高一数学必修二复习知识点归纳
高一必修二数学学习的知识点
高一必修二数学学习的知识点高一必修二数学是中学数学课程中的重要部分,它是对初中数学知识的延伸和拓展,同时也是为后续学习更深层次的数学知识打下基础。
下面将介绍高一必修二数学学习的主要知识点。
一、函数与方程1.1 一次函数一次函数是高中数学中最基本的函数之一。
一次函数的形式是y=kx+b,其中k和b为常数,k代表斜率,b代表截距。
学习一次函数主要包括函数图象的性质、求解一次方程、一次函数与方程的关系等内容。
1.2 二次函数二次函数是一类重要的非线性函数,其形式为y=ax²+bx+c。
学习二次函数主要包括二次函数图象的性质、二次函数的最值、二次函数与方程的关系等内容。
1.3 指数函数与对数函数指数函数和对数函数是数学中的重要概念。
学习指数函数和对数函数主要包括指数函数的性质、对数函数的性质、指数与对数的互为反函数关系、指数方程与对数方程等内容。
二、三角函数2.1 基本概念学习三角函数首先要掌握相关的基本概念,如角度的度量、弧度制、正弦、余弦、正切、余切等基本概念。
2.2 三角函数的性质与图像掌握三角函数的性质和图像是学习三角函数的关键。
学习三角函数的性质和图像包括变量角、三角函数图像的平移、缩放、反转等内容。
2.3 三角恒等式与解三角形三角恒等式是学习三角函数的重要内容之一,它们在解三角形等实际问题中有广泛的应用。
学习三角恒等式还包括倒数公式、和差公式、倍角公式等。
三、平面向量3.1 向量的基本概念向量是数学中重要的概念之一,学习平面向量需要了解向量的基本概念,如向量的模、方向、单位向量等。
3.2 向量的运算向量的运算包括向量的加法、减法、数量乘法等。
学习向量的运算还需要掌握向量的平行、垂直、共线等相关性质。
3.3 向量的坐标表示向量可以用坐标表示,学习向量的坐标表示需要掌握向量的坐标计算和向量坐标的性质。
四、概率与统计4.1 基本概念学习概率与统计需要了解基本概念,如随机事件、样本空间、概率等。
高一数学必修二知识点归纳优选全文
《必修二》知识点归纳【知识点一】表面积和体积1.①(为弧长,为半径) ③ (为母线长)② ④ (为母线长)⑤ (为上下底面半径,为母线长)2. ① ② ③ ④【知识点二】判定几何中有关平行的方法1.判定线线平行 (1)利用平行公理:; (2)线面平行⇒线线平行:;(3)面面平行⇒线线平行:; (4)线面垂直⇒线线平行:.2. 判定线面平行 (1)判定定理:; (2)面面平行⇒线面平行:3判定面面平行 (1)判定定理:; (2)面面平行⇒线面平行:;(3)面面平行的判定(垂直与平行的转化):.【知识点三】判定几何中有关垂直的方法1 .判定线线垂直:线面垂直⇒线线垂直:2 .判定线面垂直 (1)判定定理1(线线垂直 ⇒ 线面垂直):(2)面面垂直的性质定理(面面垂直 ⇒ 线面垂直):(3)判定定理2(平行与垂直的转化):; (4)面面平行的性质:3 .判定面面垂直:判定定理(线面垂直 ⇒ 面面垂直):.【知识点四】几何中求角和点面距离的方法1. 求异面直线所成角的步骤:(1) 作:用平移法作出异面直线所成角;(2)证:证明作出的角就是所求角;(3)计算:常放入三角形中求角的值.2. 直线和平面所成角:平面内的一条斜线和它在平面上的射影所成的锐角.关键是找面的垂线(线面垂直)3. 求二面角的平面角:以二面角的棱上任一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成角即为二面角的平面角.4. 点到面的距离:①等体积法;②找面的垂线.【知识点五】外心、内心、重心三角形的外心:外接圆的圆心,即三条垂直平分线的交点; 三角形的内心:内接圆的圆心,即三条角平分线的交点;三角形的重心:三条中线的交点(重心将中线分成1:2); 三角形的垂心:三高的交点设三棱锥的顶点在平面的射影是,则:(1)若两两垂直,则是的—垂心; (2)若,则是的—外心;(3)若到的距离都相等,则是的—内心;(4)若,则是的—垂心;(5)若,且,则是——边上的中点;(6)若二面角、二面角和二面角都相等,则是的——内心;(7)若直线与底面所成的角都相等,则是的——外心.【知识点六】直线与方程1. 求斜率——①定义:,其中为直线的倾斜角;②两点斜率公式:2. 直线的五种表示形式名称方程常数的几何意义适用条件点斜式一般情况y-y0=k(x-x0)(x0,y0)是直线上的一个定点,k是斜率直线不垂直于x轴斜截式y=kx+bk是斜率,b是直线在y轴上的截距直线不垂直于x轴两点式一般情况=(x1,y1),(x2,y2)是直线上的两个定点直线不垂直于x轴和y轴截距式+=1a,b分别是直线在x轴,y轴上的两个非零截距直线不垂直于x轴和y轴,且不过原点一般式Ax+By+C=0A,B不同时为0A,B,C为系数任何情况特殊直线x=a(y轴:x=0)垂直于x轴且过点(a,0)斜率不存在y=b(x轴:y=0)垂直于y轴且过点(0,b)斜率k=0①已知直线上一点:设点斜式(分斜率存在和不存在两个情况讨论);②已知直线的斜率:设斜截式;③有关直线在坐标轴的截距:设截距式(注意判断是否需要分情况讨论).3. 