配方法解一元二次方程导学案(1)

合集下载

配方法1导学案(1)

配方法1导学案(1)

中学九年级数学学科导学案授课时间:授课班级:授课人:主备人: 备课组长审核:教研组长审核:课题配方法1 课型:新授课学习目标1.学生学会用开平方法解形如x2=n(n≥0)的方程.2.学生学会用开平方法解形如(x+m)2=n(n≥0)的方程.3.初步理解一元二次方程的解法——配方法.重难点:把一元二次方程通过配方转化为(x+m)2=n(n≥0)的形式并求解.课堂流程及设计::1.课前自学(10’):在前一天自学的基础上,自学加深理解。

并完成练习1--3 2.课堂互动(20’):(1)学生在自学的基础上,在小组内讨论交流配方法解方程的基本思路。

并在合作探究中掌握配方的基本过程。

3.课后检测(10’):用10分钟时间,完成检测。

课前自学1.你能求出适合等式x2=4的x的值吗?2.你会解下列一元二次方程吗?你是怎么做的?(1)x2=5; (3)x2-4=0; (4)2x2-50=0;(5)(x+2)2=5;3.填上适当的数,使下列等式成立.(1)x2+12x+ =(x+6)2;(2)x2-4x+ =(x- )2;(3)x2+8x+ =(x+ )2.教师复备栏课堂互动1.同学们分组讨论讨论.判断下列方程能否用开平方法来求解?如何解?(2)x2+12x+36=5.学生展示自己的成果:叙述解一元二次方程的基本思路是:把原方程变为(x+m)2=n,然后两边同时开平方,这样原方程就转化为两个一元一次方程,从而求出方程的解。

2.下面你能否求出方程x2+12x-15=0的精确值,同学们先来想一想:解方程x2+12x-15=0的困难在哪里?你能将方程x2+12x-15=0转化成(x+m)2=n的形式吗?然后学生分组讨论解决,完成后小组交流展示基本思路:配方法解一元二次方程的基本思路是将方程转化为(x+m)2=n的形式,它的一边是一个完全平方式,另一边是一个常数,当n ≥0时,两边开平方便可求出它的根.基本过程:(1)把方程中的常数项移到方程的右边(2)方程两边同时加上一次项系数一半的平方(3)把方程转化为(x+m)2=n的形式(4)用直接开平方法求解课后检测解下列方程(1)x2-10x+25=7;(2)x2+4x=-3. (3)x2+6x=1,(4)x2+8x+3=0;课后作业1.习题2.3 1、2题2.预习课后反思。

配方法解一元二次方程导学案

配方法解一元二次方程导学案
4.代数式 的值为0,则x的值为________.
5.已知(x+y)(x+y+2)—8=0,求x+y的值,若设x+y=z,则原方程可变为_______,所以求出z的值即为x+y的值,所以x+y的值为______.(这种方法叫换元法)
6、用配方法解方程:
(1)x2+8x-2=0 (2)3x2-5x-6=0.
原方程的解是x1=_____,x2=_1.
方程左边配方,得x2+3x+( )2=-1+____,
即_____________________
所以__________________
原方程的解是x1=____________;x2=___________.
总结规律
1、请说出完全平方公式
我们知道,形如 的方程,可变形为 ,再根据平方根的意义,用直接开平方法求解.那么,我们能否将形如 的一类方程(注意其中二次项的系数为1),化为上述形式求解呢?这正是我们这节课要解决的问题.
2、配方、填空:
(1) +6x+( )=(x+ ) ;
(2) —8x+( )=(x—) ;
(3)x2-8x+( )=(x- )2;
(4)x2+ x+( )=(x+ )2;
填完后,想一想你所填写的常数项与一次项系数有什么关系吗?说出你的想法。
的是().
A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1
C.x2+8x+42=1 D.x2-4x+4=-11
3.方程x2+4x-5=0的解是________.
(3) +8x-2=0(4) -5x-6=0.
2、用配方法解下列方程:

