广东省东莞市九年级上期末数学试卷(有答案)
东莞市数学九年级上册期末试题和答案
东莞市数学九年级上册期末试题和答案一、选择题1.如图,矩形ABCD 中,3AB =,8BC =,点P 为矩形内一动点,且满足PBC PCD ∠=∠,则线段PD 的最小值为( )A .5B .1C .2D .32.如图,ABC ∆与A B C '''∆是以坐标原点O 为位似中心的位似图形,若点A 是OA '的中点,ABC ∆的面积是6,则A B C '''∆的面积为( )A .9B .12C .18D .24 3.二次函数y =3(x -2)2-1的图像顶点坐标是( ) A .(-2,1)B .(-2,-1)C .(2,1)D .(2,-1)4.对于二次函数2610y x x =-+,下列说法不正确的是( ) A .其图象的对称轴为过(3,1)且平行于y 轴的直线. B .其最小值为1. C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大.5.如图,在由边长为1的小正方形组成的网格中,点A ,B ,C ,D 都在格点上,点E 在AB 的延长线上,以A 为圆心,AE 为半径画弧,交AD 的延长线于点F ,且弧EF 经过点C ,则扇形AEF 的面积为( )A 5B .58πC .54πD 5 6.抛物线2y 3(x 1)1=-+的顶点坐标是( ) A .()1,1B .()1,1-C .()1,1--D .()1,1-7.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( ) A .12B .13C .14D .158.某中学篮球队12名队员的年龄情况如下: 年龄(单位:岁)14 15 16 17 18 人数15321则这个队队员年龄的众数和中位数分别是( ) A .15,16B .15,15C .15,15.5D .16,159.将二次函数22y x =的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为( ) A .()2241y x =-- B .()2241y x =+- C .()2241y x =-+ D .()2241y x =++10.如图在△ABC 中,点D 、E 分别在△ABC 的边AB 、AC 上,不一定能使△ADE 与△ABC相似的条件是( )A .∠AED=∠B B .∠ADE=∠C C .AD DEAB BC= D .AD AEAC AB= 11.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数是( ) A .2B .3C .4D .512.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC=50°,则∠ADC 为( )A .40°B .50°C .80°D .100°13.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A.7 : 12 B.7 : 24 C.13 : 36 D.13 : 7214.如图,点P(x,y)(x>0)是反比例函数y=kx(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A,若△OPA的面积为S,则当x增大时,S的变化情况是()A.S的值增大B.S的值减小C.S的值先增大,后减小D.S的值不变15.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且∠D=40°,则∠PCA等于()A.50°B.60°C.65°D.75°二、填空题16.已知小明身高1.8m,在某一时刻测得他站立在阳光下的影长为0.6m.若当他把手臂竖直举起时,测得影长为0.78m,则小明举起的手臂超出头顶______m.17.如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为____.18.如图,Rt △ABC 中,∠C =90°,AC =4,BC =3,点D 是AB 边上一点(不与A 、B 重合),若过点D 的直线截得的三角形与△ABC 相似,并且平分△ABC 的周长,则AD 的长为____.19.二次函数y =x 2﹣bx +c 的图象上有两点A (3,﹣2),B (﹣9,﹣2),则此抛物线的对称轴是直线x =________.20.在泰州市举行的大阅读活动中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽为________cm .(结果保留根号)21.抛物线y=ax 2-4ax+4(a≠0)与y 轴交于点A .过点B(0,3)作y 轴的垂线l ,若抛物线y=ax 2-4ax+4(a≠0)与直线l 有两个交点,设其中靠近y 轴的交点的横坐标为m ,且│m│<1,则a 的取值范围是______.22.如图,每个小正方形的边长都为1,点A 、B 、C 都在小正方形的顶点上,则∠ABC 的正切值为_____.23.已知二次函数y =ax 2+bx+c 中,函数y 与自变量x 的部分对应值如表, x 6.17 6.18 6.19 6.20 y﹣0.03﹣0.010.020.04则方程ax 2+bx+c =0的一个解的范围是_____.24.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是__________________________.25.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________. 26.如图,O 的直径AB 与弦CD 相交于点53E AB AC ==,,,则tan ADC ∠=______.27.若m是关于x的方程x2-2x-3=0的解,则代数式4m-2m2+2的值是______.28.将一枚标有数字1、2、3、4、5、6的均匀正方体骰子抛掷一次,则向上一面数字为奇数的概率等于_____.29.如图,边长为2的正方形ABCD,以AB为直径作O,CF与O相切于点E,与AD交于点F,则CDF的面积为__________.30.若函数y=(m+1)x2﹣x+m(m+1)的图象经过原点,则m的值为_____.三、解答题31.如图①抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.(1)试求抛物线的解析式;(2)点D(3,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.32.如图,直线y=kx+b(b>0)与抛物线y=14x2相交于点A(x1,y1),B(x2,y2)两点,与x轴正半轴相交于点D,于y轴相交于点C,设∆OCD的面积为S,且kS+8=0.(1)求b 的值.(2)求证:点(y 1,y 2)在反比例函数y=16x的图像上. 33.如图,在平面直角坐标系中,一次函数13y x =-的图像与x 轴交于点A .二次函数22y x bx c =-++的图像经过点A ,与y 轴交于点C ,与一次函数13y x =-的图像交于另一点()2,B m -.(1)求二次函数的表达式;(2)当12y y >时,直接写出x 的取值范围;(3)平移AOC ∆,使点A 的对应点D 落在二次函数第四象限的图像上,点C 的对应点E 落在直线AB 上,求此时点D 的坐标. 34.先化简,再求值:221a a -÷(1﹣11a +),其中a 是方程x 2+x ﹣2=0的解. 35.如图,在直角三角形ABC 中,∠C =90°,点D 是AC 边上一点,过点D 作DE ⊥BD ,交AB 于点E ,若BD =10,tan ∠ABD =12,cos ∠DBC =45,求DC 和AB 的长.四、压轴题36.在长方形ABCD 中,AB =5cm ,BC =6cm ,点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:______=______,______=______(用含t 的代数式表示); (2)当t 为何值时,PQ 的长度等于5cm ?(3)是否存在t 的值,使得五边形APQCD 的面积等于226cm ?若存在,请求出此时t 的值;若不存在,请说明理由. 37.如图,B 是O 的半径OA 上的一点(不与端点重合),过点B 作OA 的垂线交O 于点C ,D ,连接OD ,E 是O 上一点,CE CA ,过点C 作O 的切线l ,连接OE 并延长交直线l 于点F.(1)①依题意补全图形. ②求证:∠OFC=∠ODC . (2)连接FB ,若B 是OA 的中点,O 的半径是4,求FB 的长.38.某校网球队教练对球员进行接球训练,教练每次发球的高度、位置都一致.教练站在球场正中间端点A 的水平距离为x 米,与地面的距离为y 米,运行时间为t 秒,经过多次测试,得到如下部分数据: t 秒1.52.546.57.59…x 米 0 4 8 10 12 16 20 … y 米24.565.8465.844.562…(1)当t 为何值时,网球高度达到最大值? (2)网球落在地面时,与端点A 的水平距离是多少? (3)网球落在地面上弹起后,y 与x 满足()256y a x k =-+①用含a 的代数式表示k ;②球网高度为1.2米,球场长24米,弹起后是否存在唯一击球点,可以将球沿直线扣杀到A 点,若有请求出a 的值,若没有请说明理由.39.矩形ABCD 中,AB =2,AD =4,将矩形ABCD 绕点C 顺时针旋转至矩形EGCF (其中E 、G 、F 分别与A 、B 、D 对应).(1)如图1,当点G 落在AD 边上时,直接写出AG 的长为 ; (2)如图2,当点G 落在线段AE 上时,AD 与CG 交于点H ,求GH 的长;(3)如图3,记O 为矩形ABCD 对角线的交点,S 为△OGE 的面积,求S 的取值范围.40.如图,PA 切⊙O 于点A ,射线PC 交⊙O 于C 、B 两点,半径OD ⊥BC 于E ,连接BD 、DC 和OA ,DA 交BP 于点F ; (1)求证:∠ADC+∠CBD =12∠AOD ; (2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】通过矩形的性质和等角的条件可得∠BPC=90°,所以P点应该在以BC为直径的圆上,即OP=4,根据两边之差小于第三边及三点共线问题解决.【详解】如图,∵四边形ABCD为矩形,∴AB=CD=3,∠BCD=90°,∴∠PCD+∠PCB=90°,∵PBC PCD∠=∠,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴点P在以BC为直径的圆⊙O上,在Rt△OCD中,OC=118422BC,CD=3,由勾股定理得,OD=5,∵PD≥OD OP ,∴当P,D,O三点共线时,PD最小,∴PD的最小值为OD-OP=5-4=1.故选:B.【点睛】本题考查矩形的性质,勾股定理,线段最小值问题及圆的性质,分析出P点的运动轨迹是解答此题的关键.2.D解析:D【解析】【分析】根据位似图形的性质,再结合点A 与点A '的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案. 【详解】解:∵△ABC 与△A B C '''是以坐标原点O 为位似中心的位似图形,且A 为O A '的中心, ∴△ABC 与△A B C '''的相似比为:1:2; ∵位似图形的面积比等于相似比的平方,∴△A B C '''的面积等于4倍的△ABC 的面积,即4624⨯=. 故答案为:D. 【点睛】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.3.D解析:D 【解析】 【分析】由二次函数的顶点式,即可得出顶点坐标. 【详解】解:∵二次函数为y=a (x-h )2+k 顶点坐标是(h ,k ), ∴二次函数y=3(x-2)2-1的图象的顶点坐标是(2,-1). 故选:D . 【点睛】此题考查了二次函数的性质,二次函数为y=a (x-h )2+k 顶点坐标是(h ,k ).4.D解析:D 【解析】 【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A 、B 、D 三项,再根据抛物线的顶点和开口即可判断C 项,进而可得答案. 【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x =3,顶点坐标是(3,1);A 、其图象的对称轴为过(3,1)且平行于y 轴的直线,说法正确,本选项不符合题意;B 、其最小值为1,说法正确,本选项不符合题意;C 、因为抛物线的顶点是(3,1),开口向上,所以其图象与x 轴没有交点,说法正确,本选项不符合题意;D 、当3x <时,y 随x 的增大而增大,说法错误,所以本选项符合题意. 故选:D. 【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键. 5.B解析:B【解析】【分析】连接AC ,根据网格的特点求出r=AC 的长度,再得到扇形的圆心角度数,根据扇形面积公式即可求解.【详解】连接AC ,则r=AC=22251=+扇形的圆心角度数为∠BAD=45°,∴扇形AEF 的面积=()2455360π⨯⨯=58π 故选B.【点睛】此题主要考查扇形面积求解,解题的关键是熟知勾股定理及扇形面积公式.6.A解析:A【解析】【分析】已知抛物线顶点式y =a (x ﹣h )2+k ,顶点坐标是(h ,k ).【详解】∵抛物线y =3(x ﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选A .【点睛】本题考查了由抛物线的顶点式写出抛物线顶点的坐标,比较容易.7.D解析:D【解析】【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105=. 【详解】解:()21P 105==次品 . 故选:D .【点睛】 本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键.8.C解析:C【解析】【分析】由题意直接根据众数和中位数的定义求解可得.【详解】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,∴中位数为(1516)2+÷=15.5岁,故选:C .【点睛】本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.9.B解析:B【解析】【分析】根据题意直接利用二次函数平移规律进而判断得出选项.【详解】解:22y x =的图象向左平移4个单位长度,再向下平移1个单位长度,平移后的函数关系式是:()2241y x =+-.故选:B .【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 10.C解析:C【解析】【分析】由题意根据相似三角形的判定定理依次对各选项进行分析判断即可.【详解】解:A、∠AED=∠B,∠A=∠A,则可判断△ADE∽△ACB,故A选项错误;B、∠ADE=∠C,∠A=∠A,则可判断△ADE∽△ACB,故B选项错误;C、AD DEAB BC=不能判定△ADE∽△ACB,故C选项正确;D、AD AEAC AB=,且夹角∠A=∠A,能确定△ADE∽△ACB,故D选项错误.故选:C.【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定定理是解答此题的关键.11.B解析:B【解析】【分析】根据题意由有唯一的众数4,可知x=4,然后根据中位数的定义求解即可.【详解】∵这组数据有唯一的众数4,∴x=4,∵将数据从小到大排列为:1,2,3,3,4,4,4,∴中位数为:3.故选B.【点睛】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数. 12.A解析:A【解析】试题分析:先根据圆周角定理的推论得到∠ACB=90°,再利用互余计算出∠B=40°,然后根据圆周角定理求解.解:连结BC,如图,∵AB为⊙O的直径,∴∠ACB=90°,∵∠BAC=50°,∴∠B=90°﹣50°=40°,∴∠ADC=∠B=40°.故选A.考点:圆周角定理.13.B解析:B【解析】【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFC ABCD SS =四边形, ∴1176824AGH EFC ABCD S S S +=+=四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.14.D解析:D【解析】【分析】作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=12|k|,所以S=2k,为定值.【详解】作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=12|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.15.C解析:C【解析】【分析】根据切线的性质,由PD切⊙O于点C得到∠OCD=90°,再利互余计算出∠DOC=50°,由∠A=∠ACO,∠COD=∠A+∠ACO,所以1252A COD∠=∠=︒,然后根据三角形外角性质计算∠PCA的度数.【详解】解:∵PD切⊙O于点C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠DOC=90°﹣40°=50°,∵OA=OC,∴∠A=∠ACO,∵∠COD=∠A+∠ACO,∴1252A COD ∠=∠=︒, ∴∠PCA =∠A +∠D =25°+40°=65°.故选C .【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.二、填空题16.54【解析】【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得,,解得x=0.54即举起的手臂超出头顶0.54m解析:54【解析】【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得,1.8 1.80.60.78x , 解得x=0.54即举起的手臂超出头顶0.54m.故答案为:0.54.【点睛】本题考查同一时刻物体的高度和影长成比例的投影规律,根据规律列比例式求解是解答此题的关键.,17.【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是=,故答案为.【解析:2 3【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是360120360-=23,故答案为2 3 .【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是利用长度比,面积比,体积比等.18.、、【解析】【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【详解】解:设过点D的直线与△ABC的另一个交点为E,∵AC=4,BC=解析:83、103、54【解析】【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【详解】解:设过点D的直线与△ABC的另一个交点为E,∵AC=4,BC=3,∴设AD=x,BD=5-x,∵DE平分△ABC周长,∴周长的一半为(3+4+5)÷2=6,分四种情况讨论:①△BED∽△BCA,如图1,BE=1+x∴BE BDBC AB=,即:5153x x-+=,解得x=54,②△BDE∽△BCA,如图2,BE=1+x∴BD BEBC AB=,即:5135x x-+=,解得:x=11 4,BE=154>BC,不符合题意.③△ADE∽△ABC,如图3,AE=6-x∴AD AEAB AC=,即654x x-=,解得:x=103,④△BDE∽△BCA,如图4,AE=6-x∴AD AEAC AB=,即:645x x-=,解得:x=83,综上:AD的长为83、103、54.【点睛】本题考查的相似三角形的判定和性质,根据不同的相似模型分情况讨论,根据不同的线段比例关系求解.19.-3【解析】【分析】观察A(3,﹣2),B(﹣9,﹣2)两点坐标特征,纵坐标相等,可知A,B两点关于抛物线对称轴对称,对称轴为经过线段AB中点且平行于y轴的直线.【详解】解:∵ A(3,﹣解析:-3【解析】【分析】观察A(3,﹣2),B(﹣9,﹣2)两点坐标特征,纵坐标相等,可知A,B两点关于抛物线对称轴对称,对称轴为经过线段AB中点且平行于y轴的直线.【详解】解:∵ A(3,﹣2),B(﹣9,﹣2)两点纵坐标相等,∴A,B两点关于对称轴对称,根据中点坐标公式可得线段AB的中点坐标为(-3,-2),∴抛物线的对称轴是直线x= -3.【点睛】本题考查二次函数图象的对称性及对称轴的求法,常见确定对称轴的方法有,已知解析式则利用公式法确定对称轴,已知对称点利用对称性确定对称轴,根据条件确定合适的方法求对称轴是解答此题的关键.20.()【解析】设它的宽为xcm.由题意得.∴ .点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即,近似值约解析:(10)【解析】设它的宽为x cm.由题意得1:202x=.∴10x= .点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即12,近似值约为0.618.21.a>或a<.【解析】【分析】先确定抛物线的对称轴,根据开口的大小与a的关系,即开口向上时,a>0,且a 越大开口越小,开口向下时,a<0,且a越大,开口越大,从而确定a的范围. 【详解】解:如解析:a>13或a<15-.【解析】【分析】先确定抛物线的对称轴,根据开口的大小与a的关系,即开口向上时,a>0,且a越大开口越小,开口向下时,a<0,且a越大,开口越大,从而确定a的范围.【详解】解:如图,观察图形抛物线y=ax2-4ax+4的对称轴为直线422axa-=-= ,设抛物线与直线l交点(靠近y轴)为(m,3),∵│m│<1,∴-1<m<1.当a>0时,若抛物线经过点(1,3)时,开口最大,此时a值最小,将点(1,3)代入y=ax2-4ax+4,得,3=a-4a+4解得a=1 3 ,∴a>1 3 ;当a<0时,若抛物线经过点(-1,3)时,开口最大,此时a值最大,将点(-1,3)代入y=ax2-4ax+4,得,3=a+4a+4解得a=1 5 - ,∴a<1 5 -.a的取值范围是a>13或a<15-.故答案为:a>13或a<15-.【点睛】本题考查抛物线的性质,首先明确a值与开口的大小关系,观察图形,即数形结合的思想是解答此题的关键.22.1【解析】【分析】根据勾股定理求出△ABC的各个边的长度,根据勾股定理的逆定理求出∠ACB=90°,再解直角三角形求出即可.【详解】如图:长方形AEFM,连接AC,∵由勾股定理得:AB解析:1【解析】【分析】根据勾股定理求出△ABC的各个边的长度,根据勾股定理的逆定理求出∠ACB=90°,再解直角三角形求出即可.【详解】如图:长方形AEFM,连接AC,∵由勾股定理得:AB2=32+12=10,BC2=22+12=5,AC2=22+12=5∴AC2+BC2=AB2,AC=BC,即∠ACB=90°,∴∠ABC=45°∴tan∠ABC=1【点睛】本题考查了解直角三角形和勾股定理及逆定理等知识点,能求出∠ACB=90°是解此题的关键.23.18<x<6.19【解析】【分析】根据表格中自变量、函数的值的变化情况,得出当y=0时,相应的自变量的取值范围即可.【详解】由表格数据可得,当x=6.18时,y=﹣0.01,当x=6.19解析:18<x<6.19【解析】【分析】根据表格中自变量、函数的值的变化情况,得出当y=0时,相应的自变量的取值范围即可.【详解】由表格数据可得,当x =6.18时,y =﹣0.01,当x =6.19时,y =0.02,∴当y =0时,相应的自变量x 的取值范围为6.18<x <6.19,故答案为:6.18<x <6.19.【点睛】本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y 由正变为负时,自变量的取值即可.24.50(1﹣x )2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.解析:50(1﹣x )2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.25.6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:6解析:6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:24120x x --=,解方程得:122,6x x =-=.故答案为:6.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.26.【解析】分析:由已知条件易得△ACB 中,∠ACB=90°,AC=3,AB=5,由此可得BC=4,结合∠ADC=∠ABC,即可由tan∠ADC=tan∠ABC=求得所求的值了.详解:∵AB 是 解析:34【解析】分析:由已知条件易得△ACB 中,∠ACB=90°,AC=3,AB=5,由此可得BC=4,结合∠ADC=∠ABC ,即可由tan ∠ADC=tan ∠ABC=AC BC 求得所求的值了. 详解:∵AB 是O 的直径,∴∠ACB=90°,又∵AC=3,AB=5,∴4=,∴tan ∠ABC=34AC BC =, 又∵∠ADC=∠ABC , ∴tan ∠ADC=34. 故答案为:34. 点睛:熟记“圆的相关性质和正切函数的定义”解得本题的关键.27.-4【解析】【分析】先由方程的解的含义,得出m2-2m-3=0,变形得m2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.【详解】解:∵m 是关于x 的方程x2解析:-4【解析】【分析】先由方程的解的含义,得出m 2-2m-3=0,变形得m 2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.【详解】解:∵m是关于x的方程x2-2x-3=0的解,∴m2-2m-3=0,∴m2-2m=3,∴4m-2m2+2= -2(m2-2m)+2= -2×3+2= -4.故答案为:-4.【点睛】本题考查了利用一元二次方程的解的含义在代数式求值中的应用,明确一元二次方程的解的含义并将要求的代数式正确变形是解题的关键.28..【解析】【分析】根据概率公式计算概率即可.【详解】∵在正方体骰子中,朝上的数字共有6种,为奇数的情况有3种,分别是:1,3,5,∴朝上的数字为奇数的概率是=;故答案为:.【点睛】解析:12.【解析】【分析】根据概率公式计算概率即可.【详解】∵在正方体骰子中,朝上的数字共有6种,为奇数的情况有3种,分别是:1,3,5,∴朝上的数字为奇数的概率是36=12;故答案为:12.【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键.29.【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵与相切于点,与交于点∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt△C 解析:32【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵CF 与O 相切于点E ,与AD 交于点F∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt △CDF 中,由勾股定理得:DF 2=CF 2-CD 2,即(2-x)2=(2+x)2-22解得:x=12,则DF=32∴CDF ∆的面积为13222⨯⨯=32 故答案为32. 【点睛】 本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.30.0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m 的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m =﹣1,故答案为0或﹣1.【点解析:0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m=﹣1,故答案为0或﹣1.【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是知道函数图象上的点满足函数解析式.三、解答题31.(1)y=﹣x2+3x+4;(2)存在.P(﹣34,1916).(3)1539(,)24M--21139 (,) 24M-3521 (,) 24M【解析】【分析】(1)将A,B,C三点代入y=ax2+bx+4求出a,b,c值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.∴4016440a ba b-+=⎧⎨++=⎩解得13ab=-⎧⎨=⎩∴抛物线的解析式为y=﹣x2+3x+4.(2)存在.理由如下:y=﹣x2+3x+4=﹣(x﹣32)2+254.∵点D(3,m)在第一象限的抛物线上,∴m=4,∴D(3,4),∵C(0,4)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(4,0)代入,得k=﹣14,b=1,∴BP解析式为y BP=﹣14x+1.y BP=﹣14x+1,y=﹣x2+3x+4当y=y BP时,﹣14x+1=﹣x2+3x+4,解得x1=﹣34,x2=4(舍去),∴y=1916,∴P(﹣34,1916).(3)1539 (,)24M--21139 (,) 24M-3521 (,) 24M理由如下,如图B(4,0),C(0,4) ,抛物线对称轴为直线32x=,设N(32,n),M(m, ﹣m2+3m+4)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴4-32=0-m,∴m=52-∴﹣m2+3m+4=39 4 -,∴1539 (,)24M--;或∴0-32=4-m,∴m=11 2∴﹣m2+3m+4=39 4 -,∴21139 (,) 24M-;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴322 2m∴m=5 2∴﹣m2+3m+4=21 4∴3521 (,) 24M综上所述,当以M、N、B、C为顶点的四边形是平行四边形时,点M的坐标为1539 (,)24M--21139 (,) 24M-3521 (,) 24M.【点睛】本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.32.(1)b=4(b>0) ;(2)见解析【解析】【分析】(1)根据直线解析式求OC 和OD 长,依据面积公式代入即可得;(2)联立方程,根据根与系数的关系即可证明.【详解】(1)∵D(0,b),C(-b k,0) ∴由题意得OD=b,OC= -b k ∴S=22b k- ∴k•(22b k-)+8=0 ∴b=4(b>0) (2)∵2144x kx =+ ∴21404x kx --= ∴1216x x ⋅=- ∴()222121************y y x x x x ⋅=⋅=⋅= ∴点(y 1,y 2)在反比例函数y=16x 的图像上. 【点睛】本题考查二次函数的性质及图象与直线的关系,联立方程组并求解是解答两图象交点问题的重要途径,理解图象与方程的关系是解答此题的关键.33.(1)2y x 2x 3=-++;(2)2x <-或3x >;(3)()4,5D -.【解析】【分析】(1)先求出A,B 的坐标,再代入二次函数即可求解;(2)根据函数图像即可求解;(3)先求出C 点坐标,再根据平移的性质得到3EF FD ==,设点(),3E a a -,则()3,6D a a +-,把D 点代入二次函数即可求解.【详解】解:(1)令0y =,得3x =,∴()3,0A .把()2,B m -代入3y x =-,解得()2,5B --. 把()3,0A ,()2,5B --代入2y x bx c =-++, 得093542b c b c =-++⎧⎨-=--+⎩,∴23b c =⎧⎨=⎩, ∴二次函数的表达式为2y x 2x 3=-++.。
东莞市-九年级上期末数学试卷及答案解析.doc
广东省东莞市2012-2013学年九年级(上)期末数学试卷一、选择题(每小题3分,共15分).C D..C D.二、填空题(每小题3分,共15分)6.(3分)(1997•江西)计算:=_________.7.(3分)(2012•天津)袋子中装有5个红球和3个黑球,这些球除了颜色外都相同.从袋子中随机的摸出一个球,则它是红球的概率是_________.8.(3分)(2012•和平区模拟)把图中的五角星图案,绕着它的中心点O进行旋转,那么至少旋转_________度,才能与自身重合.9.(3分)已知1是关于x的一元二次方程x2+mx+n=0的一个根,那么m+n=_________.10.(3分)在直径为10cm的⊙0中,弦AB的长为5cm,则点0到AB的距离是_________.三、解答题(每小题6分,共30分)11.(6分)计算:12.(6分)解方程:x2+2x﹣4=013.(6分)如图,已知△ABC在平面直角坐标系中的位置.(1)点C关于原点中心对称的点的坐标是_________;(2)画出△ABC绕点A按逆时针方向旋转90°后的图形△AB′C′.14.(6分)已知α、β是关于x的一元二次方程3x2﹣1=2x+5的两个实数根,求的值.15.(6分)如图,已知⊙0的半径为5,AB是⊙0的直径,点C、D都在⊙0上,若∠D=30°,求AC的长.四、解答题(每小题8分,共40分)16.(8分)如图是一个可以自由转动的转盘,转盘被分成面积相等的3个扇形,转动转盘后任其自由停止,其中某个扇形会恰好停在指针所指的位置(如果指针恰好停在分割线上,那么重转一次)(1)转盘转动一次,指针所指的颜色不是红色的概率是多少?(2)转盘转动两次,两次指针指向颜色相同的概率是多少?(用列表法或画树状图).17.(8分)已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.(1)求证:方程有两个不相等的实数根;(2)当p=2时,求该方程的根.18.(8分)如图,有一块长方形铁皮,长40cm,宽30cm,在它的四角各切去一个同样的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为600cm2,那么铁皮各角应切去多大的正方形?19.(8分)如图,△ABE和△ACD都是等边三角形,△AEC逆时针旋转一定角度后能与△ABD重合,EC与BD相交于点F.(1)旋转中心是_________,旋转角至少是_________度;(2)求∠DFC的度数.20.(8分)如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙0与BC、CA、AB分别切于点D、E、F.(1)若BC=40cm,AB=50cm,求⊙0的半径;(2)若⊙0的半径为r,△ABC的周长为ι,求△ABC的面积.广东省东莞市2012-2013学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共15分).C D..C D.=2L=,=L=二、填空题(每小题3分,共15分)6.(3分)(1997•江西)计算:=5.3×+37.(3分)(2012•天津)袋子中装有5个红球和3个黑球,这些球除了颜色外都相同.从袋子中随机的摸出一个球,则它是红球的概率是.取到红球的概率为:故答案为:=8.(3分)(2012•和平区模拟)把图中的五角星图案,绕着它的中心点O进行旋转,那么至少旋转72度,才能与自身重合.9.(3分)已知1是关于x的一元二次方程x2+mx+n=0的一个根,那么m+n=﹣1.10.(3分)在直径为10cm的⊙0中,弦AB的长为5cm,则点0到AB的距离是cm.AB=×cmAD===故答案为:三、解答题(每小题6分,共30分)11.(6分)计算:.12.(6分)解方程:x2+2x﹣4=0±,13.(6分)如图,已知△ABC在平面直角坐标系中的位置.(1)点C关于原点中心对称的点的坐标是(﹣5,﹣1);(2)画出△ABC绕点A按逆时针方向旋转90°后的图形△AB′C′.14.(6分)已知α、β是关于x的一元二次方程3x2﹣1=2x+5的两个实数根,求的值.,最后把==.15.(6分)如图,已知⊙0的半径为5,AB是⊙0的直径,点C、D都在⊙0上,若∠D=30°,求AC的长.×=5.四、解答题(每小题8分,共40分)16.(8分)如图是一个可以自由转动的转盘,转盘被分成面积相等的3个扇形,转动转盘后任其自由停止,其中某个扇形会恰好停在指针所指的位置(如果指针恰好停在分割线上,那么重转一次)(1)转盘转动一次,指针所指的颜色不是红色的概率是多少?(2)转盘转动两次,两次指针指向颜色相同的概率是多少?(用列表法或画树状图).;==17.(8分)已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.(1)求证:方程有两个不相等的实数根;(2)当p=2时,求该方程的根.18.(8分)如图,有一块长方形铁皮,长40cm,宽30cm,在它的四角各切去一个同样的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为600cm2,那么铁皮各角应切去多大的正方形?19.(8分)如图,△ABE和△ACD都是等边三角形,△AEC逆时针旋转一定角度后能与△ABD重合,EC与BD 相交于点F.(1)旋转中心是点A,旋转角至少是60度;(2)求∠DFC的度数.20.(8分)如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙0与BC、CA、AB分别切于点D、E、F.(1)若BC=40cm,AB=50cm,求⊙0的半径;(2)若⊙0的半径为r,△ABC的周长为ι,求△ABC的面积.(ACR=ACr+r+r=的面积是的面积为。
广东省东莞市2023-2024学年九年级上册期末数学模拟试题(附答案)
广东省东莞市2023-2024学年九年级上学期期末数学模拟试题说明:1.全卷共6页,满分为120分,考试时间为120分钟。
2.答题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目的指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
3.考生必须保持答题卷的整洁。
考试结束后,将试题卷和答题卷一并交回。
一.选择题(共10题,每小题3分,共30分)1.方程的二次项系数和一次项系数分别为()。
22310x x --=A.和 B.和 C.2和 D.2和322x 3x -22x 3x 3-2.“福禄寿喜”图是中华传统祥云图纹,以下四个图案是中心对称图形的是()A. B. C. D.3.一个不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件中是不可能事件的是()。
A.3个球都是黑球B.3个球都是白球C.3个球中有黑球D.3个球中有白球4.二次函数的图象可由的图象()。
()2212y x =-+22y x =A.向左平移1个单位,再向下平移2个单位得到B.向左平移1个单位,再向上平移2个单位得到C.向右平移1个单位,再向下平移2个单位得到D.向右平移1个单位,再向上平移2个单位得到5.如图,在平面直角坐标系中,的顶点为,,。
以点O OAB △()0,0O ()6,4A -()3,0B -为位似中心,在第四象限内作与的位似比为的位似图形,则点C 坐标为OAB △12OCD △()。
A. B. C. D.()3,2-()2,1-33,22⎛⎫- ⎪⎝⎭3,12⎛⎫- ⎪⎝⎭6.如图,在中,点C 是上一点,若,则的度数为()。
O e ¶AB 126AOB ∠=︒C ∠A.127°B.117°C.63°D.54°7.为积极响应国家“双减”政策,某市推出名师公益大课堂,为学生提供线上线下免费辅导,据统计第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次。
广东省东莞市19-20学年九年级(上)期末数学试卷 (含答案解析)