两条直线平行与垂直的判定设两直线为;.4. 距离公式类别已知条件公式两点间的距离点到直线的距离两平行线间的距离【知识点七】圆与方程1.(1)圆的标准方程:,圆心为,半径为圆的一般方程:①当时,表示圆心为,半径为的圆;②当时,表示一个点; ③当时,不表示任何图形.2. 点与圆的位置关系判断点和圆或(1) ;(2) ;(3) .3. 直线与圆的位置关系直线与圆的位置关系,设圆心到直线的距离为,则:(1) 判断直线与圆的位置关系的两种方法——和①;②;③.(2) 当直线与圆相交时,求弦长和中点弦的坐标设直线和圆相交于两点,则①求弦长(利用垂径定理与勾股定理):;②求线段的中点的坐标:利用韦达定理求出.(3)当直线和圆相切时,求切线方程①若点在圆上,求过点的切线只有一条,根据,代入点斜式方程即可(其中为圆心).②若点在圆外,求过点的切线有两条,情况一:不存在,则切线方程为:,再判断是否与圆相切;情况二:存在,设切线方程为,根据圆心到切线的距离等于半径:.4. 圆与圆的位置关系(1)设圆和圆,两圆心的距离,则①; ②; ③;④; ⑤.(2) 当两圆相交时,求公共弦方程将两圆化成一般式,两式相减即得公共弦方程(即为公共弦方程)。
高中数学必修二知识点总结及公式大全
高中数学必修二知识点总结及公式大全高中数学是培养学生逻辑思维和抽象能力的重要学科。
《必修二》作为高中数学课程的重要组成部分,涉及了许多核心知识点和基础公式。
本文将为您详细总结《必修二》的知识点,并整理出一份公式大全,帮助您更好地掌握这门学科。
一、高中数学必修二知识点总结1.函数概念与性质- 函数的定义、表示方法、分类- 函数的性质(单调性、奇偶性、周期性、对称性等)- 反函数及其求法2.指数函数与对数函数- 指数函数的定义、性质、图像- 对数函数的定义、性质、图像- 指数方程与对数方程的解法3.三角函数- 角度制与弧度制互换- 三角函数的定义、图像、性质- 三角恒等变换- 三角方程与不等式的解法4.数列- 等差数列与等比数列的定义、性质、求和公式- 数列的通项公式与求和公式- 数列的极限5.平面向量- 向量的定义、表示、线性运算- 向量的坐标表示与几何表示- 向量的数量积与垂直关系- 向量的平行四边形法则与三角形法则6.解析几何- 直线方程的求法(点斜式、截距式、一般式等)- 圆的方程与性质- 常见图形的面积、周长、体积计算二、高中数学必修二公式大全1.函数类- y=f(x) 的反函数:y=f^(-1)(x)- 幂函数:y=x^a(a 为常数)- 指数函数:y=a^x(a>0 且a≠1)- 对数函数:y=log_a(x)(a>0 且a≠1)2.三角函数类- 正弦函数:y=sin(x)- 余弦函数:y=cos(x)- 正切函数:y=tan(x)- 三角恒等变换公式(和差公式、倍角公式、半角公式等)3.数列类- 等差数列通项公式:a_n=a_1+(n-1)d- 等差数列求和公式:S_n=n/2(a_1+a_n)- 等比数列通项公式:a_n=a_1q^(n-1)- 等比数列求和公式:S_n=a_1(1-q^n)/(1-q)(q≠1)4.向量类- 向量加法:A+B=(a_x+b_x, a_y+b_y)- 向量减法:A-B=(a_x-b_x, a_y-b_y)- 向量数量积:A·B=a_xb_x+a_yb_y- 向量模长:|A|=√(a_x^2+a_y^2)5.解析几何类- 点斜式直线方程:y-y_1=k(x-x_1)- 截距式直线方程:x/a+y/b=1- 圆的标准方程:(x-a)^2+(y-b)^2=r^2总结:本文为您详细总结了高中数学必修二的知识点,并整理了一份公式大全。
高一数学必修二知识点
高一数学必修二知识点:立体几何立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
高一数学必修二各章知识点总结
【导语】如果把⾼中三年去挑战⾼考看作⼀次越野长跑的话,那么⾼中⼆年级是这个长跑的中段。
与起点相⽐,它少了许多的⿎励、期待,与终点相⽐,它少了许多的掌声、加油声。
它是孤⾝奋⽃的阶段,是⼀个耐⼒、意志、⾃控⼒⽐拚的阶段。
但它同时是⼀个厚实庄重的阶段,这个时期形成的优势有实⼒。
⾼⼆频道为你整理了《⾼⼀数学必修⼆各章知识点总结》,学习路上,为你加油! 【第⼀章空间⼏何体】 1.1空间⼏何体的结构 1.2空间⼏何体的三视图和直观图 阅读与思考画法⼏何与蒙⽇ 1.3空间⼏何体的表⾯积与体积 探究与发现祖暅原理与柱体、椎体、球体的体积 实习作业 ⼩结 复习参考题 【第⼆章点、直线、平⾯之间的位置关系】 2.1空间点、直线、平⾯之间的位置关系 2.2直线、平⾯平⾏的判定及其性质 2.3直线、平⾯垂直的判定及其性质 阅读与思考欧⼏⾥得《原本》与公理化⽅法 ⼩结 复习参考题 【第三章直线与⽅程】 3.1直线的倾斜⾓与斜率 探究与发现魔术师的地毯 3.2直线的⽅程 3.3直线的交点坐标与距离公式 阅读与思考笛卡⼉与解析⼏何 ⼩结 复习参考题 【第四章圆与⽅程】 4.1圆的⽅程 阅读与思考坐标法与机器证明 4.2直线、圆的位置关系 4.3空间直⾓坐标系 信息技术应⽤⽤《⼏何画板》探究点的轨迹:圆 ⼩结 复习参考题 【函数知识点】 ⼀、定义与定义式: ⾃变量x和因变量y有如下关系: y=kx+b 则此时称y是x的⼀次函数。