《用配方法解一元二次方程》教案

《用配方法解一元二次方程》教案

《用配方法解一元二次方程》教案一、素质教育目标(一)知识储备点理解并掌握一元二次方程的配方法,能正确、熟练地运用配方法解一元二次方程,并使学生真正理解配方法的整个过程.在理解的基础上,牢牢记住配方的关键是“添加的常数项等于一次项系数一半的平方”.(二)能力培养点通过配方法的整个过程的理解培养学生按规循律分析问题、解决问题的能力,培养学生观察、类比、归纳思维的能力,切实提高学生解方程的能力.(三)情感体验点使学生按照配方法的步骤一步一步地解方程让学生形成有条不紊的学习习惯,按照规律办事的思想观念,养成良好的品德修养,为将来的人生打下扎实的基础.二、教学设想1.重点:用配方法解一元二次方程.2.难点:真正理解配方法的整个过程.3.疑点:为什么要用配方法解一元二次方程.4.课型与基本教学思路:新授课.本节课通过将一元二次方程变形,•运用直接开平方的方法解方程,形成解一元二次方程的一个重要方法──配方法,并能运用配方法解一元二次方程.三、媒体平台1.教具、学具准备:自制投影胶片.2.多媒体课件撷英:【注意】课件要根据实际需要进行适当修改.四、课时安排1课时五、教学步骤(一)教学流程1.情境导入解方程:①x2+2x=5;②x2-4x+3=0.能否经过适当的变形,将它们转化为( •)2=a的形式,应用直接开平方法求解?2.课前热身提问:(1)什么是一元二次方程的一般形式?(2)什么是一元二次方程的直接开平方法?(3)什么是一元二次方程的因式分解法?3.合作探究(1)整体感知:学生按照要求解.①原方程转化为x 2+2x+1=6,(x+1)2=6,x+1=,解得,. ②x 2-4x+4=-3+4,(x-2)2=1,所以x-2=±1,解得x 1=3,x 2=1.教师归纳概括:上面我们把方程x 2-4x+3=0变形为(x-2)2=1,•它的左边是一个含有未知数的完全平方式,右边是一个非负常数,这样能应用直接开平方法求解,这种解一元二次方程的方法叫做配方法.(2)师生互动互动1提出配方时方程两边同时加上的常数是如何确定的?你能发现什么规律?明确 配方时,化二次项系数为1,通过变形,•方程两边同时加上一次项系数一半的平方,将左边配成一个完全平方式,是配方法整个过程的重点.互动2配方法是一个重要的数学方法,它在很多地方有重要的应用,我们能总结出配方法的步骤吗?明确 配方法的一般步骤是:(1)方程两边同除以二次项系数,•将二次项系数化为1;(2)移项,使方程左边为二次项、一次项,右边为常数项;(3)配方,•方程两边都加上一次项系数一半的平方,使方程左边为一个完全平方式,右边是一个常数的形式;(4)如果右边是非负数,两边直接开平方解这个一元二次方程.互动3我们能否对x 2+px+q=0用配方法进行因式分解?让学生自己完成,看谁又快又正确.明确 对于含有字母已知数的因式分解,移项得x 2+px=-q , 配方得(x+2p )2=244p q -,x+2p x+2p ,所以,x 1=-2p ,x 2=-2p , 为下节课ax 2+bx+c=0(a ≠0)•通过配方法推出一元二次方程的根,打下知识基础.4.达标反馈(1)填空题:①x 2-2x+( 1 )=[x+( -1 )]2;②x 2+6x+( 9 )=[x-( -3 )]2;③x 2-5x+254 =(x- 52 )2; ④x 2+2mx+ m 2 =(x+ m )2;⑤x-3mx+94m 2 =(x- 32m )2. ⑥用配方法解一元二次方程2x 2+3x+1=0,变形为(x+m )2=k ,则m=34,k=116. (2)解答题:①用配方法解下列方程:⑴x 2-2x-5=0; ⑵x 2+x-1=0;⑶x 2+16x-13=0; ⑷x 2;【答案】 ⑴x 1,x 2 ⑵x 1=-12+2,x=-12-2 ⑶x 1=-23,x 2=12⑷x 1,x 2②用配方法将下列各式化成a (x+h )2+k 的形式.