广东省东莞市19-20学年九年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下面四个手机应用图标中是轴对称图形的是()A. B. C. D.2.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是()A. 12B. 13C. 23D. 253.已知点(3,−4)在反比例函数y=kx的图象上,则下列各点也在该反比例函数图象上的是()A. (3,4)B. (−3,−4)C. (2,6)D. (−2,6)4.如图,在△ABC中,DE//BC,且DE分别交AB,AC于点D,E,若AD:AB=2:3,则△ADE和△ABC的面积之比等于()A. 2:3B. 4:9C. 4:5D. √2:√35. 4.如图,在Rt△ABC中,∠BAC=90°.将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C,点A在边B′C上,则∠B′的大小为()A. 42°B. 48°C. 52°D. 58°6.若关于x的一元二次方程kx2−2x+1=0有两个不相等的实数根,则实数k的取值范围是()A. k>1B. k<1C. k>1且k≠0D. k<1且k≠07.下列命题错误的是()A. 经过三个点一定可以作圆B. 同圆或等圆中,相等的圆心角所对的弧相等C. 三角形的外心到三角形各顶点的距离相等D. 经过切点且垂直于切线的直线必经过圆心8.如图,过⊙O上一点A作⊙O的切线,交直径BC的延长线于点D,连接AB,若∠B=25°,则∠D的度数为()A. 25°B. 40°C. 45°D. 50°9.已知圆锥的母线长为5,底面半径为3,则圆锥的侧面积为()A. 15πB. 24πC. 30πD. 39π(k≠0)的图象大致是()10.在同一直角坐标系中,函数y=kx2+k(k≠0)与y=kxA. B. C. D.二、填空题(本大题共7小题,共28.0分)11.在平面直角坐标系中,点A(−1,2)关于原点O的对称点A′的坐标为______ .12.已知x1、x2是关于x的方程x2+3x+k=0的两个根,若x1=1,则x2=______.13.在如图所示的正方形网格纸板上进行投针实验,1根针被随意地投到纸板上,针落在阴影部分的概率为_________.14.15.如图,在△ABC中,AB=4,AC=3,∠BAC=25°,将△ABC绕点A逆时针旋转α°,得到△AB1C1,连接BC1,若BC1=5,则α=___.15.已知点A(1,m),B(2,n)在反比例函数y=−2的图象上,则m与n的大小关系为______.x16.如图,△ABC的面积为12,D、E分别是边AB、AC的中点,则四边形BCED的面积为.17.如图,在扇形AOB中,∠AOB=90°,弧AC=2弧BC,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为______.三、计算题(本大题共1小题,共6.0分)18.解下列方程(1)2x2+3x+1=0(2)4(x+3)2−9(x−3)2=0四、解答题(本大题共7小题,共56.0分)19.有A、B两个口袋,A口袋中装有两个分别标有数字2,3的小球;B口袋中装有三个分别标有数字−1,4,−5的小球.小明先从A口袋中随机取出一个小球,用m表示所取球上的数字,再从B口袋中随机取出两个小球,用n表示所取球上的数字之和.(1)用树状图法或列表法表示小明所取出的三个小球的所有可能结果;(2)求n的值是整数的概率.m20.如图,将Rt△ABC绕直角顶点B逆时针旋转90°得到△DBE,DE的延长线恰好经过AC的中点F,连接AD,CE.(1)求证:AE=CE;(2)若BC=√2,求AB的长.21.在国家的宏观调控下,某市的商品房成交价由今年3月份的5000元/m2下降到5月份的4050元/m2(1)问4、5两月平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到7月分该市的商品房成交均价是否会跌破3000元/m2?请说明理由.22.已知如图,AB是⊙O的直径,BC⊥AB于B,D是⊙O上的一点,且AD//OC.(1)求证:△ADB∽△OBC;(2)若AO=2,BC=2√2,求AD的长.(m≠0)分别交23.如图,一次函数y=kx+b(k≠0)和反比例函数y=mx于点A(4,1),B(−1,a)(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出kx+b>m的x的取值范围.x24.如图所示,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC,分别交AC,AB的延长线于点E,F.(1)求证:EF是⊙O的切线(2)①当∠BAC的度数为_________时,四边形ACDO为菱形②若⊙O的半径为5,AC=3CE,则BC的长为_________.25.已知抛物线y=ax2+bx+c经过A(−1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.-------- 答案与解析 --------1.答案:A解析:本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.分别根据轴对称图形的性质对各选项进行逐一判断即可.解:A.是轴对称图形,本选项正确;B.是中心对称图形,不是轴对称图形,本选项错误;C.不是轴对称图形,本选项错误;D.不是轴对称图形,本选项错误.故选A.2.答案:C解析:解:∵盒子中装有6个大小相同的乒乓球,其中4个是黄球,∴摸到黄球的概率是46=23,故选:C.利用黄球的个数除以球的总个数即可得到答案.此题主要考查了概率公式的应用,关键是掌握概率公式:所求情况数与总情况数之比.3.答案:D解析:本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.利用反比例函数图象上点的坐标特征进行判断即可.解:∵点(3,−4)在反比例函数y=kx的图象上,∴k=3×(−4)=−12,而3×4=−3×(−4)=2×6=12,−2×6=−12,∴点(−2,6)在该反比例函数图象上.故选D.4.答案:B解析:解:∵DE//BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴△ADE∽△ABC,.故选:B.由DE//BC,利用“两直线平行,同位角相等”可得出∠ADE=∠ABC,∠AED=∠ACB,进而可得出△ADE∽△ABC,再利用相似三角形的面积比等于相似比的平方即可求出结论.本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.5.答案:A解析:试题分析:∵在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,∴∠A′=∠BAC=90°,∠ACA′=48°,∴∠B′=90°−∠ACA′=42°.故选A.考点:旋转的性质.6.答案:D解析:解:∵关于x的一元二次方程kx2−2x+1=0有两个不相等的实数根,∴k≠0且△>0,即(−2)2−4×k×1>0,解得k<1且k≠0.∴k的取值范围为k<1且k≠0.故选:D.根据一元二次方程的定义和△的意义得到k≠0且△>0,即(−2)2−4×k×1>0,然后解不等式即可得到k的取值范围.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.7.答案:A解析:此题主要考查了命题与定理的定义的知识点,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解:A.经过不在同一直线上的三个点一定可以作圆,故本选项错误;B.同圆或等圆中,相等的圆心角所对的弧相等,故本选项正确;C.三角形的外心到三角形各顶点的距离相等,故本选项正确;D.经过切点且垂直于切线的直线必经过圆心,故本选项正确.故选A.8.答案:B解析:解:连接OA.∵∠B=25°.∴∠DOA=2∠B=50°.∵AD是⊙的切线,∴∠OAD=90°.∴∠D=180°−90°−50°=40°.故选:B.连接OA.由圆周角定理求得∠DOA=50°,接下来,由切线的性质可证明∠OAD=90°,最后在△OAD 中依据三角形内角和定理可求得∠D的度数.本题主要考查的是切线的性质、等腰三角形的性质、三角形的外角的性质、三角形的内角和定理,求得∠DOA和∠OAD的度数是解题的关键.9.答案:A×2π×3×5=15π,解析:解:圆锥的侧面积为:12故选:A.根据扇形的面积公式计算即可.本题考查的是圆锥的计算,掌握扇形的面积公式、圆锥的侧面展开图与原来的扇形之间的关系是解题的关键.10.答案:B解析:本题主要考查二次函数、反比例函数的图象特点.根据k>0,k<0,结合两个函数的图象及其性质分类讨论.解:分两种情况讨论:①当k>0时,反比例函数y=k在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原x点上方,B符合;②当k<0时,反比例函数y=k在二、四象限,而二次函数y=kx2+k开口向下,与y轴交点在原x点下方,都不符.分析可得:它们在同一直角坐标系中的图象大致是B.故选B.11.答案:(1,−2)解析:解:在平面直角坐标系中,点A(−1,2)关于原点O的对称点A′的坐标为(1,−2),故答案为:(1,−2).平面直角坐标系中任意一点P(x,y),关于原点的对称点是(−x,−y),记忆方法是结合平面直角坐标系的图形记忆.考查了关于原点对称的点坐标的关系,是需要识记的基本问题.12.答案:−4解析:解:∵x1、x2是关于x的方程x2+3x+k=0的两个根,∴x1+x2=−3,又∵x1=1,∴x2=−4.故答案为:−4.根据根与系数的关系可得出x1+x2=−3,再结合x1=1,即可求出x2的值.本题考查根与系数的关系以及一元二次方程的解,牢记两根之和等于−ba 、两根之积等于ca是解题的关键.13.答案:18解析:本题主要考查概率公式的知识.根据正方形的性质和轴对称的性质求出阴影部分的面积是解题的关键.解:正方形的面积为:8×8=64;阴影部分面积:12×1×4×4=8;则概率为:864=18.故答案为18.14.答案:65°.解析:由旋转的性质可得AC=AC1=3,∠CAC1=α,由勾股定理的逆定理可得∠BAC1=90°,即可求解.【详解】∵将△ABC绕点A逆时针旋转α°,得到△AB1C1,∴AC=AC1=3,∠CAC1=α∵AB2+AC12=16+9=25,C1B2=25∴AB2+C1A2=C1B2,∴∠BAC1=90°∴α=∠C1AC=90°−∠BAC=65°故答案为:65°.本题考查了旋转的性质,勾股定理的逆定理,求∠BAC1=90°是本题的关键.15.答案:m<n解析:本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.可知函数的图象在第二、第四象限内,可以知道在每个象限内,y随x的增大由反比例函数y=−2x而增大,根据这个判定则可.解:∵反比例函数y=−2中k=−2<0,x∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大,∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.16.答案:9解析:本题考查相似三角形的判定与性质等知识,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.设四边形BCED的面积为x,则S△ADE=12−x,由题意知DE//BC且DE=12BC,从而得S△ADES△ABC=(DEBC)2,据此建立关于x的方程,解之可得.解:设四边形BCED的面积为x,则S△ADE=12−x,∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴DE//BC,且DE=12BC,∴△ADE∽△ABC,则S△ADES△ABC=(DEBC)2,即12−x12=14,解得:x=9,即四边形BCED的面积为9,故答案为9.17.答案:43π−2√3解析:解:连接OC,∵∠AOB=90°,弧AC=2弧BC,∴∠COD=30°,∴OC=2CD=4,在Rt△ODC中,OD=CDtan∠COD=2√3,∴阴影部分的面积=30π×42360−12×2√3×2=43π−2√3,故答案为:43π−2√3.连接OC,求出∠COD=30°,根据直角三角形的性质求出OC,根据扇形面积公式计算即可.本题考查的是正方形的性质、扇形面积计算,正确求出∠COD的度数、掌握扇形面积公式是解题的关键.18.答案:解:(1)原方程可变形为:(2x+1)(x+1)=0,∴2x+1=0或x+1=0,解得:x1=−12,x2=−1;(2)原方程可变形为[2(x+3)−3(x−3)][2(x+3)+3(x−3)]=0,∴2(x+3)−3(x−3)=0或2(x+3)+3(x−3)=0,解得:x1=15,x2=35.解析:本题考查了解一元二次方程−因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).(1)利用因式分解法把原方程转化为2x+1=0或x+1=0,然后解两个一次方程即可;(2)利用平方差公式把原方程转化为2(x+3)−3(x−3)=0或2(x+3)+3(x−3)=0,然后解两个一次方程即可.19.答案:解:(1)用树状图表示取出的三个小球上的数字所有可能结果如下:∴共有12种等可能的情况;(2)由树状图可知,nm 所有可能的值分别为:32,−3,32,−12,−3,−12,1,−2,1,−13,−2,−13,共有12种情况,且每种情况出现的可能性相同,其中nm的值是整数的情况有6种.所以nm 的值是整数的概率P=612=12.解析:此题实际需要三步完成,所以采用树状图法比较简单.要注意不重不漏的表示出所有可能情况.列举出符合题意的各种情况的个数,再根据概率公式解答即可.此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.答案:解:(1)∵将Rt△ABC绕直角顶点B逆时针旋转90°得到△DBE,∴△ABC≌△DBE,∴∠BAC=∠CDF,∵∠BAC+∠ACB=90°,∴∠CDF+∠ACB=90°,∴DF⊥AC,且点F是AC中点,∴DF垂直平分AC,∴AE=CE;(2)∵△ABC≌△DBE,∴BE=BC=√2,∵CE2=BE2+BC2,∴AE=CE=2,∴AB=AE+BE=2+√2.解析:本题考查了旋转的性质,勾股定理,熟练运用旋转的性质是解答本题的关键.(1)由旋转的性质可得∠BAC=∠CDF,可证DF垂直平分AC,可得AE=CE;(2)由全等三角形的性质可得BE=BC=√2,由勾股定理可求AE=CE=2,即可求AB的长.21.答案:解:(1)设两月平均每月降价的百分率是x,根据题意得:5000(1−x)2=4050,(1−x)2=0.81,解得:x1=10%,x2=1.9(不合题意,舍去).答:4、5两月平均每月降价的百分率是10%;(2)不会跌破3000元/m2.如果按此降价的百分率继续回落,估计7月份该市的商品房成交均价为:4050(1−x)2=4050×0.92=3280.5>3000.由此可知7月份该市的商品房成交均价不会跌破3000元/m2.解析:(1)设4、5两月平均每月降价的百分率是x,那么4月份的房价为5000(1−x),5月份的房价为5000(1−x)2,然后根据5月份的4050元/m2即可列出方程解决问题;(2)根据(1)的结果可以计算出7月份商品房成交均价,然后和3000元/m2进行比较即可作出判断.此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.22.答案:解:(1)∵AD//OC,∴∠A=∠COB.∵AB是直径,BC⊥AB,∴∠D=∠OBC=90°,∴△ADB∽△OBC.(2)∵AO=2,BC=2√2,∴OB=2,AB=4,∴OC=2√3,又∵△ADB∽△OBC,∴ADOB =ABOC,即AD2=42√3,∴AD=4√33.解析:(1)根据平行线的性质得∠A=∠COB,根据直径所对的圆周角是直角得∠D=∠OBC=90°,就可以判定△ADB∽△OBC;(2)先由勾股定理求出OC,然后根据相似三角形的对应边成比例可以计算出AD的长.本题考查相似三角形的判定和性质、圆周角定理、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.答案:解:(1)∵点A(4,1)与点B(−1,a)在反比例函数y=mx(m≠0)图象上,∴m =4,即反比例函数的解析式为y =4x , 当x =1时,y =−4,即B(−1,−4),∵点A(4,1)与点B(−1,−4)在一次函数y =kx +b(k ≠0)图象上,∴{1=4k +b −4=−k +b , 解得:{k =1b =−3, ∴一次函数解析式为y =x −3;(2)对于y =x −3,当y =0时,x =3,∴C(3,0),∴S △AOB =S △AOC +S △BOC =12×3×1+12×3×4=152;(3)由图象可得,当−1<x <0或x >4时,kx +b >mx .解析:(1)利用待定系数法,即可得到反比例函数的解析式,把点A(4,1)与点B(−1,−4)代入一次函数y =kx +b ,即可得到一次函数解析式为y =x −3;(2)根据三角形的面积公式即可得到结论;(3)由图象即可得kx +b >mx 的x 的取值范围.本题考查的是反比例函数与一次函数的交点问题及三角形的面积公式,熟知坐标轴上点的坐标特点是解答此题的关键. 24.答案:(1)如图,连接OD ,∵OA =OD ,∴∠OAD =∠ODA ,∵AD 平分∠EAF ,∴∠DAE=∠DAO,∴∠DAE=∠ADO,∴OD//AE,∵AE⊥EF,∴OD⊥EF,∴EF是⊙O的切线;(2)①60°;②8.解析:解:(1)见答案;(2)①当∠BAC的度数为60时,四边形ACDO为菱形;∵∠BAC=60°,∴∠AOD=120°,∵OA=OD,∴∠OAD=∠ODA=30°,∴∠CAD=30°,连接CD,∵OD//AE,∴∠OAD=∠ADC=30°,∴∠CAO=∠ADC=30°,∴AC=CD,∵AD=AD,∴△ACD≌△AOD(ASA),∴AC=AO,∴AC=AO=CD=OD,∴四边形ACDO为菱形;故答案为:60°;②设OD与BC交于G,∵AB为直径,∴∠ACB=90°,∵DE⊥AC,∴四边形CEDG是矩形,∴DG=CE,∵AC=3CE,AC=1.5CE,∴OG=12∴OD=2.5CE=5,∴CE=2,∴AC=6,∵AB=2×5=10,∴BC=√AB2−AC2=8.故答案为:8.本题考查了切线的判定和性质,矩形的判定和性质,全等三角形的判定和性质,正确的作出辅助线是解题的关键.(1)连接OD,由OA=OD知∠OAD=∠ODA,由AD平分∠EAF知∠DAE=∠DAO,据此可得∠DAE=∠ADO,继而知OD//AE,根据AE⊥EF即可得证;(2)①连接CD,根据平行线的性质得到∠OAD=∠ADC=30°,求得∠CAO=∠ADC=30°,根据全等三角形的性质得到AC=AO,于是得到结论;②设OD与BC交于G,根据圆周角定理得到∠ACB=90°,推出四边形CEDG是矩形,得到DG=CE,根据勾股定理即可得到结论.25.答案:解:(1)∵A(−1,0)、B(3,0)经过抛物线y=ax2+bx+c,∴可设抛物线为y=a(x+1)(x−3)。
广东省东莞市东莞中学2023-2024学年九年级上学期期末数学试题[答案]
2023-2024学年第一学期初三期末教学质量自查数学试卷数 学一、选择题(本大题共10 小题,每小题3分,共30分)1.下列实数中,比3-小的数是( )A .2-B .4C .5-D .12.人体中红细胞的直径约为0.0000077m ,将0.0000077用科学记数法表示为( )A .57.710-´B .67.710-´C .77710-´D .80.7710-´3.下列正确的是( )A 23=´B 23=+C 3=±D 0.7=4.化简---a b a b a b 的结果是( )A .a b +B .a b -C .22a b -D .15.若ABC DEF ∽△△, 其相似比为2:3,则ABC V 与DEF V 的面积比为( )A .4:9B .2:3CD .16:816.如图,烧杯内液体表面AB 与烧杯下底部CD 平行,光线EF 从液体中射向空气时发生折射,光线变成FH ,点G 在射线EF 上.已知20HFB Ð=°,60FED Ð=°,则GFH Ð的度数为( )A .20°B .40°C .60°D .80°7.一个多边形的内角和是外角和的2倍,这个多边形是( )A .三角形B .四边形C .五边形D .六边形8.若关于x 的方程20x x m -+=没有实数根,则m 的值可以为( )A .1-B .14-C .0D .19.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <210.如图,在平面直角坐标系中,直线AB 经过点()6,0A 、()0,6B ,O e 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作O e 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为( )A B C .3D .二、填空题(本大题共5小题,每小题3分,共15分)11.不等式3x+1<-2的解集是 .12.因式分解:29ax a -= .13.将抛物线23y x =-向左平移2个单位,所得抛物线的解析式为 .14.如图,△ABC 绕点A 逆时针旋转得到△AB′C′,点C 在AB'上,点C 的对应点C′在BC 的延长线上,若∠BAC'=80°,则∠B = 度.15.如图,已知O e 的内接正六边形ABCDEF 的边长为4,H 为边AF 的中点,则图中阴影部分的面积是 .三、解答题(一)(本大题共3小题,第16题10分,第17、18题各7分,共24分)16.(1()1011 3.142p -æö-+--ç÷èø(2)化简∶22141121a a a a -æö-¸ç÷--+èø.17.如图,在ABC V 中,(1)尺规作图∶作ABC V 的高CD ,交AB 于点D (保留作图痕迹,不写作法) ;(2)若60A Ð=°,45B Ð=°,10AC =,求AB 的长.18.如图,点A 在反比例函数()0k y x x=>的图象上,AB y ^轴于点B ,2AB =,4OB =.(1)求反比例函数的表达式;(2)若直线CD垂直平分线段AO,交AO于点D,交y轴于点C,交x轴于点E,求线段OE 的长.四、解答题(二) (本大题共3 小题,每小题9分,共27分)19.劳动教育具有树德、增智、强体、育美的综合育人价值,有利于学生树立正确的劳动价值观.学校为了解学生参加家务劳动的情况,对八年级学生参加家庭劳动情况开展调查研究,请将下面过程补全.(1)收集数据,在八年级随机抽取20名学生进行问卷调查,他们一周参加家庭劳动的次数分别为:3 1 2 2 4 3 3 2 3 4 3 4 0 5 7 2 6 4 6 6(2)整理数据,结果如下:分组频数£<2x02£<9x24x£<a46x£<468根据以上信息,解答下列问题:a______,补全频数分布直方图;(1)=(2)已知这组数据的平均数为3.5,该校八年级现有200名学生,请估计该校八年级学生每周参加家庭劳动的次数达到平均水平及以上的学生人数;(3)劳动时间为68x £<的4名学生中有2名男生,2名女生,从中任意抽取2名学生参加学校开展的以“劳动美”为主题的演讲活动,用树状图或列表法求抽取的2名学生恰好是一名男生和一名女生的概率.20.2023年第31届世界大学生夏季运动会将在成都举办,与吉祥物“蓉宝”有关的纪念品现已上市.某商店计划今年购进A ,B 两种“蓉宝”纪念品若干件,订购A 种“蓉宝”纪念品花费6000元,订购B 种“蓉宝”纪念品花费3200元,其中A 种纪念品的订购单价比B 种纪念品的订购单价多20元,并且订购A 种纪念品的数量是B 种纪念品数量的1.25倍.(1)求商店订购A 种纪念品和B 种纪念品分别是多少件?(2)若商店一次性购买A ,B 纪念品共60件,要使总费用不超过3000元,最少要购买多少件B 种纪念品?21.如图,AB 是O e 的直径,点C 在O e 上,BD 平分ABC Ð交O e 于点D , 过点D 作DE BC ^于E .(1)求证∶DE 是O e 的切线;(2)若10AB =,6AD =,求EC 的长.五、解答题(三) (本大题共2小题,每小题12分,共24分)22.如图,在平面直角坐标系中,已知二次函数2y ax bx c =++的图象与x 轴交于点()2,0A -和点()6,0B 两点,与y 轴交于点()0,6C .点D 为线段BC 上的一动点.(1)求二次函数的表达式;(2)如图1,求AOD △周长的最小值;(3)如图2,过动点D 作DP AC ∥交抛物线第一象限部分于点P ,连接,PA PB ,记PAD V 与PBD △的面积和为S ,当S 取得最大值时,求点P 的坐标,并求出此时S 的最大值.23.实践操作:第一步:如图(1),正方形纸片ABCD 边AD 上有一点P ,将正方形纸片ABCD 沿BP 对折,点A 落在点E 处;第二步:如图(2),将正方形ABCD 沿AE 对折,得到折痕AF ,把纸片展平;第三步:如图(3),将图(1)中纸片沿PE 对折,得到折痕PG ,把纸片展平;第四步:如图(4),将图(3)中纸片对折,使AD 与BC 重合,得到折痕MN ,把纸片展平,发现点E 刚好在折痕MN 上.问题解决:(1)在图(2)中,判断BP 与AF 的数量关系,并证明你的结论;(2)在图(3)中,求证:PDG △的周长不变;(3)在图(4CG 的长.【分析】根据0大于负数,负数比较大小绝对值大的反而小,即可解答.【详解】解:∵53214-<-<-<<,∴比3-小的数是5-,故选C .【点睛】本题考查了有理数的大小比较,解决本题的关键是熟记0大于负数,两个负数比较大小绝对值大的反而小.2.B【分析】本题主要考查科学记数法,根据科学记数法的表示方法求解即可.科学记数法的表示形式为10n a ´的形式,其中1<10a £,n 为整数.解题关键是正确确定a 的值以及n 的值.【详解】0.0000077用科学记数法表示为67.710-´.故选:B .3.A【分析】根据二次根式的性质和算术平方根的定义,进行求解即可得出结果.【详解】解:A 23==´,选项正确,符合题意;B 23=¹+,选项错误,不符合题意;C 3=,选项错误,不符合题意;D =,选项错误,不符合题意;故选A .【点睛】本题考查二次根式的性质和算术平方根的定义.熟练掌握二次根式的性质和算术平方根的定义是解题的关键.4.D【分析】本题主要考查了分式的减法运算法则,灵活运用运算法则成为解答本题的关键.根据同分母分式的减法运算则计算即可.【详解】---a b a b a ba ba b -=-故选:D .5.A【分析】本题考查的是相似三角形的性质,解题的关键是掌握相似三角形的面积比等于相似比的平方.根据相似三角形的面积比等于相似比的平方计算即可.【详解】∵ABC DEF ∽△△, 其相似比为2:3,∴ABC V 与DEF V 的面积比为4:9.故选:A .6.B【分析】由题意知,AB CD P ,则60GFB FED Ð=Ð=°,根据GFH GFB HFB Ð=Ð-Ð,计算求解即可.【详解】解:由题意知,AB CD P ,∴60GFB FED Ð=Ð=°,∴40GFH GFB HFB Ð=Ð-Ð=°,故选:B .【点睛】本题考查了平行线的性质.解题的关键在于明确角度之间的数量关系.7.D【分析】本题考查了多边形的内角和公式与外角和定理,根据多边形的内角和公式()2180n -×°与多边形的外角和定理列式进行计算即可解答.【详解】设这个多边形是n 边形,根据题意,得()21803602n -×°=°´,解得:6n =,∴这个多边形是六边形.故选:D8.D【分析】根据关于x 的方程20x x m --=没有实数根,判断出Δ0<,求出m 的取值范围,再找出符合条件的m 的值.【详解】解:∵关于x 的方程20x x m -+=没有实数根,∴()214114m m D =--´´=-0<,解得:14m >,故选项中只有D 选项满足,故选D.【点睛】本题考查了一元二次方程根的判别式,需要掌握一元二次方程没有实数根相当于判别式小于零.9.C【分析】一次函数y1=kx+b 落在与反比例函数y 2=c x图象上方的部分对应的自变量的取值范围即为所求.【详解】∵一次函数y1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x (c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,∴不等式y1>y2的解集是﹣3<x <0或x >2,故选C .【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.10.A【分析】连接OP OQ 、,根据勾股定理知222PQ OP OQ =-,当OP AB ^时,线段OP 最短,即线段PQ 最短.【详解】连接OP OQ 、.∵PQ 是O 的切线,∴OQ PQ ^,根据勾股定理知222PQ OP OQ =-,∵当PO AB ^时,线段PQ 最短,又∵()6,0A 、()0,6B ,∴6O A O B ==,∴AB =∴12OP AB ==,∵2OQ =,∴PQ ==故选:A .【点睛】此题考查切线长定理,解题关键在于掌握切线长定理和勾股定理运算.11.1x <-.【详解】试题分析:3x+1<-2,3x <-3,x <-1.故答案为x <-1.考点:一元一次不等式的解法.12.(3)(3)a x x +-【分析】先提公因式然后再用平方差公式分解因式即可.【详解】解:29ax a-()29a x =-()()33a x x =+-故答案为:()()33a x x +-.【点睛】本题主要考查了分解因式,熟练掌握平方差公式()()22a b a b a b -=+-是解题的关键.13.()232y x =-+【分析】根据图象平移的规则,“上加下减,左加右减”,即可求解,本题考查了图象的平移,解题的关键是:熟记图象平移规则.【详解】解:根据题意,将抛物线23y x =-向左平移2个单位,得:()232y x =-+,故答案为:()232y x =-+.14.30【分析】根据旋转的性质和等腰三角形的性质即可得到结论.【详解】解:∵△ABC 绕点A 逆时针旋转得到△AB′C′,∴∠C′AB′=∠CAB ,AC′=AC ,∵∠BAC'=80°,∴∠C′AB′=∠CAB =12ÐC′AB =40°,∴∠ACC′=70°,∴∠B =∠ACC′﹣∠CAB =30°,故答案为:30.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形的外角的性质,正确的识别图形是解题的关键.15.8π3+【分析】本题考查等边三角形性质,正六边形性质,扇形面积公式等.根据题意先计算出CDH S △的面积,再计算扇形COD 面积及COD S △面积,即可得到本题答案.【详解】解:过点H 作HE CD ^交CD 于点E ,连接,OC OD ,,∵O e 的内接正六边形ABCDEF 的边长为4,H 为边AF 的中点,∴60COD Ð=°,60ECO Ð=°,4CO OD ==,E 为边CD 的中点,∴2CE DE ==,∴OE =∴=EH∴142CDH S =´´=V ∴扇形COD 面积:260π48π3603°=°,∵142COD S =´´=V∴阴影部分的面积:888(πππ333-=-=,故答案为:8π3.16.(13;(2)12a a -+【分析】(1)首先计算绝对值,负整数指数幂,零指数幂和算术平方根,然后计算加减;(2)根据分式的混合运算法则求解即可.【详解】(1()1011 3.142p -æö-+--ç÷èø1213=+-+3=;(2)22141121a a a a -æö-¸ç÷--+èø()()()22211111a a a a a a +--æö=-¸ç÷--èø-()()()212122a a a a a --=×-+-12a a -=+.【点睛】本题考查了实数的运算、异分母分式的加减运算,涉及了算术平方根、负指数幂、零指数幂的运算等,熟练掌握各运算的运算法则是解题的关键.17.(1)见解析(2)5【分析】(1)以点C 为圆心,适当长度为半径画弧,交AB 于点E ,F ,然后分别以点E ,F 为圆心,以适当长度为半径画弧,两弧交于点M ,连接CM 交AB 于点D ,线段CD 即为所求;(2)首先根据含30°角直角三角形的性质求出152AD AC ==,然后利用勾股定理求出CD ==BD CD ==【详解】(1)如图所示,CD 即为所求;(2)∵CD 是ABC V 的高∴CD AB ^,即90ADC Ð=°∵60A Ð=°∴906030ACD Ð=°-°=°∴152AD AC ==∴CD ==∵45B Ð=°∴45BCD Ð=°∴BD CD ==∴5AB BD AD =+=.【点睛】此题考查了尺规作三角形的高,含30°角直角三角形的性质,勾股定理,等腰直角三角形三角形的性质等知识,解题的关键是掌握以上知识点.18.(1)8y x=(2)5【分析】(1)由题意可得点A 的坐标为()24,,代入k y x=,求出k 的值即可;(2)连接AE ,过点A 作AF OE ^于点F ,由直线CD 为线段OA 的垂直平分线可得AE OE =,设线段OE 的长为m ,则AE m =,2EF m =-,由勾股定理得222AE AF EF =+,即()22242m m =+-,求出m 的值即可.【详解】(1)解:AB y ^Q 轴,90ABO \Ð=°,∵2AB =,4OB =,\点A 的坐标为()24,,将()24A ,代入k y x=,得8k =,\反比例函数的表达式为8y x=.(2)解:连接AE ,过点A 作AF OE ^于点F ,如图所示:∵直线CD 为线段OA 的垂直平分线,AE OE \=,设线段OE 的长为m ,则AE m =,Q 点A 的坐标为()24,,4AF \=,2OF =,∴2EF m =-,在Rt V AEF 中,由勾股定理得,222AE AF EF =+,即()22242m m =+-,解得:5m =,\线段OE 的长为5.【点睛】本题考查反比例函数图象上点的坐标特征、待定系数法求反比例函数解析式、线段垂直平分线的性质,勾股定理,解题的关键是理解题意,灵活运用所学知识解决问题.19.(1)5,补图见解析(2)90人(3)23【分析】(1)根据收集到的数据找出46x £<有几个即可.(2)由图表信息先求出达到平均水平及以上的概率,然后再求解八年级学生达到平均水平及以上的人数即可.(3)列出树状图,利用概率计算公式计算即可.【详解】(1)解:由收集到的数据可知,46x £<分别有4,4,4,5,4共有5个∴5a =,如图所示;(2)解:542009020+´=(人)答:该校八年级学生每周参加家庭劳动的次数达到平均水平及以上的学生人数为90人.(3)画树状图如下:∵所有等可能出现的结果总数为12个,其中抽到一男一女的情况数有8个,∴恰好抽到一男一女概率为82123=.【点睛】本题主要考查数据统计与概率的计算,熟练掌握概率的计算是解决本题的关键.20.(1)商店订购A 种纪念品100件,B 种纪念品80件;(2)30【分析】(1)设商店订购B 种纪念品x 件,则订购A 种纪念品1.25x 件,根据“A 种纪念品的订购单价比B 种纪念品的订购单价多20元”列分式方程,求解即可;(2)设购买m 件B 种纪念品,则购买(60-m )件A 种纪念品,根据总费用不超过3000元列一元一次不等式,求解即可,【详解】(1)解:设商店订购B 种纪念品x 件,则A 种纪念品分别是1.25件,根据题意得:60003200201.25x x-=,解得:x =80,经检验,x =80是原方程的根,且符合题意,∴1.25×80=100件,答:商店订购A 种纪念品100件,B 种纪念品80件;(2)解:由(1)得:A 种商品的单价为6000÷100=60元,B 种商品的单价为60-20=40元,设购买m 件B 种纪念品,则购买(60-m )件A 种纪念品,根据题意得:60(60-m )+40m ≤3000,解得m ≥30,答:最少购买30件B 种纪念品.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,理解题意并根据题意建立等量关系或不等关系是解题的关键.21.(1)见解析(2)185CE =【分析】(1)连接OD ,由BD 为角平分线得到OBD CBD Ð=Ð,再由OB OD =,利用等边对等角得到ODB OBD Ð=Ð,从而得出ODB CBD Ð=Ð,利用内错角相等两直线平行得到OD 与BE 平行,由DE 垂直于BE 得到OD 垂直于DE ,即可得证;(2)过D 作DH AB ^于H ,根据HL 得出Rt Rt ADH CDE V V ≌,得出AH CE =,再根据勾股定理得出8BD ==,再利用等积法即可得出DE 的长,然后证明出ABD CDE V V ∽,利用相似三角形的性质求解即可.【详解】(1)证明:连接OD .∵OD OB =,∴ODB OBD Ð=Ð.∵BD 平分ABC Ð,∴OBD CBD Ð=Ð.∴ODB CBD Ð=Ð,∴OD BE ∥.∴180BED ODE Ð+Ð=°.∵BE DE ^,∴90BED Ð=°.∴90ODE Ð=°.∴OD DE ^.∴DE 与O e 相切;(2)过D 作DH AB ^于H .∵BD 平分ABC Ð,DE BE ^,∴DH DE =.∵ AD CD=,∴AD CD =.∴()Rt Rt HL ADH CDE V V ≌,∴AH CE =.∵AB 是O e 的直径,∴90ADB Ð=°.∵10AB =,6AD =,∴8BD ===.∵1122AB DH AD BD ×=×,∴245DH =.∴245DE =.∵90Ð=Ð=°E ADB ,DCE AÐ=Ð∴ABD CDEV V ∽∴AD BD CE DE =,即68245CE =解得185CE =.【点睛】此题考查了切线的判定,角平分线的性质、圆周角定理、相似三角形的性质和判定,勾股定理等知识,熟练掌握切线的判定方法是解本题的关键,属于中考常考题型.22.(1)21262y x x =-++(2)12(3)153,2æöç÷èø,272S =最大值【分析】(1)根据题意设抛物线的表达式为()()26y a x x =+-,将()0,6代入求解即可;(2)作点O 关于直线BC 的对称点E ,连接EC EB 、,根据点坐特点及正方形的判定得出四边形OBEC 为正方形,()6,6E ,连接AE ,交BC 于点D ,由对称性DE DO =,此时DO DA +有最小值为AE 的长,再由勾股定理求解即可;(3)由待定系数法确定直线BC 的表达式为6y x =-+,直线AC 的表达式为36y x =+,设21,262P m m m æö-++ç÷èø,然后结合图形及面积之间的关系求解即可.【详解】(1)解:由题意可知,设抛物线的表达式为()()26y a x x =+-,将()0,6代入上式得:()()60206a =+-,12a =-所以抛物线的表达式为21262y x x =-++;(2)作点O 关于直线BC 的对称点E ,连接EC EB 、,∵()6,0B ,()0,6C ,90BOC Ð=°,∴6OB OC ==,∵O 、E 关于直线BC 对称,∴四边形OBEC 为正方形,∴()6,6E ,连接AE ,交BC 于点D ,由对称性DE DO =,此时DO DA +有最小值为AE的长,10AE ===∵AOD △的周长为DA DO AO ++,2AO =,DA DO +的最小值为10,∴AOD △的周长的最小值为10212+=;(3)由已知点()2,0A -,()6,0B ,()0,6C ,设直线BC 的表达式为y kx n =+,将()6,0B ,()0,6C 代入y kx n =+中,600k n n +=ìí=î,解得16k n =-ìí=î,∴直线BC 的表达式为6y x =-+,同理可得:直线AC 的表达式为36y x =+,∵PD AC ∥,∴设直线PD 表达式为3y x h =+,由(1)设21,262P m m m æö-++ç÷èø,代入直线PD 的表达式得:2162h m m =--+,∴直线PD 的表达式为:21362y x m m =--+,由261362y x y x m m =-+ìïí=--+ïî,得22118411684x m m y m m ì=+ïïíï=--+ïî,∴221111,68484D m m m m æö+--+ç÷èø,∵P ,D 都在第一象限,∴PAD PBD PAB DABS S S S S =+=-△△△△2211112662284AB m m m m éùæöæö=-++---+ç÷ç÷êúèøèøëû21398284m m æö=´-+ç÷èø()22339622m m m m =-+=--2327(3)22m =--+,∴当3m =时,此时P 点为153,2æöç÷èø.272S =最大值.【点睛】题目主要考查二次函数的综合应用,包括待定系数法确定函数解析式,周长最短问题及面积问题,理解题意,熟练掌握运用二次函数的综合性质是解题关键.23.(1)BP AF =,见解析(2)见解析(3)3-【分析】(1)根据折叠可得AE BP ^,即可得到ABP DAF Ð=Ð ,易证ABP DAF ≌△△即可得到答案;(2)连接BG ,由折叠的性质知AB BE =,AP PE =,A BEP Ð=Ð,结合AB BC =,90A C Ð=Ð=°易得BEG BCG △≌△得到=EG CG ,即可得到证明;(3)根据折叠可得AB BE =,ABP EBP Ð=Ð,12AM BM AB ==,即可得到30MEB Ð=°,从而得到30ABP EBP Ð=Ð=°,即可得到AP ,从而得到PD ,由(2)得90BEG Ð=°,即可得到60NEG Ð=°,从而得到30EGN Ð=°,即可得到DG ,即可得到答案;【详解】(1)解: BP AF =,理由如下,证明:由折叠的性质知AE BP ^,∴90ABP DAF BAF Ð=Ð=°-Ð,在ABP V 和DAF △中,ABP DAF AB DABAP D Ð=Ðìï=íïÐ=Ðî,∴(ASA)ABP DAF V V ≌,∴BP AF =;(2)解:如图,连接BG ,由折叠的性质知AB BE =,AP PE =,A BEP Ð=Ð,又∵AB BC =,90A C Ð=Ð=°,∴BE BC =,90C BEP BEG Ð=Ð=Ð=°,在BEG V 和BCG V 中,BE BC BG BG=ìí=î∴HL BEG BCG V V ≌(),∴=EG CG ,∴()()2PDG C PE DP EG DG AP DP GC DG AD CD AD =+=++==V ++++,又∵AD 为正方形ABCD 的边长,∴PDG △的周长不变;(3)解:如图,连接AE,由折叠性质可得,AB BE =,ABP EBP Ð=Ð,12AM BM AB ==,EM AB ^,MN BC ∥,∴AE BE =,∴AE BE AB ==,∴ABE V 为等边三角形,∴60AEB ABE Ð=Ð=°,而EM AB ^,∴30MEB Ð=°,∴30EBC Ð=°,∴30ABP EBP Ð=Ð=°,2222(2)33AP AP AP AB -===,解得:1AP =,∴1DP ,由(2)得90BEG Ð=°,∴60NEG Ð=°,∴30EGN Ð=°,∴2PG =,∴1)3DG ===,∴(33CG ==-;【点睛】本题主要考查正方形的性质,勾股定理,直角三角形30°角所对直角边等于斜边一半,二次根式混合运算,折叠的性质及三角形全等的性质与判定,解题的关键是根据折叠得到三角形全等条件及角度关系.。
