最优化理论与算法(第四章)(新)
最优化理论与算法完整版课件 PPT
Bazaraa, J. J. Jarvis, John Wiley & Sons, Inc.,
1977.
组合最优化算法和复杂性
Combinatorial
Optimization 蔡茂诚、刘振宏
Algorithms and Complexity
清华大学出版社,1988 I运nc筹.,学19基82础/1手99册8
最优化首先是一种理念, 运筹学的“三个代表”
其次才是一种方法.
• 模型
• 理论
2021/4/9
• 算法
5
绪论---运筹学(Operations Research -
运筹学O方R)法
最优化/数学规划方法
连续优化:线性规划、 非线性规划、非光滑优 化、全局优化、变分法、 二次规划、分式规划等
离散优化:组合优化、 网络优化、整数规划等
2021/4/9
11
1. 食谱问题
我每天要求一定量的两种维生素,Vc和Vb。 假设这些维生素可以分别从牛奶和鸡蛋中得到。
维生素
Vc(mg) Vb(mg) 单价(US$)
奶中含量
2 3 3
蛋中含量
4 2 2.5
每日需求 40 50
需要确定每天喝奶和吃蛋的量, 目标以便以最低可能的花费购买这些食物, 而满足最低限度的维生素需求量。
最优化理论与算法
2021/4/9
1
提纲
使用教材:
最优化理论与算法 陈宝林
参考书 :
数学规划 黄红选, 韩继业 清华大学出版社
1. 线性规划 对偶定理
2. 非线性规划 K-K-T 定理
3. 组合最优化 算法设计技巧
2021/4/9
2
其他参考书目
最优化理论第四章约束问题最优性条件
定理4.2
设x* s, f ( x), g i ( x), (i I )在x*可微,g i ( x), (i I )在x *连续,
如果x*是问题 2 的局部最优解,则F0 G0 =。 (证明从略)
2.2 定理4.3 (Fritz,John条件)
* 设x* s,I i g i ( x* ) 0 ,f , g i (i I )在x*处可微,g ( i i I)在x 处连续,
第
四
章
约束问题的最优性 条件(P206)
min f(x) 约束优化: s.t. gi (x) 0, h ( x) 0, j
x Rn i 1,..., m j 1,..., l
s x gi ( x) 0, i 1,..., m; h j ( x), j 1,..., l
iI
①K-T条件
* 进一步条件,若g( i I )在 x 处可微,K-T条件为: i m ( f x*) - wi gi ( x* ) 0 ② i 1 ② * m n方程组 wi gi ( x ) 0, i 1,..., m ③ ③ ④ wi 0, i 1,..., m * 给定x ,验证是否符合K-T条件用① 应用 * x 未定,求解K-T点,求解② +③
2.4
定理4.5 (约束问题最优解的一阶充分条件)
问题(2)中,f 是凸函数,g ( )是凹函数,s为可行域,x* s, i i 1,..., m I i gi ( x* ) 0 , f 和gi (i I )在点x*可微,gi (i I )在点x*连续,且在x*处 K - T 条件成立,则x*为全局最优解。 x 1, 0 为全局最优解(例子)
最优化理论与算法完整版课件陈宝林PPT
j1
m
s.t xij bj
i1
xij 0
i 1, 2,L , m
最优化首先是一种理念, 运筹学的“三个代表”
其次才是一种方法.
