常见排序算法分析

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见排序算法分析

一.常见排序算法的实现

1.冒泡排序

冒泡排序是非常容易理解和实现,,以从小到大排序举例:

设数组长度为N。

1.比较相邻的前后二个数据,如果前面数据大于后面的数据,就将二个数据交换。

2.这样对数组的第0个数据到N-1个数据进行一次遍历后,最大的一个数据就“沉”到数组第N-1个位置。

3.N=N-1,如果N不为0就重复前面二步,否则排序完成。

按照定义很容易写出代码:

2.快速排序

一趟快速排序的算法是:

1)设置两个变量I、J,排序开始的时候I:=1,J:=N;

2)以第一个数组元素作为关键数据,赋值给X,即X:=A[1];

3)从J开始向前搜索,即由后开始向前搜索(J=J-1),找到第一个小于X的值,两者交换;

4)从I开始向后搜索,即由前开始向后搜索(I=I+1),找到第一个大于X的值,两者交换;

5)重复第3、4步,直到I=J;

例如:待排序的数组A的值分别是:(初始关键数据X:=49)

A[1] A[2] A[3] A[4] A[5] A[6] A[7]

49 38 65

97 76 13 27

进行第一次交换

后: 27 38 65 97 76

13 49

( 按照算法的第三步从后面开始找

进行第二次交换

后: 27 38 49 97 76

13 65

( 按照算法的第四步从前面开始找>X的值,65>49,两者交换,此时I:=3 )

进行第三次交换

后: 27 38 13 97 76

49 65

( 按照算法的第五步将又一次执行算法的第三步从后开始找

进行第四次交换

后: 27 38 13 49 76

97 65

( 按照算法的第四步从前面开始找大于X的值,97>49,两者交换,此时J:=4 )

此时再执行第三不的时候就发现I=J,从而结束一躺快速排序,那么经过一躺快速排序之后的结果是:27 38 13 49 76 97 65,即所以大于49的数全部在49的后面,所以小于49的数全部在49的前面。

3.直接插入排序

直接插入排序(straight insertion sort)的作法是:

每次从无序表中取出第一个元素,把它插入到有序表的合适位置,使有序表仍然有序。

•第一趟比较前两个数,然后把第二个数按大小插入到有序表中;

•第二趟把第三个数据与前两个数从前向后扫描,把第三个数按大小插入到有序表中;

•依次进行下去,进行了(n-1)趟扫描以后就完成了整个排序过程。

代码实现:

4.选择排序

思想:首先设置一个变量保存元素下标,将该元素与其他元素进行比较。若大于其他元素则变换其下标,比较完后再判断其下标是否发生变化,若变化则交换两个元素的值,否则不变。经过一次比较,即可得出数列中的最小元素并将其放在数列的首位。一次类推,经过n-1次比较即可得到n个元素从小到大的排列。

二.其他算法的分析

1 快速排序(QuickSort)

快速排序是一个就地排序,分而治之,大规模递归的算法。从本质上来说,它是归并排序的就地版本。快速排序可以由下面四步组成。

(1)如果不多于1个数据,直接返回。

(2)一般选择序列最左边的值作为支点数据。

(3)将序列分成2部分,一部分都大于支点数据,另外一部分都小于支点数据。(4)对两边利用递归排序数列。

快速排序比大部分排序算法都要快。尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。

2 归并排序(MergeSort)

归并排序先分解要排序的序列,从1分成2,2分成4,依次分解,当分解到只有1个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以

排序所有数据。合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。

3 堆排序(HeapSort)

堆排序适合于数据量非常大的场合(百万数据)。

堆排序不需要大量的递归或者多维的暂存数组。这对于数据量非常巨大的序列是合适的。比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。

堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。

4 Shell排序(ShellSort)

Shell排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素进行一次插入排序,以减少数据交换和移动的次数。平均效率是O(nlogn)。其中分组的合理性会对算法产生重要的影响。现在多用D.E.Knuth的分组方法。

Shell排序比冒泡排序快5倍,比插入排序大致快2倍。Shell排序比起QuickSort,MergeSort,HeapSort慢很多。但是它相对比较简单,它适合于数据量在5000以下并且速度并不是特别重要的场合。它对于数据量较小的数列重复排序是非常好的。

5 插入排序(InsertSort)

插入排序通过把序列中的值插入一个已经排序好的序列中,直到该序列的结束。插入排序是对冒泡排序的改进。它比冒泡排序快2倍。一般不用在数据大于1000的场合下使用插入排序,或者重复排序超过200数据项的序列。

6 冒泡排序(BubbleSort)

冒泡排序是最慢的排序算法。在实际运用中它是效率最低的算法。它通过一趟又一趟地比较数组中的每一个元素,使较大的数据下沉,较小的数据上升。它是O(n^2)的算法。

7 交换排序(ExchangeSort)和选择排序(SelectSort)

这两种排序方法都是交换方法的排序算法,效率都是 O(n2)。在实际应用中处于和冒泡排序基本相同的地位。它们只是排序算法发展的初级阶段,在实际中使用较少。

8 基数排序(RadixSort)

基数排序和通常的排序算法并不走同样的路线。它是一种比较新颖的算法,但是它只能用于整数的排序,如果我们要把同样的办法运用到浮点数上,我们必须了解浮点数的存储格式,并通过特殊的方式将浮点数映射到整数上,然后再映射回去,这是非常麻烦的事情,因此,它的使用同样也不多。而且,最重要的是,这样算法也需要较多的存储空间。

相关文档
最新文档