广东省东莞市东城中学2021-2022学年九年级上学期期末数学试题及参考答案
广东省东莞市东城中学2021-2022学年九年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列数学符号中,不是中心对称图形的是()A.B.C.D.2.抛物线y=2(x-3)2+4的顶点坐标是()A.(3,4)B.(-3,4)C.(3,-4)D.(2,4)3.一个口袋里装有4个白球,5个黑球,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽出一个球,抽到白球的概率是()A.49B.59C.14D.194.关于x的一元二次方程220x x k-+=有两个相等的实数根,则k的值为()A.1B.1-C.2D.2-5.已知反比例函数y=2kx-的图象在第一、三象限内,则k()A.k>2B.k≥2C.k<2D.k≤26.如图,正六边形ABCDEF内接于O,过点O作OM⊥弦BC于点M,若O的半径为4,则弦心距OM的长为()A.B C.2D.7.如图,已知DAB EAC∠=∠,添加下列一个条件,不能使ADE∽ABC的是()A.AD DEAB BC=B.B D∠=∠C.AD AEAB AC=D.E C∠=∠8.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是()A.(2,5)B.(5,2)C.(2,﹣5)D.(5,﹣2)9.如图,沿一条母线将圆锥侧面剪开并展开,得到一个扇形,若圆锥底面半径2r=,扇形圆心解120θ,则该圆锥母线长为()A.10B.152C.6D.810.已知:如图,矩形ABCD中,AB=2cm,AD=3cm.点P和点Q同时从点A出发,点P以3cm/s的速度沿A→D方向运动到点D为止,点Q以2cm/s的速度沿A→B→C→D方向运动到点D为止,则∽APQ的面积S(cm2)与运动时间t(s)之间函数关系的大致图象是()A.B.C.D.二、填空题11.一元二次方程x 2﹣3x =0的解是_____.12.一个不透明的盒子里有若干个除颜色外其他完全相同的小球,其中红球12个.每次先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子里,通过大量重复摸球试验后发现,摸出红球的频率稳定在0.6左右,则估计盒子里小球的个数为_____. 13.如果关于x 的一元二次方程ax 2+bx +1=0的一个解是x =1,则2021﹣a ﹣b =_____.14.为了测量旗杆的高度,某同学测得阳光下旗杆的影长为2m ,同一时刻长度为1m 的标杆影长为0.4m ,则旗杆的高度为___m .15.如图,正比例函数y =k 1x 和反比例函数y =2k x图象相交于A 、B 两点,若点A 的坐标是(3,2),则点B 的坐标是___.16.如图,将半径为2,圆心角为90°的扇形BAC 绕A 点逆时针旋转,使点B 的对应点D 恰好落在AC 上,点C 的对应点为E ,则图中阴影部分的面积为_____.17.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点(﹣3,0),其对称轴为直线x =﹣12,有下列结论:∽abc >0;∽3a +c >0;∽当x <0时,y 随x 的增大而增大;∽一元二次方程cx 2+bx +a =0的两个根分别为x 1=﹣13,x 2=12;∽2404b ac a -<,正确的有_____.三、解答题18.解方程:x2+4x ﹣1=0.19.如图,已知O 是坐标原点,AB 两点的坐标分别为(3,﹣1),(2,1).(1)以点O 为位似中心,在y 轴的左侧将∽OAB 放大2倍;(2)分别写出A ,B 两点的对应点A ′,B ′的坐标.20.如图所示,AB CD 、是O 的两条直径,//CE AB ,求证:BC AE .21.近几年,各式各样的共享经济模式在各个领域迅速普及应用,下面是某同学收集的四个共享经济领域的图标和数据.(1)将收集到的四张卡制成标号为A 、B 、C 、D 的四张卡片(除编号和内容外,其余完全相同).背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A ,B ,C ,D 表示).(2)据调查2021年,某共享公司一月份营业额是5千万,二、三月份的营业额连续增长,到三月份营业额是7.2千万,求该共享公司营业额的月平均增长率.22.Rt ABC 在直角坐标系内的位置如图所示,反比例函数y =k x(k ≠0)在第一象限内的图象与BC 边交于点D (4,1),与AB 边交于点E (2,n ).(1)求反比例函数的解析式和n值;(2)当12BCAC时,求直线AB的解析式.23.如图,把矩形ABCD绕点A按逆时针方向旋转得到矩形AEFG,使点E落在对角线BD上,连接DG,DF.(1)若∽BAE=50°,求∽DGF的度数;(2)求证:DF=DC.24.如图所示,CD为∽O的直径,AD、AB、BC分别与∽O相切于点D、E、C(AD<BC).连接DE并延长与直线BC相交于点P,连接OA、OB.(1)求证:OA∽OB;(2)求证:BC=BP;(3)若OA=3,OB=4,求AD•BC的值.25.如图,抛物线y=ax2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点,与y轴交于点C.直线l与抛物线交于A、D两点,与y轴交于点E,点D的坐标为(4,3).(1)求抛物线的解析式与直线l的解析式;(2)若点P是抛物线上的点且在直线l上方,连接P A、PD,求当△P AD面积最大时点P的坐标及该面积的最大值;(3)若点Q是y轴上的点,且∽ADQ=45°,求点Q的坐标.参考答案:1.D【解析】【详解】解:选项A ,B ,C 都是中心对称图形,选项D 是轴对称图形,不是中心对称图形, 故选D【点睛】本题考查的是中心对称图形的识别,掌握“中心对称图形的定义”是解本题的关键.中心对称图形:把一个图形绕某点旋转180︒后,能够与自身重合,则这个图形是中心对称图形. 2.A【解析】【详解】根据2()y a x h k =-+ 的顶点坐标为(,)h k ,易得抛物线y=2(x ﹣3)2+4顶点坐标是(3,4).故选A.3.A【解析】【分析】利用白球的个数除以球的总数即可得出答案;【详解】 解:随意从中抽出一个球,抽到白球的概率是44549=+, 故选:A【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比. 4.A【解析】【分析】根据方程有两个相等的实数根列方程求解即可.【详解】由题意得∆=0,∽4-4k=0,解得k=1,故选:A.【点睛】此题考查了一元二次方程的根的情况求未知数的值,正确掌握一元二次方程的根的三种情况:方程有两个不相等的实数根时∆>0,方程有两个相等的实数根时∆=0,方程没有实数根时∆<0.5.C【解析】【分析】根据反比例函数的性质:反比例函数的图象在第一、三象限内,则可知2-k>0,解得k的取值范围即可.【详解】解:∽反比例函数y=2kx的图象在第一、三象限内,∽2-k>0,解得k<2.故选:C.【点睛】本题主要考查反比例函数的性质,当k>0时,双曲线的两个分支在一,三象限,y随x的增大而减小;当k<0时,双曲线的两个分支在二,四象限,y随x的增大而增大.6.A【解析】【分析】如图,连接OB、OC.首先证明∽OBC是等边三角形,求出BC、BM,根据勾股定理即可求出OM.【详解】解:如图,连接OB、OC.∽ABCDEF是正六边形,∽∽BOC=60°,OB=OC=4,∽∽OBC是等边三角形,∽BC=OB=OC=4,∽OM∽BC,∽BM=CM=2,在Rt△OBM中,OM=,故选:A.【点睛】本题考查正多边形与圆、等边三角形的性质、勾股定理、弧长公式等知识,解题的关键是记住等边三角形的性质,弧长公式,属于基础题,中考常考题型.7.A【解析】【分析】先证出∽DAE=∽BAC,再根据三角形相似的判定方法即可得出∽ADE∽∽ABC.【详解】解:∽∽DAB=∽CAE,∽∽DAB+∽BAE=∽CAE+∽BAE,即∽DAE=∽BAC,若∽B=∽D或∽E=∽C或AD AE AB AC=,则有∽ADE∽∽ABC.故选:A.【点睛】本题考查了三角形相似的判定方法:熟练掌握三角形相似的判定方法,弄清角之间的关系是解决问题的关键.8.B【解析】【详解】∽线段AB 绕点O 顺时针旋转90°得到线段A′B′, ∽△ABO∽△A′B′O′,∽AOA′=90°,∽AO=A′O.作AC∽y 轴于C,A′C′∽x 轴于C′,∽∽ACO=∽A′C′O=90°.∽∽COC′=90°,∽∽AOA′−∽COA′=∽COC′−∽COA′, ∽∽AOC=∽A′OC′.在△ACO 和△A′C′O 中,ACO A C O AOC A OC AO A O ∠=∠''⎧⎪∠=∠''⎨⎪='⎩,∽△ACO∽△A′C′O(AAS),∽AC=A′C′,CO=C′O.∽A(−2,5),∽AC=2,CO=5,∽A′C′=2,OC′=5,∽A′(5,2).故选B.9.C【解析】【分析】利用圆锥的侧面展开图为扇形,且这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长以及弧长公式即可列出关于l 的方程,解出l 即可.【详解】 解:根据题意得,12022180l ππ⨯=, 解得,6l =,即该圆锥母线的长为6.故选:C .【点睛】本题考查关于圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.10.C【解析】【分析】研究两个动点到矩形各顶点时的时间,分段讨论求出函数解析式即可求解.【详解】解:分三种情况讨论:(1)当0≤t≤1时,点P 在AD 边上,点Q 在AB 边上,∽S =212332t t t ⨯⨯=, ∽此时抛物线经过坐标原点并且开口向上;(2)当1<t≤2.5时,点P 与点D 重合,点Q 在BC 边上,∽S =1322⨯⨯=3, ∽此时,函数值不变,函数图象为平行于t 轴的线段;(3)当2.5<t≤3.5时,点P 与点D 重合,点Q 在CD 边上,∽S =12×3×(7﹣2t ))=﹣t+212. ∽函数图象是一条线段且S 随t 的增大而减小.故选:C .【点睛】本题考查了二次函数与几何问题,用分类讨论的数学思想解题是关键,解答时注意研究动点到达临界点时的时间以此作为分段的标准,逐一分析求解.11.x1=0,x2=3## x1=3,x2=0【解析】【分析】利用因式分解法解方程.【详解】解:x2﹣3x=0x(x-3)=0,∽x=0或x-3=0,所以x1=0,x2=3.故答案为:x1=0,x2=3.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.12.20【解析】【分析】利用红球出现的次数除以红球的频率即可得到答案.【详解】÷=(个),解:120.620故答案为:20.【点睛】此题考查了利用频率估计概率,已知部分的概率求总数,正确掌握概率的计算公式是解题的关键.13.2022【解析】【分析】根据关于x的一元二次方程ax2+bx+1=0(a≠0)的一个解是x=1,可以得到a+b的值,然后将所求式子变形,再将a+b的值代入,即可解答本题.【详解】解:∽关于x的一元二次方程ax2+bx+1=0(a≠0)的一个解是x=1,∽a+b+1=0,∽a+b=-1,∽2021-a-b=2021-(a+b) =2021+1=2022.故答案为:2022.【点睛】本题考查了一元二次方程的解,解答本题的关键是明确一元二次方程的解的含义.14.5【解析】【分析】设旗杆的高度为xm,再根据同一时刻物高与影长成正比列式计算即可得出结论.【详解】解:旗杆的高度为xm,∽长度为1m的标杆影长为0.4m,旗杆的影长为2m,∽1x= 0.42,解得x=5(m),故答案为5.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.15.(﹣3,﹣2)【解析】【分析】由于正比例函数与反比例函数的图象均关于原点对称,所以A、B两点关于原点对称,由关于原点对称的点的坐标特点求出B点坐标即可.【详解】解:∽正比例函数与反比例函数的图象均关于原点对称,∽A、B两点关于原点对称,∽A的坐标为(3,2),∽B的坐标为(﹣3,﹣2).故答案为:(﹣3,﹣2).【点睛】本题主要考查了关于原点对称点的坐标关系,解题的关键在于能够熟练掌握相关知识进行求解.1613π 【解析】【分析】连接BD ,过A 作AF ∽BD 于F ,根据旋转的性质得出扇形ABC 和扇形ADE 的面积相等,AB =AD =BC =BD =2,求出△ABD 是等边三角形,求出∽ABF =60°,解直角三角形求出BF 和AF ,再根据阴影部分的面积S =S 扇形ABC ﹣(S 扇形ABD ﹣S △ABD )求出答案即可.【详解】解:连接BD ,过A 作AF ∽BD 于F ,则∽AFB =90°,如图,∽将半径为2,圆心角为90°的扇形BAC 绕A 点逆时针旋转,使点B 的对应点D 恰好落在AC 上,点C 的对应点为E ,∽扇形ABC 和扇形ADE 的面积相等,AB =AD =BC =BD =2,∽∽ABD 是等边三角形,∽∽ABF =60°,∽∽BAF =30°,∽BF =12AB =122⨯=1,由勾股定理得:AF ∽阴影部分的面积S =S 扇形ABC ﹣(S 扇形ABD ﹣S △ABD )=2902360π⨯﹣(2602123602π⨯-⨯)13π,13π. 【点睛】本题考查了旋转的性质,等边三角形的性质和判定,直角三角形的性质,扇形的面积计算等知识点,能把求不规则图形的面积转化成求规则图形的面积是解此题的关键,注意:如果扇形的圆心角为n°,扇形的半径为r ,那么扇形的面积S=2360n r π. 17.∽∽∽∽【解析】【分析】根据图象得到a<0,b <0,c >0,即可判断∽正确;利用对称轴得到a=b ,将x =-3代入函数解析式求出c =-6a ,代入3a +c 即可判断∽正确;根据函数的增减性判断∽错误;求出图象与x 轴的另一个交点为,得到方程20ax bx c ++=的两个根,进而得到2110a b c x x ⎛⎫+⋅+⋅= ⎪⎝⎭的两个根,由此判断∽正确;根据2404ac b a->即可判断∽. 【详解】解:由图象可知,a<0,b <0,c >0,∽abc >0,故∽正确;∽对称轴为直线x =﹣12, ∽122b a -=-, 得a=b ,当x =-3时,930y a b c =-+=,∽6a+c =0,∽c =-6a ,∽ 3a +c =3a -6a =-3a >0,故∽正确;∽对称轴为直线x =﹣12,∽当x <-12时,y 随x 的增大而增大;当-12<x <0时,y 随x 的增大而减小,故∽错误; ∽抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点(﹣3,0),其对称轴为直线x =﹣12, ∽图象与x 轴的另一个交点为(2,0),∽方程20ax bx c ++=的两个根为123,2x x =-=,∽211a b cx x⎛⎫+⋅+⋅=⎪⎝⎭的两个根为123,2x x=-=,∽一元二次方程cx2+bx+a=0的两个根分别为x1=﹣13,x2=12,故∽正确;∽244ac ba->,∽244b aca-<,故∽正确;故答案为:∽∽∽∽.【点睛】此题考查了二次函数的性质,二次函数的图象与系数的关系,根与系数的关系,抛物线与x轴的交点,能读懂二次函数的图象综合掌握二次函数的知识是解题的关键.18.x1=﹣x2=﹣2【解析】【详解】试题分析:方程变形后,利用配方法求出解即可.试题解析:方程变形得:x2+4x=1,配方得:x2+4x+4=5,即(x+2)2=5,开方得:解得:x1=﹣x2=﹣2考点:解一元二次方程-配方法19.(1)见详解;(2)A′(-6,2),B′(-4,-2).【解析】【分析】(1)把B、A的横纵坐标都乘以−2得到B′、A′的坐标,然后描点即可;(2)分别求出点B、A的横坐标与纵坐标的2倍的相反数即可.【详解】解:(1)如图,△OBꞌAꞌ为所作;-⨯=--⨯-=-⨯=--⨯=-(2) ∽236,2(1)2,224,212,∽A,B两点的对应点A′,B′的坐标为A′(-6,2),B′(-4,-2).【点睛】本题考查了作图−−位似变换:熟练应用以原点为位似中心的两位似图形对应点的坐标的关系确定变换后对应点的坐标是解决问题的关键.20.见解析.【解析】【分析】首先连接OE,欲证明BC AE=,只需推知∽BOC=∽AOE即可.【详解】证明:连接OE,//CE AB,∴∠=∠∠=∠,,BOC C AOE E=,OC OE∴∠=∠,C E∴∠=∠,BOC AOEBC AE∴=.【点睛】此题考查了圆心角与弧的关系、等腰三角形的性质以及平行线的性质.注意准确作出辅助线是解此题的关键.21.(1)16(2)20%【解析】【分析】(1)列树状图求解;(2)设该共享公司营业额的月平均增长率为x ,列一元二次方程求解.(1)解:树状图如下:共有12种等可能的情况,其中恰好是“共享出行”和“共享知识”的有2种,∽P (恰好是“共享出行”和“共享知识”)=21126=; (2)解:设该共享公司营业额的月平均增长率为x ,依题意得()2517.2x +=, 解得120.220%, 2.4x x ===-(不合题意,舍去),答:该共享公司营业额的月平均增长率为20%.【点睛】此题考查了利用列举法求事件的概率,一元二次方程的实际应用,综合掌握各知识点是解题的关键.22.(1)反比例函数的解析式为y =4x,n =2; (2)直线AB 的函数解析式为y =12x +1. 【解析】【分析】(1)将D(4,1)、E(2,n)代入反比例函数y=kx解析式,进而得出n的值;(2)根据题意进而得出D,E,B的坐标,利用待定系数法求出一次函数与反比例函数关系式即可.(1)解:∽D(4,1)、E(2,n)在反比例函数y=kx的图象上,∽4=k,2n=k,∽k=4,n=2,∽反比例函数的解析式为y=4x;(2)解:如图1,过点E作EH∽BC,垂足为H.在Rt∽BEH中,tan∽BEH=tan∽A=12 BCAC=,∽D(4,1),E(2,2),EH=4-2=2,∽BH=1.∽B(4,3).设直线AB的解析式为y=kx+b,代入B(4,3)、E(2,2),得4322k bk b+=⎧⎨+=⎩,解得:121kb⎧=⎪⎨⎪=⎩,因此直线AB的函数解析式为y=12x+1.【点睛】本题主要考查的是反比例函数的性质,待定系数法求出一次函数解析式,解直角三角形等知识,根据待定系数法求出一次函数解析式是解题关键.23.(1)∽DGF=25°;(2)见解析【解析】【分析】(1)由旋转的性质得出AB=AE,AD=AG,∽BAD=∽EAG=∽AGF=90°,由等腰三角形的性质及三角形内角和定理可得出答案;(2)证出四边形ABDF是平行四边形,由平行四边形的性质可得出结论.(1)解:由旋转得AB=AE,AD=AG,∽BAD=∽EAG=∽AGF=90°,∽∽BAE=∽DAG=50°,∽∽AGD=∽ADG=180502︒-︒=65°,∽∽DGF=90°-65°=25°;(2)证明:连接AF,由旋转得矩形AEFG∽矩形∽ABCD,∽AF=BD,∽F AE=∽ABE=∽AEB,∽AF∽BD,∽四边形ABDF是平行四边形,∽DF=AB=DC.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,旋转的性质,平行四边形的判定与性质,等腰三角形的性质,熟记矩形的性质并准确识图是解题的关键.24.(1)证明见解析(2)证明见解析(3)144 25【解析】【分析】(1)如图,连接OE ,根据切线长定理可得AD =AE ,BE =BC ,根据切线的性质可得OD ∽AD ,OE ∽AB ,OC ∽BC ,即可得出点A 在∽DOE 的角平分线上,点B 在∽COE 的角平分线上,根据平角的定义即可得答案;(2)如图,连接CE ,根据等腰三角形的性质可得∽BCE =∽BEC ,根据CD 是直径可得∽CED =90°,可得∽PEB +∽BEC =90°,∽P +∽BCE =90°,即可证明∽P =∽PEB ,可得BE =BP ,即可得出BC =PB ;(3)如图,连接OE ,由(1)可知∽AOB =90°,OE ∽AB ,利用勾股定理可求出AB =5,根据两角对应相等可证明∽AOE ∽∽ABO ,∽BOE ∽∽BAO ,根据相似三角形的性质可得AE OA OA AB =,BE OB OB AB=,即可求出AE 、BE 的长,根据AD=AE ,BC=BE 即可得答案. (1)如图,连.接OE ,∽CD 为∽O 的直径,AD 、AB 、BC 分别与∽O 相切于点D 、E 、C (AD <BC ). ∽AD =AE ,BE =BC ,OD ∽AD ,OE ∽AB ,OC ∽BC ,∽点A 在∽DOE 的角平分线上,点B 在∽COE 的角平分线上,∽∽DOA =∽EOA ,∽COB =∽EOB ,∽∽EOA +∽BOE =∽DOA +∽COB =90°,即∽AOB =90°,∽OA ∽OB .(2)如图,连接CE ,∽BC =BE ,∽∽BCE =∽BEC ,∽CD 是直径,∽∽CED=90°,∽∽PEB+∽BEC=90°,∽P+∽BCE=90°,∽∽P=∽PEB,∽BE=BP,∽BC=BP.(3)如图,连接OE,由(1)可知∽AOB=90°,OE∽AB,∽OA=3,OB=4,∽AB=5,∽∽AEO=∽AOB=90°,∽OAE=∽BAO,∽∽AOE∽∽ABO,∽AE OA OA AB=,∽AE=2OAAB=95,∽∽BEO=∽OEA=90°,∽OBE=∽ABO,∽∽BOE∽∽BAO,∽BE OB OB AB=,∽BE=2OBAB=165,∽AD=AE,BE=BC,∽AD•BC=AE•BE=95×165=14425.【点睛】本题考查切线长定理、角平分线性质定理的逆定理、圆周角定理、相似三角形的判定与性质及等腰三角形的性质,熟练掌握相关性质及判定定理是解题关键.25.(1)y 14=-x 2+x +3;y 12=x +1;(2)△P AD 的面积的最大值为274,P (1,154);(3)点Q 的坐标为(0,133)或(0,﹣9) 【解析】【分析】(1)由A (﹣2,0)、B (6,0)设抛物线的解析式为y =a (x +2)(x ﹣6),把D (4,3)的代入解析式解方程即可,再利用待定系数法求解一次函数的解析式;(2)如图1中,过点P 作PT y ∥轴交AD 于点T .设P (m ,14- m 2+m +3),则T (m ,12m +1),再利用面积列函数关系式,再利用二次函数的性质求解最值即可;(3)如图2中,将线段AD 绕点A 逆时针旋转90°得到AT ,则T (﹣5,6),设DT 交y 轴于点Q ,则∽ADQ =45°,再求解直线DT 的解析式为y 13=-x 133+,作点T 关于AD 的对称点T ′(1,﹣6),求解直线DT ′的解析式为y =3x ﹣9,设DQ ′交y 轴于点Q ′,则∽ADQ ′=45°,从而可得答案.【详解】解:(1)∽抛物线y =ax 2+bx +c 与x 轴交于A (﹣2,0)、B (6,0)两点,∽设抛物线的解析式为y =a (x +2)(x ﹣6),∽D (4,3)在抛物线上,∽3=a (4+2)×(4﹣6),解得a 14=-, ∽抛物线的解析式为y 14=-(x +2)(x ﹣6)14=-x 2+x +3, ∽直线l 经过A (﹣2,0)、D (4,3),设直线l 的解析式为y =kx +m (k ≠0),则2043k m k m -+=⎧⎨+=⎩,解得,121k m ⎧=⎪⎨⎪=⎩, ∽直线l 的解析式为y 12=x +1; (2)如图1中,过点P 作PT y ∥轴交AD 于点T .设P (m ,14- m 2+m +3),则T (m ,12m +1).∽S △P AD 12=•(xD ﹣xA )•PT =3PT , ∽PT 的值最大值时,△P AD 的面积最大,∽PT 14=-m 2+m +312-m ﹣114=-m 212+m +214=-(m ﹣1)294+, ∽14-<0,抛物线开口向下, ∽m =1时,PT 的值最大,最大值为94, 此时△P AD 的面积的最大值为274,P (1,154). (3)如图2中,将线段AD 绕点A 逆时针旋转90°得到AT ,过D 作DM x ⊥轴于,M 过T 作TN x 轴于,N90,,TNAAMD TAD AD AT 90,TANATN TAN DAM ,ATN DAM,ATN DAM ≌6,3,235,TN AM AN DM ON∴ T (﹣5,6),设DT交y轴于点Q,则∽ADQ=45°,∽D(4,3),∽直线DT的解析式为y13=-x133+,∽Q(0,133),作点T关于AD的对称点T',同理可得T'(1,﹣6),则直线DT′的解析式为y=3x﹣9,设DQ′交y轴于点Q′,则∽ADQ′=45°,∽Q′(0,﹣9),综上所述,满足条件的点Q的坐标为(0,133)或(0,﹣9).【点睛】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,待定系数法,等腰直角三角形的性质等知识,解题的关键是学会利用参数构建二次函数解决最值问题,学会构造特殊三角形解决问题,属于中考压轴题.二次函数综合题中面积问题的解题通法:(1)直角坐标系中图形面积的求法,以“S三角形=12×水平底×铅直高”为基础求解.(2)图形面积的数量关系:∽找出所求图形的顶点,其中动点的坐标根据函数关系式用含未知数的代数式表示出来;∽结合图形作辅助线,并将关键线段的长度用含未知数的代数式表示出来;∽利用面积公式用含未知数的代数式表示出图形的面积;∽列方程求解.(3)图形面积的最值,解题思路跟(1)中的前三步相同,然后利用函数的增减性求解.。
【5套打包】东莞市初三九年级数学上期末考试测试题及答案
人教版数学九年级上册期末考试试题及答案一、选择题(每小题3分,共30分)1.下列设计的图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.2.经过某路口的行人,可能直行,也可能左拐或右拐,假设这三种可能性相同,现在有一个人经过该路口,恰好直行的概率是()A.B.C.D.3.若关于x的一元二次方程mx2﹣x=有实数根,则实数m的取值范围是()A.m≥﹣1 B.m≥﹣1且m≠0 C.m>﹣1且m≠0 D.m≠0=4,则4.如图,点A是反比例函数图象的一点,自点A向y轴作垂线,垂足为T,已知S△AOT 此函数的表达式为()A.B.C.D.5.如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B的对应点分别是点A'、B',则点A'的坐标是()A.(﹣1,3)B.(4,0)C.(3,﹣3)D.(5,﹣1)6.一元二次方程x2﹣6x﹣6=0配方后化为()A.(x﹣3)2=15 B.(x﹣3)2=3 C.(x+3)2=15 D.(x+3)2=37.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A .B .2C .2D .88.若点(﹣2,y 1),(﹣1,y 2),(3,y 3)在双曲线y =(k <0)上,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 2<y 1<y 3D .y 3<y 1<y 29.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2B .C .D .10.如图,⊙M 的半径为2,圆心M 的坐标为(3,4),点P 是⊙M 上的任意一点,PA ⊥PB ,且PA 、PB 与x 轴分别交于A 、B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为( )A .3B .4C .6D .8二、填空题(共6小题,每题4份,共24分)11.(4分)用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为 .12.(4分)如图,在平面直角坐标系中,每个小方格都是边长为1个单位长度的正方形,已知△AOB 与△A 1OB 1位似,位似中心为原点O ,且相似比为3:2,点A ,B 都在格点上,则点B 1的坐标为 .13.(4分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】14.(4分)已知线段AB长是2厘米,P是线段AB上的一点,且满足AP2=AB•BP,那么AP长为厘米.15.(4分)如图,在一笔直的海岸线l上有相距2km的A,B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是km.16.(4分)在△ABC中,AB=9,AC=6.点M在边AB上,且AM=3,点N在AC边上.当AN=时,△AMN与原三角形相似.三、解答题(本题共7小题,共66分)17.(12分)(1)计算:4cos30°﹣3tan60°+2sin45°•cos45°(2)解方程:x2+x﹣1=018.(7分)随着信息技术的迅猛发展,人民去商场购物的支付方式更加多样、便捷.除了现金、银行卡支付以外,还有微信、支付宝以及其他支付方式.在一次购物中,小明和小亮都想从微信、支付宝、银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.19.(7分)如图,已知∠BAE=∠CAD,AB=18,AC=48,AE=15,AD=40.求证:△ABC∽△AED.20.(9分)如图,一次函数y=kx+b(k≠0)和反比例函数y=(m≠0)分别交于点A(4,1),B(﹣1,a)(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出kx+b>的x的取值范围.21.(9分)如图,为加快城乡对接,建设全域美丽乡村,某地区对A,B两地间的公路进行改建.如图,A,B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°,开通隧道后,汽车从A地到B地大约可以少走多少千米(结果精确到1千米)?(参考数据:≈1.4,≈1.7)22.(10分)如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC的平分线交于点D,BD与AC交于点E,与⊙O交于点F.(1)求∠DAF的度数;(2)求证:AE2=EF•ED;(3)求证:AD是⊙O的切线.23.(12分)如图,已知抛物线y=ax2+bx+1与x轴分别交于A(﹣1,0),B(3,0),与y轴交于点C.(1)求抛物线解析式;(2)在直线BC上方的抛物线上有点P,使△PBC面积为1,求出点P的坐标.参考答案一、选择题1.下列设计的图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、是轴对称图形,也是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.经过某路口的行人,可能直行,也可能左拐或右拐,假设这三种可能性相同,现在有一个人经过该路口,恰好直行的概率是()A.B.C.D.【分析】根据根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率即可求出答案.解:∵共有直行、左拐、右拐这3种选择,∴恰好直行的概率是,故选:B.【点评】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3.若关于x的一元二次方程mx2﹣x=有实数根,则实数m的取值范围是()A.m≥﹣1 B.m≥﹣1且m≠0 C.m>﹣1且m≠0 D.m≠0【分析】将原方程变形为一般式,根据二次项系数非零及根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.解:原方程可变形为mx2﹣x﹣=0.∵关于x的一元二次方程mx2﹣x=有实数根,∴,解得:m≥﹣1且m≠0.故选:B.【点评】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式△≥0,列出关于m的一元一次不等式是解题的关键.4.如图,点A是反比例函数图象的一点,自点A向y轴作垂线,垂足为T,已知S=4,则△AOT 此函数的表达式为()A.B.C.D.【分析】由图象上的点所构成的三角形面积为可知,该点的横纵坐标的乘积绝对值为2,又因为点M在第二象限内,所以可知反比例函数的系数.=8;解:由题意得: |k|=2S△AOT又因为点M在第二象限内,则k<0;所以反比例函数的系数k为﹣8.故选:D.【点评】本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.5.如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B的对应点分别是点A'、B',则点A'的坐标是()A.(﹣1,3)B.(4,0)C.(3,﹣3)D.(5,﹣1)【分析】画图可得结论.解:画图如下:则A'(5,﹣1),故选:D.【点评】本题考查了旋转的性质,熟练掌握顺时针或逆时针旋转是解决问题的关键.6.一元二次方程x2﹣6x﹣6=0配方后化为()A.(x﹣3)2=15 B.(x﹣3)2=3 C.(x+3)2=15 D.(x+3)2=3【分析】方程移项配方后,利用平方根定义开方即可求出解.解:方程整理得:x2﹣6x=6,配方得:x2﹣6x+9=15,即(x﹣3)2=15,故选:A.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.7.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A .B .2C .2D .8【分析】作OH ⊥CD 于H ,连结OC ,如图,根据垂径定理由OH ⊥CD 得到HC =HD ,再利用AP =2,BP =6可计算出半径OA =4,则OP =OA ﹣AP =2,接着在Rt △OPH 中根据含30度的直角三角形的性质计算出OH =OP =1,然后在Rt △OHC 中利用勾股定理计算出CH =,所以CD=2CH =2. 解:作OH ⊥CD 于H ,连结OC ,如图,∵OH ⊥CD ,∴HC =HD ,∵AP =2,BP =6,∴AB =8,∴OA =4,∴OP =OA ﹣AP =2,在Rt △OPH 中,∵∠OPH =30°,∴∠POH =60°,∴OH =OP =1,在Rt △OHC 中,∵OC =4,OH =1,∴CH ==,∴CD =2CH =2. 故选:C .【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.8.若点(﹣2,y 1),(﹣1,y 2),(3,y 3)在双曲线y =(k <0)上,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 2<y 1<y 3D .y 3<y 1<y 2 【分析】先分清各点所在的象限,再利用各自的象限内利用反比例函数的增减性解决问题. 解:∵点(﹣2,y 1),(﹣1,y 2),(3,y 3)在双曲线y =(k <0)上,∴(﹣2,y 1),(﹣1,y 2)分布在第二象限,(3,y 3)在第四象限,每个象限内,y 随x 的增大而增大,∴y 3<y 1<y 2.故选:D .【点评】此题主要考查了反比例函数的性质,正确掌握反比例函数增减性是解题关键,注意:反比例函数的增减性要在各自的象限内.9.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B.C.D.【分析】根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.【点评】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.10.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.8【分析】由Rt△APB中AB=2OP知要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M 于点P′,当点P位于P′位置时,OP′取得最小值,据此求解可得.解:∵PA⊥PB,∴∠APB=90°,∵AO=BO,∴AB=2PO,若要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,过点M作MQ⊥x轴于点Q,则OQ =3、MQ =4,∴OM =5,又∵MP ′=2,∴OP ′=3,∴AB =2OP ′=6,故选:C .【点评】本题主要考查点与圆的位置关系,解题的关键是根据直角三角形斜边上的中线等于斜边的一半得出AB 取得最小值时点P 的位置.二、填空题(共6小题,每题4份,共24分)11.(4分)用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为 . 【分析】利用底面周长=展开图的弧长可得.解:,解得r =.故答案为:.【点评】解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.12.(4分)如图,在平面直角坐标系中,每个小方格都是边长为1个单位长度的正方形,已知△AOB 与△A 1OB 1位似,位似中心为原点O ,且相似比为3:2,点A ,B 都在格点上,则点B 1的坐标为 (﹣2,﹣) .【分析】把B的横纵坐标分别乘以﹣得到B′的坐标.解:由题意得:△AOB与△A1OB1位似,位似中心为原点O,且相似比为3:2,又∵B(3,1)∴B′的坐标是[3×(﹣),1×(﹣)],即B′的坐标是(﹣2,﹣);故答案为:(﹣2,﹣).【点评】本题考查了位似变换:先确定点的坐标,及相似比,再分别把横纵坐标与相似比相乘即可,注意原图形与位似图形是同侧还是异侧,来确定所乘以的相似比的正负.13.(4分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为 6.2 米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】【分析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515≈6.2(米),答:大厅两层之间的距离BC的长约为6.2米.故答案为:6.2.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.14.(4分)已知线段AB长是2厘米,P是线段AB上的一点,且满足AP2=AB•BP,那么AP长为(﹣1)厘米.【分析】根据黄金分割点的定义,知AP是较长线段,得出AP=AB,代入数据即可得出AP的长.解:∵P是线段AB上的一点,且满足AP2=AB•BP,∴P为线段AB的黄金分割点,且AP是较长线段,∴AP=AB=2×=(﹣1)厘米.故答案为(﹣1).【点评】本题考查了黄金分割的概念:如果一个点把一条线段分成两条线段,并且较长线段是较短线段和整个线段的比例中项,那么就说这个点把这条线段黄金分割,这个点叫这条线段的黄金分割点;较长线段是整个线段的倍.15.(4分)如图,在一笔直的海岸线l上有相距2km的A,B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是km.【分析】首先由题意可证得:△ACB是等腰三角形,即可求得BC的长,然后由在Rt△CBD中,CD=BC•sin60°,求得答案.解:过点C作CD⊥AB于点D,根据题意得:∠CAD=90°﹣60°=30°,∠CBD=90°﹣30°=60°,∴∠ACB=∠CBD﹣∠CAD=30°,∴∠CAB=∠ACB,∴BC=AB=2km,在Rt△CBD中,CD=BC•sin60°=2×=(km).故答案为:.【点评】此题考查了方向角问题.注意证得△ABC是等腰三角形是解此题的关键.16.(4分)在△ABC中,AB=9,AC=6.点M在边AB上,且AM=3,点N在AC边上.当AN=2或4.5 时,△AMN与原三角形相似.【分析】分别从△AMN∽△ABC或△AMN∽△ACB去分析,根据相似三角形的对应边成比例,即可求得答案.解:由题意可知,AB=9,AC=6,AM=3,①若△AMN∽△ABC,则=,即=,解得:AN =2;②若△AMN ∽△ACB ,则=,即=, 解得:AN =4.5;故AN =2或4.5.故答案为:2或4.5.【点评】此题考查了相似三角形的性质.此题难度适中,注意掌握分类讨论思想的应用是解此题的关键.三、解答题(本题共7小题,共66分)17.(12分)(1)计算:4cos30°﹣3tan60°+2sin45°•cos45°(2)解方程:x 2+x ﹣1=0【分析】(1)利用特殊角的三角函数值计算;(2)先计算判别式的值,然后利用求根公式解方程.解:(1)原式=4×﹣3×+2××=2﹣3+1 =1﹣; (2)△=12﹣4×(﹣1)=5,x == 所以x 1=,x 2=.【点评】本题考查了解一元二次方程﹣公式法:将一元二次方程配成(x +m )2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了特殊角的三角函数值.18.(7分)随着信息技术的迅猛发展,人民去商场购物的支付方式更加多样、便捷.