⑴-3x 2-2x+1; ⑵x 2-12x+1; ⑶23y 2+13y-2; ⑷ax 2+bx+c (a ≠0); 【答案】 ⑴-3(x+13)2+43 ⑵(x-14)2+1516 ⑶23(y+14)2-4924 ⑷a (x+2b a)2+244ac b a -5.学习小结(1)引导学生作知识总结:本节课学习了什么叫配方法,•怎样运用配方法解一元二次方程,按照配方法的四个步骤正确、熟练地求一元二次方程的解.(2)•教师扩展:(方法归纳)用配方法解一元二次方程的关键是:方程两边都加上一次项系数一半的平方,但前提是二次项系数化为1,•配方法的理论根据是直接开平方法.(二)拓展延伸1.链接生活链接一:如果一个一元二次方程有两个不相等的实数根,应当怎样表示?解答:这两个根的值分别为m、n(m≠n),那么可以表示为以下三种形式:(1)x1=m,x2=n;(2)x=m,或x=n(逗号可以省去);(3)x=m,和x=n.注意不要用“x1=m,或x2=n”这种形式,不能用“x1=m,且x2=n”这种形式.链接二:在什么情况下,解方程会出现增根?解答:我们知道,在方程两边可以加上(或减去)同一个数或整式,也可以乘以(或除以)同一个非零数;从方程的每一项(不管是否为整式),都可以在改变符号后,从方程的一边移到另一边.对于方程进行以上三种变形后,都不会出现增根.那么,什么情况下会出现增根呢?在初中代数里遇到的以下情况时,就有可能产生增根:(1)在方程两边都乘以0,所得的新方程必然有无限多个根.(2)在方程两边乘以同一个含未知数的整式.例如在方程x-1=0•的两边都乘以(x-2),所得的新方程就产生一个增根x=2.(3)将方程两边乘同次方,例如将方程x+1=2两边平方,所得的新方程(x+1)2=•4就产生一个增根x=-3.2.巩固练习(1)选择题:的值等于(C)A.-3 B. C.1 D.3(2)填空题:①x2-bx+24b=(x-2b)2;②x 2-(m+n )x+2()4m n +=(x-2m n +)2; ③y 2+14y+164=(y+18)2; ④当a= -4 时,二次三项式ax 2+ax-1是一个完全平方式.(3)解答题:①已知关于x 的方程(ax+b )2=c 有实数解.⑴a 、b 、c 应各取怎样的实数?⑵求方程的两个实数根?【答案】 ⑴a ≠0,b 为一切实数,c ≥0 ⑵x 1x 2 ②用配方法解下列方程:⑴x 2-10x+24=0; ⑵x 2-8x+15=0;⑶x 2+2x-99=0; ⑷y 2+5y+2=0;⑸2x 2x-30=0; ⑹x 2+px+q=0(p 2-4q>0); ⑺-x 2+2x+3=0; ⑻ax 2+x-2=0(a>0);⑼ax 2+ax-2=0(a>0).【答案】 ⑴x 1=4,x 2=6 ⑵x 1=5,x 2=3 ⑶x 1=9,x 2=-11 ⑷x 1=2-52,x 2=-2-52⑸x 1=2,x 2 •⑹x 12p ,x 2-2p ⑺x 1=3,x 2=-1⑻x 1=12a,x 2 ⑼ 3.用配方法证明:无论x 为何实数,代数式x 2-4x+4.5的值恒大于零.(三)板书设计§22.2 一元二次方程的解法2.