合成及其表面修饰三个方面概括介绍了量子点。明确量子点具有荧光效率高,激发光谱宽,发射光谱窄、稳定性好等优点,是一种新型的纳米材料;通过有机相和无机相可制备不同的量子点,由于无机相制备过程能控制表面电荷,引入特殊官能团,故无机相制备应用更为广泛;通过对量子点的表面修饰,有效的改善量子点水溶性较差,不能与生物大分子直接作用的问题,使得量子点在生物方面的应用进一步加强。

【关键词】量子点;性质;合成;表面修饰

量子点主要是由Ⅱ-Ⅵ族和Ⅲ-Ⅴ族元素组成的均一或核壳结构纳米颗粒,又称半导体纳米晶体。由于发生结构和性质发生宏观到微观的转变,其拥有独特的光、电、声、磁、催化效应,因此成为一类比较特殊的纳米材料。自1990年7月美国召开第一届纳米会议[1],各国都在纳米技术方面给予巨大的投入,使得包括量子点技术在内的纳米技术飞速发展,其应用已突破原来的微电子和光电材料领域[2-3]。

1 量子点的基本特性

量子点的基本特性有:量子尺寸效应,表面效应,量子限域效应,宏观量子隧道效应,除此之外,量子点具有一些独特的光学效应[4],这使得量子点较传统的荧光染料用来标记生物探针具有以下优势:

(1)量子点具有宽的激发光谱范围,可以用波长短于发射光的光激发,并产生窄而对称的发射光谱,避免了相邻探测通道之间的干扰。而有机染料荧光分子激光光谱较窄,每一种荧光分子必须用固定波长的光来激发,而且产生的荧光峰较宽,且不对称,有些拖尾,这给区分不同的探针分子带来了困难,故很难用有机染料分子同时检测多种组分。

(2)量子点还可以“调色”,即通过调节同一组分粒径的大小或改变量子点的组成,使其荧光发射波长覆盖整个可见光区。尺寸越小,发射光的波长越小。因此可用一个激发光源同时激发多个不同尺寸的量子点,使它们发出不同颜色的光进行多通道检测。这样可以同时使用不同光谱特征的量子点,而发射光谱不出现交叠或者只有很小程度的重叠,使标记生物分子的荧光光谱的区分、识别都会变得更加容易。

(3)量子点的稳定性好,抗漂白能力强,荧光强度强,具有较高的发光效率。半导体量子点的表面上包覆一层其他的无机材料,可以对核心进行保护和提高发光效率,从而进一步提高光稳定性。Chan和Nie通过实验证明ZnS包覆的CdSe比罗丹明6G分子要亮20倍和稳定100~200倍,可以经受多次激发而其光学特性没有显著变化,且标记后对生物大分子的生理活性影响很小,因此为研

究生物大分子之间的长期作用提供了可能。

正是由于量子点具有以上特性使其在生物识别及检测中具有潜在的应用前景,可望成为一类新型的生化探针和传感器,因此备受关注。

2 量子点的合成

根据原料的不同分为无机合成路线和金属-有机物合成路线。两种合成方法各有利弊,但目前水相体系的合成为主[5]。

2.1 金属-有机相合成

主要采用有机金属法,是在高沸点的有机溶剂中利用前驱体热解制备量子点,前驱体在高温环境下迅速热解并结成核晶体缓慢成长为纳米晶粒。通过配体的吸附作用阻碍晶核成长,并稳定存在于溶剂中。其制备的量子点具有尺度范围分布窄,荧光量子产率高等优点。但其成本较高且是油溶性的,与生物相溶性差,不能直接应用到生物体系,经过水溶性基团修饰转移到水相中,量子产率降低,甚至发生完全荧光淬灭现象。因此针对上述特点,量子点有机制备的两个发展趋势:一是合成方法的改革,使用一些低成本,低污染的绿色环保型试剂代替昂贵的试剂。例如,油酸,液体石蜡的使用代替TOPO,TOP等;二是合成量子点结构的变化,从最初的单核量子点到核壳式结构量子点再到近来比较热门的混合多晶量子点,使其具有更加优异的光学性能,通过改变组成比例而不改变量子点尺寸来实现发射光谱的调节获得覆盖近红外以及整个可见区光谱,这是二元量子点无法做到的。在操作过程中,改变组成的比例往往比调节尺寸更容易控制而且精确度较高。

2.2 无机合成路线

目前常用水溶性硫基化合物,柠檬酸等做为保护剂在水相中制备量子点。硫基化合物,柠檬酸等与量子点的稳定性、功能化有关,因此选择带有适当官能团的保护剂对于控制量子点的表面电荷及其他表面特征极为重要。水相合成量子点操作简便,重复性高,成本低,表面电荷和表面性质可控,很容易引入官能团分子。量子点质量的好坏直接关系到其应用研究的开展和研究成果的优劣。

3 量子点的表面修饰

通常制备的量子点水溶性较差,不能直接与生物物质相互相互作用,从而得到探针,因此,首先对制得的量子点进行适当的表面修饰[6]。通过特定的表面修饰和表面处理以获得其对某个分析物品的识别功能,目前使用的量子点表面改性技术可归纳为表面无机修饰和表面有机修饰两大类。

量子点表面的无机修饰,单独的量子点颗粒容易收到杂质和晶格缺陷的影响,荧光量子产率很低。但当以其为核心,用另一种半导体材料包覆,形成核壳结构后,就可以将量子产率提高。并在消光系数上有很强的增加,因而有很强的

荧光发射。

量子点表面的有机修饰,量子点表面配位不足容易产生带隙表面态,通过加入有机表面活性等有机配位体与量子点表面离子键合,可以提高表面原子配位的饱和程度。但是,有机配位体不能同时将表面阴阳粒子完全钝化,表面依然残留有较多的悬键,钝化效果不理想,量子产率同样不能大幅度提高。

如果选择量子效率最高的样品,经过表面修饰作用,可将量子效率提高到40%。

4 结论

量子点具有尺寸效应,表面效应,量子限域效应,宏观量子隧道效应、特殊的光学效应,使得量子点在光、电、磁、生物等领域得到广泛的研究与应用。无机相和有机相均能制备不同性质的量子点,进而通过特殊的表面修饰,提高量子点的亲水性;引入特殊的官能团扩大量子点的应用范围,其生物应用得到进一步深入,总而言之,量子点随着研究的进一步深入,在多学科领域的应用将进一步拓展。

【参考文献】

[1]白春礼.纳米科技及其发展前景[J].科学通报,2001,2.

[2]周瑞发,韩雅芳,陈祥宝.纳米材料技术[M].北京:国防工业出版社,2003.

[3]何晓晓,王柯敏,谭蔚泓,等.基于生物荧光纳米颗粒的新型荧光标记方法及其在细胞识别中的应用[J].科学通报,2001,46(16):1353-1356.

[4]彭英才.半导体量子点的电子结构[J].固体电子学研究与进展,1997,17(2):165-172.

[5]徐海娥,闫翠娥.水溶性量子点的制备及应用[J].化学进展,2005,17(5):800-808.

[6]李军,袁航,赵奎,等.CdTe纳米晶与蛋白相互作用研究[J].高等学校化学学报,2003,24(7):1293-1295.

相关文档
最新文档