除了现金、银行卡支付以外,还有微信、支付宝以及其他支付方式.在一次购物中,小明和小亮都想从微信、支付宝、银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两人恰好选择同一种支付方式的情况,再利用概率公式即可求得答案.解:将微信记为A 、支付宝记为B 、银行卡记为C ,画树状图如下:∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,∴两人恰好选择同一种支付方式的概率为=.【点评】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.19.(7分)如图,已知∠BAE=∠CAD,AB=18,AC=48,AE=15,AD=40.求证:△ABC∽△AED.【分析】由∠BAE=∠CAD知∠BAE+∠EAC=∠CAD+∠EAC,即∠BAC=∠EAD,再根据线段的长得出==,据此即可得证.解:∵∠BAE=∠CAD,∴∠BAE+∠EAC=∠CAD+∠EAC,即∠BAC=∠EAD,∵AB=18,AC=48,AE=15,AD=40,∴==,∴△ABC∽△AED.【点评】本题主要考查相似三角形的判定,解题的关键是掌握两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似.20.(9分)如图,一次函数y=kx+b(k≠0)和反比例函数y=(m≠0)分别交于点A(4,1),B(﹣1,a)(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出kx+b>的x的取值范围.【分析】(1)利用待定系数法,即可得到反比例函数的解析式,把点A(4,1)与点B(﹣1,﹣4)代入一次函数y=kx+b,即可得到一次函数解析式为y=x﹣3;(2)根据三角形的面积公式即可得到结论;(3)由图象即可得kx+b>的x的取值范围.解:(1)∵点A(4,1)与点B(﹣1,a)在反比例函数y=(m≠0)图象上,∴m=4,即反比例函数的解析式为y=,当x=1时,y=﹣4,即B(﹣1,﹣4),∵点A(4,1)与点B(﹣1,﹣4)在一次函数y=kx+b(k≠0)图象上,∴,解得:,∴一次函数解析式为y=x﹣3;(2)对于y=x﹣3,当y=0时,x=3,∴C(3,0),∴S△AOB =S△AOC+S△BOC=×3×1+×3×4=;(3)由图象可得,当﹣1<x<0或x>4时,kx+b>.【点评】本题考查的是反比例函数与一次函数的交点问题及三角形的面积公式,熟知坐标轴上点的坐标特点是解答此题的关键.21.(9分)如图,为加快城乡对接,建设全域美丽乡村,某地区对A,B两地间的公路进行改建.如图,A,B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°,开通隧道后,汽车从A地到B地大约可以少走多少千米(结果精确到1千米)?(参考数据:≈1.4,≈1.7)【分析】过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD的长度和AC的长度,在直角△CBD中,解直角三角形求出BD的长度,再求出AD的长度,进而求出汽车从A地到B地比原来少走多少路程.解:过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC•sin30°=80×=40(千米),AC==40≈56.4(千米),∵cos30°=,BC=80(千米),∴BD=BC•cos30°=80×=40(千米),∵tan45°=,CD=40(千米),∴AD=40(千米),∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=136.4﹣109.2=27.2≈27(千米).答:汽车从A地到B地比原来少走的路程为27千米.【点评】本题考查了勾股定理的运用以及解一般三角形的知识,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.22.(10分)如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC的平分线交于点D,BD与AC交于点E,与⊙O交于点F.(1)求∠DAF的度数;(2)求证:AE2=EF•ED;(3)求证:AD是⊙O的切线.【分析】(1)求出∠ABC、∠ABD、∠CBD的度数,求出∠D度数,根据三角形内角和定理求出∠BAF和∠BAD度数,即可求出答案;(2)求出△AEF∽△DEA,根据相似三角形的性质得出即可;(3)连接AO,求出∠OAD=90°即可.【解答】(1)解:∵AD∥BC,∴∠D=∠CBD,∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=×(180°﹣∠BAC)=72°,∴∠AFB=∠ACB=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=∠ABC=72°=36°,∴∠D=∠CBD=36°,∴∠BAD=180°﹣∠D﹣∠ABD=180°﹣36°﹣36°=108°,∠BAF=180°﹣∠ABF﹣∠AFB=180°﹣36°﹣72°=72°,∴∠DAF=∠DAB﹣∠FAB=108°﹣72°=36°;(2)证明:∵∠CBD=36°,∠FAC=∠CBD,∴∠FAC=36°=∠D,∵∠AED=∠AEF,∴△AEF∽△DEA,∴=,∴AE2=EF×ED;(3)证明:连接OA、OF,∵∠ABF=36°,∴∠AOF=2∠ABF=72°,∵OA=OF,∴∠OAF=∠OFA=×(180°﹣∠AOF)=54°,由(1)知∠DAF=36°,∴∠DAO=36°+54°=90°,即OA⊥AD,∵OA为半径,∴AD是⊙O的切线.【点评】本题考查了切线的判定,圆周角定理,三角形内角和定理,等腰三角形的性质等知识点,能综合运用定理进行推理是解此题的关键.23.(12分)如图,已知抛物线y=ax2+bx+1与x轴分别交于A(﹣1,0),B(3,0),与y轴交于点C.(1)求抛物线解析式;(2)在直线BC上方的抛物线上有点P,使△PBC面积为1,求出点P的坐标.【分析】(1)根据抛物线y=ax2+bx+1与x轴分别交于A(﹣1,0),B(3,0),可以求得该抛物线的解析式;(2)根据题意和(1)中的抛物线解析式可以求得点C的坐标,从而可以得到直线BC的函数解析式,然后根据在直线BC上方的抛物线上有点P,使△PBC面积为1,即可求得点P的坐标.解:(1)∵抛物线y=ax2+bx+1与x轴分别交于A(﹣1,0),B(3,0),∴,解得,,∴抛物线的解析式为y=﹣x2+x+1;(2)∵y=﹣x2+x+1,∴当x=0时,y=1,即点C的坐标为(0,1),∵B(3,0),C(0,1),∴直线BC的解析式为:y=x+1,设点P的坐标为(p,﹣p2+p+1),将x=p代入y=x+1的,y=p+1,∵△PBC面积为1,∴=1,解得,p1=1,p2=2,当p=1时,点P的坐标为(1,),1=2时,点P的坐标为(2,1),当p2即点P的坐标为(1,)或(2,1).【点评】本题考查抛物线与x轴的交点、一次函数图象上点的坐标特征、二次函数图象上点的坐标特征、待定系数法求二次函数解析式,解答本题的关键是明确题意,利用二次函数的性质解答.九年级(上)数学期末考试题及答案一.选择题(共10小题,满分30分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.计算﹣|﹣5|﹣(+1)=()A.6B.﹣6C.+6或﹣6D.以上都不对3.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10134.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.5.在、﹣(﹣2)、,﹣|﹣|中,最小的数是()A.B.﹣(﹣2)C.D.﹣|﹣|6.一个圆锥的底面半径是5cm,其侧面展开图是圆心角是150°的扇形,则圆锥的母线长为()A.9cm B.12cm C.15cm D.18cm7.如图,正八边形ABCDEFGH内接于⊙O,则∠ADB的度数为()A.45°B.25°C.22.5°D.20°8.下列各图能表示y是x的函数是()A.B.C.D.9.抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系内的图象大致为()A.B.C.D.10.如图,半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10 cm B.16 cm C.24 cm D.26 cm二.填空题(共5小题,满分15分,每小题3分)11.因式分解:﹣2x2y+8xy﹣6y=.12.已知一组数据1,2,x,5,6的平均数是4,这组数据的中位数是.13.如图:已知DE∥BC,AD=1,DB=2,DE=3,则BC=,△ADE和△ABC的面积之比为.14.某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售,则平均每次下调的百分率是.15.如图图形是由相同的小五角星按一定的规律排列组合而成,其中第一个图形有6个五角星,第二个图形有10个五角星,第三个图形有16个五角星,第四个图形有24个五角星……则第十个图形有个五角星.三.解答题(共8小题,满分75分)16.(8分)(1)计算:(3.14﹣π)0+﹣2sin45°+()﹣1(2)解方程:+1=(3)先化简,再求值,(1+)÷,其中x=﹣1.17.(12分)为更好地开展选修课,戏剧社的张老师统计了近五年该社团学生参加市级比赛的获奖情况,并绘制成如下两幅不完整的统计图,请根据图中的信息,完成下列问题:(1)该社团2017年获奖学生人数占近五年获奖总人数的百分比为,补全折线统计图;(2)该社团2017年获奖学生中,初一、初二年级各有一名学生,其余全是初三年级学生,张老师打算从2017年获奖学生中随机抽取两名学生参加学校的艺术节表演,请你用列表法或画树状图的方法,求出所抽取两名学生恰好都来自初三年级的概率.18.(5分)如图,在由边长为1的小正方形组成的网格图中,有一个格点三角形ABC.(注:顶点均在网格线交点处的三角形称为格点三角形.)(1)△ABC是三角形(填“锐角”、“直角”或“钝角”);(2)若P、Q分别为线段AB、BC上的动点,当PC+PQ取得最小值时,①在网格中用无刻度的直尺,画出线段PC、PQ.(请保留作图痕迹.)②直接写出PC+PQ的最小值:.19.(10分)如图,某人在D处测得山顶C的仰角为37°,向前走100米来到山脚A处,测得山坡AC的坡度为i=1:0.5,求山的高度(不计测角仪的高度,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).20.(10分)如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使P A+PB的值最小,求满足条件的点P的坐标.21.(8分)如图,AB是⊙O的直径,AP是⊙O的切线,点A为切点,BP与⊙O交于点C,点D是AP的中点,连结CD.(1)求证:CD是⊙O的切线;(2)若AB=2,∠P=30°,求阴影部分的面积.22.(10分)某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件,为提高利润,欲对该商品进行涨价销售.经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件,将销售价定为多少时,才能使每天所获销售利润最大?最大利润是多少?23.(12分)如图,已知正比例函数和反比例函数的图象都经过点A(﹣3,﹣3).(1)求正比例函数和反比例函数的表达式;(2)把直线OA向上平移后与反比例函数的图象交于点B(﹣6,m),与x轴交于点C,求m 的值和直线BC的表达式;(3)在(2)的条件下,直线BC与y轴交于点D,求以点A,B,D为顶点的三角形的面积;(4)在(3)的条件下,点A,B,D在二次函数的图象上,试判断该二次函数在第三象限内的图象上是否存在一点E,使四边形OECD的面积S1与四边形OABD的面积S满足:S1=S?若存在,求点E的坐标;若不存在,请说明理由.参考答案一.选择题1.解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确;故选:D.2.解:原式=﹣5+(﹣1)=﹣6.故选:B.3.解:80万亿用科学记数法表示为8×1013.故选:B.4.解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.5.解:∵﹣(﹣2)=2、=﹣2,﹣|﹣|=﹣,﹣2<﹣<<2,∴<﹣|﹣|<<﹣(﹣2),即最小的数是.故选:C.6.解:设圆锥的母线长为R,根据题意得2π•5=,解得R=12.即圆锥的母线长为12cm.故选:B.7.解:连接OA、OB,∵八边形ABCDEFGH是⊙O内接正八边形,∴∠AOB==45°,由圆周角定理得,∠ADB=∠AOB=22.5°,故选:C.8.解:A、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故A 选项错误;B、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故B选项错误;C、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故C选项错误;D、对于x的每一个取值,y都有唯一确定的值与之对应关系,所以y是x的函数,故D选项正确.故选:D.9.解:由抛物线可知,a>0,b<0,c<0,∴一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=的图象在第二、四象限,故选:B.10.解:如图,过O作OD⊥AB于C,交⊙O于D,∵CD=8,OD=13,∴OC=5,又∵OB=13,∴Rt△BCO中,BC==12,∴AB=2BC=24.故选:C.二.填空题(共5小题,满分15分,每小题3分)11.解:原式=﹣2y(x2﹣4x+3)=﹣2y(x﹣1)(x﹣3),故答案为:﹣2y(x﹣1)(x﹣3)12.解:∵数据1,2,x,5,6的平均数是4,∴(1+2+x+5+6)÷5=4,解得:x=6,将数据从小到大重新排列:1,2,5,6,6,所以这组数据的中位数是5.故答案为:5.13.解:设△ADE和△ABC的高分别为:h1,h2,则:∵DE∥BC∴∠ADE=∠ABC,∠AEC=∠ACB(两直线平行,同位角相等)∴△ADE∽△ABC∴=,即:==,==∴BC=9,h1=h2∴△ADE和△ABC的面积之比为:(×h1×DE):(×h2×BC)===1:9所以,BC=9,△ADE和△ABC的面积之比为:1:9.14.解:设平均每次降价的百分率是x,根据题意列方程得,6000(1﹣x)2=4860,解得:x1=10%,x2=(不合题意,舍去);答:平均每次降价的百分率为10%.故答案是:10%15.解:∵第一个图形中五角星的个数6=4+1×2,第二个图形中五角星的个数10=4+2×3,第三个图形中五角星的个数16=4+3×4,……∴第十个图形中五角星的个数为4+10×11=114,故答案为:114.三.解答题(共8小题,满分75分)16.解:(1)原式=1+2﹣2×+3=1+2﹣+3=4+;(2)方程两边都乘以x﹣2,得:x﹣3+x﹣2=﹣3,解得:x=1,检验:当x=1时,x﹣2=1﹣2=﹣1≠0,所以分式方程的解为x=1;(3)原式=•=,当x=﹣1时,原式===.17.(1)近五年获奖总人数=7÷35%=20(人)该社团2013年获奖占近五年获奖总人数的百分比==5%,所以该社团2017年获奖占近五年获奖总人数的百分比=25%﹣5%=20%,所以该社团2017年获奖总人数=20×20%=4,补全折线统计图为:。
东莞市2019-2020学年九年级上期末数学试卷及答案解析.doc
东莞市 2019-2020 学年九年级上期末数学试卷及答案解析-学年九年级(上)期末数学试卷一、选择题(每小题 3 分,共 15 分)1.( 3 分)( ?二模)下面的图形中,既是轴对称图形又是中心对称图形的是()A . B .C.D.2.( 3 分)( ?模拟)下列根式中不是最简二次根式的是()A .B.C.D.3.( 3 分)方程x( x+1) =0 的根为()A .0B.﹣ 1 C. 0,﹣ 1 D. 0, 14.( 3 分) 75°的圆心角所对的弧长是 2.5πcm,则此弧所在圆的半径是()A . 6cm B. 7cm C. 8cm D. 9cm5.( 3 分)下列事件中,必然发生的是()A .某射击运动射击一次,命中靶心B.通常情况下,水加热到 100℃时沸腾C.掷一次骰子,向上的一面是 6 点D.抛一枚硬币,落地后正面朝上二、填空题(每小题 3 分,共 15 分)6.( 3 分)( 1997?江西)计算:= _________ .7.( 3 分)( ?天津)袋子中装有 5 个红球和 3 个黑球,这些球除了颜色外都相同.从袋子中随机的摸出一个球,则它是红球的概率是_________ .8.( 3 分)( ?模拟)把图中的五角星图案,绕着它的中心点 O 进行旋转,那么至少旋转_________ 度,才能与自身重合.9.( 3 分)已知 1 是关于 x 的一元二次方程2x +mx+n=0 的一个根,那么 m+n=_________ .10.( 3 分)在直径为10cm 的⊙ 0 中,弦 AB 的长为 5cm,则点 0 到 AB 的距离是_________ .三、解答题(每小题 6 分,共 30 分)11.(6 分)计算:1 / 13212.( 6 分)解方程: x +2x ﹣ 4=013.( 6 分)如图,已知 △ ABC 在平面直角坐标系中的位置. (1)点 C 关于原点中心对称的点的坐标是 _________ ; (2)画出 △ ABC 绕点 A 按逆时针方向旋转 90°后的图形 △ AB ′C ′.14.( 6 分)已知 α、 β是关于 x 的一元二次方程 3x 2﹣ 1=2x+5 的两个实数根,求的值.15.( 6 分)如图,已知⊙ 0 的半径为 5,AB 是⊙ 0 的直径,点 C 、D 都在⊙ 0 上,若∠ D=30 °,求 AC 的长.四、解答题(每小题 8 分,共 40 分)16.( 8 分)如图是一个可以自由转动的转盘,转盘被分成面积相等的3 个扇形,转动转盘后任其自由停止,其中某个扇形会恰好停在指针所指的位置(如果指针恰好停在分割线上,那么重转一次)( 1)转盘转动一次,指针所指的颜色不是红色的概率是多少?( 2)转盘转动两次,两次指针指向颜色相同的概率是多少?(用列表法或画树状图).217.( 8 分)已知关于 x 的方程( x ﹣ 3)( x ﹣ 2)﹣ p =0 . ( 1)求证:方程有两个不相等的实数根;( 2)当 p=2 时,求该方程的根.18.( 8 分)如图,有一块长方形铁皮,长 40cm ,宽 30cm ,在它的四角各切去一个同样的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为 600cm 2,那么铁皮各角应切去多大的正方形?19.( 8 分)如图, △ABE 和 △ACD 都是等边三角形, △ AEC 逆时针旋转一定角度后能与 △ ABD 重合, EC 与 BD 相交于点 F . (1)旋转中心是 _________ ,旋转角至少是 _________ 度; (2)求∠ DFC 的度数.20.( 8 分)如图, Rt △ ABC 中,∠ C=90°, △ ABC 的内切圆⊙ 0 与 BC 、 CA 、 AB 分别切于点 D 、 E 、F .(1)若 BC=40cm ,AB=50cm ,求⊙ 0 的半径;(2)若⊙ 0 的半径为r,△ ABC 的周长为ι,求△ABC的面积.-学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题 3 分,共 15 分)1.( 3 分)( ?二模)下面的图形中,既是轴对称图形又是中心对称图形的是()A . B .C.D.考中心对称图形;轴对称图形.点:专常规题型.题:分根据轴对称图形与中心对称图形的概念求解.析:解解: A 、不是轴对称图形,是中心对称图形,不符合题意;答: B 、不是轴对称图形,是中心对称图形,不符合题意;C、既是轴对称图形,也是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选 C.点本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的评:概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形180 度后两部分重合.是要寻找对称中心,旋转2.( 3 分)( ?模拟)下列根式中不是最简二次根式的是()A .B.C.D.考最简二次根式.点:分找到被开方数中含有开得尽方的因数的式子即可.析:解解:各选项中只有选项C、=2 ,不是最简二次根式,故选C.答:点最简二次根式必须满足两个条件:评:( 1)被开方数不含分母;( 2)被开方数不含能开得尽方的因数或因式.3.( 3 分)方程 x( x+1) =0 的根为()A . 0 B.﹣ 1 C. 0,﹣ 1 D. 0, 1考解一元二次方程-因式分解法;一元二次方程的解.点:专因式分解.题:分两个因式的积为0,这两个因式可以分别为0,求出方程的两个根.析:解解: x( x+1) =0答:x=0 或 x+1=0∴x1=0, x2=﹣ 1.故选 C.点本题考查的是用因式分解法解一元二次方程,把一元二次方程化成两个因式的积的评:形式,然后求出方程的两个根.4.( 3 分) 75°的圆心角所对的弧长是 2.5πcm,则此弧所在圆的半径是()A . 6cm B. 7cm C. 8cm D. 9cm考弧长的计算.点:分根据弧长公式L= ,将 n=75 ,L=2.5 π,代入即可求得半径长.析:解解:∵ 75°的圆心角所对的弧长是 2.5πcm,答:由 L= ,∴ 2.5π= ,解得: r=6 ,故选: A .点此题主要考查了弧长公式的应用,熟练掌握弧长公式:L=才能准确的解题.评:5.( 3 分)下列事件中,必然发生的是()A .某射击运动射击一次,命中靶心B.通常情况下,水加热到 100℃时沸腾C.掷一次骰子,向上的一面是 6 点D.抛一枚硬币,落地后正面朝上考随机事件.点:专应用题.题:分必然事件就是一定发生的事件,即发生的概率是 1 的事件.析:解解:∵ A , C, D 选项为不确定事件,即随机事件,故错误.答:∴是必然发生事件的是:通常情况下,水加热到100℃时沸腾.故选 B.点本题主要考查随机事件的概念.用到的知识点为:随机事件是可能发生也可能不发评:生的事件,必然事件是一定发生的事件.二、填空题(每小题 3 分,共 15 分)6.( 3 分)( 1997?江西)计算:= 5.考二次根式的加减法.点:分根据二次根式相加减运算法则计算即可.析:解解:原式 =×3+6 ×答:=2+3=5.故答案为: 5.点二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次评:根式进行合并,合并方法为系数相加减,根式不变.7.( 3 分)( ?天津)袋子中装有 5 个红球和 3 个黑球,这些球除了颜色外都相同.从袋子中随机的摸出一个球,则它是红球的概率是.考概率公式.点:分根据概率的求法,找准两点:① 全部情况的总数;② 符合条件的情况数目;二者的析:比值就是其发生的概率.解解;袋中球的总数为:5+3=8,答:取到红球的概率为:;故答案为:.点此题主要考查了概率的求法,如果一个事件有n 种可能,而且这些事件的可能性相评:同,其中事件 A 出现 m 种结果,那么事件 A 的概率 P(A ) = .8.( 3 分)( ?模拟)把图中的五角星图案,绕着它的中心点O 进行旋转,那么至少旋转72度,才能与自身重合.考旋转对称图形.点:分角星能被从中心发出的射线平分成相等的 5 部分,再由一个周角是360°即可求出最析:小的旋转角度.解解:五角星可以被中心发出的射线平分成 5 部分,答:那么最小的旋转角度为: 360°÷5=72°.故答案为: 72°.点本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始评:图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.9.( 3 分)已知 1 是关于 x 的一元二次方程2m+n= ﹣ 1 .x +mx+n=0 的一个根,那么考一元二次方程的解.点:2分根据一元二次方程的解的定义,将x=1 代入关于 x 的一元二次方程x +mx+n=0 即可析:求得 m+n 的值.x 2解解:∵ 1 是关于 x 的一元二次方程+mx+n=0 的一个根,答:∴ x=1 满足关于 x 的一元二次方程x 2+mx+n=0 ,∴1+m+n=0 ,解得 m+n= ﹣ 1.故答案是:﹣ 1.点此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关评:系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.10.( 3 分)在直径为10cm 的⊙ 0 中,弦 AB 的长为 5cm,则点 0 到 AB 的距离是cm.考垂径定理;勾股定理.点:专探究型.题:分根据题意画出图形,先根据⊙O 的直径为10cm,求出其半径长,再过点O 作析:OD ⊥ AB 于点 D ,根据垂径定理求出AD 的长,在Rt△ OAD 中,根据勾股定理即可得出 OD 的长.解解:如图所示:答:∵⊙ O 的直径为10cm,∴OA=5cm ,过点 O 作 OD⊥AB 于点 D,∵AB=5cm ,∴AD= AB= ×5= cm,在Rt△ OAD 中,∵OA=5cm , AD= cm,∴ OD===cm.故答案为:cm.点本题考查的是垂径定理及勾股定理.根据题意画出图形,作出辅助线,构造出直角评:三角形,根据勾股定理求解是解答此题的关键.三、解答题(每小题 6 分,共 30 分)11.( 6 分)计算:考 二次根式的加减法.点: 分 先将各二次根式化为最简二次根式,再进行合并即可. 析: 解解:原式 = =﹣ .答: 点 本题考查了对二次根式的化简及合并的基本计算. 评:212.( 6 分)解方程: x +2x ﹣ 4=0考 解一元二次方程 -配方法. 点:分 解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数. 析: x 2解 解:移项得 +2x=4 , 答: 2配方得 x +2x+1=4+1 ,2即( x+1) =5,开方得 x+1= ± ,∴ x 1= , x 2=﹣ . 点用配方法解一元二次方程的步骤:评: ( 1)形如 x 2型:第一步移项,把常数项移到右边;第二步配方,左右两边+px+q=0加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即 可. 22( 2)形如 ax +bx+c=0 型,方程两边同时除以二次项系数,即化成 x +px+q=0 ,然后配方.13.( 6 分)如图,已知 △ ABC 在平面直角坐标系中的位置.(1)点 C 关于原点中心对称的点的坐标是 (﹣ 5,﹣ 1) ; (2)画出 △ ABC 绕点 A 按逆时针方向旋转 90°后的图形 △ AB ′C ′.考作图 -旋转变换.点: 专 作图题. 题: 分 ( 1)先写出点 C 的坐标,再根据关于原点对称的点的横坐标与纵坐标都互为相反数 析: 解答;( 2)根据网格结构找出点 B 、 C 绕点 A 逆时针方向旋转 90°后的对应点 B ′、 C ′的位 置,然后顺次连接即可.解 解:( 1)∵点 C 的坐标为( 5, 1), 答:∴点 C 关于原点中心对称的点的坐标是(﹣ 5,﹣ 1);( 2) △AB ′C ′如图所示.点 本题考查了利用旋转变换作图,熟练掌握网格结构,准确找出对应点的位置是解题评: 的关键.14.( 6 分)已知 α、 β是关于 x 的一元二次方程 3x 2﹣ 1=2x+5 的两个实数根,求的值. 考根与系数的关系.点:分 析: 解答: 根据 α、β是关于 x 的一元二次方程3x 2﹣ 1=2x+5 的两个实数根,求出α+β和 αβ的值,再把要求的式子变形为,最后把 α+β和 αβ的值代入,计算即可.解:∵ α、β是关于 x 的一元二次方程 3x 2﹣ 1=2x+5 的两个实数根,而方程 3x 2﹣ 1=2x+5 即为 3x 2﹣ 2x ﹣ 6=0 ,∴ α+β=, αβ=﹣ 2,∴= = =﹣ .点 此题考查了一元二次方程根与系数的关系,将根与系数的关系与代数式变形相结合评: 解题是一种经常使用的解题方法.15.( 6 分)如图,已知⊙ 0 的半径为 5,AB 是⊙ 0 的直径,点 C 、 D 都在⊙ 0 上,若∠D=30 °,求 AC 的长.考圆周角定理;含30 度角的直角三角形;勾股定理.点:分连接 BC ,则 AB 是直径,根据圆周角定理即可求得∠A= ∠ D=30 °,在直角△ ABC 析:中,利用三角函数即可求得AC 的长度.解解:连接BC .答:∵ AB 是⊙ 0 的直径,∴∠ ACB=90 °,在直角△ABC 中,∠ A= ∠ D=30 °,AB=2 ×5=10.∴AC=AB ?cosA=10 × =5 .点本题考查了圆周角定理以及三角函数,正确理解圆周角定理是关键.评:四、解答题(每小题8 分,共 40 分)16.( 8 分)如图是一个可以自由转动的转盘,转盘被分成面积相等的 3 个扇形,转动转盘后任其自由停止,其中某个扇形会恰好停在指针所指的位置(如果指针恰好停在分割线上,那么重转一次)(1)转盘转动一次,指针所指的颜色不是红色的概率是多少?(2)转盘转动两次,两次指针指向颜色相同的概率是多少?(用列表法或画树状图).考列表法与树状图法.点:分( 1)由于颜色为蓝色或黄色转盘面积的三分之二,所以根据概率的定义得到指针所析:指的颜色不是红色的概率 = ;( 2)先化树状图展示所有9 种等可能的结果,其中颜色相同占 3 种,然后根据概率定义求解.解解:( 1)转盘转动一次,指针所指的颜色不是红色的概率= ;答:( 2)画树状图如下:,共有 9 种等可能的结果,其中颜色相同占 3 种,所以转盘转动两次,两次指针指向颜色相同的概率= =.点本题考查了列表法与树状图法:先通过列表法或树状图法展示一个实验发生的所有评:等可能的结果,再从中找出某事件发生的结果数,然后根据概率的定义求这个事件的概率.217.( 8 分)已知关于 x 的方程( x ﹣ 3)( x ﹣ 2)﹣ p =0 . ( 1)求证:方程有两个不相等的实数根;( 2)当 p=2 时,求该方程的根.考 根的判别式;解一元二次方程 -公式法.点: 专 证明题.题:△ =1+4p 2,根据非负数的性质得到分( 1)先把方程化为一般式,再计算出 △> 0,则 析: 根据判别式的意义得到这个方程总有两个不相等的实数根;( 2) p=2 方程变形为 x 2﹣ 5x+2=0 ,然后利用求根公式法解方程. 解22( 1)证明:方程整理为 x﹣5x+6 ﹣ p =0 ,答:△ =(﹣ 5) 2﹣ 4×1×( 6﹣ p 2)=1+4p 2,∵ 4p 2≥0,∴△> 0,∴这个方程总有两个不相等的实数根;( 2)解:当 p=2 时,方程变形为 x 2﹣ 5x+2=0 ,△ =1+4 ×4=17,∴ x= ,∴ x 1=, x 2=.点 本题考查了一元二次方程ax 2+bx+c=0 ( a ≠0)的根的判别式 △ =b 2﹣ 4ac :当 △ > 0, 评: 方程有两个不相等的实数根;当 △ =0,方程有两个相等的实数根;当 △ < 0,方程没有实数根.也考查了解一元二次方程.18.( 8 分)如图,有一块长方形铁皮,长 40cm ,宽 30cm ,在它的四角各切去一个同样的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为 600cm 2,那么铁皮各角应切去多大的正方形?考 一元二次方程的应用. 点:专 几何图形问题. 题:分 易得底面积的长 =原来的长﹣ 2×切去的正方形的边长,宽 =原来的宽﹣ 2×切去的正方析: 形的边长,根据长 ×宽 =600 列方程求得合适解即可. 解 解:设切去的小正方形的边长为 x .答:( 40﹣ 2x)( 30﹣2x) =60.解得 x1=5,x2=30 .当 x=30 时, 20﹣ 2x<0,∴ x=30 不合题意,应舍去.答:纸板各角应切去边长为5cm 的正方形.点考查一元二次方程的应用;得到无盖方盒的底面积的边长是解决本题的突破点.评:19.( 8 分)如图,△ABE 和△ACD 都是等边三角形,△ AEC逆时针旋转一定角度后能与△ABD 重合, EC 与 BD 相交于点F.(1)旋转中心是点A,旋转角至少是60度;(2)求∠ DFC 的度数.考旋转的性质;等边三角形的性质.点:分( 1)根据图形知,旋转中心是点 A ,旋转角是∠EAB ;析:( 2)根据等边三角形性质推出∠EAB=60 °,根据三角形外角性质推出∠ AGC= ∠ AEC+60 °=∠ ABD+ ∠ GFB ,求出∠ GFB 的度数,根据对顶角相等求出即可.解解:( 1)如图,∵△ ABC 的等边三角形,答:∴∠ EAB=60 °.∵△ AEC 逆时针旋转一定角度后能与△ABD重合,∴点 A 是旋转中心,∠EAB 是旋转角,∴,△ AEC 逆时针旋转至少60°后能与△ ABD 重合,( 2)∵根据旋转的性质知,△ AEC≌△ ABD,∴∠ AEC= ∠ ABD ,∵∠ AGC= ∠ AEG+ ∠ EAB= ∠ AEC+60 °,∴∠ AGC= ∠ GFB+ ∠ ABD= ∠ GFB+ ∠ AEC ,∴∠ AEC+60 °=∠ GFB+ ∠ AEC ,∴∠ GFB=60 °,∴∠ DFC= ∠ GFB=60 °.故答案是:点A, 60.点本题考查了等边三角形性质,旋转性质,对顶角,三角形外角性质等知识点的应评:用,能综合运用性质进行推理是解此题的关键,题目综合性比较强,难度适中.20.( 8 分)如图, Rt△ABC 中,∠ C=90°,△ ABC 的内切圆⊙ 0 与 BC 、 CA 、 AB 分别切于点 D 、E、 F.(1)若 BC=40cm ,AB=50cm ,求⊙ 0 的半径;(2)若⊙ 0 的半径为 r,△ ABC 的周长为ι,求△ABC 的面积.考三角形的内切圆与内心.点:分( 1)连接 OE、 OD、OC、 OB 、 OF、OA ,由勾股定理求出AC=30cm ,由三角形面析:积公式得出( AC+BC+AB ) R= AC ×BC,代入求出即可;( 2)连接 OE、 OD、OC、 OB 、 OF、OA ,⊙ O 半径是 r,则 OE=OD=OF=r ,由三角形面积公式得: S△ABC =S△ACO+S△BCO+S△ABO,代入求出即可.解解:( 1)连接 OE、OD 、 OC、 OB 、OF、 OA ,答:在△ ABC 中,∠ ACB=90 °, BC=40cm ,AB=50cm ,由勾股定理得: AC=30cm ,设⊙ O 半径是 R,则 OE=OD=OF=R ,∵⊙ O 是△ ACB 的内切圆,∴ OF⊥ AB , OE⊥AC , OD ⊥BC ,∴由三角形面积公式得: S△ABC=S△ACO+S△BCO+S△ABO= (AC+BC+AB )R= AC ×BC,∴( 40+30+50 ) R=30×40,解得 R=10cm ,即⊙ 0 的半径为 10cm;(2)连接 OE、 OD、OC、 OB 、 OF、OA ,⊙O 半径是 r,则 OE=OD=OF=r ,∵⊙ O 是△ ACB 的内切圆,∴ OF⊥ AB , OE⊥AC , OD ⊥BC ,∵△ ABC 的周长为 l ,∴ AC+BC+AB=l ,∴由三角形面积公式得: S△ABC=S△ACO+S△BCO+S△ABO=×AC×r+×BC×r+×AB×r=(AC+BC+AB)×r=lr ,即△ ABC 的面积是lr.点本题考查了三角形的内切圆,三角形的面积,勾股定理的应用,注意:如果R 为三评:角形 ABC 的内切圆的半径,则三角形ABC 的面积为( AC+BC+AB )R.。
广东省东莞市2020-2021学年九年级上学期数学期末试卷(附答案)
广东省东莞市2020-2021学年九年级上学期数学期末试卷(附答案)一、单选题1.下列图形中不是..中心对称图形的是()A. B. C. D.2.已知,⊙O的半径为5cm,点P到圆心O的距离为4cm,则点P在⊙O的()A. 外部B. 内部C. 圆上D. 不能确定3.抛物线y=x2向左平移1个单位,再向上平移2个单位后,所得抛物线的表达式是()A. y=(x+1)2﹣2B. y=(x﹣1)2+2C. y=(x﹣1)2﹣2D. y=(x+1)2+24.有6张扑克牌面数字分别是3,4,5,7,8,10从中随机抽取一张点数为偶数的概率是()A. B. C. D.5.下列事件中,属于必然事件的是()A. 小明买彩票中奖B. 投掷一枚质地均匀的骰子,掷得的点数是奇数C. 等腰三角形的两个底角相等D. 是实数,6.已知一元二次方程有一个根为2,则另一个根为()A. 10B. 6C. 8D. -27.如图,是的直径,弦于点,,的半径为,则弦长为()A. B. C. D.8.若关于的一元二次方程有实数根,则字母的取值范围是()A. 且B.C.D. 且9.下列说法错误的是()A. 等弧所对的弦相等B. 圆的内接平行四边形是矩形C. 的圆周角所对的弦是直径D. 平分一条弦的直径也垂直于该弦10.如果,那么二次函数的图象大致是()A. B. C. D.二、填空题11.方程(x-1)(x+2)=0的两根分别为________.12.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率为,则n=________.13.在半径为6的圆中,一个扇形的圆心角是120°,则这个扇形的弧长等于.14.如果是一元二次方程的一个根,那么的值是.15.烟花厂为国庆70周年庆祝晚会特别设计制作一种新型礼炮,这种礼炮的升空高h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要时间为 .16.如图,将△ABC绕点旋转到△AEF的位置,点E在BC边上,EF与AC交于点G.若∠B=70°,∠C=25°,则∠FGC= °.17.如图,等边三角形中,点是的中心,,绕点旋转,分别交线段、于、两点,连接,给出下列四个结论:① ;②;③四边形的面积始终等于定值;④当时,周长最小.上述结论中正确的有(写出序号).三、解答题18.解方程:.19.方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,的顶点均在格点上.(1)画出绕点顺时针旋转后的,并写出的坐标;(2)画出关于原点对称的.20.已知抛物线经过点和点.(1)求抛物线的解析式;(2)设抛物线与轴的交点、的坐标(注:点在点的左边),求的面积.21.小李和小王两位同学做游戏,在一个不透明的口袋中放入1个红球、2个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是多少?(2)两人约定:从袋中一次摸出两个球,若摸出的两个球是-红一黑,则小李获胜:若摸出的两个球都是白色,则小王获胜,请用列举法(画树状图或列表)分析游戏规则是否公平.22.如图,已知AB是⊙O的直径,C,D是⊙O上的点,,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=6,∠CBD=30°,求图中阴影部分的面积.23.某地区2018年投入教育经费2000万元,2020年投入教育经费2880万元.(1)求2018年至2020年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2021年该地区将投入教育经费多少万元.24.某超市销售一种商品,成本价为元/千克,经市场调查,每天销售量y(千克)与销售单价x(元/千克)之间的关系如图所示,规定每千克售价不能低于元,且不高于元.设每天的总利润为w元.(1)根据图象求出y与x之间的函数关系式;(2)请写出w与x之间的函数关系式,并写出自变量x的取值范围;(3)当销售单价定为多少元时,该超市每天的利润最大?最大利润是多少元?25.如图,内接于,且为的直径,过圆心作,交于点,连接,已知.(1)求证:是的切线;(2)求证:;(3)若,,求的长.答案解析部分一、单选题1.【答案】 D2.【答案】 B3.【答案】 D4.【答案】 D5.【答案】C6.【答案】 B7.【答案】 C8.【答案】D9.【答案】 D10.【答案】D二、填空题11.【答案】12.【答案】413.【答案】4π14.【答案】215.【答案】4s16.【答案】6517.【答案】①③④三、解答题18.【答案】解:,,19.【答案】(1)解:所画图形如下:坐标为(2)解:所画图形如下所示:20.【答案】(1)解:把点和点.代入得解得所以抛物线的解析式为:(2)解:把代入,得解得,,∵点在点的左边,∴点,点由题意得,,21.【答案】(1)解:4个小球中有1个红球,则任意摸出1个球,恰好摸到红球的概率是:(2)解:列表如下:所有等可能的情况有12种,其中两次都摸到一红一黑有2种可能,摸出的两个球都是白色的有有2种可能,则P(小李获胜)= ,P(小王获胜)= ,故游戏公平.22.【答案】(1)证明:∵AB是的直径,∴,即点O是AB的中点,∵,∴是的中位线,点E是AD的中点,∴(2)解:如图,连接OD,∵AB是的直径,,,,∵,,即,又是的半径,,,,,在中,,OD是的斜边AB上的中线,,又,,则图中阴影部分的面积为23.【答案】(1)解:设2018年至2020年该地区投入教育经费的年平均增长率为x,依题意得:2000(1+x)2=2880,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:2018年至2020年该地区投入教育经费的年平均增长率为20%.(2)解:2880×(1+20%)=3456(万元).答:预计2021年该地区将投入教育经费3456万元.24.【答案】(1)解:设y=kx+b,将点、代入一次函数表达式得:,解得:,∴函数的表达式为:;(2)解:由题意得:,其中;(3)解:∵w=(x-20)(-x+180)=-(x-100)2+6400,抛物线对称轴为,-1<0,∴当时,w随x的增大而增大,而,∴当时,w有最大值,此时,,故销售单价定为元时,该超市每天的利润最大,最大利润元.25.【答案】(1)证明:连接,如图,,,,又,.又,..即,,又点在上,是的切线;(2)证明:,.又,,又,,,(3)解:,,,,,又,,,,,,即,,在中,,,.。