特别地,当b=0时,y是x的正⽐例函数。
即:y=kx(k为常数,k≠0) ⼆、⼀次函数的性质: 1.y的变化值与对应的x的变化值成正⽐例,⽐值为k 即:y=kx+b(k为任意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。
三、⼀次函数的图像及性质: 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出⼀次函数的图像——⼀条直线。
因此,作⼀次函数的图像只需知道2点,并连成直线即可。
高一数学必修二知识点
高一数学必修二知识点一、函数的概念与性质1. 函数的定义- 函数的概念- 函数的表示方法:解析式、图象、表格- 函数的域与值域2. 函数的简单性质- 函数的单调性- 函数的奇偶性- 函数的周期性3. 函数的图像与变换- 函数图像的绘制- 平移变换:左加右减,上加下减- 伸缩变换:横坐标伸缩、纵坐标伸缩- 对称变换:关于x轴对称、关于y轴对称、关于原点对称二、指数与对数1. 指数的概念- 有理指数幂的定义- 指数幂的运算法则- 指数函数的图像与性质2. 对数的概念- 对数的定义- 对数的运算法则- 对数函数的图像与性质3. 指数与对数的应用- 指数方程与对数方程的解法- 指数与对数在实际问题中的应用三、三角函数1. 角的概念- 任意角的概念- 象限角与轴线角2. 三角函数的定义- 正弦、余弦、正切函数的定义 - 三角函数的图像与性质3. 三角恒等变换- 同角三角函数的基本关系- 三角恒等式4. 三角函数的应用- 解三角形问题- 三角函数在实际问题中的应用四、数列1. 数列的概念- 数列的定义- 有穷数列与无穷数列- 等差数列与等比数列2. 数列的通项公式与求和公式- 等差数列的通项公式与求和公式- 等比数列的通项公式与求和公式3. 数列的极限- 数列极限的概念- 极限的运算法则- 极限存在的条件五、解析几何1. 平面直角坐标系- 坐标系的定义- 点的坐标与距离公式2. 直线的方程- 直线的斜率与截距- 直线方程的求解与应用3. 圆的方程- 圆的标准方程- 圆的一般方程4. 圆锥曲线的初步- 椭圆、双曲线、抛物线的方程与性质六、概率与统计1. 随机事件与概率- 随机事件的概念- 概率的定义与性质- 条件概率与独立事件2. 统计的基本概念- 总体与样本- 统计量:平均数、中位数、众数、方差、标准差3. 数据处理与分析- 数据的收集与整理- 数据的图表表示:条形图、饼图、直方图- 数据的分析方法请根据以上概要在Word文档中进行编辑和格式化,确保每个部分都有清晰的标题和子标题,以便读者能够轻松地找到他们感兴趣的信息。
人教高一数学必修二知识点
人教高一数学必修二知识点高一数学必修二知识点在高一数学必修二中,我们将学习一些基本的数学知识和技巧。
本文将介绍几个重点知识点,帮助大家更好地理解和掌握这门课程。
一、函数的概念和性质函数是数学中非常重要的概念,我们首先需要了解什么是函数以及函数的性质。
函数是一种关系,它可以将一个集合的元素映射到另一个集合的元素上。
具体来说,对于函数$f(x)$,$x$是自变量,$f(x)$是因变量,函数通过运算或规则确定了自变量和因变量之间的对应关系。
函数的性质包括定义域、值域、单调性、奇偶性等。
二、二次函数和一次函数在高一数学必修二中,我们将详细学习二次函数和一次函数。
二次函数是形如$f(x) = ax^2 + bx + c$的函数,其中$a、b、c$为常数且$a \neq 0$。
一次函数是形如$f(x) = kx + b$的函数,其中$k$和$b$为常数。
我们需要了解二次函数和一次函数的图像、性质以及它们在实际问题中的应用。
三、数列与数列的通项公式数列是一系列有规律的数按一定顺序排列而成的序列。
数列中的每一项称为数列的项。
在高一数学必修二中,我们将学习等差数列和等比数列。
等差数列中,每一项与它前一项之间的差值都相等;等比数列中,每一项与它前一项之间的比值都相等。
数列的通项公式是指可以用一个公式表示数列中任意一项与它的位置之间的关系。
四、概率与统计概率和统计是数学中的重要概念,它们在我们的日常生活中应用广泛。
概率是研究随机事件发生的可能性的数学分支,涉及到样本空间、事件、概率等概念。
统计是研究数据的收集、整理、分析和解释的方法和过程,涉及到频数分布、均值、中位数等概念。
我们需要了解概率和统计的基本原理以及如何运用它们解决实际问题。
五、三角函数三角函数是与角度相关的一类函数,包括正弦函数、余弦函数和正切函数等。
我们将学习三角函数的定义、性质以及它们在几何和物理问题中的应用。
三角函数的图像、周期性、导数等性质也是我们需要掌握的知识。
【最新】高一数学必修二各章知识点总结
【最新】高一数学必修二各章知识点总结高一数学必修二各章知识点总结如下:第一章:函数与二次函数1. 函数的概念及性质:定义域、值域、奇偶性、单调性等。