• 模型
• 理论
2020/4/8
• 算法
5
绪论---运筹学(Operations Research -
运筹学O方R)法
最优化/数学规划方法
连续优化:线性规划、 非线性规划、非光滑优 化、全局优化、变分法、 二次规划、分式规划等
离散优化:组合优化、 网络优化、整数规划等
2020/4/8
12
1. 食谱问题(续)
令x表示要买的奶的量,y为要买的蛋的量。食谱问题可以写
成如下的数学形式:
Min 3x +2.5y
极小化目标函数
s.t. 40
50
2x + 4y 3x + 2y
可行区域(单纯形) 可行解
运筹学工作x,者y参与0建.立关于何时出现最小费用 (或者最大利润)的排序,或者计划,早期被标示为programs。 求最优安排或计划的问题,称作programming问题。
2020/4/8
11
1. 食谱问题
我每天要求一定量的两种维生素,Vc和Vb。 假设这些维生素可以分别从牛奶和鸡蛋中得到。
维生素
Vc(mg) Vb(mg) 单价(US$)
奶中含量
2 3 3
蛋中含量
4 2 2.5
每日需求 40 50
需要确定每天喝奶和吃蛋的量, 目标以便以最低可能的花费买这些食物, 而满足最低限度的维生素需求量。
Printice-Hall
徐光辉、刘彦佩、程侃
科学出版社,1999
最优化理论与算法完整版课件陈宝林
TP SHUAI
1
提纲
使用教材:
最优化理论与算法 陈宝林
参考书 :
数学规划 黄红选, 韩继业 清华大学出版社
1. 线性规划 对偶定理
2. 非线性规划 K-K-T 定理
3. 组合最优化 算法设计技巧
TP SHUAI
2
其他参考书目
Nonlinear Programming - Theory and Algorithms
j1
m
s.t xij bj
i1
xij 0
i 1, 2, , m
j 1, 2, n i 1, 2, , m j 1, 2, n
TP SHUAI
15
3 税下投资问题
• 以价格qi 购买了si份股票i,i=1,2,…,n
• 股票i的现价是pi
• 你预期一年后股票的价格为ri • 在出售股票时需要支付的税金=资本收益×30% • 扣除税金后,你的现金仍然比购买股票前增多 • 支付1%的交易费用 • 例如:将原先以每股30元的价格买入1000股股票,以
最优化首先是一种理念, 运筹学的“三个代表”
其次才是一种方法.
• 模型
• 理论
• 算法 TP SHUAI
5
绪论---运筹学(Operations Research - OR)
运筹学方法
最优化/数学规划方法
连续优化:线性规划、 非线性规划、非光滑优 化、全局优化、变分法、 二次规划、分式规划等
离散优化:组合优化、 网络优化、整数规划等
TP SHUAI
23
6.结构设计问题
p1
p2
h
2p
2L
B
d
受力分析图
最优化方法与理论第四章 例题
x1 x2 5.
x1 x2 5 0
L( x1 , x2 , ) ( x1 2) 2 ( x2 1) 2 ( x1 x2 5) ,
令 L( x1 , x2 , ) 0 ,即
2( x1 2) 0, 2( x2 1) 0, x x 5 0. 2 1
T
定理 4.5(几何最优性条件)
若 x * 是约束问题(4.7)的局部最优点,则点 x * 的容
许方向锥与下降方向锥的交集是空集.
定理 4.5 表明:在最优点处,一定不存在下降容许方向.换句话说,在最优点处,或 者不存在下降方向,或者任何下降方向都不是容许方向.
定理 4.5 表明:不等式方程组
T ) p 0, i I si ( x T f ( x ) p 0
无解.
引理 4.8(Gordan) 设 a1 , a2 ,, am 是 n 维向量,则不存在向量 p 使得
aiT p 0, i 1, 2,, m
成立的必要条件是,存在不全为零的非负数 1 , 2 ,, m 使得
T
(2)K-T 条件为
2( x1 2) 2 x1 0 , 2 x2 0 2( x2 1) 2 2 (9 x1 x2 ) 0, 0.
① ② ③
由③,若 0 ,代入①得 x1 2, x2 1 .由于[2,1]T∈D,所以[2,1]T 是 K-T 点.又 因是凸规划问题,所以[2,1]T 是最优解.
最优化理论与算法课件 (4)
广义消去法
令S 和Z 分别为n m和n n m 矩阵,满足 AS I , AZ 0 且 S : Z 为可逆矩阵,则有x Sb是方程 Ax b的一个可行解,设d 为Ax 0的解,则 方程Ax b的通解为 x Sb d .
1 T T min f ( x) x Hx c x 2 s.t. Ax b
取 令
ˆk } k min{1, x ( k 1) x ( k ) k d ( k ) .