2022-2023学年广东省东莞市九年级(上)期末数学试卷(含解析)
2022-2023学年广东省东莞市九年级(上)期末数学试卷一、解答题(每小题3分,共30分)1.(3分)下列图形中,不是中心对称图形的是()A.B.C.D.2.(3分)“小明经过有交通信号灯的路口,遇到绿灯”,这个事件是()A.随机事件B.必然事件C.不可能事件D.确定事件3.(3分)抛物线y=3(x﹣1)2+2的顶点坐标为()A.(﹣1,2)B.(1,﹣2)C.(1,2)D.(2,1)4.(3分)用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6B.(x+2)2=9C.(x﹣1)2=6D.(x﹣2)2=9 5.(3分)如果反比例函数的图象位于第二、四象限,那么k的取值范围是()A.k<2B.k<﹣2C.k>2D.k>﹣26.(3分)如图,四边形ABCD内接于⊙O,∠C=100°,那么∠A是()A.60°B.50°C.80°D.100°7.(3分)如图,△ABC中,∠BAC=36°,将△ABC绕点A按顺时针方向旋转70°,得到△AB′C′,则∠BAC′的度数为()A.34°B.36°C.44°D.70°8.(3分)点A(﹣3,y1)、B(﹣1,y2)、C(2,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3 9.(3分)关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k取值范围是()A.k≥﹣2B.k>2C.k<2且k≠1D.k>2且k≠1 10.(3分)如图,已知抛物线y=ax2+bx+c(a≠0)经过点(﹣2,0),对称轴为直线x=1,下列结论中正确的是()A.abc>0B.b=2a C.9a+3b+c<0D.8a+c=0二、填空题(每小题3分,共15分)11.(3分)点A(﹣1,4)与点B关于原点对称,则B的坐标为.12.(3分)在一个不透明的袋子里装有红球6个,黄球若干个,这些球除颜色外都相同,小明通过多次试验发现,摸出红球的频率稳定在0.3左右,则袋子中黄球的个数可能是个.13.(3分)若m是方程x2﹣x﹣1=0的一个根,则m2﹣m+2022的值为.14.(3分)如图,点A在反比例函数y=(x>0)的图象上,过点A作AB⊥x轴于点B,若△OAB的面积为3,则k=.15.(3分)如图,网格中的小正方形边长都是1,则以O为圆心,OA为半径的和弦AB 所围成的弓形面积等于.三、解答题(每小题8分,共24分)16.(8分)解方程:3x2﹣5x﹣1=0.17.(8分)如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于原点对称的△A1B1C1;(2)请画出△ABC绕点B逆时针旋转90°后的△A2B2C2,求点A到A2所经过的路径长.18.(8分)2022年北京冬奥会吉祥物“冰墩墩”的销售十分火爆,出现了“一墩难求”的现象.据统计,某特许零售店2021年11月的销量为3万件,2022年1月的销量为3.63万件.(1)求该店“冰墩墩”销量的月平均增长率;(2)假设该店“冰墩墩”销量的月平均增长率保持不变,则2022年2月“冰墩墩”的销量有没有超过4万件?请利用计算说明.四、解答题(每小题9分,共27分)19.(9分)从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为2,5,5,6.(1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,则抽取的这张牌的牌面数字是6的概率为;(2)将这四张扑克牌背面朝上,洗匀.从中随机抽取一张,不放回,再从剩余的三张牌中随机抽取一张.请利用画树状图或列表的方法,求抽取的这两张牌的牌面数字恰好相同的概率.20.(9分)如图,在Rt△ABC中,∠C=90°,将△ABC绕着点B逆时针旋转得到△FBE,点C,A的对应点分别为E,F,点E落在BA上,连接AF.(1)若∠BAC=40°.则∠BAF的度数为;(2)若AC=8,BC=6,求AF的长.21.(9分)已知:如图,两点A(﹣4,2)、B(n,﹣4)是一次函数y=kx+b(k≠0)和反比例函数y=(m≠0)图象的两个交点.(1)求一次函数和反比例函数的解析式.(2)求△AOB的面积.(3)观察图象,直接写出不等式kx+b≥的解集.五、解答题(每小题12分,共24分)22.(12分)如图,AB是⊙O的直径,C点在⊙O上,AD平分角∠BAC交⊙O于D,过D 作直线AC的垂线,交AC的延长线于E,连接BD,CD.(1)求证:BD=CD;(2)求证:直线DE是⊙O的切线;(3)若DE=,AB=4,求AD的长.23.(12分)如图,抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P是抛物线上的动点,且满足S△P AO=2S△PCO,求出P点的坐标;(3)连接BC,点E是x轴一动点,点F是抛物线上一动点,若以B、C、E、F为顶点的四边形是平行四边形时,请直接写出点F的坐标.2022-2023学年广东省东莞市九年级(上)期末数学试卷参考答案与试题解析一、解答题(每小题3分,共30分)1.(3分)下列图形中,不是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义解答即可.【解答】解:A、是中心对称图形,故A不符合题意;B、是中心对称图形,故B不符合题意;C、不是中心对称图形,故C符合题意;D、是中心对称图形,故D不符合题意.故选:C.2.(3分)“小明经过有交通信号灯的路口,遇到绿灯”,这个事件是()A.随机事件B.必然事件C.不可能事件D.确定事件【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:“经过有交通信号灯的路口,遇到红灯”这个事件是随机事件.故选:A.3.(3分)抛物线y=3(x﹣1)2+2的顶点坐标为()A.(﹣1,2)B.(1,﹣2)C.(1,2)D.(2,1)【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【解答】解:∵抛物线y=3(x﹣1)2+2是顶点式,∴顶点坐标是(1,2).故选:C.4.(3分)用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6B.(x+2)2=9C.(x﹣1)2=6D.(x﹣2)2=9【分析】利用解一元二次方程﹣配方法,进行计算即可解答.【解答】解:x2﹣2x﹣5=0,x2﹣2x=5,x2﹣2x+1=5+1,(x﹣1)2=6,故选:C.5.(3分)如果反比例函数的图象位于第二、四象限,那么k的取值范围是()A.k<2B.k<﹣2C.k>2D.k>﹣2【分析】由反比例函数的图象位于第二、四象限,得出k﹣2<0,即可得出结果.【解答】解:∵反比例函数的图象位于第二、四象限,∴k﹣2<0,∴k<2,故选:A.6.(3分)如图,四边形ABCD内接于⊙O,∠C=100°,那么∠A是()A.60°B.50°C.80°D.100°【分析】根据圆内接四边形的对角互补计算即可.【解答】解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∵∠C=100°,∴∠A=180°﹣∠C=180°﹣100°=80°,故选:C.7.(3分)如图,△ABC中,∠BAC=36°,将△ABC绕点A按顺时针方向旋转70°,得到△AB′C′,则∠BAC′的度数为()A.34°B.36°C.44°D.70°【分析】根据∠BAC′=∠CAC′﹣∠CAB计算即可解决问题.【解答】解:∵∠CAC′=70°,∠CAB=36°,∴∠BAC′=∠CAC′﹣∠CAB=70°﹣36°=34°,故选:A.8.(3分)点A(﹣3,y1)、B(﹣1,y2)、C(2,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3【分析】分别把A、B、C各点坐标代入反比例函数y=求出y1、y2、y3的值,再比较大小即可.【解答】解:∵点A(﹣3,y1),B(﹣1,y2),C(2,y3)都在反比例函数y=的图象上,∴y1==2,y2==6,y3==﹣3,∵﹣3<2<6,∴y3<y1<y2,故选:C.9.(3分)关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k取值范围是()A.k≥﹣2B.k>2C.k<2且k≠1D.k>2且k≠1【分析】根据一元二次方程的定义结合根的判别式,即可得出关于k的一元一次不等式组,解之即可得出结论.【解答】解:∵关于x的一元二次方程(k﹣1)x2+2x﹣4=0有两个不相等的实数根,∴,解得:k<2且k≠1.故选:C.10.(3分)如图,已知抛物线y=ax2+bx+c(a≠0)经过点(﹣2,0),对称轴为直线x=1,下列结论中正确的是()A.abc>0B.b=2a C.9a+3b+c<0D.8a+c=0【分析】由抛物线的开口向下,对称轴﹣=1,抛物线交y轴的正半轴,判断a,b、c 与0的关系,得到b=﹣2a,abc<0,即可判断A、B;根据对称轴和抛物线与x轴的一个交点,得到另一个交点,然后根据图象确定答案即可判断C;根据抛物线y=ax2+bx+c经过点(﹣2,0)以及b=﹣2a,得到4a+4a+c=0,即可判断D.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=1,∴﹣=1,∴b=﹣2a>0,∵抛物线交y轴的正半轴,∴c>0,∴abc<0,故A、B错误;∵抛物线的对称轴为直线x=1,而点(﹣2,0)关于直线x=1的对称点的坐标为(4,0),∴当x=3时,y=9a+3b+c>0,故C错误;∵抛物线y=ax2+bx+c经过点(﹣2,0),∴4a﹣2b+c=0,∵b=﹣2a,∴4a+4a+c=0,即8a+c=0,故D正确,故选:D.二、填空题(每小题3分,共15分)11.(3分)点A(﹣1,4)与点B关于原点对称,则B的坐标为(1,﹣4).【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【解答】解:点A(﹣1,4)与点B关于原点对称,则B的坐标为(1,﹣4).故答案为:(1,﹣4).12.(3分)在一个不透明的袋子里装有红球6个,黄球若干个,这些球除颜色外都相同,小明通过多次试验发现,摸出红球的频率稳定在0.3左右,则袋子中黄球的个数可能是14个.【分析】设袋子中黄球的个数可能有x个,根据概率公式列出算式,再进行计算即可得出答案.【解答】解:设袋子中黄球的个数可能有x个,根据题意得:=0.3,解得:x=14,经检验x=14是原方程的解,答:袋子中黄球的个数可能是14个.故答案为:14.13.(3分)若m是方程x2﹣x﹣1=0的一个根,则m2﹣m+2022的值为2023.【分析】先根据一元二次方程解的定义得到m2﹣m=1,然后利用整体代入的方法计算.【解答】解:∵m是方程x2﹣x﹣1=0的一个根,∴m2﹣m﹣1=0,∴m2﹣m=1,∴m2﹣m+2022=1+2022=2023.故答案为:2023.14.(3分)如图,点A在反比例函数y=(x>0)的图象上,过点A作AB⊥x轴于点B,若△OAB的面积为3,则k=6.【分析】根据反比例函数系数k的几何意义得出结论即可.【解答】解:由题知,△OAB的面积为3,点A在反比例函数y=(x>0)的图象上,∴OB•AB=3,即OB•AB=6,∴k=6,故答案为:6.15.(3分)如图,网格中的小正方形边长都是1,则以O为圆心,OA为半径的和弦AB 所围成的弓形面积等于2π﹣4.【分析】直接利用阴影部分所在扇形减去所在三角形面积即可得出答案;【解答】解:由题意得,OA=OB=2,∠AOB=90°,∴S弓形=S扇形OAB﹣S△AOB=﹣×2×4=2π﹣4,故答案为:2π﹣4.三、解答题(每小题8分,共24分)16.(8分)解方程:3x2﹣5x﹣1=0.【分析】利用公式法求解即可.【解答】解:∵a=3,b=﹣5,c=﹣1,∴Δ=b2﹣4ac=(﹣5)2﹣4×3×(﹣1)=25+12=37>0.∴x==,∴x1=,x2=.17.(8分)如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于原点对称的△A1B1C1;(2)请画出△ABC绕点B逆时针旋转90°后的△A2B2C2,求点A到A2所经过的路径长.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)分别作出A,B,C的对应点A2,B2,C2即可.再利用弧长公式求解即可.【解答】解:(1)如图所示△A1B1C1即为所求(2)如图所示△A2B2C2即为所求.点A到A2经过的路径长.18.(8分)2022年北京冬奥会吉祥物“冰墩墩”的销售十分火爆,出现了“一墩难求”的现象.据统计,某特许零售店2021年11月的销量为3万件,2022年1月的销量为3.63万件.(1)求该店“冰墩墩”销量的月平均增长率;(2)假设该店“冰墩墩”销量的月平均增长率保持不变,则2022年2月“冰墩墩”的销量有没有超过4万件?请利用计算说明.【分析】(1)设月平均增长率为x,根据题意,得3(1+x)2=3.63,解一元二次方程即可;(2)假设保持相同的月平均增长率,求出2022年的销量,然后比较即可.【解答】解:(1)设月平均增长率为x,根据题意,得3(1+x)2=3.63,解得x1=0.1=10%,x2=﹣2.1(不合题意,舍去),答:该店“冰墩墩”销量的月平均增长率为10%.(2)假设保持相同的月平均增长率,那么2022年2月“冰墩墩”的销量为:3.63×(1+10%)=3.63×1.1=3.993(万件),∵3.993<4,∴2022年2月“冰墩墩”的销量没有超过4万件.四、解答题(每小题9分,共27分)19.(9分)从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为2,5,5,6.(1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,则抽取的这张牌的牌面数字是6的概率为;(2)将这四张扑克牌背面朝上,洗匀.从中随机抽取一张,不放回,再从剩余的三张牌中随机抽取一张.请利用画树状图或列表的方法,求抽取的这两张牌的牌面数字恰好相同的概率.【分析】(1)直接由概率公式求解即可;(2)画树状图,共有12种等可能的结果,抽取的这两张牌的牌面数字恰好相同的结果有2种,再由概率公式求解即可.【解答】解:(1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,抽取牌面数字是6的概率为;故答案为:;(2)画树状图如下:共有12种等可能的结果,抽取的这两张牌的牌面数字恰好相同的结果有2种,则抽取的这两张牌的牌面数字恰好相同的概率为=.20.(9分)如图,在Rt△ABC中,∠C=90°,将△ABC绕着点B逆时针旋转得到△FBE,点C,A的对应点分别为E,F,点E落在BA上,连接AF.(1)若∠BAC=40°.则∠BAF的度数为65°;(2)若AC=8,BC=6,求AF的长.【分析】(1)根据三角形的内角和定理得到∠ABC=50°,根据旋转的性质得到∠EBF =∠ABC=50°,AB=BF,根据三角形的内角和定理即可得到结论;(2)根据勾股定理得到AB=10,根据旋转的性质得到BE=BC=6,EF=AC=8,根据勾股定理即可得到结论.【解答】解:(1)在Rt△ABC中,∠C=90°,∠BAC=40°,∴∠ABC=50°,∵将△ABC绕着点B逆时针旋转得到△FBE,∴∠EBF=∠ABC=50°,AB=BF,∴∠BAF=∠BF A=(180°﹣50°)=65°,故答案为:65°;(2)∵∠C=90°,AC=8,BC=6,∴AB=10,∵将△ABC绕着点B逆时针旋转得到△FBE,∴BE=BC=6,EF=AC=8,∴AE=AB﹣BE=10﹣6=4,∴AF==4.21.(9分)已知:如图,两点A(﹣4,2)、B(n,﹣4)是一次函数y=kx+b(k≠0)和反比例函数y=(m≠0)图象的两个交点.(1)求一次函数和反比例函数的解析式.(2)求△AOB的面积.(3)观察图象,直接写出不等式kx+b≥的解集.【分析】(1)先把点A的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B的坐标代入反比例函数解析式,即可求出n=2,然后利用待定系数法确定一次函数的解析式;(2)先求出直线y=﹣x﹣2与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;(3)观察函数图象即可求得不等式的解集.【解答】解:(1)∵A(﹣4,2)在上,∴m=﹣4×2=﹣8.∴反比例函数的解析式为.∵B(n,﹣4)在上,∴n=2,∵y=kx+b经过A(﹣4,2),B(2,﹣4),∴,解之得,∴一次函数的解析式为y=﹣x﹣2;(2)∵C是直线AB与x轴的交点,∴当y=0时,x=﹣2.∴点C(﹣2,0).∴OC=2.∴S△AOB=S△ACO+S△BCO==6;(3)由图可得,不等式kx+b≥的解集为x≤﹣4或0<x≤2.五、解答题(每小题12分,共24分)22.(12分)如图,AB是⊙O的直径,C点在⊙O上,AD平分角∠BAC交⊙O于D,过D 作直线AC的垂线,交AC的延长线于E,连接BD,CD.(1)求证:BD=CD;(2)求证:直线DE是⊙O的切线;(3)若DE=,AB=4,求AD的长.【分析】(1)由角平分线定义得出∠CAD=∠BAD,即可得出结论;(2)连接半径OD,则OD=OA,得出∠OAD=∠ODA,由∠EAD+∠ADE=90°,∠EAD=∠BAD,得出∠BAD+∠ADE=90°,即∠ODA+∠ADE=90°,即可得出结论;(3)过点D作DF⊥AB于F,则DF=DE=,由勾股定理得出OF==1,易证△OBD是等边三角形,得出OF=FB=1,AF=AB﹣FB=3,由勾股定理即可得出结果.【解答】(1)证明:∵在⊙O中,AD平分角∠BAC,∴∠CAD=∠BAD,∴BD=CD;(2)证明:连接半径OD,如图1所示:则OD=OA,∴∠OAD=∠ODA,∵DE⊥AC于E,在Rt△ADE中,∴∠EAD+∠ADE=90°,由(1)知∠EAD=∠BAD,∴∠BAD+∠ADE=90°,即∠ODA+∠ADE=90°,∴OD⊥DE,∴DE是⊙O的切线;(3)解:过点D作DF⊥AB于F,如图2所示:则DF=DE=,∵AB=4,∴半径OD=2,在Rt△ODF中,OF===1,∴∠ODF=30°,∴∠DOB=60°,∵OD=OB,∴△OBD是等边三角形,∴OF=FB=1,∴AF=AB﹣FB=4﹣1=3,在Rt△ADF中,AD===2.23.(12分)如图,抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P是抛物线上的动点,且满足S△P AO=2S△PCO,求出P点的坐标;(3)连接BC,点E是x轴一动点,点F是抛物线上一动点,若以B、C、E、F为顶点的四边形是平行四边形时,请直接写出点F的坐标.【分析】(1)由待定系数法可求解析式;(2)求出点C坐标,可得OA=OC=3,由面积关系列出方程可求解;(3)分两种情况讨论,利用平行四边形的性质可求解.【解答】解:(1)∵抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(1,0)两点,∴解得:,∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵抛物线y=﹣x2﹣2x+3与y轴交于点C,∴点C(0,3)∴OA=OC=3,设点P(x,﹣x2﹣2x+3)∵S△P AO=2S△PCO,∴×3×|﹣x2﹣2x+3|=2××3×|x|,∴x=±或x=﹣2±,∴点P(,﹣2)或(﹣,2)或(﹣2+,﹣4+2)或(﹣2﹣,﹣4﹣2);(3)若BC为边,且四边形BCFE是平行四边形,∴CF∥BE,∴点F与点C纵坐标相等,∴3=﹣x2﹣2x+3,∴x1=﹣2,x2=0,∴点F(﹣2,3)若BC为边,且四边形BCEF是平行四边形,∴BE与CF互相平分,∵BE中点纵坐标为0,且点C纵坐标为3,∴点F的纵坐标为﹣3,∴﹣3=﹣x2﹣2x+3∴x=﹣1±,∴点F(﹣1+,﹣3)或(﹣1﹣,﹣3);若BC为对角线,则四边形BECF是平行四边形,∴BC与EF互相平分,∵BC中点纵坐标为,且点E的纵坐标为0,∴点F的纵坐标为3,∴点F(﹣2,3),综上所述,点F坐标(﹣2,3)或(﹣1+,﹣3)或(﹣1﹣,﹣3).。
2020-2021学年东莞市九年级上学期期末数学试卷(含答案解析)
2020-2021学年东莞市九年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A. 线段B. 等边三角形C. 五角星D. 等腰梯形2.点A(−5,4)关于原点的对称点A′的坐标为()A. (5,4)B. (5,−4)C. (−5,4)D. (−5,−4)3.若方程x2+ax−2a=0的一个根是1,则a的取值是()A. 1B. −1C. 0D. −24.已知关于x的一元二次方程x2−2(k−1)x+k2+3=0的两实数根为x1,x2,设t=x1+x2,则t的k 最大值为()A. −2B. 2C. −4D. 45.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,m),且与x轴的一个交点在点(3,0)和(4,0)之间,下列结论错误的是()A. a−b+c>0B. b2=4a(c−m)C. 2a+c<0D. 一元二次方程ax2+bx+c=m−1有两个不相等的实数根6.若抛物线y=(x+1)2先向下平移2个单位长度,再向左平移1个单位长度,则所得到的新抛物线的解析式是()A. y=(x+2)2+2B. y=x2−2C. y=x2+2D. y=(x+2)2−27.下列说法不正确的是()A. 气象台预报“本市明天降水概率是30%”是指本市明天将有可能降水B. “神舟十一号”发射前检查零部件要普查C. 小明共投篮25次,进了10个球,则小明进球的频率是0.4D. 从初三体考成绩中抽取100名学生的体考成绩,这100名考生是总体的一个样本8.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是【】A. 2:3B. :C. 4:9D. 8:279.在圆柱形油槽内装有一些油,油槽直径MN为10分米.截面如图,油面宽AB为6分米,如果再注入一些油后,当油面宽变为8分米,油面AB上升()A. 1分米B. 4分米C. 3分米D. 1分米或7分米10.如图,函数y=kx与y=−kx+2(k≠0)在同一平面直角坐标系中的大致图象是()A. B.C. D.二、填空题(本大题共7小题,共28.0分)11.如图,点A在双曲线y=−2x (x<0)上,连接OA,作OB⊥OA,交双曲线y=8x于点B,则OAOB的值为______.12.如图,在8×8的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”,设对称轴平行于y轴的抛物线与网格对角线OM的两个交点为A,B,其顶点为C,如果△ABC是该抛物线的内接格点三角形,且AB=3√2,点A,B,C的横坐标x A,x B,x C满足x A< x C<x B,那么符合上述条件的抛物线的条数是______.13.有五张形状完全相同不透明的卡片,每张卡片上分别写有0,√3,−1,√4,1,π,将无字一27面朝上洗匀后,从中任取一张,取到的是无理数的概率是______.14.若关于x的方程x2+bx+6=0有一根是x=2,则b的值是______ .15.∠α的补角是它的2倍,则∠a的余角等于______度.16.如图,将Rt△ABC绕点A逆时针旋转90°得到Rt△AB′C′.若∠B=∠B′=90°,AB=1,BC=2,则旋转过程中弧CC′的长为______(结果保留π).17.如图,在平面直角坐标系中,在x轴、y轴的半轴上分别截取OA,OB,使OA=OB,再分别以AB长为半径作弧,两弧交于点C.若点C的坐标为(m−1,2n),则m与n的点A,B为圆心,以大于12关系为______.三、计算题(本大题共1小题,共6.0分)18.解下列方程:①x2+3x−4=0;②6x2−x−12=0;③3(x−5)2=2(5−x);④3x2+5(2x+1)=0.四、解答题(本大题共7小题,共56.0分)19.一个不透明的口袋中有三个完全相同的小球,把他们分别标号为1,2,3.随机摸取一个小球然后放回,再随机摸出一个小球.用列表或画树状图的方法,求两次取出的小球标号相同的概率.20.如图,已知AB是半圆O直径,点C为半圆上一动点,连接AC,过点C作CD⊥AB于点D,将△ACD沿AC翻折,得到△ACE,AE交半⊙O于点F.(1)求证:直线CE与⊙O相切;(2)若∠OCA=∠ECF,AD=8,EC=6,求CF的长.21.某超市销售一种饮料,平均每天可售出200箱,每箱利润12元,为尽可能多的减少库存,增加利润,超市准备适当降价.据测算,每箱每降价1元,平均每天可多售出40箱.若要使每天销售该饮料获利2800元,则每箱应降价多少元?22.已知:如图,一次函数y=√33x+m与反比例函数y=√3x的图象在第一象限的交点为A(1,n).(1)求m与n的值;(2)设一次函数的图象与x轴交于点B,连结OA,求∠BAO的度数.23.如图,方格纸中的每个小方格都是边长为1个单位的正方形.Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(−4,1),点B的坐标为(−1,1).(1)先将Rt△ABC向右平移5个单位,再向下平移1个单位后得到Rt△A1B1C1.试在图中画出图形Rt△A1B1C1;(2)将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出图形Rt△A2B2C2.并计算C1C2的长.24.如图,AB是大半圆O的直径,AO是小半圆M的直径,点P是大半圆O上一点,PA与小半圆M交于点C,过点C作CD⊥OP于点D.(1)求证:CD是小半圆M的切线;(2)若AB=8,点P在大半圆O上运动(点P不与A,B两点重合),设PD=x,CD2=y.①求y与x之间的函数关系式,并写出自变量x的取值范围;②当y=3时,求P,M两点之间的距离.25.已知在平面直角坐标系xOy中,⊙O的半径为1.(1)当直线l:y=x+b与⊙O只有一个交点时,求b的值;(2)当反比例函数y=k的图象与⊙O有四个交点时,求k的取值范围;x(3)试探究当n取不同的数值时,二次函数y=x2+n的图象与⊙O交点个数情况.参考答案及解析1.答案:A解析:解:A、线段既是轴对称图形又是中心对称图形,故此选项正确;B、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;C、五角星是轴对称图形,不是中心对称图形,故此选项错误;D、等腰梯形是轴对称图形,不是中心对称图形,故此选项错误;故选:A.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.答案:B解析:解:点A(−5,4)关于原点对称点A′的坐标是A(5,−4),故选:B.根据关于原点对称的点的坐标的横坐标与纵坐标都互为相反数解答.本题考查了关于原点对称的点的坐标,熟记“关于原点对称的点的坐标的横坐标与纵坐标都互为相反数”是解题的关键.3.答案:A解析:解:根据题意,得12+a−2a=0,解得,a=1.故选A.将x=1代入已知方程,列出关于a的新方程,通过解新方程即可求得a的值.本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.4.答案:D解析:解:∵关于x的一元二次方程x2−2(k−1)x+k2+3=0的两实数根为x1、x2,∴x1+x2=2(k−1),∴t=x1+x2k =2(k−1)k=2−2k.∵关于x的一元二次方程x2−2(k−1)x+k2+3=0有实数根,∴△=[−2(k−1)]2−4(k2+3)=−8k−8≥0,解得:k≤−1,∴t=2−2k≤4.故选:D.根据根与系数的关系可得出x1+x2=2(k−1),将其代入t=x1+x2k 中可得出t=2−2k,由方程有实数根,利用根的判别式△≥0可求出k的取值范围,进而即可求出t的最大值.本题考查了根与系数的关系以及根的判别式,利用方程有实数根求出k的取值范围是解题的关键.5.答案:C解析:解:对称轴为x=1,且m>0,由对称性可知:抛物线与x轴的另外一个交点在(−1,0)与(−2,0)之间,∴当−1≤x≤3,y>0,且△>0,开口向下,a<0(A)当x=−1时,y=a−b+c>0,故A正确,(B)∵顶点坐标为(−b2a ,4ac−b24a),∴4ac−b24a=m,∴b2=4a(c−m),故B正确(C)∵−b2a=1,∴b+2a=0,∵a−b+c>0,∴3a+c>0,故C错误(D)当y<m时,抛物线与y=m有两个交点,∵y=m−1<m,∴一元二次方程ax2+bx+c=m−1有两个不相等的实数根,故D正确.故选:C.由题意可知:对称轴为x=1,且m>0,由对称性可知:抛物线与x轴的另外一个交点在(−1,0)与(−2,0)之间,从而可判断出正确答案.本题考查二次函数的图象与性质,解题的关键是根据图象求出对称轴以及a,△与0的大小关系,本题属于中等题型.6.答案:D解析:解:将抛物线y=(x+1)2向下平移2个单位长度,得到的抛物线的解析式是:y=(x+1)2−2,再向左平移1个单位长度,得到的抛物线的解析式是:y=(x+1+1)2−2,即y=(x+2)2−2,故选:D.根据平移的规律:左加右减,上加下减,求出得到的抛物线的解析式即可.此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.7.答案:D解析:解:A、气象台预报“本市明天降水概率是30%”是指本市明天将有可能降水,正确;B、“神舟十一号”发射前检查零部件要普查,正确;=0.4,正确;C、小明共投篮25次,进了10个球,则小明进球的频率是1025D、从初三体考成绩中抽取100名学生的体考成绩,这100名考生的体考成绩是总体的一个样本,故本选项不正确;故选:D.根据概率公式和总体、个体、样本、样本容量的定义分别对每一项进行分析,即可得出答案.此题考查了概率公式和总体、个体、样本、样本容量,熟练掌握定义和公式是解题的关键.8.答案:C解析:根据相似三角形的面积的比等于相似比的平方,所以两个相似三角形面积的比是(2:3)²=4:9.故选C9.答案:D解析:解:连接OA.作OG⊥AB于G,则在直角△OAG中,AG=3分米,因为OA=5cm,根据勾股定理得到:OG=4分米,即弦AB的弦心距是4分米,同理当油面宽AB为8分米时,弦心距是3分米,当油面没超过圆心O时,油上升了1分米;当油面超过圆心O时,油上升了7分米.因而油上升了1分米或7分米.故选:D.实质是求两条平行弦之间的距离.根据勾股定理求弦心距,作和或差分别求解.此题主要考查了垂径定理的应用,此题涉及圆中求半径的问题,此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解.本题容易忽视的是分情况讨论.10.答案:B解析:解:在函数y=kx和y=−kx+2(k≠0)中,当k>0时,函数y=kx的图象在第一、三象限,函数y=−kx+2的图象在第一、二、四象限,故选项A、D错误,选项B正确,当k<0时,函数y=kx的图象在第二、四象限,函数y=−kx+2的图象在第一、二、三象限,故选项C错误,故选:B.根据题目中函数的解析式,利用一次函数和反比例函数图象的特点解答本题.本题考查反比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用分类讨论的数学思想解答.11.答案:12解析:解:过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,∴S△AOC=12×|−2|=1;S△BOD=12×8=4,∵OB⊥OA,∴∠BOD+∠AOC=∠AOC+∠OAC=90°,∴∠BOD=∠OAC,且∠BDO=∠ACO,∴△AOC∽△OBD,∴S△AOCS△OBD =(OAOB)2,即(OAOB)2=14,∴OAOB =12,故答案为:12.过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,可得出S△AOC=12×|−2|=1;S△BOD=12×8=4,由条件证得△AOC∽△OBD,从而得出S△AOCS△OBD =(OAOB)2,即(OAOB)2=14,即可求得OAOB=12.本题主要考查反比例函数系数k 的几何意义,利用条件构造三角形相似是解题的关键.12.答案:10解析:解:过点(0,0),(2,4),(3,3)的抛物线为y =−x 2+4x ,将抛物线向上、向右平移一个单位,得到符合条件的新抛物线;可平移4次;∴开口向下共有5条符合条件的抛物线;同理,开口向上的也有5条;∴共有10条.故答案为10.由原点出发,寻找一条符合条件的抛物线,继而在8×8的网格中平移,最后的得到符合条件的抛物线.本题主要考查抛物线的平移,熟练掌握抛物线在坐标系中的性质是解答本题的关键.13.答案:25解析:解:∵五个数0,√3,−1,√4,127,π中,无理数是√3,π,∴从中任取一张,取到的数是无理数的概率是:25,故答案为:25.0,√3,−1,√4,127,π中共有2个无理数,则从中随机抽取一张卡片,抽到无理数的概率是25. 此题主要考查了概率的计算,关键是掌握概率=所求情况数与总情况数之比. 14.答案:−5解析:解:∵一元二次方程x 2+bx +6=0的一个实数根为2,∴4+2b +6=0,解得b =−5.故答案为:−5.已知了一元二次方程的一个实数根,可将其代入该方程中,即可求出b 的值.此题主要考查了一元二次方程的解,所谓方程的解,即能够使方程左右两边相等的未知数的值. 15.答案:30解析:解:由题意得:180°−∠α=2∠α,解得:∠α=60°,则∠a 的余角=90°−60°=30°;故答案为:30.由题意得出180°−∠α=2∠α,解得∠α=60°,由余角定义即可得出答案.本题考查了余角和补角;熟练掌握余角和补角的定义是解题的关键.16.答案:√52π 解析:解:在Rt △ABC 中,AC =√AB 2+BC 2=√12+22=√5,CC′的弧长=90⋅π⋅√5180=√52π. 故答案为:√52π. 根据勾股定理可将斜边AC 的长求出,以点A 为中心,AC 长为半径逆时针旋转,点C 所形成的轨迹CC′是扇形.本题考查弧长的计算,圆周角定理,旋转变换等知识,解题的关键是记住弧长公式l =nπr 180.17.答案:m +2n =1解析:解:由作图可知,点C 在∠AOB 的角平分线上,∴点C 的横坐标与纵坐标互为相反数,∴m −1+2n =0,∴m +2n =1,故答案为:m +2n =1.由作图可知,点C 在∠AOB 的角平分线上,推出点C 的横坐标与纵坐标互为相反数,由此即可解决问题.本题考查作图−基本作图,坐标与图形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.18.答案:解:①(x +4)(x −1)=0,x +4=0或x −1=0,所以x 1=−4,x 2=1;②(2x −3)(3x +4)=0,2x −3=0或3x +4=0,所以x 1=32,x 2=−43;③3(x −5)2+2(x −5)=0,(x −5)(3x −15+2)=0,x −5=0或3x −15+2=0,所以x 1=5,x 2=133; ④3x 2+10x +5=0,△=102−4×3×5=40,x =−10±√402×3=−5±√103所以x 1=−5+√103,x 2=−5−√103.解析:①利用因式分解法解方程;②利用因式分解法解方程;③先移项得到3(x −5)2+2(x −5)=0,然后利用因式分解法解方程;④先把方程整理为一般式,然后利用求根公式法解方程.本题考查了解一元二次方程−因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了公式法解一元二次方程.19.答案:解:画树状图得:则共有9种等可能的结果,两次摸出的小球标号相同时的情况有3种,所以两次取出的小球标号相同的概率为13.解析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号相同时的情况,再利用概率公式即可求得答案.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比. 20.答案:(1)证明:将△ACD 沿AC 翻折,得到△ACE ,∴△ACD≌△ACE ,∴∠EAC =∠DAC ,∵OA =OC ,∴∠OAC=∠OCA,∴∠OCA=∠EAC,∴OC//AE,∵∠AEC=90°,∴∠ECO=90°,∴OC⊥EC,∴直线EC是⊙O的切线;(2)解:连接BC,∵AB是直径,∴∠ACB=90°,∵CD⊥AB,∴CD2=AD⋅BD,∵CD=CE=6,AD=8,∴BD=628=92,∵四边形ABCE是圆内接四边形,∴∠CFE=∠DBC,在△CEF和△CDB中,{∠CFE=∠CBD∠E=∠CDB=90°CE=CD∴△CEF≌△CDB(AAS),∴CF=BD=92.解析:(1)根据折叠的性质得到△ACD≌△ACE,求得∠EAC=∠DAC,推出OC//AE,根据切线的判定定理即可得到结论;(2)根据圆周角定理得到∠ACB=90°,根据射影定理求得BD,然后通过证得△CEF≌△CDB即可得到结论.本题考查的是切线的判定、圆周角定理及图形翻折变换的性质,射影定理的应用,根据题意作出辅助线是解答此题的关键.21.答案:解:设每箱降价x元,则每天可售出(200+40x)箱,依题意,得:(12−x)(200+40x)=2800,整理,得:x2−7x+10=0,解得:x1=2,x2=5.∵为尽可能多的减少库存,增加利润,∴x=5.答:每箱应降价5元.解析:设每箱降价x元,则每天可售出(200+40x)箱,根据总利润=每箱的利润×销售数量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.答案:解:(1)∵点A(1,n)在双曲线y=√3x上,∴n=√3,又∵A(1,√3)在直线y=√33x+m上,∴m=2√33;(2)过点A作AM⊥x轴于点M.∵直线y=√33x+2√33与x轴交于点B,∴√33x+2√33=0.解得x=−2.∴点B的坐标为(−2,0).∴OB=2,∵点A的坐标为(1,√3),∴AM=√3,OM=1,在Rt△AOM中,∠AMO=90°,∴tan∠AOM=AMOM=√3,∴∠AOM=60°,由勾股定理,得OA=2,∴OA=OB,∴∠OBA=∠BAO,∴∠BAO=12∠AOM=30°,∴sin∠BAO =12, ∴∠BAO =30°. 解析:(1)把点A(1,n)坐标代入y =√3x 即可求得n ,再把A(1,√3)坐标代入y =√33x +m 可求m ; (2)由直线y =√33x +2√33,求得点B 的坐标为(−2,0),即OB =2,由点A 的坐标为(1,√3),由三角函数可求得∠AOM =60°,由勾股定理求得得OA =2,得到OA =OB ,推出∠OBA =∠BAO ,于是求得∠BAO =30°,由正弦函数的定义可得结论.本题考查了反比例函数与一次函数的交点,三角函数的定义,利用点的坐标得到∠BAO 的度数是解决本题的突破点.23.答案:解:(1)如图,Rt △A 1B 1C 1即为所求;(2)如图,Rt △A 2B 2C 2即为所求,C 1C 2=√12+52=√26.解析:(1)根据网格结构找出点A 、B 、C 平移后的对应点A 1、B 1、C 1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A 1的坐标即可;(2)根据网格结构找出点A 1、B 1、C 1绕点A 1顺时针旋转90°后的对应点A 2、B 2、C 2的位置,然后顺次连接即可,再根据勾股定理求出C 1C 2的长度.本题考查了利用旋转变换作图,利用平移变换作图,弧长的计算公式,熟练掌握网格结构并准确找出对应点的位置是解题的关键.24.答案:解:(1)连接CO 、CM ,如图1所示.∵AO 是小半圆M 的直径,∴∠ACO =90°即CO ⊥AP .∵OA =OP ,∴AC =PC .∵AM =OM ,∴CM//PO .∴∠MCD=∠PDC.∵CD⊥OP,∴∠PDC=90°.∴∠MCD=90°,即CD⊥CM.∵CD经过半径CM的外端C,且CD⊥CM,∴直线CD是小半圆M的切线.(2)①∵CO⊥AP,CD⊥OP,∴∠OCP=∠ODC=∠CDP=90°.∴∠OCD=90°−∠DCP=∠P.∴△ODC∽△CDP.∴CDDP =ODCD.∴CD2=DP⋅OD.∵PD=x,CD2=y,OP=12AB=4,∴y=x(4−x)=−x2+4x.当点P与点A重合时,x=0;当点P与点B重合时,x=4;∵点P在大半圆O上运动(点P不与A,B两点重合),∴0<x<4.∴y与x之间的函数关系式为y=−x2+4x,自变量x的取值范围是0<x<4.②当y=3时,−x2+4x=3.解得:x1=1,x2=3.Ⅰ.当x=1时,如图2所示.在Rt△CDP中,∵PD=1,CD=√3.∴tan∠CPD=CDPD=√3,∴∠CPD=60°.∵OA=OP,∴△OAP是等边三角形.∵AM=OM,∴PM⊥AO.∴PM=√PO2−MO2=√42−22=2√3.Ⅱ.当x=3时,如图3所示.同理可得:∠CPD=30°.∵OA=OP,∴∠OAP=∠APO=30°.∴∠POB=60°过点P作PH⊥AB,垂足为H,连接PM,如图3所示.∵sin∠POH=PHOP =PH4=√32,∴PH=2√3.同理:OH=2.在Rt△MHP中,∵MH=4,PH=2√3,∴PM=√MH2+PH2=√42+(2√3)2=2√7.综上所述:当y=3时,P,M两点之间的距离为2√3或2√7.解析:(1)连接CO、CM,只需证到CD⊥CM.由于CD⊥OP,只需证到CM//OP,只需证到CM是△AOP 的中位线即可.(2)①易证△ODC∽△CDP,从而得到CD2=DP⋅OD,进而得到y与x之间的函数关系式.由于当点P 与点A重合时x=0,当点P与点B重合时x=4,点P在大半圆O上运动(点P不与A,B两点重合),因此自变量x的取值范围为0<x<4.②当y=3时,得到−x2+4x=3,求出x.根据x的值可求出CD、PD的值,从而求出∠CPD,运用勾股定理等知识就可求出P,M两点之间的距离.本题考查了切线的判定、平行线的判定与性质、等边三角形的判定与性质、相似三角形的判定与性质、特殊角的三角函数值、勾股定理等知识,综合性比较强.25.答案:解:(1)∵y=x+b与⊙O只有一个交点,∴y=x+b与x轴,与y轴的交点坐标分别为:(±b,0),(0,±b),∴△AOB为等腰直角三角形,CO=AC=BC=1,∴b的值为:b=±√2;(2)∵反比例函数y=kx的图象与⊙O有四个交点,∵当图象与与⊙O有二个交点时,曲线与圆相切,得出DF=OF=√22,∴xy=k=12,∴−12<k<12(k≠0);(3)①当n>1时,有0个交点;②当n=1时,有1个交点;③当−1<n<1时,有2个交点;④当n=−1时,有3个交点;⑤当−1.25<n<−1时,有4个交点;⑥当n=−1.25时,有2个交点;⑦当n<−1.25时,有0个交点;简解:∵x2+y2=1而y=x2+n即x2=y−n,代入得y−n+y2=1,即y2+y−n−1=0,要使二次函数图象与下半圆只有两个交点,根据对称性,y必须唯一,∴△=4n+5=0,n=−54.解析:(1)根据已知条件得出两种符合要求的解析,利用等腰三角形的性质,分别求出即可;(2)利用特殊点当反比例函数两曲线与圆相切时,求出DF=OF,从而得出xy的值,进而得出取值范围;(3)根据当n>1时,有0个交点;②当n=1时,有1个交点;③当−1<n<1时,有2个交点;④当n=−1时,有3个交点;⑤当−1.25<n<−1时,有4个交点;⑥当n=−1.25时,⑦当n<−1.25时,分别分析得出.。