2. 二次函数的基本性质:顶点、对称轴、单调性、零点、图像的开口方向。
3. 一次函数与二次函数的比较与关系:求解一次函数与二次函数的交点等。
4. 二次函数的图像与方程:画出给定二次函数的图像,根据图像确定二次函数的方程等。
5. 二次函数与根式、指数、对数的应用。
第二章:三角函数1. 角度制与弧度制的转换。
2. 弧度制下的任意角的三角函数值的计算。
3. 三角函数的简单性质及其关系:同角三角函数的相互关系、倒数三角函数的相互关系等。
4. 三角函数的图像与性质:正弦函数、余弦函数、正切函数的图像与性质等。
5. 三角函数的应用:三角函数在几何、物理、工程等领域的应用。
第三章:指数与对数函数1. 指数的定义、性质及运算规律:指数与乘法、除法、乘方运算规律等。
2. 对数的定义、性质及运算规律:对数与指数的关系、对数运算法则等。
3. 指数函数与对数函数的简单性质与图像:指数函数与对数函数的基本性质、图像和性质等。
4. 指数函数与对数函数的应用:指数与对数在增长与衰减、微积分、金融等领域的应用。
第四章:数列1. 数列的概念与性质:等差数列、等比数列、通项公式、前n 项和等。
2. 数列的运算:数列的加减乘除等。
3. 等差数列与等差中项:等差数列的通项公式、等差数列的求和公式、等差数列的奇数项和、以及奇数和与偶数和等。
4. 等比数列与等比中项:等比数列的通项公式、等比数列的求和公式、等比数列的前n项和、无穷等比级数等。
5. 等差数列与等差中项的应用:等差数列在等价代换、简化形式、利润计算等方面的应用。
第五章:排列与组合1. 排列与组合的基本概念:排列、组合的定义与计算方法等。
2. 排列与组合的计算:排列与组合的计算公式、乘法原理、加法原理等。
3. 排列与组合的应用:排列与组合在概率、几何、数学问题解法等领域的应用。
高一必修二数学知识点总结及公式
高一必修二数学知识点总结及公式高中数学的学习,对于每个学生来说都是一次全新的挑战。
特别是高一阶段,作为高中新生的学习起点,需要理解和掌握许多基础数学知识点和公式。
本文将对高一必修二数学知识点进行总结,并给出相应的公式。
一、二次函数二次函数是高中数学中非常重要的一个概念,掌握二次函数的性质和相关的公式对于解题至关重要。
1. 二次函数的标准方程:y = ax² + bx + c,其中 a、b、c 为常数,a ≠ 0。
2. 二次函数的顶点坐标公式:对于二次函数 y = ax² + bx + c,其顶点的横坐标为 x = -b/2a,纵坐标为 y = -(b²-4ac)/4a。
3. 二次函数的对称轴公式:对于二次函数 y = ax² + bx + c,其对称轴的方程为 x = -b/2a。
4. 二次函数图像的开口方向:若 a > 0,则二次函数图像开口向上;若 a < 0,则二次函数图像开口向下。
5. 二次函数的判别式:判别式 D = b²-4ac,D > 0 时,二次函数有两个不同的实根;D = 0 时,二次函数有一个重根;D < 0 时,二次函数没有实根。
二、三角函数三角函数是数学中的重要分支,掌握三角函数的基本概念和公式,对高中数学的学习和后续数学知识的理解都起到至关重要的作用。
1. 正弦函数与余弦函数的定义:对于任意角θ,其正弦函数的值为sinθ,余弦函数的值为cosθ。
2. 正切函数的定义:对于任意角θ,其正切函数的值为tanθ。
3. 三角函数的基本关系式:sin²θ + cos²θ = 1,1 + tan²θ = sec²θ,1 + cot²θ = csc²θ。
4. 常用三角函数的周期性:sin(θ + 2πk) = sinθ,cos(θ + 2πk) = cosθ,tan(θ + πk) = tanθ(其中 k 为整数)。
高一必修二每章知识点公式总结
高一必修二每章知识点公式总结第一章:函数与导数1. 函数概念函数是一种特殊的关系,将自变量的值映射到因变量的值上,通常表示为y=f(x),其中x为自变量,y为因变量。
2. 定义域和值域定义域是自变量可能取值的范围,对于有理函数而言,需要考虑分母为零的情况。
值域是函数在定义域上取到的所有可能值。
3. 函数的基本性质a) 奇偶性:f(-x) = f(x)为偶函数,f(-x) = -f(x)为奇函数。
b) 单调性:f'(x)>0,函数递增;f'(x)<0,函数递减。
c) 最值:通过求导或者化简函数表达式,可以得到函数的最值。
d) 零点:函数取零值的点叫做零点,通过解方程f(x)=0,可以求得函数的零点。
4. 极值和最值a) 极值:函数在一定区间内取得的最大值或最小值。
通过求导,可以找到函数的驻点,再通过二阶导数判定其为极大值、极小值还是无极值。
b) 最值:函数在定义域上取得的最大值或最小值。
第二章:三角函数1. 基本概念a) 正弦函数sin(x):对于任意实数x,都可以通过单位圆上的一个点,该点与原点的连线与x轴正半轴之间的夹角所确定。
b) 余弦函数cos(x):对于任意实数x,都可以通过单位圆上的一个点,该点与原点的连线与x轴正半轴之间的夹角的余弦值。
c) 正切函数tan(x):tan(x) = sin(x)/cos(x),在直角三角形中,tan(x)表示斜边与对边之比。