如果
k
a x
p
bp a x a d
p p (k )
p
(k )
1,
(k )
则在点x ( k 1),有
( k 1)
a (x
p
kd
( k 1)
(k )
) bp
若x是任一可行解,则有Ax b, 在该点目标 函数的梯度为: f ( x) Hx c
x x Qf ( x) Rf ( x)
min x 2 x x 2 x1 x2 x3 s.t. x1 x2 x3 4
1 5 3 4 4 2 , S 1 11 5 3 4 2
最优解为: x1 T 21 43 3 x x2 , , 11 22 22 x3
直接消去法
1 T T min f ( x) x Hx c x 2 s.t. Ax b
2 2 0 0 1 1 解:H 2 4 0 , c 0 , A 2 1 0 0 2 1 1 1 0 2 1 1 1 H 0 2 2 0 0 1 2
最优化方法 第四章(遗传算法)
一、遗传算法简介
达尔文 (Darwin) 的进化论:自然选择原理
自然选择就是指生物由于环境中某些因素的影响而使得
有利于一些个体的生存,而不利于另外一些个体生存的
演化过程:物竞天择,适者生存 遗传:子代和父代具有相同或相似的性状,保证物种的 稳定性; 变异:子代与父代,子代不同个体之间总有差异,是生 命多样性的根源;
选择运算 个体评价 交叉运算
变异运算
群体p(t+1)
解
码
解集合
二、标准遗传算法
标准遗传算法的主要步骤
Step1 根据优化问题的特点对优化变量进行编码,随机产 生一组初始个体构成初始种群,并评价每一个个体的适配值; Step2 判断算法收敛准则是否满足。若满足则输出搜索结果; 否则执行以下步骤; Step3 根据适配值大小以一定方式进行复制(选择)操作; Step4 按交叉概率 pc 执行交叉操作; Step5 按变异概率 pm 执行变异操作; Step6 更新种群,返回Step2.
二、标准遗传算法
标准遗传算法算例---手工计算
max
s .t.
2 f x1 , x2 x12 x2
x1 0,1 7 x2 0,1 7
编码:二进制编码 基因型X= 1 0 1 1 1 0 对应的表现型是:X= 5, 6
二、标准遗传算法 ① ② 个体编号 初始群体 i P(0) 1 2 3 4 011101 101011 011100 111001 ③ x1 3 5 3 7 ④ x2 5 3 4 1 ⑤ f(x1,x2) 34 ∑fi=143 34 fmax=50 25 f=35.75 50 ⑥ f i/ ∑ f i 0.24 0.24 0.17 0.35
最优化方法第四章(1)概要
(4.7)
D {x si ( x) 0, i 1,2, , 对于约束问题(4.7),设 x D 。若 x 使得 某个不等式约束有 si ( x ) 0 ,则该不等式约束 si ( x ) 0 称为是关于容许点 x 的起作用约束;否则,若 si ( x ) 0 , 则该不等式约束称为是关于容许点 x 的不起作用约束。
*
*
G( x* ) S ( x* ) * * p C ( x ) , 证 根据引理4.3,若 p G( x ) ,则 * * C ( x ) S ( x ) , 从而 G( x* ) C( x* ) 。又根据定理4.5,有 故必有 G( x* ) S ( x* ) 。
j 1
l
Lagrange 函数(4.4)的梯度是
x L L L
其中
x L f ( x ) j h j ( x )
l
L h1 ( x ), h2 ( x ),
最优性必要条件
j 1
hl ( x )
T
L( x* , 1* , 2* ,
C 是凸集,则称为凸锥。
显然,由 的集合
n 维向量 v1, v2 ,
m i 1
, vm 的全部非负组合构成
C {x x i vi , i 0}
是一个以原点为顶点的凸锥。由于这样的凸锥的边界是 (超)平面或直线,所以也称为由 v1 , v2 , , vm 张成的 凸多面锥。 n 是 D 定义4.3 设 R 中的非空集,且 x D。对于非零 n 向量 p R ,若存在 0 ,当 t (0, ) 时,必有 x tp D ,则 p 称为点 x 的容许方向向量,其方向 称为点 x 的容许方向。由点 x 的全部容许方向向量构成的 集合称为点 x 的容许方向锥,记作 C ( x* )
最优化理论与算法
最优化理论与算法在当今的科技时代,最优化理论与算法已经成为解决各种实际问题的重要工具。