广东省东莞市19-20学年九年级上学期期末数学试卷 (含答案解析)
广东省东莞市19-20学年九年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列四个图案中,是中心对称图形的是()A. B. C. D.2.点A(3,−1)关于原点对称的点的坐标为()A. (3,1)B. (−3,−1)C. (−3,1)D. (1,−3)3.关于x的方程x2+mx=0的一个根是−1,则m的值为A. 1B. 0C. −1D. 1或04.若方程3x2−4x−4=0的两个实数根分别为x1,x2,则x1+x2等于()A. −4B. 3C. −43D. 435.若关于x的方程x2+x−a+54=0有两个不相等的实数根,则满足条件的最小整数a的值是()A. −1B. 0C. 1D. 26.在平面直角坐标系中,将抛物线y=3x2先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是()A. y=3(x+1)2+2B. y=3(x+1)2−2C. y=3(x−1)2+2D. y=3(x−1)2−27.某个密码锁的密码由三个数字组成,每个数字都是0−9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了锁设密码的最后那个数字,那么一次就能打开该密码的概率是()A. 19B. 110C. 13D. 128.如果两个相似三角形的面积比是1:4,那么它们对应角平分线的比是()A. 1:16B. 1:4C. 1:6D. 1:29.如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=()A. 3cmB. 4cmC. 5cmD. 6cm10.二次函数y=ax2+bx+c的图象如图所示,反比例函数y=a与正比例函数xy=bx在同一坐标系内的大致图象是()A. B. C. D.二、填空题(本大题共7小题,共28.0分)11.已知反比例函数y=k的图象经过点(2,−1),则k=______.x12.抛物线y=(x+3)2+2的顶点坐标______ .13.15.已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是1,则袋中小球的总个数是_____414.若m是方程2x2−3x−1=0的一个根,则6m2−9m+2015的值为______.15.如图,∠AOB=∠COD=90°,∠AOD=115°,则∠BOC=______.16.已知扇形的周长为20cm,面积为16cm2,那么扇形的半径为______ .17.在平面直角坐标系xOy中,已知点P(2,2),点Q在坐标轴上,△PQO是等腰三角形,则满足条件的点Q共有______个.三、计算题(本大题共1小题,共6.0分)18.解方程:x2−7x+5=0.四、解答题(本大题共7小题,共56.0分)19.小明参加某网店的“翻牌抽奖”活动,如图,共有4张牌,分别对应5元,10元,15元,20元的现金优惠券,小明只能看到牌的背面.(1)如果随机翻一张牌,那么抽中20元现金优惠券的概率是______.(2)如果随机翻两张牌,且第一次翻的牌不参与下次翻牌,则所获现金优惠券的总值不低于30元的概率是多少?请画树状图或列表格说明问题.20.如图,AD是Rt△ABC斜边上的高,若AB=4cm,BC=10cm,求BD的长.21.某型号的手机连续两次降价,每部手机原来的售价为4000元,降价后减少了760元,已知两次降价的百分率相同,求每次降价的百分率.22.如图,已知一次函数y=x+2与反比例函数的图象交于两点A和B(a,4)(1)求a得值及反比例函数的解析式(2)求点A的坐标(3)根据图象写出当一次函数值大于反比例函数值时,x的取值范围.23.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,点B所经过的路径的长度.24.如图,AD是⊙O的直径,弧BA=弧BC,BD交AC于点E,点F在DB的延长线上,且∠BAF=∠C.(1)求证:AF是⊙O的切线;(2)求证:△ABE∽△DBA;(3)若BD=8,BE=6,求AB的长.25.如图,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴的交点C,且A(1,0),C(0,3),OB=OC.(1)求此抛物线的解析式;(2)若点E是第二象限抛物线上的一个动点,连接BE、CE,求四边形ABEC面积的最大值,并写出此时点E的坐标;(3)点P在抛物线的对称轴上,将线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好落在此抛物线上,求点P的坐标.-------- 答案与解析 --------1.答案:A解析:解:A.此图案是中心对称图形,符合题意;B.此图案不是中心对称图形,不合题意;C.此图案不是中心对称图形,不合题意;D.此图案不是中心对称图形,不合题意;故选:A.根据中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.答案:C解析:此题主要考查了关于原点对称点的性质,属于基础题.直接利用关于原点对称点的性质得出答案.解:点A(3,−1)关于原点对称的点的坐标为:(−3,1).故选:C.3.答案:A解析:本题考查的是一元二次方程的根即方程的解的定义.本题逆用一元二次方程解的定义易得出m的值.根据一元二次方程解的定义,将x=−1代入原方程,然后解关于m的一元一次方程即可.解:将x=−1代入方程x2+mx=0,得1−m=0,解得,m=1.故选A.4.答案:D解析:本题主要考查了根与系数的关系,解题的关键是找出“x1+x2=−ba =43”.解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.由方程的各系数结合根与系数的关系可得出“x1+x2=43”,由此即可得出结论.解:∵方程3x2−4x−4=0的两个实数根分别为x1,x2,∴x1+x2=−ba =43,故选D.5.答案:D解析:解:由题意可知:△>0,∴1−4(−a+54)>0,解得:a>1故满足条件的最小整数a的值是2,故选:D.根据根的判别式即可求出a的范围.本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.6.答案:C解析:解:∵抛物线y=3x2的对称轴为直线x=0,顶点坐标为(0,0),∴抛物线y=3x2向右平移1个单位,再向上平移2个单位得到的抛物线的对称轴为直线x=1,顶点坐标为(1,2),∴平移后抛物线的解析式为y=3(x−1)2+2.故选:C.先根据抛物线的顶点式得到抛物线y=3x2的对称轴为直线x=0,顶点坐标为(0,0),则抛物线y= 3x2向右平移1个单位,再向上平移2个单位得到的抛物线的对称轴为直线x=1,顶点坐标为(1,2),然后再根据顶点式即可得到平移后抛物线的解析式.本题考查了二次函数图象与几何变换:先把抛物线的解析式化为顶点式y=a(x−k)2+ℎ,其中对称轴为直线x=k,顶点坐标为(k,ℎ),若把抛物线先右平移m个单位,向上平移n个单位,则得到的抛物线的解析式为y=a(x−k−m)2+ℎ+n;抛物线的平移也可理解为把抛物线的顶点进行平移.7.答案:B解析:解:∵共有10个数字,∴一共有10种等可能的选择,∵一次能打开密码的只有1种情况,∴一次能打开该密码的概率为1.10故选:B.最后一个数字可能是0~9中任一个,总共有十种情况,其中开锁只有一种情况,利用概率公式进行计算即可.此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.8.答案:D解析:本题考查的是相似三角形的性质,关键是熟练掌握相似三角形对应边的比、对应高线的比、对应角平分线的比、周长的比都等于相似比;面积的比等于相似比的平方.先根据相似三角形面积的比求出其相似比,再根据其对应的角平分线的比等于相似比即可解答.解:∵两个相似三角形的面积比是1:4,∴这两个相似三角形的相似比是1:2,∵其对应角平分线的比等于相似比,∴它们对应的角平分线比是1:2.故选D.9.答案:B解析:本题考查了勾股定理和垂径定理,能根据垂径定理求出AC的长度是解此题的关键.连接OA,根据垂径定理求出AC,根据勾股定理求出OC即可.解:连接OA,∵OC⊥AB,OC过O,AB=6cm,∴AC=BC=3cm,在Rt△OCA中,由勾股定理得:OC=√OA2−AC2=√52−32=4(cm),故选:B.10.答案:B解析:解:∵二次函数y=ax2+bx+c的图象开口方向向下,∴a<0,对称轴在y轴的左边,<0,∴x=−b2a∴b<0,∴反比例函数y=a的图象在第二四象限,x正比例函数y=bx的图象在第二四象限.故选:B.由已知二次函数y=ax2+bx+c的图象开口方向可以知道a的取值范围,对称轴可以确定b的取值与正比例函数y=bx在同一坐标系内的大致图象.范围,然后就可以确定反比例函数y=ax此题主要考查了从图象上把握有用的条件,准确选择数量关系解得a的值,简单的图象最少能反映出2个条件:开口向下a<0;对称轴的位置即可确定b的值.11.答案:−2解析:直接把点(2,−1)代入反比例函数y=k即可得出结论.x本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.的图象经过点(2,−1),解:∵反比例函数y=kx∴−1=k,2解得k=−2.故答案为:−2.12.答案:(−3,2)解析:解:抛物线y=(x+3)2+2的顶点坐标(−3,2),故答案为:(−3,2).已知抛物线解析式为顶点式,可直接写出顶点坐标.此题主要考查了二次函数的性质,关键是掌握抛物线y=a(x−ℎ)2+k,顶点坐标是(ℎ,k).13.答案:8个解析:[分析]根据概率公式结合取出红球的概率即可求出袋中小球的总个数.[详解]=8(个).袋中小球的总个数是:2÷14故答案为:8个.[点睛]本题考查了概率公式,根据概率公式算出球的总个数是解题的关键.14.答案:2018解析:解:由题意可知:2m2−3m−1=0,∴2m2−3m=1∴原式=3(2m2−3m)+2015=2018故答案为:2018根据一元二次方程的解的定义即可求出答案.本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.15.答案:65°解析:解:∵∠COD=90°,∠AOD=115°,∴∠AOC=∠AOD−∠DOC=115°−90°=25°,∵∠BOC+∠AOC=∠AOB=90°,∴∠BOC=∠AOB−∠AOC=90°−25°=65°.故答案为:65°.根据图形得到∠AOC=∠AOD−∠DOC=115°−90°=25°,然后利用∠BOC+∠AOC=∠AOB=90°进行计算.本题考查了角的计算:会进行角的和、差、倍、分.16.答案:2cm或8cm解析:解:设扇形的半径为r,弧长为l,根据题意得,2r+l=20①,12lr=16②,解由①②组成的方程组,得r=2,或r=8.即扇形的半径为2cm或8cm.故答案为2cm或8cm.设扇形的半径为r,弧长为l,根据扇形的周长和面积得到r与l的方程组,2r+l=20①,12lr=16②,解方程组即可.本题考查了扇形的面积公式:S=nπR2360,其中n为扇形的圆心角的度数,R为圆的半径),或S=12lR,l为扇形的弧长,R为半径.也考查了方程组的解法.17.答案:8解析:解:∵P(2,2),∴OP=√22+22=2√2,∴当点Q 在y 轴上时,Q 点的坐标分别为(0,2√2)(0,−2√2) (0,4)(0,2); 当点Q 在x 轴上时,Q 点的坐标分别为(2√2,0)(−2√2,0)(4,0)(2,0).所以共有8个.故答案为:8.根据点Q 在坐标轴上,分在x 轴和y 轴两种情况,利用勾股定理求出PQ 的长度即可判定.此题主要考查等腰三角形的性质和坐标与图形的性质,解答此题的关键是利用勾股定理求出OP 的长,此题难度不大,属于基础题,要求学生应熟练掌握.18.答案:解:x 2−7x +5=0∵a =1,b =−7,c =5,∴△=b 2−4ac =(−7)2−4×1×5=29>0,∴原方程的解为x =−b±√△2a =7±√292, ∴x 1=7+√292,x 2=7−√292.解析:此题考查了解一元二次方程−公式法,熟练掌握求解方法是解本题的关键.找出a ,b ,c 的值,代入求根公式求出解即可.19.答案:(1)25%2)画树形图得:,∵所获奖品总值不低于30元有4种情况:30元、35元、30元、35元,∴所获奖品总值不低于30元的概率=412=13.解析:解:(1)∵1÷4=0.25=25%,∴抽中20元奖品的概率为25%.故答案为:25%.(2)见答案.(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用1除以4,求出抽中20元奖品的概率为多少即可.(2)首先应用树状图法,列举出随机翻2张牌,所获奖品的总值一共有多少种情况;然后用所获奖品总值不低于30元的情况的数量除以所有情况的数量,求出所获奖品总值不低于30元的概率为多少即可.此题还考查了列举法与树状图法求概率问题,解答此类问题的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.20.答案:解:由射影定理得,AB2=BD⋅BC,则BD=AB2BC=1.6.解析:根据射影定理列出算式,代入数据计算即可.本题考查的是射影定理的应用,射影定理:①直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.②每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.21.答案:解:设每次降价的百分率为x根据题意得:4000(1−x)2=4000−760解得:x1=0.1,x2=1.9(不合题意舍去)答:每次降价的百分率为10%解析:设每次降价的百分率为x,由每部手机原来的售价为4000元,降价后减少了760元,已知两次降价的百分率相同,可列方程求解.本题考查了一元二次方程的应用,找到相等关系,列出方程是本题的关键.22.答案:解:(1)设反比例函数的解析式为:y=kx,∵一次函数y =x +2与反比例函数的图象交于两点A 和B(a,4),∴a +2=4,解得:a =2;∴点B 的坐标为:(2,4),∴4=k 2,解得:k =8,∴反比例函数的解析式为:y =8x ;(2)∵一次函数y =x +2与反比例函数的图象交于两点A 和B(a,4),∴{y =x +2y =8x, 解得:{x =2y =4或{x =−4y =−2, ∴点A 的坐标为(−4,−2);(3)由图象得:当一次函数值大于反比例函数值时,x 的取值范围为:−4<x <0或x >2.解析:本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数解析式.(1)利用点B 在一次函数的图象上,即可求出a 的值,即可求出反比例函数解析式;(2)把一次函数和反比例函数联立成方程组,即可求出点A 的坐标;(3)根据图象和A ,B 两点的坐标即可写出一次函数的值大于反比例函数的值的x 的取值范围. 23.答案:解:(1)如图,△A 1B 1C 为所作,点A 1、B 1的坐标分别为(−1,4),(1,4);(2)BC =3,所以,点B 所经过的路径的长度解析:(1)先利用点A 、B 的坐标画出直角坐标系,再利用网格特点和旋转的性质画出点A 1、B 1,从而得到写出点A 1、B 1的坐标;(2)点B所经过的路径为以C点为圆心,BC为半径,圆心角为90°的弧,然后利用四分之一圆周长计算即可.本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等,且都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.24.答案:(1)证明:∵AD是⊙O的直径,∴∠ABD=90°,∴∠BAD+∠D=90°,∵∠BAF=∠C,∠C=∠D,∴∠BAF=∠D,∴∠BAD+∠BAF=90°,即∠FAD=90°,∴AF⊥AD,∴AF是⊙O的切线;(2)证明:∵BA⏜=BC⏜,∴∠BAC=∠C,∵∠C=∠D,∴∠BAC=∠D,即∠BAE=∠D,又∵∠ABE=∠DBA,∴△ABE∽△DBA;(3)解:由(2)得:△ABE∽△DBA,∴ABBD =BEAB,即AB8=6AB,解得:AB=4√3.解析:(1)由圆周角定理得出∠ABD=90°,∠C=∠D,证出∠BAD+∠BAF=90°,得出AF⊥AD,即可得出结论;(2)由圆周角定理得出∠BAC=∠C,∠C=∠D,得出∠BAC=∠D,再由公共角∠ABE=∠DBA,即可得出△ABE∽△DBA;(3)由相似三角形的性质得出ABBD =BEAB,代入计算即可得出结果.本题是圆的综合题目,考查了圆周角定理、切线的判定、相似三角形的判定与性质、角的互余关系等知识;本题综合性强,熟练掌握圆周角定理,证明三角形相似是解决问题的关键.25.答案:解:(1)y=−x2−2x+3;(2)四边形ABEC面积最大值为,点E的坐标是;(3)P(−1,1)或(−1,−2).解析:本题考查待定系数法求二次函数的解析式、二次函数性质及最大值的应用、旋转的性质及坐标变化.(1)根据条件求出点B的坐标,再把A、B、C三点代入y=ax2+bx+c即可;(2)把点E的坐标设为(x,−x2−2x+3),利用割补法建立四边形ABEC的面积S与x的函数关系,利用函数的性质即可解决问题;(3)设P(−1,m),利用旋转的性质构造出全等三角形,找出A /(m−1,m+2),代入(1)中的二次函数解析式求出m即可.解:(1)由OB=0C及C(0,3)可得B(−3,0).把A(1,0),B(−3,0),C(0,3)代入y=ax2+bx+c并求解可以得到:a=−1,b=−2,c=3所以函数解析式为y=−x2−2x+3.(2)如图1,设E点坐标为(x,−x2−2x+3),四边形ABEC的面积是S,作EH⊥x轴于H,则S=12(−x2−2x+3)(x+3)+12[3+(−x2−2x+3)](−x)+12×3×1=−32x2−92x+6=−12(x+32)2+758所以,当x=−32时,四边形ABEC面积s最大值为75a,此时点E的坐标是(−32,154).(3)设P(−1,m),对称轴与x轴交于F,作A /D垂直于抛物线的对称轴于D,易证△APF≌△PA /D,分两种情况:当P在x轴上方时(如图2),易知A /(m−1,m+2),代入抛物线解析式y=−x2−2x+3整理得:m2+m−2=0解得m=−2或1.因为m>0,取m=1,所以P(−1,1);当P在x轴下方时(如图3),易知A /(m−1,m+2),代入抛物线解析式y=−x2−2x+3整理得:m2+m−2=0解得m=−2或1.因为m<0,取m=−2,所以P(−1,−2).因此P(−1,1)或(−1,−2).。
广东省东莞市九年级(上)期末数学试卷
九年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.方程x2=2x的解是()A. x=2B. x=0C. x1=2,x2=0D. x1=2,x2=02.下面数学符号,既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.a、b是实数,点A(2,a)、B(3,b)在反比例函数y=-2x的图象上,则()A. a<b<0B. b<a<0C. a<0<bD. b<0<a4.在平面直角坐标系中,点A(6,-7)关于原点对称的点的坐标为()A. (−6,−7)B. (6,7)C. (−6,7)D. (6,−7)5.从2,0,π,227,6这五个数中随机抽取一个数,抽到有理数的概率是()A. 15B. 25C. 35D. 456.反比例函数y=-3x(x<0)如图所示,则矩形OAPB的面积是()A. 3B. −3C. 32D. −327.如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E.若AD=1,DB=2,则△ADE的面积与△ABC的面积的比等于()A. 12B. 14C. 18D. 198.如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是()A. 18∘B. 36∘C. 54∘D. 72∘9.若关于x的一元二次方程x2-2x+m=0没有实数根,则实数m的取值是()A. m<1B. m>−1C. m>1D. m<−110.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为()A. B. C. D.二、填空题(本大题共6小题,共24.0分)11.反比例函数y=kx经过点(2,3),则k=______.12.二次函数y=4(x-3)2+7的图象的顶点坐标是______.13.在一个不透明的口袋中,装有4个红球和若干个白球,这些球除颜色外其余都相同,如果摸到红球的概率是14,那么口袋中有白球______个14.m是方程x2+x-1=0的根,则式子m2+m+2018的值为______.15.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为______米.16.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为______(结果保留π).三、计算题(本大题共2小题,共12.0分)17.解方程:3(x-4)2=-2(x-4)18.已知:点P是正方形内一点,△ABP旋转后能与△CBE重合.(1)△ABP旋转的旋转中心是什么?旋转了多少度?(2)若BP=2,求PE的长.四、解答题(本大题共7小题,共54.0分)19.袋中有一个红球和两个自球,它们除颜色外其余都相同,任意摸出一球,记下球的颜色,放回袋中,搅匀后再任意摸出一球,记下它的颜色.(1)请把树状图填写完整.(2)根据树状图求出两次都摸到白球的概率.20.如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE•DF.21.如图,在由边长为1的小正方形组成的网格中,△ABC的顶点均落在格点上.(1)将△ABC绕点O顺时针旋转90°后,得到△A1B1C1.在网格中画出△A1B1C1;(2)求线段OA在旋转过程中扫过的图形面积;(结果保留π)22.受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,某市汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元.(1)求该企业从2015年到2017年利润的年平均增长率;(2)若2018年保持前两年利润的年平均增长率不变,该企业2018年的利润能否超过3.5亿元?23.如图,直线y=2x与反比例函数y=kx(x>0)的图象交于点A(4,n),AB⊥x轴,垂足为B.(1)求k的值;(2)点C在AB上,若OC=AC,求AC的长;(3)点D为x轴正半轴上一点,在(2)的条件下,若S△OCD=S△ACD,求点D的坐标.24.如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E(1)求证:BC是⊙D的切线;(2)若AB=5,BC=13,求CE的长.25.如图,在直角坐标系中,抛物线y=-x2-2x+3与x轴交于点A、B,与y轴交于点C.(1)写出抛物线顶点D的坐标______;(2)点D1是点D关于y轴的对称点,判断点D1是否在直线AC上,并说明理由;(3)若点E是抛物线上的点,且在直线AC的上方,过点E 作EF⊥x轴交线段AC于点F,求线段EF的最大值.答案和解析1.【答案】C【解析】解:移项得,x2-2x=0,提公因式得x(x-2)=0,x=0或x-2=0,x1=0,x2=2,故选:C.先移项,再提公因式,解两个一元一次方程即可.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.2.【答案】B【解析】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、不是轴对称图形,是中心对称图形,故本选项错误.故选:B.根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】A【解析】【分析】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质.根据反比例函数的性质可以判断a、b的大小,从而可以解答本题.【解答】解:∵y=-,∴反比例函数y=-的图象位于第二、四象限,在每个象限内,y随x的增大而增大,∵点A(2,a)、B(3,b)在反比例函数y=-的图象上,∴a<b<0,故选A.4.【答案】C【解析】解:点A(6,-7)关于原点对称的点的坐标为:(-6,7).故选:C.直接利用关于原点对称点的性质得出答案.此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键.5.【答案】C【解析】解:∵在,0,π,,6中,只有0、和6是有理数,∴抽到有理数的概率是;故选:C.先找出有理数的个数,再根据概率公式即可得出答案.本题考查了概率公式以及有理数,根据有理数的定义找出五个数中的有理数的个数是解题的关键.6.【答案】A【解析】解:∵点P在反比例函数y=-(x<0)的图象上,∴可设P(x,-),∴OA=-x,PA=-,∴S=OA•PA=-x•(-)=3,矩形OAPB故选:A.可设出点P的坐标,则可表示出矩形OAPB的面积.本题主要考查反比例函数上点的坐标特征,利用P点坐标表示出矩形OAPB 的面积是解题的关键.7.【答案】D【解析】解:∵AD=1,DB=2,∴AB=AD+DB=3,∵DE∥BC,∴△ADE∽△ABC,∴=()2=()2=.故选:D.根据DE∥BC,即可证得△ADE∽△ABC,然后根据相似三角形的面积的比等于相似比的平方,即可求解.本题考查了三角形的判定和性质,熟练掌握相似三角形的面积比等于相似比的平方是解题的关键.8.【答案】B【解析】解:∵AB是直径,AB⊥CD,∴=,∴∠CAB=∠BAD=36°,∵∠BCD=∠BAD,∴∠BCD=36°,故选:B.根据垂径定理推出=,推出∠CAB=∠BAD=36°,再由∠BCD=∠BAD即可解决问题.本题考查垂径定理、圆周角定理等知识,解题的关键是熟练掌握垂径定理、圆周角定理,属于中考常考题型.9.【答案】C【解析】解:由题意知,△=4-4m<0,∴m>1故选:C.方程没有实数根,则△<0,建立关于m的不等式,求出m的取值范围.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.【答案】B【解析】解:∵a<0,∴抛物线的开口方向向下,故第三个选项错误;∵c<0,∴抛物线与y轴的交点为在y轴的负半轴上,故第一个选项错误;∵a<0、b>0,对称轴为x=>0,∴对称轴在y轴右侧,故第四个选项错误.故选:B.由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.考查二次函数y=ax2+bx+c系数符号的确定.11.【答案】6【解析】解:∵反比例函数y=经过点(2,3),∴3=,解得k=6.故答案为:6.直接把点(2,3)代入反比例函数y=求出k的值即可.本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12.【答案】(3,7)【解析】解:∵y=4(x-3)2+7,∴顶点坐标为(3,7),故答案为:(3,7).由抛物线解析式可求得答案.本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k).13.【答案】12【解析】解:设白球有x个,根据题意列出方程,=,解得x=12.故答案为:12.设白球有x个,根据摸到红球的概率为列出方程,求出x的值即可.本题考查概率的基本计算,根据题意列出方程就可以得出答案.用到的知识点为:概率=所求情况数与总情况数之比.14.【答案】2019【解析】解:∵m是方程x2+x-1=0的根,∴m2+m-1=0,即m2+m=1,∴m2+m+2018=1+2018=2019.故答案为2019.利用一元二次方程解的定义得到m2+m=1,然后利用整体代入的方法计算m2+m+2018的值.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.【答案】5【解析】解:根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知=,即=,解得AM=5m.则小明的影长为5米.易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影长.本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比可得出小明的影长.16.【答案】2π【解析】解:连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∴∠OBC=∠ABC-∠ABO=30°,∵OB=OC,∴∠C=∠B=30°,∴∠BOC=120°,∴弧BC的长==2π,故答案为:2π.根据切线的性质得到∠OBA=90°,求出∠OBC,根据三角形内角和定理求出∠BOC=120°,根据弧长公式计算即可.本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径、弧长的计算公式是解题的关键..17.【答案】解:3(x-4)2=-2(x-4),3(x-4)2+2(x-4)=0,(x-4)[3(x-4)+2]=0,x-4=0,3(x-4)+2=0,x1=4,x2=103.【解析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键,注意:解一元二次方程的方法有因式分解法、公式法、配方法、直接开平方法.18.【答案】解:(1)∵四边形ABCD为正方形,∴BA=BC,∠ABC=90°,∵△ABP旋转后能与△CBE重合,∴△ABP旋转的旋转中心是点B,按顺时针方向旋转90°;(2)∵△ABP旋转后能与△CBE重合,∴BP=BE=2,∠PBE=90°,∴PE=2PB=22.答:(1)△ABP旋转的旋转中心是点B,按顺时针方向旋转90°;(2)PE为22.【解析】(1)根据正方形的性质得BA=BC,∠ABC=90°,然后根据旋转的性质求解;(2)根据旋转的性质得BP=BE=2,∠PBE=90°,然后根据等腰直角三角形的性质求解.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.19.【答案】解:(1)画树状图为:(2)由树状图知,共有9种等可能的结果数,其中两次都摸到白球的结果数为4,所以两次都摸到白球的概率=49.【解析】(1)利用画树状图展示所有9种等可能的结果数,(2)找出两次都是白球的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.20.【答案】证明:(1)在Rt△ABC中,∠B+∠A=90°∵DF⊥AB∴∠BDE=∠ADF=90°∴∠A+∠F=90°,∴∠B=∠F,∴△ADF∽△EDB;(2)由(1)可知△ADF∽△EDB∴∠B=∠F,∵CD是Rt△ABC斜边AB上的中线∴CD=AD=DB,∴∠DCE=∠B,∴∠DCE=∠F,∴△CDE∽△FDC,∴CDDF=DEDC,∴CD2=DF•DE.【解析】(1)根据题意可得∠B+∠A=90°,∠A+∠F=90°,则∠B=∠F,从而得出△ADF∽△EDB;(2)由(1)得∠B=∠F,再CD是Rt△ABC斜边AB上的中线,得出CD=DB,根据等边对等角得∠DCE=∠F,则可证明△CDE∽△FDC,从而得出=,化为乘积式即可CD2=DF•DE.本题考查了相似三角形的判定和性质,以及直角三角形斜边上的中线等于斜边的一半.21.【答案】解:(1)如图.△A1B1C1即为所求三角形;(2)由勾股定理可知OA=22+22=22,线段OA在旋转过程中扫过的图形为以OA为半径,∠AOA1为圆心角的扇形,则S扇形OAA1=90⋅π×(22)2360=2π.答:扫过的图形面积为2π.【解析】(1)根据图形旋转的性质画出旋转后的图形即可;(2)先根据勾股定理求出OA的长,再根据线段OA在旋转过程中扫过的图形为以OA为半径,∠AOA1为圆心角的扇形,利用扇形的面积公式得出结论即可;本题考查的是作图-旋转变换、扇形的面积公式,熟知图形旋转后所得图形与原图形全等的性质是解答此题的关键.22.【答案】解:(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解得x1 =0.2=20%,x2 =-2.2 (不合题意,舍去).答:这两年该企业年利润平均增长率为20%;(2)如果2018年仍保持相同的年平均增长率,那么2018年该企业年利润为:2.88(1+20%)=3.456,3.456<3.5答:该企业2018年的利润不能超过3.5亿元.【解析】(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解方程即可求得增长率;(2)根据该企业从2015年到2017年利润的年平均增长率来解答.此题考查一元二次方程的应用,根据题意寻找相等关系列方程是关键,难度不大.23.【答案】解(1)∵直线y=2x与反比例函数y=kx(k≠0,x>0)的图象交于点A(4,n),∴n=2×4=8,∴A(4,8),∴k=4×8=32,∴反比例函数为y=32x.(2)设AC=x,则OC=x,BC=8-x,由勾股定理得:OC2=OB2+BC2,∴x2=42+(8-x)2,x=5,∴AC=5;(3)设点D的坐标为(x,0)分两种情况:①当x>4时,如图1,∵S△OCD=S△ACD,∴12OD•BC=12AC•BD,3x=5(x-4),②当0<x<4时,如图2,同理得:3x=5(4-x),x=52,∴点D的坐标为(10,0)或(52,0).【解析】(1)把点A坐标代入两个函数解析式即可解决问题.(2)设AC=x,利用勾股定理可得列方程可得AC的长;(3)分类讨论D的位置,根据已知三角形的面积相等列等式可得结论.本题考查一次函数与反比例函数的交点问题,学会待定系数法确定函数解析式,理解反比例函数中点和坐标的关系,属于中考常考题型.24.【答案】(1)证明:过点D作DF⊥BC于点F,∵∠BAD=90°,BD平分∠ABC,∴AD=DF.∵AD是⊙D的半径,DF⊥BC,∴BC是⊙D的切线;(2)解:∵∠BAC=90°.∴AB与⊙D相切,∵BC是⊙D的切线,∴AB=FB.∵AB=5,BC=13,∴CF=8,AC=12.在Rt△DFC中,设DF=DE=r,则r2+64=(12-r)2,解得:r=103.∴CE=163.【解析】(1)过点D作DF⊥BC于点F,根据角平分线的性质得到AD=DF.根据切线的判定定理即可得到结论;(2)根据切线的性质得到AB=FB.根据和勾股定理列方程即可得到结论.本题考查了切线的判定,圆周角定理,正确的作出辅助线是解题的关键.25.【答案】(-1,4)【解析】(1)∵y=-x2-2x+3=-(x+1)2+4∴抛物线顶点D的坐标是(-1,4)故答案为(-1,4)(2)点D1在直线AC上,理由如下:∵抛物线y=-x2-2x+3与x轴交点A、B,与y轴交于点C,∴当y=0时,-x2-2x+3=0,解得x=1或-3,∴点A(-3,0),点B(1,0)当x=0时,y=3,故点C(0,3)设直线AC的解析式为y=kx+b由题意得,解得∴直线AC的解析式为y=x+3∵点D1是点D(1,4)关于y轴的对称点∴点D1的坐标为(1,4)∵当x=1时,y=1+3=4,∴点D1在直线AC上(3)设点E(x,-x2-2x+3),则F(x,x+3)∵EF=(-x2-2x+3)-(x+3)=-x2-3x=-(x+1.5)2+2.25∴线段EF的最大值是2.25(1)根据抛物线y=-x2-2x+3用配方法化成顶点解析式y=-(x+1)2+4,即可求出抛物线顶点D的坐标,(2)先根据抛物线的顶点解析式y=-(x+1)2+4,求出A、C两点的坐标,再利用待定系数法求出直线AC的解析式,根据关于y轴对称的点的坐标特征得出D1的坐标,然后代入直线AC的解析式即可判断点D1在直线AC上.(3)设点E(x,-x2-2x+3),则F(x,x+3),求出EF,再利用配方法化成顶点式,根据二次函数的性质即可求出最大值.此题考查的是二次函数与一次函数的综合应用,要求最值问题时,我们只要将二次函数化为顶点式即可求解.。
【5套打包】东莞市初三九年级数学上期末考试检测试题(含答案)