2. 基本性质a) 周期性:sin(x)和cos(x)的周期均为2π,tan(x)的周期为π。
b) 奇偶性:sin(-x) = -sin(x),cos(-x) = cos(x),tan(-x) = -tan(x)。
c) 值域:-1 ≤ sin(x) ≤ 1,-1 ≤ cos(x) ≤ 1,tan(x)的值域为全体实数。
3. 三角函数的图像与性质a) 正弦函数的图像:周期为2π,对称于x轴。
当x=0时,取得最小值-1;当x=π/2时,取得最大值1。
人教版高一数学必修二知识点总结
人教版高一数学必修二知识点总结
一、函数的概念
1、定义:函数是将一些特定的元素映射成另外一些特定的元素的规律性变化。
2、概念:可以把一组值一一对应起来,并具有相同的规律性的数列称为函数,函数的概念可以用计算、图示、代数表达式等方法表达。
3、函数的特性:函数的特性有唯一性和对称性,即任意一个自变量对应唯一的因变量,而且两个自变量互换,两个因变量也一定会互换。
二、一元函数的图象
1、一元函数的图像:一元函数的图象反映函数的变化规律,是比较直观的表示形式,可以根据函数的表达式,画出函数的图像。
2、特殊的图像:当函数关系是y=x时,则函数的图像是一条直线,当函数关系是y=(1/x)时,则函数的图像是一个反比例曲线,当函数关系是y=k时,则函数的图像是一条水平线。
三、函数的特殊性
1、单调性:函数f(x)在定义域内有且仅有一个最值,称为该函数关系的单调性,当函数f(x)在定义域内单调递增时,称为单调递增;当函数f(x)在定义域内单调递减时,称为单调递减。
2、连续性:在定义域内,任意一点处的函数值之差都可以接近于零,则该函数关系称为连续的。
3、奇偶性:函数f(x)的奇偶性,是指函数f(x)在x=a处的值与函数f(-a)
在x=-a处的值是否有关联性。
如果f(a)=f(-a),则说明函数f(x)具有奇偶性,此时函数的图像关于y轴是对称的。
高一数学必修二复习知识点归纳
高一数学必修二复习知识点归纳(实用版)编制人:__审核人:__审批人:__编制单位:__编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高一数学必修二复习知识点归纳本店铺为各位同学整理了《高一数学必修二复习知识点归纳》,希望对你的学习有所帮助!1.高一数学必修二复习知识点归纳篇一(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。
数学高一必修二知识点归纳
数学高一必修二知识点归纳一、立体几何初步1. 空间几何体的结构- 棱柱- 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
- 棱柱的分类:按底面多边形的边数分为三棱柱、四棱柱、五棱柱等。
- 棱柱的性质:侧棱都平行且相等;两个底面与平行于底面的截面是全等的多边形;过不相邻的两条侧棱的截面是平行四边形。
- 棱锥- 棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
- 棱锥的分类:按底面多边形的边数分为三棱锥、四棱锥、五棱锥等。
- 棱锥的性质:如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比。
- 棱台- 棱台的定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。
- 棱台的分类:按底面多边形的边数分为三棱台、四棱柱、五棱台等。
- 棱台的性质:棱台的各侧棱延长后交于一点;棱台的上下底面是相似多边形;棱台的侧面积等于各个梯形面积之和。
- 圆柱、圆锥、圆台- 圆柱:以矩形的一边所在直线为轴旋转,其余三边旋转形成的面所围成的旋转体叫做圆柱。
圆柱的轴截面是矩形。
- 圆锥:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转形成的面所围成的旋转体叫做圆锥。
圆锥的轴截面是等腰三角形。
- 圆台:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。
圆台的轴截面是等腰梯形。
- 球- 球的定义:以半圆的直径所在直线为轴,半圆面旋转一周形成的旋转体叫做球。
球的截面性质:球心和截面圆心的连线垂直于截面;r = √(R^2)-d^{2}(R为球的半径,d为球心到截面的距离,r为截面半径)。
2. 空间几何体的三视图和直观图- 三视图- 定义:正视图(主视图)是从几何体的前面向后面正投影得到的投影图;侧视图(左视图)是从几何体的左面向右面正投影得到的投影图;俯视图是从几何体的上面向下面正投影得到的投影图。
高一数学必修二知识点归纳笔记
高一数学必修二知识点归纳笔记一、函数与导数1. 函数的概念函数是对一种变化关系的抽象,用来描述自变量和因变量之间的对应关系。
在数学上,我们用f(x)表示函数,其中x为自变量,f(x)为因变量。
2. 函数的性质(1)定义域和值域:函数f(x)的定义域是所有可能的自变量取值范围,值域是因变量的所有可能取值范围。