从经济决策到工程设计,从物流运输到人工智能,其应用几乎无处不在。
那么,什么是最优化理论与算法呢?简单来说,最优化就是在众多可能的选择中找到最好的那个。
想象一下你要从家去学校,有多种路线可供选择,你会选择距离最短、花费时间最少或者最省钱的那一条,这就是一个最优化的问题。
而最优化理论就是研究如何找到这样的最优解,算法则是实现这个目标的具体步骤和方法。
最优化问题可以分为无约束优化和约束优化两大类。
无约束优化问题就是在没有任何限制条件的情况下寻找最优解。
比如,找到一个函数的最小值或者最大值。
举个例子,对于函数 f(x) = x^2 2x + 3,我们要找到 x 使得 f(x) 最小。
通过求导并令导数为 0,可以得到 x = 1 时,f(x) 取得最小值 2。
约束优化问题则是在一定的条件限制下寻找最优解。
比如说,你有一定的预算去购买几种商品,每种商品都有价格和所能带来的满足感,你需要在不超过预算的情况下,让总的满足感最大。
这时候就需要考虑各种约束条件来找到最优的购买方案。
在解决最优化问题时,常用的算法有很多。
比如梯度下降法,它就像是在一个山坡上,沿着山坡最陡峭的方向往下走,逐步接近最低点。
这种方法简单直观,但也可能会陷入局部最优解,而找不到全局最优解。
还有牛顿法,它利用了函数的二阶导数信息,收敛速度比梯度下降法快,但计算复杂度较高。
此外,还有模拟退火算法、遗传算法等启发式算法。
模拟退火算法模仿了金属退火的过程,通过在搜索过程中随机地接受一些较差的解,避免陷入局部最优。
遗传算法则借鉴了生物进化的思想,通过选择、交叉和变异等操作来逐步优化解。
最优化理论与算法在实际生活中的应用非常广泛。
在工业生产中,为了提高生产效率、降低成本,需要对生产流程进行优化。
比如,在制造汽车的过程中,如何安排各个零部件的生产顺序,如何分配工人的工作时间,以使得整个生产过程最快、成本最低,这都可以通过最优化算法来解决。
数值最优化(李董辉)第四章 拟Newton法
(4.4) (4.5 )
对称秩1 (SR1)修正公式; BFGS修正公式(对称秩2)
2、对称秩1 (SR1)修正公式;
2、 BFGS修正公式与BFGS算法
(den族算法及其性质
(4.18) (4.19)
DFP 算法步骤
BFGS算法和DFP算法是Broyden 族中的成员, 该族的一个重要性质是仿射不变性。拟Newton法 具有超线性收敛性,其理论非常成熟。其全局收 敛性理论近年来也取得了重要的进展。事实上, 拟Newton法在使用非精确线性搜索时不具有全局 收敛性。有许多修正的方法。然而,拟Newton法 具有非常好的数值效果。被广泛用来求解无约束 问题哦。
第一节 拟Newton法及其性质
1、拟Newton方程与Dennis-Moré 条件 2、对称秩1(SR1)修正公式 3、BFGS修正公式与BFGS算法 4、Broyden族算法及其性质
收敛性略
拟Newton的思想
不同的构造方法对应于不同的拟Newton法 。下面主要 介绍三种构造方法。
1、拟Newton方程与Dennis-Moré 条件
刘陶文第一节拟newton法及其性质1拟newton方程与dennismor条件2对称秩1sr1修正公式3bfgs修正公式与bfgs算法4broyden族算法及其性质收敛性略拟newton的思想不同的构造方法对应于不同的拟newton法
唯楚有材 於斯为盛
最优化
主讲:刘陶文博士
课件制作:刘陶文
第四章 无约束问题算法(II)—— 拟Newton法(变尺度法)
最优化理论 第四章
n i 1
f
(X (k)) xi ( xi
x(k) i
)
1
2
n f ( X (k ) ) i, j1 xix j ( xi
xi(k ) )(x j
x
(k j
)
)
写成矩阵形式:
f ( X ) f ( X (k) ) [f ( X (k) )]T ( X X (k) ) 1 ( X X ) (k) T 2 f ( X (k) )(X X (k) ) 2
求函数
f
(x)
x2 1
x2 2
4x1
4
在点[3,2]T 的 梯度。
解:
f
f
(
x)
x1 f
2
x1 2 x2
4
x2
在点x(1)=[3,2]T处的梯度为:
f
( x(1) )
2x1 4
2 x2
x(1)
2 4
例: 试求目标函数 f x1, x2 3x12 4x1x2 x22 在点X 0 0,1T 处