一元二次方程的解法配方法:__________________ 例题讲解:__________配方法的步骤:____________ 学生练习:__________配方法的注意事项:______________六、资料下载配方法在解题中的应用配方法是数学中的一个重要方法,在解题中有广泛的应用.本文通过例题谈谈它的一些应用.一、应用于因式分解例1 分解因式x 4+4.解 配方,得原式=x 4+4x 2+4-4x 2=(x 2+2)2-(2x )2 =(x 2+2x+2)(x 2-2x+2).例2 分解因式a 2-4ab+3b 2-2bc-c 2.解 原式=(a 2-4ab+4b 2)-(b 2+2bc+c 2)=(a-2b )2-(b+c )2 =(a-b+c )(a-3b-c ).二、应用于解方程例3 解方程3x 2+4y 2-12x-8y+16=0.解 分别对x 、y 配方,得3(x 2-4x+4)+4(y 2-2y+1)=0,3(x-2)2+4(y-1)2=0.由非负数的性质,得202101x x y y -==⎧⎧⇒⎨⎨-==⎩⎩ 例4 解方程(x 2+2)(y 2+4)(z 2+8)=64xyz (x 、y 、z 均是正实数).解 原方程变形,得x 2y 2z 2+4x 2z 2+2y 2z 2+8z 2+8x 2y 2+32x 2+16y 2+64-64xyz=0各自配方,得(xyz-8)2+2(4x-yz )2+4(2y-xz )2+8(z-xy )2=0由非负数的性质,得842xyz x yz y xz z xy=⎧⎪=⎪⎨=⎪⎪=⎩解得2,x y z ⎧=⎪=⎨⎪=⎩运用配方法可为应用非负数的性质创造条件,解题中应注意掌握.三、应用于求二次函数的最值例5 已知x 是实数,求y=x 2-4x+5的最小值.解 由配方,得y=x 2-4x+4-4+5=(x-2)2+1∵x 是实数,∴(x-2)2≥0,当x-2=0,即x=2时,y 最小,y 最小=1.例6 已知二次函数y=x 2-6x+c 的图象的顶点与坐标原点的距离等于5,求c 的值. 解 因为y=x 2-6x+c=x 2-6x+9-9+c=(x-3)2+c-9,所以这个二次函数的顶点坐标为(3,c-9),它与坐标原点的距离是=5,由此解得c=5或c=13.四、应用于求代数式的值 例7 已知21x x x ++=a (a ≠0),求2421x x x ++的值. 解 因为21x x x ++=a (a ≠0),所以21x x x ++=1a ,即x+1x +1=1a, ∴x+1x =1a -1. ∵x 2+21x =(x+1x )2-2, ∴4221x x x ++=x 2+21x +1=(x+1x )2+1-2 =(1a -1)2-1=212a a- 本题联合应用了倒数法和配方法使问题得解.倒数法是一种解题技巧,解题时注意应用. 例8 如果a 2+b 2-4a-2a+5=0的值.解 由已知条件,分别对a 、b 配方,得(a 2-4a+4)+(b 2-2b+1)=0,(a-2)2+(b-1)2=0.由非负数的性质,得a-2=0,b-1=0.∴a=2,b=1.∴=21)1五、判定几何图形的形状例9 已知a 、b 、c 是△ABC 的三边,且满足a 2+b 2+c 2-ab-bc-ca=0,判定△ABC 是正三角形.证明 由已知等式两边乘以2,得2a 2+2b 2+2c 2-2ab-2bc-2ca=0,拆项、配方,得(a-b )2+(b-c )2+(c-a )2=0.由非负数的性质,得a-b=0,b-c=0,c-a=0,∴a=b ,b=c ,c=a ,a=b=c .故△ABC 是等边三角形.。