(2)奇函数与偶函数:奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
(3)周期函数:如果存在正数T,使得对于一切x∈R,都有f(x+T)=f(x),则称f(x)为周期函数,T称为函数f的周期。
3. 导数的概念导数表示函数在某一点的变化率,也可以理解为函数曲线在该点的切线斜率。
导数常用f'(x)或y'表示。
4. 导数的运算(1)常数导数:常数函数的导数为0。
(2)幂函数求导:对于y=x^n(n为常数),y' = nx^(n-1)。
(3)和差积商的求导:利用导数的性质和四则运算法则,可以对和差积商进行导数求解。
5. 高阶导数如果对函数f(x)求导的结果再次求导,便得到函数的二阶导数。
求取n 次导数便得到n阶导数。
6. 函数的微分微分是对函数的导数的一种表示,通常用dy或df来表示微分的变化量。
二、三角函数与三角恒等变换1. 三角函数的定义(1)正弦函数:y=sin(x),定义域为R,值域为[-1,1]。
(2)余弦函数:y=cos(x),定义域为R,值域为[-1,1]。
(3)正切函数:y=tan(x),定义域为R-{(2n+1)π/2|n∈Z},值域为R。
2. 三角函数的性质(1)奇偶性:sin(-x)=-sin(x),cos(-x)=cos(x),tan(-x)=-tan(x)。
(2)周期性:sin(x+2kπ)=sin(x),cos(x+2kπ)=cos(x),tan(x+kπ)=tan(x)。
(3)反函数:反正弦函数、反余弦函数和反正切函数的定义域分别为[-π/2,π/2]、[0,π]和(-π/2,π/2)。
高一数学必修二知识点总结log
高一数学必修二知识点总结log一、对数与指数1. 概念和性质对数的定义、指数的定义、对数与指数的关系、对数的性质(对数的基本运算、幂函数的求值、对数函数的图像)2. 常用对数与自然对数常用对数的定义、自然对数的定义、常用对数与自然对数的换算、对数、指数与幂函数的图像二、指数函数与对数函数的分析1. 指数函数的性质指数函数的定义、指数函数的图像、指数函数的性质(增减性、奇偶性、单调性、零点、极限)2. 对数函数的性质对数函数的定义、对数函数的图像、对数函数的性质(增减性、奇偶性、单调性、零点、极限)三、对数与指数方程1. 对数方程对数方程的定义、对数方程的解法(变底公式、利用对数性质化简)2. 指数方程指数方程的定义、指数方程的解法(变底公式、变量转换)四、对数与指数不等式1. 对数不等式对数不等式的定义、对数不等式的解法(基本不等式、利用对数性质化简)2. 指数不等式指数不等式的定义、指数不等式的解法(基本不等式、变量转换)五、指数函数、对数函数与幂函数的应用1. 复利问题复利的概念、复利公式的推导与应用、连续复利的概念与应用2. 半衰期问题半衰期的概念、半衰期公式的推导与应用、放射性元素的衰变六、对数尺度与指数尺度1. 对数尺度对数尺度的定义、对数尺度的转换、对数尺度的应用(音量、测震等)2. 指数尺度指数尺度的定义、指数尺度的转换、指数尺度的应用(星等系统等)七、指数函数的增长速度与单调性1. 指数函数增长速度指数函数的导数与斜率、指数函数的限制性与趋势2. 指数函数的单调性指数函数的增减性、极值、拐点与曲线段数八、对数函数与指数函数的应用1. 相关变量的变化关系对数函数与指数函数的引入、基本模型与实际应用2. 模型的建立与求解实际问题的数学模型、通过对数函数与指数函数进行建模与求解以上是高一数学必修二知识点总结log,希望对你的学习有所帮助。
祝你取得优异的成绩!。
高一数学知识点必修二框架
高一数学知识点必修二框架第一章:函数与导数1. 全书的布置,如教材版本、学期、页码等信息2. 函数基本概念2.1. 函数的定义及其表示法2.2. 自变量、因变量和函数值的关系2.3. 函数的定义域和值域3. 常用函数3.1. 常量函数、线性函数、二次函数3.2. 反比例函数和指数函数4. 导数的概念4.1. 导数的定义及其几何意义4.2. 导数与切线的关系第二章:三角函数1. 三角函数的概念1.1. 弧度制及其与度数制的关系1.2. 三角函数的定义及其周期性2. 三角函数的基本性质2.1. 正弦函数、余弦函数和正切函数的图像与性质2.2. 三角函数的诱导公式3. 三角函数的应用3.1. 解三角形问题3.2. 利用三角函数解实际问题第三章:平面向量1. 向量的概念及其表示1.1. 向量的定义和基本性质1.2. 向量的表示法2. 向量运算2.1. 向量的加法、减法和数乘2.2. 向量的数量积和向量积3. 平面向量的几何应用3.1. 向量的共线与垂直3.2. 利用向量解几何问题第四章:立体几何与解析几何1. 空间几何的基本概念1.1. 点、线、面的概念1.2. 空间几何的基本性质和公理2. 点、直线、平面的位置关系2.1. 平行与垂直2.2. 相交与夹角3. 空间图形的度量3.1. 距离、角度和面积的定义 3.2. 用向量解决空间问题第五章:概率与统计1. 随机事件与概率1.1. 随机事件的基本概念1.2. 概率的定义和性质2. 离散型随机变量2.1. 随机变量的基本概念2.2. 离散型随机变量的概率分布和期望3. 统计与统计图3.1. 数据的收集和整理3.2. 统计图的绘制和分析结语:通过学习高一数学必修二的知识点,我们对函数与导数、三角函数、平面向量、立体几何与解析几何,以及概率与统计等内容有了更深入的了解。