阶主子式的值负、正相间。
q11 q12 q1n
q11 0
q11
q12 0
;…;
(1)n q21
q22
q21 q22
例:判定矩阵Q=
模就是函数变化率的最大值 ,负梯度方向函数值
下降最快。
x2
f(x0)
最速上升方向
x0
-f(x0)
上升方向
最速下降方向 下降方向
变化率为零的方向
O
x1
图2-2 梯度方向与等值线的关系
多元函数的梯度
f
x1
f
f
(
x0
最优化理论与算法完整版课件陈宝林PPT课件
2020/3/26
可编辑
11
1. 食谱问题
我每天要求一定量的两种维生素,Vc和Vb。 假设这些维生素可以分别从牛奶和鸡蛋中得到。
维生素
Vc(mg) Vb(mg) 单价(US$)
奶中含量
2 3 3
蛋中含量
4 2 2.5
每日需求 40 50
需要确定每天喝奶和吃蛋的量, 目标以便以最低可能的花费购买这些食物, 而满足最低限度的维生素需求量。
几何规划 动态规划 不确定规划:随机规 划、模糊规划等
多目标规划 20对20/策3/2论6 等
随机过程方法
统计决策理论 马氏过程 排队论 更新理论 仿真方法 可靠性理论等
可编辑
统计学方法
回归分析 群分析 模式识别 实验设计 因子分析等
6
优化树
2020/3/26
可编辑
7
•最优化的发展历程
费马:1638;牛顿,1670
min f (x) x:数
欧拉,1755
df(x) 0 dx
Min f(x1 x2 ··· xn )
f(x)=0
2020/3/26
可编辑
8
拉格朗日,1797
Min f(x1 x2 ··· xn) s.t. gk (x1 x2 ··· xn )=0, k=1,2,…,m
欧拉,拉格朗日:无穷维问题,变分学 柯西:最早应用最速下降法
如果运输问题的总产量等于总销量,即有
m
n
ai bj
i 1
j 1
则称该运输问题为产销平衡问题;反之,称产销不平 衡问题。
2020/3/26
可编辑
14
2 运输问题(续)
令xij表示由产地Ai运往销地Bj的物品数量,则产销平衡 问题的数学模型为:
最优化方法(刘)第四章
阻尼牛顿法收敛定理
定理2: 设 f ( x) 二阶连续可微, 又设对任意的x0 ∈Rn , 存在常数m > 0, 使得 f ( x) 在 L ={x f (x) ≤ f (x0 )} 2 T 2 上满足: ∇ f ( x)µ ≥ m µ ,∀ ∈Rn , x∈L( x0 ) µ µ 则在精确线搜索条件下, 阻尼牛顿法产生的点列 {xk } 满足: (1) 当{xk } 是有限点列时, 其最后一个点为 f ( x) 的唯一极小点. (2)当{xk } 是无限点列时, 收敛到 f (x) 的唯一极小点.
) x0 = (9,1
T
g0 = ∇ ( x0 ) = (9,9) f
T
T 7.2 7.2 g0 g0 x = x0 − T g0 = 1 −0.8 g1 = −7.2 g0 G 0 g T 9×0.82 g1 g1 x2 = x − T g1 = 1 2 (−1 ×0.82 g1 G 1 g )
9 1 0 x = x0 −G g0 = − 1 1 0 9
1 − 0 −1
9 0 = = x* 9 0
牛顿法收敛定理
定理1: 设 f ( x) 二次连续可微, *是 f ( x) 的局 x 部极小点, f (x* ) 正定. 假定 f ( x) 的海色阵 ∇
gk →0 .
证明: 对于最速下降法, k = 0, 由以上定理立得. θ
收敛性分析
定理2: 设 f ( x) 二次连续可微, ∇2 f ( x) ≤ M, 且 其中 M是个正常数, 对任何给定的初始点 x0, 最速下降算法或有限终止, 或者lim f ( xk ) = −∞ ,
k→ ∞
最优化理论与算法完整版课件
n
xij ai
j
m
s.t xij bj
i1
xij 0
i 1, 2, , m
j 1, 2, n i 1, 2, , m j 1, 2, n
TP SHUAI
15
3 税下投资问题
• 以价格qi 购买了si份股票i,i=1,2,…,n
• 股票i的现价是pi
TP SHUAI
12
1. 食谱问题(续)
令x表示要买的奶的量,y为要买的蛋的量。食谱问题可以写 成如下的数学形式:
Min 3x +2.5y s.t. 2x + 4y 40
3x + 2y 50 x, y 0.