2 用配方法求解一元二次方程 第1课时 用配方法解二次项系数为1的一元二次方程 导学案

2 用配方法求解一元二次方程 第1课时 用配方法解二次项系数为1的一元二次方程 导学案

2用配方法求解一元二次方程第1课时 用配方法解二次项系数为1的一元二次方程 导学案学习目标1、会用配方法解二次项系数为1的一元二次方程,探究配方法的意义。

2、通过以前所学的开平方方法,初步了解配方法;3、牢记配方法的一般步骤.学习过程一.复习回顾:1.利用直接开平方法解下列方程(1)9x 2=1 (2)(x+3)2=52.能利用直接开平方法求解的一元二次方程具有什么特征?3.下列方程能用直接开平方法来解吗?(1)x 2+12x+36=9(2)x 2+6x-15=0二.新课学习:1.例题练习交流探讨并回答问题:(1)你会如何解此方程:x 2-6x-40=0 呢?移项,得 x 2-6x= 40方程两边都加上32(一次项系数一半的平方),得x 2-6x+32=40+32即 (x-3)2=49开平方,得 x-3 =±7即 x-3=7或x-3=-7所以 x 1=10,x 2=-4(2)做一做,填一填(1)x 2+2x+ =(x+ )2(2)x 2-8x+ =(x- )2(3)y 2+5y+ =(y+ )2(4)y 2-21y+ =(y- )2问题:你能从中总结出什么规律吗?2、例题学习并思考下列问题:例1: 用配方法解方程:x 2+12x-15=0解:移项得x 2+12x=15,两边同时加上62得,x 2+12x+62=15+36,即(x+6)2=51两边开平方,得x 1=651-;x 2=-651-(1)配方法的特点?(2)配方法的步骤?三.尝试应用:1、用配方法解方程2250x x --=时,原方程应变形为( )A .2(1)6x +=B .2(2)9x +=C .2(1)6x -=D .2(2)9x -= 2、用配方法把方程210x x +-=化为21()2x m +=,则m= .3、用配方法解方程:x 2-23x+118=0;四.自主总结:1、配方法:通过配成 的方法得到了一元二次方程的根,这种解一元二次方程的方法称为 .2、用配方法解一元二次方程的步骤::把常数项移到方程的右边;:方程两边都加上一次项系数一半的平方,将方程左边配成完全平方式:根据平方根意义,方程两边开平方;:解一元一次方程;:写出原方程的解.五.达标测试一、选择题1.用配方法解方程x 2+4x+1=0,配方后的方程是( )A .(x+2)2=3B .(x-2)2=3C .(x-2)2=5D .(x+2)2=52.用配方法解一元二次方程x 2-4x+3=0时可配方得( )A .(x -2)2=7B .(x -2)2=1C .(x+2)2=1D .(x+2)2=23.用配方法将代数式a 2+4a-5变形,结果正确的是( )A. (a+2)2-1B.(a+2)2-5 C.(a+2)2+4 D.(a+2)2-9 二、填空题4.填上适当的数,使下面各等式成立:(1)x 2+3x+_______=(x+________)2;(2)_______-3x+14=(3x_______)2; (3)4x 2+_____+9=(2x________)2; (4)x 2-px+_______=(x-_______)2;(5)x 2+b a x+_______=(x+_______)2.5.x 2x+_____=(x-______)2.6.在横线上填上适当的数或式,使下列等式成立:(1)x 2+px+________=(x+_______)2;(2)x 2+b ax+_________=(x+_______)2 三、解答题7.用配方法解方程:(1)x 2+4x-3=0(2)x 2﹣4x+1=0.达标测试答案:一、选择题1.A .【解析】试题分析:移项得,x 2+4x=-1,配方得,x 2+4x+22=-1+4,(x+2)2=3,故选A .2.B 【解析】原方程化为22441,(2)1,x x x -+=-=故选B3.D 【解析】a 2+4a-5=a 2+4a+4-4-5=(a+2)2-9,故选D .二、填空题 4.(1)93,42;(2)9x 2,12-;(3)12x ,+3;(4)2,42p p ;(5)22,42b b a a5.12;2 【解析】试题分析:根据常数项等于一次项系数一半的平方,即可得到结果。