这些知识点将为我们打下坚实的数学基础,为高中阶段和将来的学习打下坚实的基础。
希望同学们在接下来的学习中能够巩固这些知识,掌握数学的基本概念和方法,为更高级的数学学习奠定牢固的基础。
高一数学知识点归纳大全必修二
高一数学知识点归纳大全必修二一、空间几何体1. 棱柱、棱锥、棱台的结构特征:棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。
棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形。
棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
2. 圆柱、圆锥、圆台、球的结构特征:圆柱:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体。
圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体。
圆台:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。
球:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体。
3. 空间几何体的三视图和直观图:三视图:正视图、侧视图、俯视图。
直观图:斜二测画法。
4. 空间几何体的表面积与体积:棱柱、棱锥、棱台的表面积和体积公式。
圆柱、圆锥、圆台、球的表面积和体积公式。
二、点、直线、平面之间的位置关系1. 平面的基本性质:公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
公理2:过不在一条直线上的三点,有且只有一个平面。
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
2. 空间中直线与直线之间的位置关系:平行、相交、异面。
平行公理、等角定理。
3. 空间中直线与平面之间的位置关系:直线在平面内、直线与平面平行、直线与平面相交。
4. 平面与平面之间的位置关系:平行、相交。
三、直线与方程1. 直线的倾斜角与斜率:倾斜角的定义和范围。
斜率的定义和计算公式。
2. 直线的方程:点斜式、斜截式、两点式、截距式、一般式。
3. 两直线的位置关系:平行、垂直的判定条件。
4. 距离公式:两点间的距离公式。
点到直线的距离公式。
两平行直线间的距离公式。
高一必修二数学知识点归纳
高一必修二数学知识点归纳
高一必修二数学的知识点主要包括:
空间几何体:
空间几何体的结构特征:了解棱柱、棱锥、圆柱、圆锥、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。
空间几何体的三视图和直观图:能画简单空间几何体(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸张)制作模型,会用斜二测法画水平放置的平面图形的直观图。
空间几何体的表面积与体积:掌握棱柱、棱锥、圆柱、圆锥、球的表面积和体积的计算公式。
点、直线、平面之间的位置关系:
平面及其基本性质:理解平面的基本性质,会用语言、符号、图形描述平面的基本性质。
空间中的平行关系:理解空间中的平行关系,能判断空间中的两条直线是否平行,判断直线与平面、平面与平面是否平行,理解线面平行的判定定理和性质定理。
空间中的垂直关系:理解空间中的垂直关系,能判断空间中的两条直线是否垂直,判断直线与平面、平面与平面是否垂直,理解线面垂直的判定定理和性质定理,掌握平面与平面垂直的判定定理。
直线与方程:
直线的倾斜角与斜率:理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式,能求出给定直线的倾斜角和斜率。
直线的方程:掌握直线方程的几种形式(如点斜式、两点式、一般式等),会根据条件求直线的方程。
直线的交点:理解两条直线交点的概念,会求两条直线的交点。
距离公式与两点间距离:理解两点间距离公式、点到直线距离公式的推导过程,并会应用这些公式进行有关计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修二复习知识点归纳
(实用版)
编制人:__________________
审核人:__________________
审批人:__________________
编制单位:__________________
编制时间:____年____月____日
序言
下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!