极小化目标函数
可行区域(单纯形) 可行解
运筹学工作者参与建立关于何时出现最小费用 (或者最大利润)的排序,或者计划,早期被标示为programs。 求最优安排或计划的问题,称作programming问题。
29
基本概念
Df 1. 1 设f(x)为目标函数,S为可行域,x0S,若对 每一个x S,成立f(x)f(x0),则称x0为极小化问题min f(x),
x S的最优解(整体最优解)
Df 1.2 设f(x)为目标函数,S为可行域,
若存在x0的邻域 N (x0 ) {x | x x0 , 0} 使得对每个x S N (x0),成立f (x) f (x0)
称为可行点,全体可行点组成的集合称为 可行集或可行域.如果一个问题的可行域 是整个空间,则称此问题为无约束问题.
TP SHUAI
28
基本概念
• 最优化问题可写成如下形式:
min f (x)
第4章 最优化方法(运筹学)
例题分析5:投资问题
例5 某部门现有资金200万元,今后五年内考虑给以下的项目 投资。已知: 项目A:从第一年到第五年每年年初都可投资,当年末能收回 本利110%; 项目B:从第一年到第四年每年年初都可投资,次年末能收回 本利125%,但规定每年最大投资额不能超过30万元; 项目C:需在第三年年初投资,第五年末能收回本利140%,但 规定最大投资额不能超过80万元; 项目D:需在第二年年初投资,第五年末能收回本利155%,但 规定最大投资额不能超过100万元。 问应如何确定这些项目的每年投资额,使得第五年年末拥 有资金的本利金额为最大?
欧洲的古代城堡为什么建成圆形?
案例:生产计划问题
例1.
某工厂在计划期内要安排Ⅰ、Ⅱ两种产品的 生产,已知生产单位产品所需的设备台时及A、B两 种原材料的消耗、资源的限制,如下表:
Ⅰ
设备 原料 A 原料 B 单位产品获利 1 2 0 50 元
Ⅱ
1 1 1 100 元资源限制 300 来自时 400 千克 250 千克
问题:工厂应分别生产多少单位Ⅰ、Ⅱ产品才能
使工厂获利最多?
第一节 线性规划
一、在管理中一些典型的线性规划应用 二、线性规划的一般模型
三、线性规划问题的计算机求解
(Excel,lingo)
第一节 线性规划
一、在管理中一些典型的线性规划应用 1、合理利用线材问题:如何在保证生产的条件下, 下料最少 2、配料问题:在原料供应量的限制下如何获取最大 利润 3、投资问题:从投资项目中选取方案,使投资回报 最大 4、产品生产计划:合理利用人力、物力、财力等, 使获利最大 5、劳动力安排:用最少的劳动力来满足工作的需要 6、运输问题:如何制定调运方案,使总运费最小
最优化方法 4第四章
(2)若有 (t 2 ) (t1 ),则[t 2 , b] 是 (t ) 的单谷区间.
18
a
.
. t2
t*
.
t1
.
.
b
证明略.
定理 4.1 说明,经过函数值的比较可以把单谷区间缩短为一个较 小的单谷区间.换句话说利用这个定理可以把搜索区间无限缩小, 从而求到极小点.以下介绍的几种一维搜索方法都是利用这个定 理通过不断地缩短搜索区间的长度,来求得一维最优化问题的近
c=(a+b)/2
(c) 0
N
a=c
Y
N
(c) 0
Y
T*=c
b=c
t*=(a+b)/2
Y
(c) 0
N
输出t* 结束
图4.6
24
4.3 Newton切线法
一、Newton切线法基本原理 设 : R1 R1在已获得的搜索区间 [a, b] 内具有连 续二阶导数,求 min (t ) . a t b 因为 (t ) 在 [a, b] 上可微,故 (t ) 在 [a, b] 上有最 小值,令 (t ) 0 . 下面不妨设在区间 [a, b] 中经过 k 次迭代已求得方 程 (t ) 0的一个近似根 t k.过(t k , (t k )) 作曲线 y (t ) 的切线,其方程是 y (t k ) (t k )(t t k ) (4.4)
6
下面解释迭代点 X k 1 X k t k Pk 的空间位置.容 易证明,若从X k出发,沿 Pk 方向进步一维搜索得 极小点 X k 1 X k t k P ,则该点 处的梯度方 X k k 1 P 向 f ( X k 与搜索方向 之间应满足 k 1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 共轭梯度法§4.1 共轭方向法共轭方向法是无约束最优化问题的一类重要算法。
它一方面克服了最速下降法中,迭代点列呈锯齿形前进,收敛慢的缺点,同时又不像牛顿法中计算牛顿方向耗费大量的工作量,尤其是共轭方向法具有所谓二次收敛性质,即当将其用于二次函数时,具有有限终止性质。
一、共轭方向定义4.1 设G 是n n ⨯对称正定矩阵,1d ,2d 是n 维非零向量,若120T d Gd = (4.1)则称1d ,2d 是G -共轭的。
类似地,设1,,m d d 是n R 中一组非零向量。