《解一元二次方程——配方法》 导学案

《解一元二次方程——配方法》 导学案

《解一元二次方程——配方法》导学案一、学习目标1、理解配方法的概念,掌握用配方法解一元二次方程的步骤。

2、会用配方法解数字系数的一元二次方程。

3、通过配方法的探究,培养逻辑思维能力和运算能力。

二、学习重点用配方法解一元二次方程。

三、学习难点配方的过程和技巧。

四、知识回顾1、一元二次方程的一般形式:$ax^2 + bx + c = 0$($a≠0$)。

2、完全平方公式:$(a ± b)^2 = a^2 ± 2ab + b^2$。

五、探究新知(一)什么是配方法我们知道,形如$(x + m)^2 = n$($n≥0$)的方程可以直接用开平方法求解。

那么,对于一般形式的一元二次方程$ax^2 + bx + c =0$($a≠0$),能否通过变形转化为$(x + m)^2 = n$的形式呢?配方法就是通过变形将一元二次方程转化为$(x + m)^2 = n$的形式来求解的方法。

(二)用配方法解方程的步骤以方程$x^2 + 6x 7 = 0$为例:1、移项:把常数项移到方程右边,得到$x^2 + 6x = 7$。

2、配方:在方程两边加上一次项系数一半的平方,即加上$(\frac{6}{2})^2 = 9$,得到$x^2 + 6x + 9 = 7 + 9$,即$(x + 3)^2 = 16$。

3、开方:方程两边开平方,得到$x + 3 = ±4$。

4、求解:解这两个一元一次方程,得到$x_1 = 1$,$x_2 =-7$。

(三)典型例题例 1:用配方法解方程$x^2 4x 1 = 0$解:移项,得$x^2 4x = 1$配方,得$x^2 4x + 4 = 1 + 4$,即$(x 2)^2 = 5$开方,得$x 2 = ±\sqrt{5}$解得$x_1 = 2 +\sqrt{5}$,$x_2 = 2 \sqrt{5}$例 2:用配方法解方程$2x^2 + 3x 2 = 0$解:方程两边同时除以 2,得$x^2 +\frac{3}{2}x 1 = 0$移项,得$x^2 +\frac{3}{2}x = 1$配方,得$x^2 +\frac{3}{2}x +(\frac{3}{4})^2 = 1 +(\frac{3}{4})^2$,即$(x +\frac{3}{4})^2 =\frac{25}{16}$开方,得$x +\frac{3}{4} = ±\frac{5}{4}$解得$x_1 =\frac{1}{2}$,$x_2 =-2$六、课堂练习1、用配方法解方程$x^2 + 8x + 7 = 0$2、用配方法解方程$3x^2 6x + 1 = 0$七、课堂小结1、配方法的概念。

用配方法解一元二次方程的教案

用配方法解一元二次方程的教案

用配方法解一元二次方程的教案用配方法解一元二次方程一、教学目标:1.了解一元二次方程的基本概念与性质;2.掌握用配方法解一元二次方程的步骤和方法;3.培养学生思考问题、解决问题的能力。

二、教学重点:1.用配方法解一元二次方程的基本原理;2.用配方法解一元二次方程的步骤和方法。

三、教学难点:1.培养学生思考问题、解决问题的能力;2.用配方法解一元二次方程的不同情况的区别判断。

四、教学方法:1.讲授法;2.激励法;3.练习法。

五、教学流程:1.引入教师先通过平衡游戏、数学谜语或其他适合的方式引入本节课的教学,调动起学生的学习兴趣。

2.新课讲解(1)一元二次方程的基本概念教师先让学生回忆一元二次方程的基本概念:一元二次方程是指形式为ax²+bx+c=0(其中a≠0)的二次方程,其中a、b、c为实数。