九年级上册数学期末考试题【含答案】一.选择题(共10小题,满分30分,每小题3分)1.在﹣,﹣,﹣2,﹣1中,最小的数是()A.B.C.﹣2D.﹣12.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为()A.55×105B.5.5×104C.0.55×105D.5.5×1053.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.4.已知点M(1﹣2m,1﹣m)关于x轴的对称点在第四象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.5.如图,在△ABC中,BA=BC,∠ABC=120°,AB的垂直平分线交AC于点M,交AB 于点E,BC的垂直平分线交AC于点N,交BC于点F,连接BM,BN,若AC=24,则△BMN的周长是()A.36B.24C.18D.166.用A,B两个机器人搬运化工原料,A机器人比B机器人每小时多搬运30kg,A机器人搬运900kg所用时间与B机器人搬运600kg所用时间相等,设A机器人每小时搬运xkg 化工原料,那么可列方程()A.=B.=C.=D.=7.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.8.小明从家出发到公园晨练,在公园锻炼一段时间后按原路返回,同时小明爸爸从公园按小明的路线返回家中,如图是两人离家的距离y(米)与小明出发的时间x(分)之间的函数图象,则下列结论中不正确的是()A.公园离小明家1600米B.小明出发分钟后与爸爸第一次相遇C.小明在公园停留的时间为5分钟D.小明与爸爸第二次相遇时,离家的距离是960米9.远古时期,人们通过在绳子上打结来的记录数量,即“结绳计数”,如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A .336B .510C .1326D .360310.如图,已知AM 为△ABC 的角平分线,MN ∥AB 交AC 于点N ,如果AN :NC =2:3,那么AC :AB 等于( )A .3:1B .3:2C .5:3D .5:2二.填空题(共5小题,满分15分,每小题3分)11.计算:()﹣1﹣(3.14﹣π)0= .12.如图,六边形ABCDEF 的六个角都是120°,边长AB =1cm ,BC =3cm ,CD =3cm ,DE =2cm ,则这个六边形的周长是: .13.已知关于x 的方程(k ﹣1)x 2﹣2kx +k ﹣3=0有两个相等的实根,则k 的值是 . 14.如图,△ABB 1,△A 1B 1B 2,…,△A n ﹣2B n ﹣2B n ﹣1,△A n ﹣1B n ﹣1B n 是n 个全等的等腰三角形,其中AB =2,BB 1=1,底边BB 1,B 1B 2,…,B n ﹣2B n ﹣1,B n ﹣1B n 在同一条直线上,连接AB n 交A n ﹣2B n ﹣1于点P ,则PB n ﹣1的值为 .15.如图,在矩形ABCD 中,点E 是边CD 的中点,将△ADE 沿AE 折叠后得到△AFE ,且点F 在矩形ABCD 的内部,将AF 延长后交边BC 于点G ,且=,则的值为 .三.解答题(共8小题,满分75分)16.(8分)先化简,再求值:(﹣)÷﹣+x,其中x满足方程x2﹣5x+2=017.(9分)某校对七年级300名学生进行了教学质量监测(满分100分),现从中随机抽取部分学生的成绩进行整理,并绘制成如图不完整的统计表和统计图:注:60分以下为“不及格”,60~69分为“及格”,70~79分为“良好”,80分及以上为“优秀”请根据以上信息回答下列问题:(1)补全统计表和统计图;(2)若用扇形统计图表示统计结果,则“良好”所对应扇形的圆心角为多少度?(3)请估计该校七年级本次监测成绩为70分及以上的学生共有多少人?18.(9分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.19.(9分)如图,两幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15m,CD=20m.AB 和CD之间有一景观池,小双在A点测得池中喷泉处E点的俯角为42°,在C点测得E 点的俯角为45°,点B、E、D在同一直线上.求两幢建筑物之间的距离BD.(结果精确到0.1m)【参考数据:sin42°=0.67,cos42°=0.74,tan42°=0.90】20.(9分)如图,一次函数y=kx+b与反比例函数y=的图象交于A(1,4),B(4,n)两点.(1)求反比例函数和一次函数的解析式;(2)直接写出当x>0时,kx+b<的解集.(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.21.(10分)如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数关系式及x值的取值范围;(2)要围成面积为45m2的花圃,AB的长是多少米?(3)、当AB的长是多少米时,围成的花圃的面积最大?22.(10分)如图,Rt△AOB在平面直角坐标系中,已知:B(0,),点A在x轴的正半轴上,OA=3,∠BAD=30°,将△AOB沿AB翻折,点O到点C的位置,连接CB 并延长交x轴于点D.(1)求点D的坐标;(2)动点P从点D出发,以每秒2个单位的速度沿x轴的正方向运动,当△PAB为直角三角形时,求t的值;(3)在(2)的条件下,当△PAB为以∠PBA为直角的直角三角形时,在y轴上是否存在一点Q使△PBQ为等腰三角形?如果存在,请直接写出Q点的坐标;如果不存在,请说明理由.23.(11分)在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(﹣3,0)、B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H (1)求抛物线的解析式和顶点C的坐标;(2)连结AD、CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;(3)若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P、C、Q为顶点的三角形与△ACH相似时,求点P的坐标.2018-2019学年河南省郑州市上街区九年级(上)期末暨一模数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据有理数的大小比较法则比较即可.【解答】解:在﹣,﹣,﹣2,﹣1中,最小的数是﹣2,故选:C.【点评】本题考查了有理数的大小比较法则,能熟记有理数的大小比较法则的内容是解此题的关键,注意:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数据55000用科学记数法表示为5.5×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.【解答】解:由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.【分析】直接利用关于x轴对称点的性质得出对应点坐标,进而利用第四象限内点的性质得出答案.【解答】解:∵点M(1﹣2m,1﹣m)关于x轴的对称点在第四象限,∴对称点坐标为:(1﹣2m,m﹣1),则1﹣2m>0,且m﹣1<0,解得:m<,如图所示:.故选:D.【点评】此题主要考查了关于x轴对称点的性质以及不等式的解法,正确得出m的取值范围是解题关键.5.【分析】由直线EM为线段AB的垂直平分线,根据线段垂直平分线定理:可得AM=BM,同理可得BN=NC,然后表示出三角形BMN的三边之和,等量代换可得其周长等于AC 的长;【解答】解:∵直线ME为线段AB的垂直平分线,∴MA=MB(线段垂直平分线上的点到线段两端点的距离相等),又直线NF为线段BC的垂直平分线,∴NB=NC(线段垂直平分线上的点到线段两端点的距离相等),∴△BMN的周长=BM+MN+BN=AM+MN+NC=AC=24(等量代换),故选:B.【点评】此题主要考查了线段垂直平分线定理,熟练掌握线段垂直平分线定理是关键,是一道基础题目.6.【分析】设A种机器人每小时搬运x千克化工原料,则B种机器人每小时搬运(x﹣30)千克化工原料,根据A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等建立方程.【解答】解:设A机器人每小时搬运xkg化工原料,则B种机器人每小时搬运(x﹣30)千克化工原料,那么可列方程=.故选:A.【点评】本题考查了由实际问题抽象出分式方程,解答时根据A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等建立方程是关键.7.【分析】利用黑色区域的面积除以游戏板的面积即可.【解答】解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4,所以击中黑色区域的概率==.故选:C.【点评】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.8.【分析】依据图象可得,公园离小明家1600米;依据小明从家出发到公园晨练时的速度,以及小明爸爸从公园按小明的路线返回家中的速度,即可得到小明出后与爸爸第一次相遇的时间;由图可得,30分钟后小明与爸爸第二次相遇时,离家的距离是640米;依据小明在与爸爸第二次相遇后回到家的时间,以及小明在公园锻炼一段时间后按原路返回的速度,即可得到小明在公园停留的时间为15﹣10=5分钟.【解答】解:由图可得,公园离小明家1600米,故A选项正确;∵小明从家出发到公园晨练时,速度为1600÷10=160米/分,小明爸爸从公园按小明的路线返回家中的速度为1600÷50=32米/分,∴小明出后与爸爸第一次相遇的时间为1600÷(160+32)=分钟,故B选项正确;由图可得,30分钟后小明与爸爸第二次相遇时,离家的距离是1600﹣30×32=640米,故D选项错误;∵小明在与爸爸第二次相遇后回到家的时间为:40﹣30=10分,∴小明在公园锻炼一段时间后按原路返回的速度为640÷10=64米/分,∴40﹣1600÷64=15分,∴小明在公园停留的时间为15﹣10=5分钟,故C选项正确;故选:D.【点评】本题主要考查了函数的图象,对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.解决问题的关键是利用图象中的信息通过计算得到速度的大小.9.【分析】类比于现在我们的十进制“满十进一”,可以表示满七进一的数为:千位上的数×73+百位上的数×72+十位上的数×7+个位上的数.【解答】解:孩子自出生后的天数是1×73+3×72+2×7+6=510,故选:B.【点评】本题是以古代“结绳计数”为背景,按满七进一计算自孩子出生后的天数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.10.【分析】由AN:NC=2:3,可以假设AN=2k,NC=3k,证明AN=MN=2k,由==,推出AB=k,由此即可解决问题.【解答】解:∵AN:NC=2:3,∴可以假设AN=2k,NC=3k,∵MN∥AB,∴∠AMN=∠MAB,∵∠MAC=∠MAB,∴∠NAM=∠AMN,∴AN=MN=2k,∵==,∴AB=k,∴AC:AB=5k:k=3:2,故选:B.【点评】本题考查相似三角形的判定和性质,等腰三角形的判定和性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二.填空题(共5小题,满分15分,每小题3分)11.【分析】直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.【解答】解:()﹣1﹣(3.14﹣π)0=2﹣1=1.故答案为:1.【点评】此题主要考查了负指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.12.【分析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是120°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【解答】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△APF、△BGC、△DHE、△GHP都是等边三角形.∴GC=BC=3cm,DH=DE=2cm.∴GH=3+3+2=8cm,FA=PA=PG﹣AB﹣BG=8﹣1﹣3=4cm,EF=PH﹣PF﹣EH=8﹣4﹣2=2cm.∴六边形的周长为1+3+3+2+4+2=15cm.故答案为:15cm.【点评】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.13.【分析】根据二次项系数非零及根的判别式△=0,即可得出关于k的一元一次不等式及一元一次方程,解之即可得出k的值.【解答】解:∵关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,∴,解得:k=.故答案为:.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.14.【分析】根据全等三角形的性质得到∠AB 1B =∠PB n ﹣1B ,根据平行线的判定得到AB 1∥PB n ﹣1,根据相似三角形的性质即可得到结论.【解答】解:∵△ABB 1,△A 1B 1B 2,…,△A n ﹣2B n ﹣2B n ﹣1,△A n ﹣1B n ﹣1B n 是n 个全等的等腰三角形,∴∠AB 1B =∠PB n ﹣1B ,∴AB 1∥PB n ﹣1,∴PB n B n ﹣1∽△AB n B 1,∴=,∵AB 1=AB =2,B 1B n =n ﹣1,B n B n ﹣1=1,∴=,∴PB n ﹣1=. 故答案为:.【点评】本题考查了相似三角形的判定和性质,全等三角形的性质,等腰三角形的性质,正确的识别图形是解题的关键.15.【分析】根据中点定义可得DE =CE ,再根据翻折的性质可得DE =EF ,AF =AD ,∠AFE =∠D =90°,从而得到CE =EF ,连接EG ,利用“HL ”证明Rt △ECG 和Rt △EFG 全等,根据全等三角形对应边相等可得CG =FG ,设CG =a ,表示出GB ,然后求出BC ,再根据矩形的对边相等可得AD =BC ,从而求出AF ,再求出AG ,然后利用勾股定理求出AB ,再求比值即可.【解答】解:如图,连接GE ,∵四边形ABCD 是矩形,∴AD =BC ,∵点E 是边CD 的中点,∴DE =CE ,∵将△ADE沿AE折叠后得到△AFE,∴DE=EF,AF=AD,∠AFE=∠D=90°,∴CE=EF,在Rt△ECG和Rt△EFG中,,∴Rt△ECG≌Rt△EFG(HL),∴CG=FG,∵=,∴设CG=2a=FG,BC=7a,∴BG=5a,AD=AF=7a,∴AG=9a,在Rt△ABG中,AB==2a,∴=,故答案为:.【点评】本题考查了翻折的变换,折叠的性质,矩形的性质,全等三角形的判定与性质,勾股定理的应用,熟记性质并作辅助线构造出全等三角形是解题的关键.三.解答题(共8小题,满分75分)16.【分析】先把括号内通分和除法运算化为乘法运算,再约分后通分得到原式=,再利用满足方程x2﹣5x+2=0得到x2+2=5x,然后利用整体代入的方法计算原式的值.【解答】解:原式=•﹣+x=•﹣+x=﹣+x=,∵x2﹣5x+2=0∴x2+2=5x,∴原式==5.【点评】本题考查了分式的化简求值:化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.也考查了一元二次方程的解.17.【分析】(1)首先根据不合格的人数及频数求得总人数,然后减去其他各组的频数即可求得良好组的频数,用频数除以总人数即可求得频率;(2)用良好的频率乘以360°即可求得其表示的扇形的圆心角的度数;(3)用总人数乘以70分以上的频率即可求得人数.【解答】解:(1)解:因为不及格的频数为1,频率为0.05,所以总人数为1÷0.05=20人,所以良好的频数为20﹣1﹣2﹣8=9,优秀的频率为8÷20=0.40,故答案为:9,0.40;统计图补全为:(2)0.45×360°=162°答:“良好”所对应扇形的圆心角为162°;(3)300×(0.45+0.40)=255,答:估计该校本次监测成绩70分及以上的学生总共约有255人.【点评】考查了统计的有关知识,解题的关键是能够从图和表中整理出进一步解题的思路,难度不大.18.【分析】(1)欲证明PC=PE,只要证明△ABP≌△CBP即可;(2)利用“8字型”证明角相等即可解决问题;(3)首先证明△ABP≌△CBP(SAS)推出PA=PC,∠BAP=∠BCP,再证明△EPC是等边三角形,可得PC=CE,即可解决问题;【解答】(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴PC=PE,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD,∴∠CPF=∠EDF∵∠ABC=∠ADC=120°,∴∠CPF=∠EDF=180°﹣∠ADC=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE;【点评】本题考查四边形综合题、正方形的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.19.【分析】在Rt△ABE中,根据正切函数可求得BE,在Rt△DEC中,根据等腰直角三角形的性质求得ED,然后根据BD=BE+ED求解即可.【解答】解:由题意得:∠AEB=42°,∠DEC=45°,∵AB⊥BD,CD⊥BD,∴在Rt△ABE中,∠ABE=90°,AB=15,∠AEB=42°,∵tan∠AEB=,∴BE=≈15÷0.90=,在Rt△DEC中,∠CDE=90°,∠DEC=∠DCE=45°,CD=20,∴ED=CD=20,∴BD=BE+ED=+20≈36.7(m).答:两幢建筑物之间的距离BD约为36.7m.【点评】本题考查了解直角三角形的应用,借助俯角关系构造直角三角形,并结合图形利用三角函数解直角三角形是解题关键.20.【分析】(1)将点A(1,4)代入y=可得m的值,求得反比例函数的解析式;根据反比例函数解析式求得点B坐标,再由A、B两点的坐标可得一次函数的解析式;(2)根据图象得出不等式kx+b<的解集即可;(3)作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,根据B的坐标求得B′的坐标,然后根据待定系数法求得直线AB′的解析式,进而求得与x轴的交点P即可.【解答】解:(1)把A(1,4)代入y=,得:m=4,∴反比例函数的解析式为y=;把B(4,n)代入y=,得:n=1,∴B(4,1),把A(1,4)、(4,1)代入y=kx+b,得:,解得:,∴一次函数的解析式为y=﹣x+5;(2)根据图象得当0<x<1或x>4,一次函数y=﹣x+5的图象在反比例函数y=的下方;∴当x>0时,kx+b<的解集为0<x<1或x>4;(3)如图,作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,∵B(4,1),∴B′(4,﹣1),设直线AB′的解析式为y=px+q,∴,解得,∴直线AB′的解析式为y=﹣x+,令y=0,得﹣x+=0,解得x=,∴点P的坐标为(,0).【点评】本题主要考查反比例函数和一次函数的交点及待定系数法求函数解析式、轴对称﹣最短路线问题,掌握图象的交点的坐标满足两个函数解析式是解题的关键.21.【分析】(1)根据AB为xm,BC就为(24﹣3x),利用长方体的面积公式,可求出关系式.(2)将s=45m代入(1)中关系式,可求出x即AB的长.(3)当墙的宽度为最大时,有最大面积的花圃.此故可求.【解答】解:(1)根据题意,得S=x(24﹣3x),即所求的函数解析式为:S=﹣3x2+24x,又∵0<24﹣3x≤10,∴,(2)根据题意,设AB长为x,则BC长为24﹣3x∴﹣3x2+24x=45.整理,得x2﹣8x+15=0,解得x=3或5,当x=3时,BC=24﹣9=15>10不成立,当x=5时,BC=24﹣15=9<10成立,∴AB长为5m;(3)S=24x﹣3x2=﹣3(x﹣4)2+48∵墙的最大可用长度为10m,0≤BC=24﹣3x≤10,∴,∵对称轴x=4,开口向下,∴当x=m,有最大面积的花圃.即:x=m,最大面积为:=24×﹣3×()2=46.67m2【点评】主要考查了二次函数的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.本题的关键是垂直于墙的有三道篱笆.22.【分析】(1)根据已知得出OA、OB的值以及∠DAC的度数,进而求得∠ADC,即可求得D的坐标;(2)根据直角三角形的判定,分两种情况讨论求得;(3)求得PB的长,分四种情形讨论即可解决问题;【解答】解:(1)∵B(0,),∴OB=,∵OA=OB,∴OA=3,∴AC=3,∵∠BAD=30°,∴∠OAC=60°,∵∠ACD=90°,∴∠ODB=30°,∴=,∴OD=3,∴D(﹣3,0);(2)∵OA=3,OD=3,∴A(3,0),AD=6,∴AB=2,当∠PBA=90°时,∵PD=2t,∴OP=3﹣2t,∵△OBA∽△OPB,∴OB2=OP•OA,∴3﹣2t==1,解得t=1,当∠APB=90°时,则P与O重合,∴t=;(3)存在.①当BP为腰的等腰三角形,∵OP=1,∴BP==2,∴Q1(0,+2),Q3(0.﹣2),②当PQ2=Q2B时,设PQ2=Q2B=a,在Rt△OPQ2中,12+(﹣x)2=x2,解得x=,∴Q2(0,),③当PB=PQ4时,Q4(0,﹣)综上所述,满足条件的点Q的坐标为Q1(0,+2),Q2(0,),Q3(0.﹣2),Q4(0,﹣).【点评】本题考查几何变换综合题、直角三角形的判定和性质、等腰三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题学会用分类讨论的思想思考问题,属于中考压轴题.23.【分析】(1)把点A、B、D的坐标代入二次函数表达式,即可求解;(2)①过点C作CE∥AD交抛物线于点E,则△ADE与△ACD面积相等;②过点H′作直线E′E″∥AD,则△ADE′、△ADE′′与△ACD面积相等,分别求解即可.(3)分△ACH∽△CPQ、△ACH∽△PCQ两种情况,求解即可.【解答】解:(1)把点A、B、D的坐标代入二次函数表达式得:,解得:,则抛物线的表达式为:y=﹣x2﹣2x+3…①,函数的对称轴为:x=﹣=﹣1,则点C的坐标为(﹣1,4);(2)过点C作CE∥AD交抛物线于点E,交y轴于点H,则△ADE与△ACD面积相等,直线AD过点D,则其表达式为:y=mx+3,将点A的坐标代入上式得:0=﹣3m+3,解得:m=1,则直线AD的表达式为:y=x+3,CE∥AD,则直线CE表达式的k值为1,设直线CE的表达式为:y=x+n,将点C的坐标代入上式得:4=﹣1+n,解得:n=5,则直线CE的表达式为:y=x+5…②,则点H的坐标为(0,5),联立①②并解得:x=﹣1或﹣2(x=1为点C的横坐标),即点E的坐标为(﹣2,3);在y轴取一点H′,使DH=DH′=2,过点H′作直线E′E″∥AD,则△ADE′、△ADE′′与△ACD面积相等,同理可得直线E′E″的表达式为:y=x+1…③,联立①③并解得:x=,则点E″、E′的坐标分别为(,)、(,),点E的坐标为:(﹣2,3)或(,)或(,);(3)设:点P的坐标为(m,n),n=﹣m2﹣2m+3,把点C、D的坐标代入一次函数表达式:y=kx+b得:,解得:,即直线CD的表达式为:y=﹣x+3…④,直线AD的表达式为:y=x+3,直线CD和直线AD表达式中的k值的乘积为﹣1,故AD⊥CD,而直线PQ⊥CD,故直线PQ表达式中的k值与直线AD表达式中的k值相同,同理可得直线PQ表达式为:y=x+(n﹣m)…⑤,联立④⑤并解得:x=,即点Q的坐标为(,),则:PQ2=(m﹣)2+(n﹣)==(m+1)2•m2,同理可得:PC2=(m+1)2[1+(m+1)2],AH=2,CH=4,则AC=2,当△ACH∽△CPQ时,==,即:4PC2=5PQ2,整理得:3m2+16m+16=0,解得:m=﹣4或﹣,点P的坐标为(﹣4,﹣5)或(﹣,);当△ACH∽△PCQ时,同理可得:点P的坐标为(﹣,)或(2,﹣5),故:点P的坐标为:(﹣4,﹣5)或(﹣,)或(﹣,)或(2,﹣5).【点评】本题考查的是二次函数知识综合运用,涉及到三角形相似、一次函数等知识点,核心是通过作图确定所求点的位置,避免遗漏,本题难度九年级上册数学期末考试试题(含答案)一、选择题(3×12=36)1.点P(﹣2,4)关于坐标原点对称的点的坐标为()A.(4,﹣2)B.(﹣4,2)C.(2,4)D.(2,﹣4)2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.3.半径为6的圆中,120°的圆心角所对的弧长是()A.4πB.5πC.6πD.8π4.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.5.如图,△ABC与△DEF是位似图形,位似比为2:3,已知DF=4,则AC的长为()A.B.C.D.6.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠CDA=122°,则∠C的度数为()A.22°B.26°C.28°D.30°7.将一个正方形纸片放在平面直角坐标系中,已知A(﹣1,0),B(﹣1,1),C(0,1),若绕点D(0,0)顺时针旋转这个正方形,旋转角为135°,则旋转后点B的坐标B′为()A.(1,1)B.(2,0)C.(,0)D.(1,﹣1)8.已知函数y=(x﹣1)2,下列结论正确的是()A.当x>0时,y随x的增大而减小B.当x<0时,y随x的增大而增大C.当x<1时,y随x的增大而减小D.当x<﹣1时,y随x的增大而增大9.若抛物线y=2x2﹣3x﹣k与x轴没有交点,则k的取值范围为()A.k≤﹣B.k<﹣C.k≥﹣且k≠0D.k>﹣且k≠0 10.如图,四边形ABCD是⊙O内接四边形,若∠BAC=30°,∠CBD=80°,则∠BCD 的度数为()A.50°B.60°C.70°D.80°11.已知抛物线y=x2+2x+4的顶点为P,与y轴的交点为Q,则PQ的长度为()A.B.2C.D.12.已知直线y=n与二次函数y=(x﹣2)2﹣1的图象交于点B,点C,二次函数图象的顶点为A,当△ABC是等腰直角三角形时,则n的值为()A.1B.C.2﹣D.2+二、填空题(3×6=18)13.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.14.如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E,若DE=4,BC=AE=6,则EC的长为.15.如图,A,B,C是⊙O上的三点,且OA=AB=BC=2,则AC的长为.16.把二次函数y=x2﹣4x+3的图象沿y轴向下平移1个单位长度,再沿x轴向左平移3个单位长度后,此时抛物线相应的函数表达式是.17.正方形ABCD的边长AB=2,E是AB的中点,F是BC的中点,AF分别与DE,BD相交于点M,N,则MN的长为.18.如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上.(1)∠ACB的大小为(度)(2)在如图所示的网格中,以A为中心,取旋转角等于∠BAC,把△ABC逆时针旋转,请用无刻度的直尺,画出旋转后的△ABC,并简要说明旋转后点C和点B的对应点点C′和点B′的位置是如何而找到的(不要求证明)三、解答题(66分)19.(8分)解方程:x2﹣5x﹣6=0.20.(8分)泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从A、B两个景点中任意选择一个游玩,下午从C、D、E三个景点中任意选择一个游玩.用列表或画树状图的方法列出所有等可能的结果,并求小明恰好选中景点B和C的概率.21.(10分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,(Ⅰ)求证:△AFE∽△CFD;(Ⅱ)若AB=4,AD=3,求CF的长.22.(10分)如图,AB是⊙O的直径,CD切⊙O于点C,AD交⊙O于点E,AC平分∠BAD,连接BE.(Ⅰ)求证:AD⊥ED;(Ⅱ)若CD=4,AE=2,求⊙O的半径.23.(10分)某网商经销一种畅销玩具,每件进价为18元,每月销量y(件)与销售单价x(元)之间的函数关系如图中线段AB所示(Ⅰ)写出毎月销量y(件)与销售单价x(元)之间的函数关系式(含x的取值范围);(Ⅱ)当销售单价为多少元时,该网商毎月经销这种玩具能够获得最大销售利润?最大销售利润是多少?(销售利润=售价﹣进价)24.(10分)【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,PA=3,PB=1,PC=,求∠APB的度数.25.(10分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD =4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.。
广东省东莞市9校联考2023-2024学年九年级上学期期末数学试题
广东省东莞市9校联考2023-2024学年九年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题....平移得到抛物线y=x2+3,则下列平移过程正确的是A.平移B.中心对称A .38︒8.圆锥的底面圆半径是A .80︒10.二次函数2y ax =+20ax bx c ++=的根为x1.5-1-0.5-y0.22-0.130.38A .11.51x -<<-C .20.51<<x 二、填空题14.三角形两边的长分别是形的周长为15.如图,抛物线y 物线对称轴的对称点为点则DE EF +的最小值是三、解答题16.解方程:x 2+4x+1=0.17.如图,在平面直角坐标系中,点(4,1)A ,点(1,0)B ,点(2,2)C -.(1)请作出ABC 绕点B 逆时针旋转90︒得到DBE ,其中点A ,点C 的对应点分别为点D ,点E .(2)请直接写出(1)中点A 在旋转过程中经过的弧长为__________.18.为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动,根据活动要求,每班需要2名宣传员,某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.(1)“甲、乙同学都被选为宣传员”是_______事件:(填“必然”、“不可能”或“随机”)(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.19.已知关于x 的一元二次方程()222110x k x k ++++=有两个不等实数根1x ,2x .(1)求k 的取值范围;桌面所受压强()Pa p 100200400受力面积()2m S 210.5(1)根据以上数据,求桌面所受压强p (2)现想将另一长、宽、高分别为0.2m 如右图所示的方式放置于该水平玻璃桌面上.请你判断这种摆放方式是否安全?并说明理由.针方向旋转60 后得到BE ,连接AE .求证:(1)ABE CBD ≌;(2)AE BC ∥.22.2023年杭州亚运会吉祥物“江南忆”,融合了杭州的历史人文、自然生态和创新基因,三个吉祥物分别取名“琮琮”、“莲莲”、“宸宸”,造型形象生动,一开售就深受大家的喜爱,据统计某电商平台7月份的销售量是5万件,9月份的销售量是7.2万件,(1)若该平台7月份到9月份的月平均增长率都相同,求月平均增长率是多少?(2)市场调查发现,某一间店铺吉祥物公仔的进价为每个60元,若售价为每个100元,每天能销售20件,售价每降价10元,每天可多售出20件,为了推广宣传,每个吉祥物的利润不允许高于进价的30%,设销售吉祥物公仔每天的总利润为w (元),那么每个吉祥物公仔的售价定为多少元时该店铺可获得的利润最大?最大利润是多少元?(1)求一次函数和反比例函数的解析式;(2)请直接写出关于x 的不等式(3)在y 轴上取一点N ,当 24.如图AB 为O 的直径,且过点B 作O 的切线交AC 的延长线于点(1)若4BD =,求线段AC 的长度;(2)求证:EC 是O 的切线;(3)当30D ∠=︒时,求图中阴影部分面积.25.二次函数()20y ax bx c a =++≠的图象,与x 轴交于原点和点E ,顶点P 的坐标为()2,4.(1)求二次函数的表达式;(2)大家知道二次函数的图象是一条抛物线,过()0,0O ,()4,0E 两点可画无数条抛物线,设顶点为Q ,过点Q 向x 轴、y 轴作垂线,垂足为点M ,N .求当所得的四边形OMQN 为正方形时的二次函数表达式;(3)G 点在(1)中求出的二次函数图象上,且H 点的坐标为()2,2,是否存在GHE △的面积为2,若存在,求出点G 的坐标;若不存在,说明理由.。
【5套打包】东莞市初三九年级数学上期末考试测试题(解析版)
最新人教版九年级数学上册期末考试试题及答案一、选择题(本大题10小题每小题3分,共30分)在每小题列出的四个选项中只有一个是正确的1.如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.把抛物线y=﹣x2先向左平移1个单位,再向下平移2个单位,得到的抛物线的表达式是()A.y=﹣(x+1)2+2B.y=﹣(x+1)2﹣2C.y=﹣(x+1)2﹣2D.y=(x+1)2﹣23.如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10cm B.16cm C.24cm D.26cm4.如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是()A.40cm B.50cm C.60cm D.80cm5.用配方法解方程x2﹣8x+5=0,将其化为(x+a)2=b的形式,正确的是()A.(x+4)2=11B.(x+4)2=21C.(x﹣8)2=11D.(x﹣4)2=116.点A(﹣3,2)与点B(﹣3,﹣2)的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.以上各项都不对7.如图,在△ABC中,AC=BC=4,∠ACB=90°,若点D是AB的中点,分别以点A,B 为圆心,AB长为半径画弧,交AC于点E,交BC于点F,则图中阴影部分的面积是()A.16﹣2πB.16﹣πC.8﹣2πD.8﹣π8.下列事件中,必然事件是()A.掷一枚硬币,正面朝上B.任意三条线段可以组成一个三角形C.投掷一枚质地均匀的骰子,掷得的点数是奇数D.抛出的篮球会下落9.若关于x的一元二次方程x2+x﹣m=0有实数根,则m的取值范围是()A.m≥B.m≥﹣C.m≤D.m≤﹣10.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①a<0;②b>0;③b2﹣4ac>0;④a+b+c<0;其中结论正确的个数有()A.1个B.2个C.3个D.4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上11.方程(x﹣1)(x+2)=0的解是.12.在半径为6cm的圆中,120°的圆心角所对的弧长为cm.13.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=.14.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率为,则n=.15.已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(x﹣2)2﹣1的图象上,则y1、y2、y3的大小关系是.16.如图,PA,PB分别与⊙O相切于A、B两点,点C为劣弧AB上任意一点,过点C的切线分别交AP,BP于D,E两点.若AP=8,则△PDE的周长为.三、解答题(一)(本大题3小题每小题6分,共18分)17.解方程:3x2﹣6x+1=2.18.(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2.(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π).19.已知:抛物线y=ax2+bx+3经过点A(3,0)、B(﹣1,8),求抛物线的函数表达式,并通过配方写出抛物线的顶点坐标.四、解答题(二)(本大题3小题每小题7分,共21分)20.2015年底某市汽车拥有量为100万辆,而截止到2017年底,该市的汽车拥有量已达到144万辆.(1)求2015年底至2017年底该市汽车拥有量的年平均增长率;(2)若年增长率保持不变,预计2018年底该市汽车拥有量将达到多少万辆.21.某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次调查的学生共有人;(2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.22.如图,AD是△ABC外角∠EAC的平分线,AD与△ABC的外接圆⊙O交于点D.(1)求证:DB=DC;(2)若∠CAB=30°,BC=4,求劣弧的长度.五、解答题(三)(本大题3小题,每小题9分,共27分)23.某种新商品每件进价是120元,在试销期间发现,当每件商品售价为130元时,每天可销售70件,当每件商品售价高于130元时,每涨价1元,日销售量就减少1件.据此规律,请回答:(1)当每件商品售价定为170元时,每天可销售多少件商品商场获得的日盈利是多少?(2)在商品销售正常的情况下,每件商品的涨价为多少元时,商场日盈利最大?最大利润是多少?24.如图,在△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作直线BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB于点H,求证:EF平分∠AEH;(3)求证:CD=HF.25.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y 轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P 的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.2018-2019学年广东省湛江市徐闻县九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题10小题每小题3分,共30分)在每小题列出的四个选项中只有一个是正确的1.如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故选项错误;B、不是轴对称图形,是中心对称图形.故选项错误;C、是轴对称图形,也是中心对称图形.故选项正确;D、是轴对称图形,不是中心对称图形.故选项错误.故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.把抛物线y=﹣x2先向左平移1个单位,再向下平移2个单位,得到的抛物线的表达式是()A.y=﹣(x+1)2+2B.y=﹣(x+1)2﹣2C.y=﹣(x+1)2﹣2D.y=(x+1)2﹣2【分析】抛物线y=﹣x2的顶点坐标为(0,0),向左平移1个单位,再向下平移2个单位后所得的抛物线的顶点坐标为(﹣1,﹣2),根据顶点式可确定所得抛物线解析式.【解答】解:依题意可知,原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(﹣1,﹣2),所以所得抛物线解析式为:y=﹣(x+1)2﹣2.故选:B.【点评】本题考查了二次函数图象与几何变换,属于基础题,解决本题的关键是得到新抛物线的顶点坐标.3.如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10cm B.16cm C.24cm D.26cm【分析】首先构造直角三角形,再利用勾股定理得出BC的长,进而根据垂径定理得出答案.【解答】解:如图,过O作OD⊥AB于C,交⊙O于D,∵CD=8,OD=13,∴OC=5,又∵OB=13,∴Rt△BCO中,BC==12,∴AB=2BC=24.故选:C.【点评】此题主要考查了垂径定理以及勾股定理,得出AC的长是解题关键.4.如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是()A.40cm B.50cm C.60cm D.80cm【分析】首先根据圆锥的底面直径求得圆锥的底面周长,然后根据底面周长等于展开扇形的弧长求得铁皮的半径即可.【解答】解:∵圆锥的底面直径为60cm,∴圆锥的底面周长为60πcm,∴扇形的弧长为60πcm,设扇形的半径为r,则=60π,解得:r=40cm,故选:A.【点评】本题考查了圆锥的计算,解题的关键是首先求得圆锥的底面周长,利用圆锥的底面周长等于扇形的弧长求解.5.用配方法解方程x2﹣8x+5=0,将其化为(x+a)2=b的形式,正确的是()A.(x+4)2=11B.(x+4)2=21C.(x﹣8)2=11D.(x﹣4)2=11【分析】把常数项移到右边,两边加上一次项系数一半的平方,把方程变化为左边是完全平方的形式.【解答】解:x2﹣8x+5=0,x2﹣8x=﹣5,x2﹣8x+16=﹣5+16,(x﹣4)2=11.故选:D.【点评】本题考查一元二次方程的配方法,解题的关键是熟练运用配方法,本题属于基础题型.6.点A(﹣3,2)与点B(﹣3,﹣2)的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.以上各项都不对【分析】直接利用关于x轴对称点的性质得出答案.【解答】解:点A(﹣3,2)与点B(﹣3,﹣2)的关系是关于x轴对称.故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.7.如图,在△ABC中,AC=BC=4,∠ACB=90°,若点D是AB的中点,分别以点A,B 为圆心,AB长为半径画弧,交AC于点E,交BC于点F,则图中阴影部分的面积是()A.16﹣2πB.16﹣πC.8﹣2πD.8﹣π【分析】利用等腰直角三角形的性质得出AD,BD的长,再利用扇形面积求法以及直角三角形面积求法得出答案.【解答】解:∵∠C=90°,AC=BC=4,点D是线段AB的中点,∴AD=BD=2,∴阴影部分面积为:AC•BC﹣2×=8﹣2π.故选:C.【点评】此题主要考查了扇形面积求法以及等腰直角三角形的性质,得出AD,BD的长是解题关键.8.下列事件中,必然事件是()A.掷一枚硬币,正面朝上B.任意三条线段可以组成一个三角形C.投掷一枚质地均匀的骰子,掷得的点数是奇数D.抛出的篮球会下落【分析】必然事件是指一定会发生的事件.【解答】解:A、掷一枚硬币,正面朝上,是随机事件,故A错误;B、在同一条直线上的三条线段不能组成三角形,故B错误;C、投掷一枚质地均匀的骰子,掷得的点数是奇数,是随机事件,故C错误;D、抛出的篮球会下落是必然事件.故选:D.【点评】本题主要考查的是必然事件和随机事件,掌握随机事件和必然事件的概念是解题的关键.9.若关于x的一元二次方程x2+x﹣m=0有实数根,则m的取值范围是()A.m≥B.m≥﹣C.m≤D.m≤﹣【分析】根据方程有实数根得出不等式,求出不等式的解集即可.【解答】解:∵关于x的一元二次方程x2+x﹣m=0有实数根,∴△=12﹣4×1×(﹣m)=1+4m≥0,解得:m≥﹣,故选:B.【点评】本题考查了根的判别式和解一元一次不等式,能根据根的判别式和已知得出不等式是解此题的关键.10.