若0T i j d Gd =()i j ≠ (4.2)则称向量组1,,m d d 是G -共轭的。
注:(1) 当G I =时,共轭性就变为正交性,故共轭是正交概念的推广。
(2) 若1,,m d d G -共轭,则它们必线性无关。
二、共轭方向法共轭方向法就是按照一组彼此共轭方向依次搜索。
模式算法:1)给出初始点0x ,计算00()g g x =,计算0d ,使000Td g <,:0k = (初始共轭方向);2)计算k α和1k x +,使得0()min ()k k k k k f x d f x d ααα≥+=+,令1k k k k x x d α+=+;3)计算1k d +,使10Tk j d Gd +=,0,1,,j k =,令:1k k =+,转2)。
三、共轭方向法的基本定理共轭方向法最重要的性质就是:当算法用于正定二次函数时,可以在有限多次迭代后终止,得到最优解(当然要执行精确一维搜索)。
定理4.2 对于正定二次函数,共轭方向法至多经过n 步精确搜索终止;且对每个1i x +,都是()f x 在线性流形00,i j j j j x x x d αα=⎧⎫⎪⎪=+∀⎨⎬⎪⎪⎩⎭∑中的极小点。
证明:首先证明对所有的1i n ≤-,都有10T i j g d +=,0,1,,j i =(即每个迭代点处的梯度与以前的搜索方向均正交)事实上,由于目标函数是二次函数,因而有()11k k k k k k g g G x x Gd α++-=-=1)当j i <时, ()1111iTT T i j j j k k j k j g d gd gg d +++=+=+-∑110iT T j j kkj k j gd dGd α+=+=+=∑2)当j i =时,由精确搜索性质知:10T i j g d +=综上所述,有 10Ti j g d += (0,1,,)j i =。
再证算法的有限终止结论。
若有某个10i g +=(1i n <-),则结论已知。
若不然,那么由上面已证则必有: 0Tn j g d = (0,,1)j n =-。
而由于01,,n d d -是n R 的一组基,由此可得0n g =。
故至多经过n 次精确一维搜索即可获得最优解。
下面证明定理的后半部分。
由于1()2TT f x x Gx b x c =++ 是正定二次函数,那么可以证明000(,,)()ii j j j t t f x t d ϕ==+∑是线性流形上的凸函数。
事实上,000000000(,,)()1()()()2ii j j j iiiT T j j j j j j j j j t t f x t d x t d G x t d b x t d c ϕ=====+=+++++∑∑∑∑200000011()[]()22i iT T T T T j j j j j j j j t d Gd x Gd b d t x Gx b x c ===+++++∑∑ 由0T j j d Gd >(0,,)j i =知0(,,)i t t ϕ为0,,i t t 的凸函数。
因而100(,,)min(,,)0i i i t t R jt t t ϕϕ+∈∂⇔=∂ (0,,)j i =00()0iT j jj j f x t dd =⇔∇+=∑ (0,,)j i =注意到:当j j t α=,(0,,)j i =时,0010iij j j j i j j x t d x d x α+==+=+=∑∑。
而由定理前部分证明,在1i x +处有11()0T T i j i j f x d g d ++∇==(0,,)j i =,故在00(,,)(,,)i i t t αα=处,0(,,)i t t ϕ取得极小,即100ii i jj x x dα+==+∑是()f x 在线性流形上的极小点。
§4.2 共轭梯度法上节一般地讨论了共轭方向法,在那里n 个共轭方向是预先给定的,而如何获得这些共轭方向并为提及。
本节讨论一种重要的共轭方向法——共轭梯度法。
这种方法在迭代过程中通过对负梯度方向进行适当校正获得共轭方向,故而称之为共轭梯度法。
一、共轭梯度的构造 (算法设计针对凸二次函数)设 1()2TT f x x Gx b x c =++ 其中G 为n n ⨯正定矩阵,则()g x Gx b =+。
对二次函数总有 ()11k k k k k k g g G x x Gd α++-=-=1)设0x 为初始点。
首先取00d g =-,令1000x x d α=+ (0α为精确步长因子)则有:100Tg d =(精确一维搜索性质)。