(2)用配方法解一元二次方程的原理教师先讲解用配方法解一元二次方程的原理:配方法是把一个二次式化为一个完全平方的形式,从而使解题更加简便。

(3)用配方法解一元二次方程的步骤和方法具体步骤如下:【步骤1】将方程左右两边移动常数项c以获得b项的系数,即得到形如ax^2+bx的式子。

【步骤2】将b项的系数b除以2得到b/2。

【步骤3】把x^2+ b/ax^2+b =a(x+b/2)^2+b^2/4a式子写成a(x+b/2)^2=-b^2/4a,即a(x+b/2)^2=-k(k>0)。

【步骤4】方程两边同时开平方根,得到x+b/2=+/-√(-k/a)。

【步骤5】将x+b/2=+/-√(-k/a)转化为x= (-b/2a)+/-√b^2-4ac/2a 的形式。

举例说明:2x²-12x+10=0【步骤1】2x²-12x=-10【步骤2】将b项系数-12除于2得到-6。

【步骤3】把2(x-3)²-2变形为2(x-3)²=2-10,即2(x-3)²=-8。

数学九年级上册《配方法(1)》导学案

数学九年级上册《配方法(1)》导学案

数学九年级上册《配方法(1)》导学案设计人:王审核人:【学习目标】1、初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如x2=p(p≥0)或(mx+n)2=p(p≥0)的方程2、灵活应用直接开平方法解一元二次方程,体会换元的数学思想及类比的学习方法。

3、理解一元二次方程解法的基本思想及其与一元一次方程的联系,体会两者之间相互比较和转化的思想方法;使学生了解转化的思想在解方程中的应用。

【学习重点】掌握用直接开平方法解一元二次方程的步骤。

【学习难点】理解并应用直接开平方法解特殊的一元二次方程。

【学习方法】通过自学明白如何用直接开平方法解一元二次方程,以及应用直接开平方法解一元二次方程应满足什么条件。

研学中通过释疑解难灵活运用所学知识解答相应题目,明确考点,学以致用。

自学阅读课本第5页至第6页练习部分,完成下列问题:1.问题1中的方程x2=5等号左边是什么,等号右边是什么?2、解方程x2=5时方程两边同时经过什么运算?用这种方法解一元二次方程的依据是什么?3、解方程(x+3)2=5运用了什么数学思想和数学学习方法?4.完成课本第5页练习我自学中的困惑:研学1.将自学内容中的收获与困惑与同伴交流。

2.能力提升形如x2=p(p≥0)或(mx+n)2=p(p≥0)的方程有几个解?中考聚焦(2011年柳州中考试题)解方程:x2-4=0示学展示一:展示自学部分问题较多的题目。

展示二:展示研学能力提升。

检学必做题:解下列方程:(1)(x+2)2 =3 (2)(2x+3)2-5=0选做题1、已知一元二次方程mx2+n=0(m≠0),若方程可以用直接开平方法求解,且有两个实数根,则m、n必须满足的条件是()A n=0B m、n异号C n是m的整数倍D m、n同号2、一个正方形的面积是100cm2,求这正方形的边长是多少?小结1、本节课我的收获:2、本节课的优秀小组:优秀个人:3.本节课用到了哪些数学思想方法?课时作业1、若x2-6x+p=(x+q)2,那么p、q的值分别是().A.p=9,q=3 B.p=9,q=-3 C.p=-9,q=3 D.p=-9,q=-32、方程x2+4=0的根为().A.2 B.-2 C.±2 D.无实数根。

一元二次方程的解法——配方法

一元二次方程的解法——配方法
(二)
自组
主内
预交
习流
(8’)
一、复习提问:
问题1:一元二次方程的一般形式是什么?
问题2:具有什么结构特征的一元二次方程能用直接开平方法解?
二、自主学习:
1、用直接开平方法解方程:①(x-2)²=5②x2-4x+4=5
2、思考:怎样解方程:x2-4x-1=0