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①a<0;②b>0;③b2﹣4ac>0;④a+b+c<0;其中结论正确的个数有()A.1个B.2个C.3个D.4个【分析】①根据抛物线开口向下可得出a<0,结论①正确;②由抛物线对称轴为直线x=﹣1可得出b=2a<0,结论②错误;③由抛物线与x轴有两个交点,可得出∴△=b2﹣4ac>0,结论③正确;④由当x=1时y<0,可得出a+b+c<0,结论④正确.综上即可得出结论.【解答】解:①∵抛物线开口向下,∴a<0,结论①正确;②∵抛物线对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a<0,结论②错误;③∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,结论③正确;④∵当x=1时,y<0,∴a+b+c<0,结论④正确.故选:C.【点评】本题考查了二次函数图象与系数的关系,观察函数图象,逐一分析四条结论的正误是解题的关键.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上11.方程(x﹣1)(x+2)=0的解是x1=1、x2=﹣2.【分析】由题已知的方程已经因式分解,将原式化为两式相乘的形式,再根据两式相乘值为0,这两式中至少有一式值为0,求出方程的解.【解答】解:∵(x﹣1)(x+2)=0∴x﹣1=0或x+2=0∴x1=1,x2=﹣2,故答案为x1=1、x2=﹣2.【点评】本题主要考查了因式分解法解一元二次方程的知识,因式分解法解一元二次方程时,应使方程的左边为两个一次因式相乘,右边为0,再分别使各一次因式等于0即可求解.12.在半径为6cm的圆中,120°的圆心角所对的弧长为4πcm.【分析】直接利用弧长公式求出即可.【解答】解:半径为6cm的圆中,120°的圆心角所对的弧长为:=4π(cm).故答案为:4π.【点评】此题主要考查了弧长公式的应用,正确记忆弧长公式是解题关键.13.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=55°.【分析】根据题意得出∠ACA′=35°,则∠A′=90°﹣35°=55°,即可得出∠A的度数.【解答】解:∵把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC 于点D,∠A′DC=90°,∴∠ACA′=35°,则∠A′=90°﹣35°=55°,则∠A=∠A′=55°.故答案为:55°.【点评】此题主要考查了旋转的性质以及三角形内角和定理等知识,得出∠A′的度数是解题关键.14.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率为,则n=4.【分析】根据黄球的概率公式列出关于n的方程,求出n的值即可.【解答】解:由题意知:=,解得n=4.故答案为4.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.15.已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(x﹣2)2﹣1的图象上,则y1、y2、y3的大小关系是y3>y1>y2.【分析】分别计算出自变量为4,和﹣2时的函数值,然后比较函数值得大小即可.【解答】解:把A(4,y1),B(,y2),C(﹣2,y3)分别代入y=(x﹣2)2﹣1得:y1=(x﹣2)2﹣1=3,y2=(x﹣2)2﹣1=5﹣4,y3=(x﹣2)2﹣1=15,∵5﹣4<3<15,所以y3>y1>y2.故答案为y3>y1>y2.【点评】本题考查了二次函数图象上点的坐标特征,解题的关键是:明确二次函数图象上点的坐标满足其解析式.16.如图,PA,PB分别与⊙O相切于A、B两点,点C为劣弧AB上任意一点,过点C的切线分别交AP,BP于D,E两点.若AP=8,则△PDE的周长为16.【分析】直接运用切线长定理即可解决问题;【解答】解:∵DA、DC、EB、EC分别是⊙O的切线,∴DA=DC,EB=EC;∴DE=DA+EB,∴PD+PE+DE=PD+DA+PE+BE=PA+PB,∵PA、PB分别是⊙O的切线,∴PA=PB=8,∴△PDE的周长=16.故答案为:16【点评】该命题以圆为载体,以考查切线的性质、切线长定理及其应用为核心构造而成;解题的关键是灵活运用有关定理来分析、判断、推理或解答.三、解答题(一)(本大题3小题每小题6分,共18分)17.解方程:3x2﹣6x+1=2.【分析】方程整理成一般式后,利用公式法求解可得.【解答】解:方程整理为一般式为3x2﹣6x﹣1=0,∵a=3,b=﹣6,c=﹣1,∴△=36﹣4×3×(﹣1)=48>0,则x==,即x1=,x2=.【点评】此题考查了一元二次方程的解法.此题难度不大,注意选择适宜的解题方法是解此题的关键.18.(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2.(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π).【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)分别作出点A、C绕点B逆时针旋转90°后所得对应点,顺次连接可得;(3)根据弧长公式求解可得.【解答】解:(1)如图,△A1B1C1为所作,点A1的坐标为(2,﹣4);(2)如图,△A2BC2为所作;(3)∵BC==,∴C点旋转到C2点所经过的路径长为=π.【点评】本题主要考查作图﹣轴对称变换、旋转变换,解题的关键是熟练掌握轴对称变换和旋转变换的定义与性质、弧长公式.19.已知:抛物线y=ax2+bx+3经过点A(3,0)、B(﹣1,8),求抛物线的函数表达式,并通过配方写出抛物线的顶点坐标.【分析】把A、B点坐标代入y=ax2+bx+3得到关于a、b的方程组,然后解方程组求出a、b即可求得解析式;把解析式配成顶点式即可得到抛物线的顶点坐标.【解答】解:根据题意得,解得,所以抛物线的解析式为y=x2﹣4x+3;因为y=x2﹣4x+3=x2﹣4x+4﹣4+3=(x﹣2)2﹣1,所以抛物线的顶点坐标为(2,﹣1).【点评】本题考查了待定系数法求二次函数关系式:要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.四、解答题(二)(本大题3小题每小题7分,共21分)20.2015年底某市汽车拥有量为100万辆,而截止到2017年底,该市的汽车拥有量已达到144万辆.(1)求2015年底至2017年底该市汽车拥有量的年平均增长率;(2)若年增长率保持不变,预计2018年底该市汽车拥有量将达到多少万辆.【分析】(1)直接利用2015年的汽车数量×(1+增长率)2=2017年的汽车数量,进而得出等式求出答案;(2)利用(1)中所求,进而得出答案.【解答】解:(1)设2015年底至2017年底该市汽车拥有量的年平均增长率为x,由题意得:100(1+x)2=144,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),答:2015年底至2017年底,该市汽车拥有量的年平均增长率为20%;(2)144×(1+20%)=172.8(万辆)答:预计2018年底该市汽车拥有量将达到172.8万辆.【点评】此题主要考查了一元二次方程的应用,正确得出等式是解题关键.21.某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次调查的学生共有100人;(2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.【分析】(1)根据A项目的人数和所占的百分比求出总人数即可;(2)用总人数减去A、C、D项目的人数,求出B项目的人数,从而补全统计图;(3)用该校的总人数乘以选择“唱歌”的学生所占的百分比即可;(4)根据题意先画出树状图,得出所有等情况数和选取的两人恰好是甲和乙的情况数,然后根据概率公式即可得出答案.【解答】解:(1)本次调查的学生共有:30÷30%=100(人);故答案为:100;(2)喜欢B类项目的人数有:100﹣30﹣10﹣40=20(人),补图如下:(3)选择“唱歌”的学生有:1200×=480(人);(4)根据题意画树形图:共有12种情况,被选取的两人恰好是甲和乙有2种情况,则被选取的两人恰好是甲和乙的概率是=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.22.如图,AD是△ABC外角∠EAC的平分线,AD与△ABC的外接圆⊙O交于点D.(1)求证:DB=DC;(2)若∠CAB=30°,BC=4,求劣弧的长度.【分析】(1)根据圆内接四边形的性质,圆周角定理得到∠DCB=∠DBC,根据等腰三角形的判定定理证明;(2)根据圆周角定理得到∠COB=2∠CAB=60°,∠CDB=∠CAB=30°,得到△COB 为等边三角形,求出OC,∠COD,根据弧长公式计算.【解答】(1)证明:∵AD平分∠EAC,∴∠EAD=∠CAD,∵A,D,C,B四点共圆,∴∠EAD=∠DCB,由圆周角定理得,∠CAD=∠CBD,∴∠DCB=∠DBC,∴DB=DC;(2)解:由圆周角定理得,∠COB=2∠CAB=60°,∠CDB=∠CAB=30°,∴△COB为等边三角形,∴OC=BC=4,∵DC=DB,∠CDB=30°,∴∠DCB=75°,∴∠DCO=15°,∴∠COD=150°,则劣弧的长==π.【点评】本题考查的是三角形的外接圆与外心,掌握圆周角定理,圆内接四边形的性质,弧长公式是解题的关键.五、解答题(三)(本大题3小题,每小题9分,共27分)23.某种新商品每件进价是120元,在试销期间发现,当每件商品售价为130元时,每天可销售70件,当每件商品售价高于130元时,每涨价1元,日销售量就减少1件.据此规律,请回答:(1)当每件商品售价定为170元时,每天可销售多少件商品商场获得的日盈利是多少?(2)在商品销售正常的情况下,每件商品的涨价为多少元时,商场日盈利最大?最大利润是多少?【分析】(1)根据题意,可以求得当每件商品售价定为170元时,每天可销售多少件商品和商场获得的日盈利是多少;(2)根据题意可以写出利润和售价之间的函数关系式,然后根据二次函数的性质即可解答本题.【解答】解:(1)由题意可得,当每件商品售价定为170元时,每天可销售的商品数为:70﹣(170﹣130)×1=30(件),此时获得的利润为:(170﹣120)×30=1500(元),答:当每件商品售价定为170元时,每天可销售30件商品,此时商场获得日利润1500元;(2)设利润为w元,销售价格为x元/件,w=(x﹣120)×[70﹣(x﹣130)×1]=﹣(x﹣160)2+1600,∴当x=160时,w取得最大值,此时w=1600,每件商品涨价为160﹣130=30(元),答:在商品销售正常的情况下,每件商品的涨价为30元时,商场日盈利最大,最大利润是1600元;【点评】本题考查二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.24.如图,在△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作直线BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB于点H,求证:EF平分∠AEH;(3)求证:CD=HF.【分析】(1)连接OE,由于BE是角平分线,则有∠CBE=∠OBE;而OB=OE,就有∠OBE=∠OEB,等量代换有∠OEB=∠CBE,那么利用内错角相等,两直线平行,可得OE∥BC;又∠C=90°,所以∠AEO=90°,即AC是⊙O的切线;(2)根据等角的余角相等即可证明;(3)连结DE,先根据AAS证明△CDE≌△HFE,再由全等三角形的对应边相等即可得出CD=HF.【解答】(1)证明:(1)如图,连接OE.∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径,∴OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠CBE=∠OBE,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC是⊙O的切线;(2)证明:∵∠C=∠BHE=90°,∠EBC=∠EBA,∴BEC=∠BEH,∵BF是⊙O是直径,∴∠BEF=90°,∴∠FEH+∠BEH=90°,∠AEF+∠BEC=90°,∴∠FEH=∠FEA,∴FE平分∠AEH.(3)证明:如图,连结DE.∵BE是∠ABC的平分线,EC⊥BC于C,EH⊥AB于H,∴EC=EH.∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,∴∠CDE=∠HFE,∵∠C=∠EHF=90°,∴△CDE≌△HFE(AAS),∴CD=HF,【点评】本题主要考查了切线的判定,全等三角形的判定与性质,三角形相似的判定和性质以及解直角三角形等.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.25.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P 的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.【分析】(1)根据点A,C的坐标,利用待定系数法即可求出抛物线及直线AC的函数关系式;(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F 的坐标为(x,﹣x+1),进而可得出PF的值,由点C的坐标可得出点Q的坐标,进而=﹣x2﹣x+3,再利用二次函可得出AQ的值,利用三角形的面积公式可得出S△APC数的性质,即可解决最值问题;(3)利用二次函数图象上点的坐标特征可得出点N的坐标,利用配方法可找出抛物线的对称轴,由点C,N的坐标可得出点C,N关于抛物线的对称轴对称,令直线AC与抛物线的对称轴的交点为点M,则此时△ANM周长取最小值,再利用一次函数图象上点的坐标特征求出点M的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM周长的最小值即可得出结论.【解答】解:(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的函数关系式为y=﹣x2﹣2x+3;设直线AC的函数关系式为y=mx+n(m≠0),将A(1,0),C(﹣2,3)代入y=mx+n,得:,解得:,∴直线AC的函数关系式为y=﹣x+1.(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图1所示.设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),∴PE=﹣x2﹣2x+3,EF=﹣x+1,EF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2.∵点C的坐标为(﹣2,3),∴点Q的坐标为(﹣2,0),∴AQ=1﹣(﹣2)=3,=AQ•PF=﹣x2﹣x+3=﹣(x+)2+.∴S△APC∵﹣<0,∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,).(3)当x=0时,y=﹣x2﹣2x+3=3,∴点N的坐标为(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的对称轴为直线x=﹣1.∵点C的坐标为(﹣2,3),∴点C,N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M,如图2所示.∵点C,N关于抛物线的对称轴对称,∴MN=CM,∴AM+MN=AM+MC=AC,∴此时△ANM周长取最小值.当x=﹣1时,y=﹣x+1=2,∴此时点M的坐标为(﹣1,2).∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3),∴AC==3,AN==,=AM+MN+AN=AC+AN=3+.∴C△ANM∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3 +.【点评】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC的函数关系式;(2)利用三角形的面积公式找出S=﹣x2﹣x+3;(3)利用△APC二次函数图象的对称性结合两点之间线段最短找出点M的位置.最新人教版九年级(上)期末模拟数学试卷及答案一、选择题(本大题共12小题,共48.0分)1.计算:A. 3B.C.D. 【答案】C【解析】解:,故选:C.根据算术平方根和二次根式的性质化简可得.本题主要考查算术平方根,解题的关键是掌握算术平方根的定义和二次根式的性质.2.下列计算正确的是A. B. C. D.【答案】B【解析】解:A、不能化简,所以此选项错误;B、,所以此选项正确;C、,所以此选项错误;D、,所以此选项错误;本题选择正确的,故选B.A、和不是同类二次根式,不能合并;B、二次根式相乘,系数相乘作为积的系数,被开方数相乘,作为积中的被开方数;C、二次根式的乘方,把每个因式分别平方,再相乘;D、二次根式的除法,把分母中的根号化去.本题考查了二次根式的混合运算,熟练掌握二次根式的计算法则是关键,要注意:①二次根式的运算结果要化为最简二次根式;②与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的;③灵活运用二次根式的性质,选择恰当的解题途径.3.在中,,则是的A. 正弦B. 余弦C. 正切D. 以【答案】A【解析】解:在中,,则是正弦,故选:A.根据锐角三角函数的定义即可得到结论.本题考查了锐角三角函数的定义,熟记三角函数的定义是解题的关键.4.用配方法解方程,则方程可变形为A. B. C. D. 【答案】D【解析】解:原方程为,二次项系数化为1,得,即,所以故选D.本题考查分配方法解一元二次方程.配方法的一般步骤:把常数项移到等号的右边;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年广东省东莞市九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.下列四个图形中,不是中心对称图形的是()A.B.C.D.2.平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)3.在单词“APPLE”中随机选择一个字母,选择到的字母是“P”的概率是()A.B.C.D.4.抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)5.若正六边形外接圆的半径为4,则它的边长为()A.2B.C.4D.6.下列事件中,必然事件是()A.掷一枚硬币,正面朝上B.任意三条线段可以组成一个三角形C.投掷一枚质地均匀的骰子,掷得的点数是奇数D.抛出的篮球会下落7.若关于x的一元二次方程x2+x﹣m=0有实数根,则m的取值范围是()A.m≥B.m≥﹣C.m≤D.m≤﹣8.用一条长40cm的绳子怎样围成一个面积为75cm2的矩形?设矩形的一边为x米,根据题意,可列方程为()A.x(40﹣x)=75B.x(20﹣x)=75C.x(x+40)=75D.x(x+20)=759.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A.B.2C.6D.810.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论::①a<0;②b>0;③b2﹣4ac>0;④a+b+c<0;其中结论正确的个数有()A.1个B.2个C.3个D.4个二、填空题(每小题4分,共24分)11.方程(x﹣1)(x+2)=0的解是.12.在半径为6cm的圆中,120°的圆心角所对的弧长为cm.13.将抛物线y=5x2向左平移2个单位得到新的抛物线,则新抛物线的解析式是.14.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率为,则n=.15.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=.16.如图,五边形ABCD内接于⊙O,若AC=AD,∠B+∠E=230°,则∠ACD的度数是.三、解答题(一)(每小题6分,共18分)17.解方程:3x2﹣6x+1=2.18.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5)、B(﹣2,1)、C(﹣1,3).(1)画出将△ABC绕点O顺时针旋转90°后所得到的图形△A1B1C1;(2)写出点A1、B1、C1的坐标.19.某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑.某中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,求A型号电脑被选中的概率.四、解答题(二)(每小题7分,共21分)20.有一个人患了流感,经过两轮传染后共有81人患了流感.(1)每轮传染中平均一个人传染了几个人?(2)按照这样的速度传染,第三轮将又有多少人被传染?21.如图,四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,且点E在线段AD上,若AF=4,∠F=60°.(1)指出旋转中心和旋转角度;(2)求DE的长度和∠EBD的度数.22.如图,点E是△ABC的内心,AE的延长线与△ABC的外接圆相交于点D.(1)若∠BAC=70°,求∠CBD的度数;(2)求证:DE=DB.五、解答题(三)(每小题9分,共27分)23.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?24.如图,以△ABC的BC边上一点O为圆心的圆,经过A、B两点,且与BC边交于点E,D 为BE的下半圆弧的中点,连接AD交BC于F,若AC=FC.(1)求证:AC是⊙O的切线:(2)若BF=8,DF=,求⊙O的半径;(3)若∠ADB=60°,BD=1,求阴影部分的面积.(结果保留根号)25.如图,在△ABC中,∠A=30°,∠C=90°,AB=12,四边形EFPQ是矩形,点P与点C重合,点Q、E、F分别在BC、AB、AC上(点E与点A、点B均不重合).(1)当AE=8时,求EF的长;(2)设AE=x,矩形EFPQ的面积为y.①求y与x的函数关系式;②当x为何值时,y有最大值,最大值是多少?(3)当矩形EFPQ的面积最大时,将矩形EFPQ以每秒1个单位的速度沿射线CB匀速向右运动(当点P到达点B时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式,并写出t的取值范围.2017-2018学年广东省东莞市九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.下列四个图形中,不是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形.故错误;B、是中心对称图形.故错误;C、不是中心对称图形.故正确;D、是中心对称图形.故错误.故选:C.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数解答.【解答】解:点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3).故选:D.【点评】本题主要考查了关于原点对称的点的坐标的特征,熟记特征是解题的关键.3.在单词“APPLE”中随机选择一个字母,选择到的字母是“P”的概率是()A.B.C.D.【分析】由单词“APPLE”中有2个p,直接利用概率公式求解即可求得答案.【解答】解:∵单词“APPLE”中有2个p,∴从单词“APPLE”中随机抽取一个字母为p的概率为:.故选:C.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4.抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)【分析】由抛物线解析式即可求得答案.【解答】解:∵y=(x﹣1)2+2,∴抛物线顶点坐标为(1,2),故选:A.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x ﹣h)2+k中,顶点坐标为(h,k),对称轴为x=h.5.若正六边形外接圆的半径为4,则它的边长为()A.2B.C.4D.【分析】根据正六边形的外接圆半径和正六边形的边长将组成一个等边三角形,即可求解.【解答】解:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的外接圆半径等于4,则正六边形的边长是4.故选:C.【点评】此题主要考查了正多边形和圆,利用正六边形的外接圆半径和正六边形的边长将组成一个等边三角形得出是解题关键.6.下列事件中,必然事件是()A.掷一枚硬币,正面朝上B.任意三条线段可以组成一个三角形C.投掷一枚质地均匀的骰子,掷得的点数是奇数D.抛出的篮球会下落【分析】必然事件是指一定会发生的事件.【解答】解:A、掷一枚硬币,正面朝上,是随机事件,故A错误;B、在同一条直线上的三条线段不能组成三角形,故B错误;C、投掷一枚质地均匀的骰子,掷得的点数是奇数,是随机事件,故C错误;D、抛出的篮球会下落是必然事件.故选:D.【点评】本题主要考查的是必然事件和随机事件,掌握随机事件和必然事件的概念是解题的关键.7.若关于x的一元二次方程x2+x﹣m=0有实数根,则m的取值范围是()A.m≥B.m≥﹣C.m≤D.m≤﹣【分析】根据方程有实数根得出不等式,求出不等式的解集即可.【解答】解:∵关于x的一元二次方程x2+x﹣m=0有实数根,∴△=12﹣4×1×(﹣m)=1+4m≥0,解得:m≥﹣,故选:B.【点评】本题考查了根的判别式和解一元一次不等式,能根据根的判别式和已知得出不等式是解此题的关键.8.用一条长40cm的绳子怎样围成一个面积为75cm2的矩形?设矩形的一边为x米,根据题意,可列方程为()A.x(40﹣x)=75B.x(20﹣x)=75C.x(x+40)=75D.x(x+20)=75【分析】根据长方形的周长可以用x表示宽的值,然后根据面积公式即可列出方程.【解答】解:设长为xcm,∵长方形的周长为40cm,∴宽为=(20﹣x)(cm),得x(20﹣x)=75.故选:B.【点评】本题考查了一元二次方程的运用,要掌握运用长方形的面积计算公式S=ab来解题的方法.9.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A.B.2C.6D.8【分析】根据垂径定理,可得答案.【解答】解:连接OC,由题意,得OE=OA﹣AE=4﹣1=3,CE=ED==,CD=2CE=2,故选:B.【点评】本题考查了垂径定理,利用勾股定理,垂径定理是解题关键.10.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论::①a<0;②b>0;③b2﹣4ac>0;④a+b+c<0;其中结论正确的个数有()A.1个B.2个C.3个D.4个【分析】①根据抛物线开口向下可得出a<0,结论①正确;②由抛物线对称轴为直线x=﹣1可得出b=2a<0,结论②错误;③由抛物线与x轴有两个交点,可得出∴△=b2﹣4ac>0,结论③正确;④由当x=1时y<0,可得出a+b+c<0,结论④正确.综上即可得出结论.【解答】解:①∵抛物线开口向下,∴a<0,结论①正确;②∵抛物线对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a<0,结论②错误;③∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,结论③正确;④∵当x=1时,y<0,∴a+b+c<0,结论④正确.故选:C.【点评】本题考查了二次函数图象与系数的关系,观察函数图象,逐一分析四条结论的正误是解题的关键.二、填空题(每小题4分,共24分)11.方程(x﹣1)(x+2)=0的解是x1=1、x2=﹣2.【分析】由题已知的方程已经因式分解,将原式化为两式相乘的形式,再根据两式相乘值为0,这两式中至少有一式值为0,求出方程的解.【解答】解:∵(x﹣1)(x+2)=0∴x﹣1=0或x+2=0∴x1=1,x2=﹣2,故答案为x1=1、x2=﹣2.【点评】本题主要考查了因式分解法解一元二次方程的知识,因式分解法解一元二次方程时,应使方程的左边为两个一次因式相乘,右边为0,再分别使各一次因式等于0即可求解.12.在半径为6cm的圆中,120°的圆心角所对的弧长为4πcm.【分析】直接利用弧长公式求出即可.【解答】解:半径为6cm的圆中,120°的圆心角所对的弧长为:=4π(cm).故答案为:4π.【点评】此题主要考查了弧长公式的应用,正确记忆弧长公式是解题关键.13.将抛物线y=5x2向左平移2个单位得到新的抛物线,则新抛物线的解析式是y=5(x+2)2.【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.【解答】解:抛物线y=5x2的顶点坐标为(0,0),向左平移2个单位后的抛物线的顶点坐标为(﹣2,0),所以,平移后的抛物线的解析式为y=5(x+2)2.故答案为:y=5(x+2)2【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式.14.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率为,则n=4.【分析】根据黄球的概率公式列出关于n的方程,求出n的值即可.【解答】解:由题意知:=,解得n=4.故答案为4.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.15.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=55°.【分析】根据题意得出∠ACA′=35°,则∠A′=90°﹣35°=55°,即可得出∠A的度数.【解答】解:∵把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D,∠A′DC=90°,∴∠ACA′=35°,则∠A′=90°﹣35°=55°,则∠A=∠A′=55°.故答案为:55°.【点评】此题主要考查了旋转的性质以及三角形内角和定理等知识,得出∠A′的度数是解题关键.16.如图,五边形ABCD内接于⊙O,若AC=AD,∠B+∠E=230°,则∠ACD的度数是65°.【分析】依据圆周角定理,依据圆内接四边形的对角互补即可求解.【解答】解:连接OC,OD,CE,DB.在圆内接四边形ABCE中,有∠ABC+∠AEC=180°;由圆周角定理知,∠AOC=2∠AEC,∴∠ABC+∠AOC=180°,同理∠AED+∠AOD=180°两式相加有:230°+∠AOC+∠AOD=360°,即∠AOC+∠AOD=260°,∴∠COD=360°﹣(∠AOC+∠AOD)=100°=2∠CAD,∴∠CAD=50°.∵AC=AD,∴∠ACD=,故答案为:65°【点评】本题考查圆内接四边形问题,关键是利用了圆内接四边形的性质:对角互补,圆周角定理求解.三、解答题(一)(每小题6分,共18分)17.解方程:3x2﹣6x+1=2.【分析】方程整理成一般式后,利用公式法求解可得.【解答】解:方程整理为一般式为3x2﹣6x﹣1=0,∵a=3,b=﹣6,c=﹣1,∴△=36﹣4×3×(﹣1)=48>0,则x==,即x1=,x2=.【点评】此题考查了一元二次方程的解法.此题难度不大,注意选择适宜的解题方法是解此题的关键.18.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5)、B(﹣2,1)、C(﹣1,3).(1)画出将△ABC绕点O顺时针旋转90°后所得到的图形△A1B1C1;(2)写出点A1、B1、C1的坐标.【分析】(1)直接利用旋转的性质得出对应点位置进而得出答案;(2)直接利用(1)中所求进而得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:A1(5,3)、B1(1,2)、C1(3,1).【点评】此题主要考查了旋转变换,正确得出对应点位置是解题关键.19.某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑.某中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,求A型号电脑被选中的概率.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得A型号电脑被选中的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:∴有6种选择方案:AD、AE、BD、BE、CD、CE;(2)∵(1)中各种选购方案被选中的可能性相同,且A型号电脑被选中的有2种情况,∴A型号电脑被选中的概率==.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(二)(每小题7分,共21分)20.有一个人患了流感,经过两轮传染后共有81人患了流感.(1)每轮传染中平均一个人传染了几个人?(2)按照这样的速度传染,第三轮将又有多少人被传染?【分析】(1)设每轮传染中平均一个人传染了x个人,根据有一个人患了流感,经过两轮传染后共有81人患了流感,列方程求解.(2)根据(1)中所求数据,进而表示出第三轮将又被传染的人数.【解答】解:(1)设每轮传染中平均一个人传染了x个人,依题意有x+1+(x+1)x=81,解得x1=8,x2=﹣10(不符合题意舍去).答:每轮传染中平均一个人传染了8个人.(2)8×81=648(人).答:第三轮将又有648人被传染人.【点评】本题考查了一元二次方程的应用,关键是看到两轮传染,从而可列方程求解.21.如图,四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,且点E在线段AD上,若AF=4,∠F=60°.(1)指出旋转中心和旋转角度;(2)求DE的长度和∠EBD的度数.【分析】(1)由于△ADF旋转一定角度后得到△ABE,根据旋转的性质得到旋转中心为点A,∠DAB等于旋转角,于是得到旋转角为90°;(2)根据旋转的性质得到AE=AF=4,∠AEB=∠F=60°,则∠ABE=90°﹣60°=30°,运用勾股定理得到AB=AD=4,∠ABD=45°,所以DE=4﹣4,然后利用∠EBD=∠ABD﹣∠ABE计算即可.【解答】解:(1)∵△ADF旋转一定角度后得到△ABE,∴旋转中心为点A,∠DAB等于旋转角,∴旋转角为90°;(2)∵△ADF以点A为旋转轴心,顺时针旋转90°后得到△ABE,∴AE=AF=4,∠AEB=∠F=60°,∴∠ABE=90°﹣60°=30°,∴BE=2AE=8,∴AB==4,∵四边形ABCD为正方形,∴AD=AB=4,∠ABD=45°,∴DE=4﹣4,∠EBD=∠ABD﹣∠ABE=15°.【点评】本题考查了旋转的性质以及勾股定理的运用,解题时注意:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.22.如图,点E是△ABC的内心,AE的延长线与△ABC的外接圆相交于点D.(1)若∠BAC=70°,求∠CBD的度数;(2)求证:DE=DB.【分析】(1)根据圆周角与圆心角的关系解答即可;(2)根据等边对等角可以证得∠CAB=∠CBA,然后根据内心的定义即可证得∠ABE=∠BAE,从而依据等角对等边即可证得.【解答】解:(1)∵点E是△ABC的内心,∠BAC=70°,∴∠CAD=,∵,∴∠CBD=∠CAD=35°;(2)∵E是内心,∴∠ABE=∠CBE,∠BAD=∠CAD.∵∠CBD=∠CAD,∴∠CBD=∠BAD,∵∠BAD+∠ABE=∠BED,∠CBE+∠CBD=∠DBE,∴∠DBE=∠BED,∴DE=DB;【点评】本题考查了三角形的内心以及圆周角定理,根据内心的定义证得∠ABE=∠BAE是本题的关键.五、解答题(三)(每小题9分,共27分)23.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?【分析】(1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)把y=4000代入函数解析式,求得相应的x值,即可确定销售单价应控制在什么范围内.【解答】解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500,∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500,∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x1=70,x2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.【点评】本题考查二次函数的实际应用.建立数学建模题,借助二次函数解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出函数关系式和方程,再求解.24.如图,以△ABC的BC边上一点O为圆心的圆,经过A、B两点,且与BC边交于点E,D 为BE的下半圆弧的中点,连接AD交BC于F,若AC=FC.(1)求证:AC是⊙O的切线:(2)若BF=8,DF=,求⊙O的半径;(3)若∠ADB=60°,BD=1,求阴影部分的面积.(结果保留根号)【分析】(1)连接OA、OD,如图,利用垂径定理的推论得到OD⊥BE,再利用CA=CF得到∠CAF=∠CFA,然后利用角度的代换可证明∠OAD+∠CAF=90°,则OA⊥AC,从而根据切线的判定定理得到结论;(2)设⊙O的半径为r,则OF=8﹣r,在Rt△ODF中利用勾股定理得到(8﹣r)2+r2=()2,然后解方程即可;(3)先证明△BOD为等腰直角三角形得到OB=,则OA=,再利用圆周角定理得到∠AOB=2∠ADB=120°,则∠AOE=60°,接着在Rt△OAC中计算出AC,然后用一个直角三角形的面积减去一个扇形的面积去计算阴影部分的面积.【解答】(1)证明:连接OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠ODF+∠OFD=90°,∵CA=CF,∴∠CAF=∠CFA,而∠CFA=∠OFD,∴∠ODF+∠CAF=90°,∵OA=OD,∴∠ODA=∠OAD,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)解:设⊙O的半径为r,则OF=8﹣r,在Rt△ODF中,(8﹣r)2+r2=()2,解得r1=6,r2=2(舍去),即⊙O的半径为6;(3)解:∵∠BOD=90°,OB=OD,∴△BOD为等腰直角三角形,∴OB=BD=,∴OA=,∵∠AOB=2∠ADB=120°,∴∠AOE=60°,在Rt△OAC中,AC=OA=,∴阴影部分的面积=••﹣=.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.25.如图,在△ABC中,∠A=30°,∠C=90°,AB=12,四边形EFPQ是矩形,点P与点C重合,点Q、E、F分别在BC、AB、AC上(点E与点A、点B均不重合).(1)当AE=8时,求EF的长;(2)设AE=x,矩形EFPQ的面积为y.①求y与x的函数关系式;②当x为何值时,y有最大值,最大值是多少?(3)当矩形EFPQ的面积最大时,将矩形EFPQ以每秒1个单位的速度沿射线CB匀速向右运动(当点P到达点B时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式,并写出t的取值范围.【分析】(1)由EF∥BC,可得=,由此即可解决问题;(2)①先根据点E为AB上一点得出自变量x的取值范围,根据30°的直角三角形的性质求出EF和AF的长,在在Rt△ACB中,根据三角函数求出AC的长,计算FC的长,利用矩形的面积公式可求得S的函数关系式;②把二次函数的关系式配方可以得结论;(3)分两种情形分别求解即可解决问题.【解答】解:(1)在Rt△ABC中,∵AB=12,∠A=30°,∴BC=AB=6,AC=BC=6,∵四边形EFPQ是矩形,∴EF∥BC,∴=,∴=,∴EF=4.(2)①∵AB=12,AE=x,点E与点A、点B均不重合,∴0<x<12,∵四边形CDEF是矩形,∴EF∥BC,∠CFE=90°,∴∠AFE=90°,在Rt△AFE中,∠A=30°,∴EF=x,AF=cos30°•AE=x,在Rt△ACB中,AB=12,∴cos30°=,∴AC=12×=6,∴FC=AC﹣AF=6﹣x,∴S=FC•EF=x(6﹣x)=﹣x2+3 x(0<x<12);②S=x(12﹣x)=﹣(x﹣6)2+9,当x=6时,S有最大值为9;(3)①当0≤t<3时,如图1中,重叠部分是五边形MFPQN,S=S矩形EFPQ﹣S△EMN=9﹣t2=﹣t2+9.②当3≤t≤6时,重叠部分是△PBN,S=(6﹣t)2,综上所述,S=.【点评】本题考查了矩形的性质、特殊的三角函数、30°的直角三角形的性质、二次函数的最值、正方形的判定等知识,解题的关键是学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.。