2)令1100d g d β=-+,适当选择0β,使100Td Gd =,得 101101100001000()()T T T T T T g Gd g g g g gd Gd d g g g g β-===- (从而得到1d )由前一节共轭方向法的基本定理有:210T g d =,200T g d =,再由0d 与1d 的构造,还可得:210T g g =,200T g g =3)再令220011d g d d ββ=-++,适当选择0β,1β,使得20Ti d Gd = (0,1i =),由此得:00β=,22122112111()()T TT T g g g g gd g g g g β-==-4) 一般地,在第k 次迭代中,令10k k k iii d g dβ-==-+∑ 适当选取i β,使0Tk i d Gd = (0,,1i k =-), 可得到 11()()T Tk i k i i i T T i i i i i g Gd g g g d Gd d g g β++-==-(0,,1i k =-) (4.3)同样由前一节共轭方向的基本定理有:0T k i g d =(0,,1i k =-), (4.4)再由i g 与i d 的关系得:0T k i g g = (0,,1i k =-) (4.5)将(4.4)与(4.5)代入(4.3)得:当0,,2i k =-时,0i β=,而 111111()()T Tk k k k k k T T k k k k k g g g g gd g g g g β-------==-。
共轭梯度法的迭代公式为:1k k k k x x d α+=+(k d 为共轭方向,k α为最佳步长因子)对二次函数T k k k T k kg dd Gd α=-;而对非二次函数,则采用精确一维搜索得到k α。
共轭方向的修正公式为: 11k k k k d g d β++=-+ (4.6) 其中,k β由下面诸式之一计算:1) 111()()T k k k k T k k k g g g d g g β+++-=- (Crowder-Wolfe 公式) (4.7) 2) 11T k k k T k k g g g g β++= (Fletcher-Reeves 公式) (4.8)3) 11()T k k k k T k k g g g g g β++-= (Polak-Ribiere-Polyak 公式) (4.9)4) 11T k k k T k kg g d g β++=- (Dixon 公式) (4.10)注: 对二次函数而言,上述四个公式都是等价的。
而且求得的搜索方向均为共轭方向;若对非二次函数,则将导出互不相同的算法,而且据此求出的搜索方向不再保证是共轭的。
(事实上,此时不存在一个常值正定矩阵G ,共轭的提法都已无意义)。
二、共轭梯度法的性质定理 4.3 对于正定二次函数,采用基于精确一维搜索的共轭梯度算法,必定经过m n ≤步迭代后终止。
且对1i m ≤≤,下列关系式成立:1)0Ti j d Gd = (0,1,,1j i =-) (4.11) 2)0T i j g g = (0,1,,1j i =-) (4.12)3)T Ti i i i d g g g =- (4.13)4)01000[,,,][,,,]i i g g g g Gg G g = (4.14) 5)01000[,,,][,,,]i i d d d g Gg G g = (4.15)证明:先用归纳法证明(4.11)~(4.13)。
对于1i =,容易验证(4.11),(4.12),4.13)成立。
现假设这些关系式对某个i m <成立,下面证明对于1i +,这些关系式仍然成立。
事实上,对于二次函数,显然有11()i i i i i i i g g G x x g Gd α++=+-=+ (4.16)对上式左乘Ti d ,并注意到i α是精确步长因子,得0T T i i i ii T T i i i ig d g g d Gd d Gd α=-=≠ (4.17)利用(4.16),(4.17),得111()T T T T T i j i j i i j i j i i j j j g g g g d Gg g g d G d d ααβ+--=+=-- (4.18)当j i =时,(4.18)成为10T T T Ti i i j ii i i T i ig g g g g g d Gd d Gd +=-=当j i <时,由归纳法假设可知111()0T T T i j i j i i j j j g g g g d G d d αβ+--=--=于是(4.12)得证。
再由共轭梯度法的迭代公式及(4.17),有1111j j TT T T T i j i j i i j i i i j jg g d Gd g Gd d Gd g d Gd ββα++++-=-+=+ (4.19)当j i =时,由(4.12),(4.17)及(4.8),(4.19)成为111110T T TT Ti i i i i i i i i i T T i i i ig g g g d Gd d Gd d Gd g g g g +++++=-+=当j i <时,直接由归纳法假设知(4.19)为零,于是(4.11)得证。