并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!
Download tips: This document is carefully compiled by this editor.
I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!
Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!
高一数学必修二复习知识点归纳
本店铺为各位同学整理了《高一数学必修二复习知识点归纳》,希望对你的学习有所帮助!
1.高一数学必修二复习知识点归纳篇一
(1)线线、面面、线面垂直的定义
①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。
②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。
③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。
(2)垂直关系的判定和性质定理
①线面垂直判定定理和性质定理
判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。
性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
②面面垂直的判定定理和性质定理
判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。
2.高一数学必修二复习知识点归纳篇二
角的度量:度量角的大小,可用“度”作为度量单位。
把一个圆周分成360等份,每一份叫做一度的角。
1度=60分;1分=60秒。
角的分类:
(1)锐角:小于直角的角叫做锐角
(2)直角:平角的一半叫做直角
(3)钝角:大于直角而小于平角的角
(4)平角:把一条射线,绕着它的端点顺着一个方向旋转,当终止位置和起始位置成一直线时,所成的角叫做平角。
(5)周角:把一条射线,绕着它的端点顺着一个方向旋转,当终边和始边重合时,所成的角叫做周角。
(6)周角、平角、直角的关系是:l周角=2平角=4直角=360°
3.高一数学必修二复习知识点归纳篇三
1、直线方程形式
一般式:Ax+By+C=0(AB≠0)
斜截式:y=kx+b(k是斜率b是x轴截距)
点斜式:y-y1=k(x-x1)(直线过定点(x1,y1))
两点式:(y-y1)/(x-x1)=(y-y2)/(x-x2)(直线过定点(x1,y1),
(x2,y2))
截距式:x/a+y/b=1(a是x轴截距,b是y轴截距)
做题过程中,点斜式和斜截式用的最多(两种合占90%以上),一般式属于中间过渡形态。
在与圆及圆锥曲线结合的过程中,还要用到点到直线距离公式。
2、直线方程的局限性
各种不同形式的直线方程的局限性:
(1)点斜式和斜截式都不能表示斜率不存在的直线;
(2)两点式不能表示与坐标轴平行的直线;
(3)截距式不能表示与坐标轴平行或过原点的直线;
(4)直线方程的一般式中系数A、B不能同时为零。
4.高一数学必修二复习知识点归纳篇四
空间两条直线只有三种位置关系:平行、相交、异面
1、按是否共面可分为两类:
(1)共面:平行、相交
(2)异面:
异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为(0°,90°)esp、空间向量法
两异面直线间距离:公垂线段(有且只有一条)esp、空间向量法
2、若从有无公共点的角度看可分为两类:
(1)有且仅有一个公共点——相交直线;
(2)没有公共点——平行或异面
直线和平面的位置关系:
直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行
①直线在平面内——有无数个公共点
②直线和平面相交——有且只有一个公共点
直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
5.高一数学必修二复习知识点归纳篇五
方程的根与函数的零点
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。
即:方程有实数根,函数的图象与坐标轴有交点,函数有零点。
3、函数零点的求法:
(1)(代数法)求方程的实数根;
(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。
4、二次函数的零点:
(1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。
(2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。
(3)△ 6.高一数学必修二复习知识点归纳篇六
1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,
3、a-边长,S=6a2,V=a3
4、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc
5、棱柱S-h-高V=Sh
6、棱锥S-h-高V=Sh/3
7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
8、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/6
9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)
11、r-底半径h-高V=πr^2h/3
12、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3
13、球r-半径d-直径V=4/3πr^3=πd^3/6
14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6
16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4
17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)。