10'
(三)
分合
配作
任探
务究
(10’)
A.(a-2)2+1 B.(a+2)2-1 C.(a+2)2+1 D.(a-2)2-1
5、若a2+2a+b2-6b+10=0,则a=,b=。
6、证明:代数式x2+4x+ 5的值不小于1.
7、用配方法解下列方程:(1)x2-3x-1=0(2)y2+ y-2=0
(六)
知构
识建
归网
纳络
课堂小结(会思考、会总结,才会有收获哦!)
一、填上适当的数或式,使下列各等式成立.
(1) =()2(2) =()2
(3) =()2(4) =()2
(5) =()2
二、分析讨论:①等式左边的多项式中二次项的系数都是;
②等式左边所填的常数(或式)都有什么特点:;
三、现在你会解方程:x2-4x-1=0吗?
四、知识点归纳:
我们把一元二次方程的左边配成一个完全平方式,然后用开平方法求解,这种解一元二次方程的方法叫做





15’
(四)
展拓
示展
质提
疑升
(15’)

《配方法(第3课时)用配方法解二次项的一元二次方程》教案 (1)

《配方法(第3课时)用配方法解二次项的一元二次方程》教案  (1)

一元二次方程的解法配方法第3课时用配方法解二次项系数不为1的一元二次方程教学目标1、理解用配方法解一元二次方程的根本步骤。

2、会用配方法解二次项系数为1的一元二次方程。

3、进一步体会化归的思想方法。

重点难点重点:会用配方法解一元二次方程.难点:使一元二次方程中含未知数的项在一个完全平方式里。

教学过程〔一〕复习引入1、用配方法解方程x2+x-1=0,学生练习后再完成课本P.13的“做一做〞.2、用配方法解二次项系数为1的一元二次方程的根本步骤是什么?〔二〕创设情境现在我们已经会用配方法解二次项系数为1的一元二次方程,而对于二次项系数不为1的一元二次方程能不能用配方法解?怎样解这类方程:2x2-4x-6=0〔三〕探究新知让学生议一议解方程2x2-4x-6=0的方法,然后总结得出:对于二次项系数不为1的一元二次方程,可将方程两边同除以二次项的系数,把二次项系数化为1,然后按上一节课所学的方法来解。

让学生进一步体会化归的思想。

〔四〕讲解例题1、展示课本P.14例8,按课本方式讲解。

2、引导学生完成课本P.14例9的填空。

3、归纳用配方法解一元二次方程的根本步骤:首先将方程化为二次项系数是1的一般形式;其次加上一次项系数的一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里;最后将配方后的一元二次方程用因式分解法或直接开平方法来解。

〔五〕应用新知课本P.15,练习。

〔六〕课堂小结1、用配方法解一元二次方程的根本步骤是什么?2、配方法是一种重要的数学方法,它的重要性不仅仅表现在一元二次方程的解法中,在今后学习二次函数,高中学习二次曲线时都要经常用到。

3、配方法是解一元二次方程的通法,但是由于配方的过程要进行较繁琐的运算,在解一元二次方程时,实际运用较少。

4、按图1—l的框图小结前面所学解一元二次方程的算法。

〔七〕思考与拓展不解方程,只通过配方判定以下方程解的情况。

(1) 4x2+4x+1=0; (2) x2-2x-5=0;(3) –x2+2x-5=0;[解] 把各方程分别配方得(1) (x+ )2=0;(2) (x-1)2=6;(3) (x-1)2=-4由此可得方程(1)有两个相等的实数根,方程(2)有两个不相等的实数根,方程(3)没有实数根。

21.2.1用配方法解一元二次方程(教案)

21.2.1用配方法解一元二次方程(教案)
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的逻辑推理能力:通过配方法解一元二次方程的过程,使学生理解数学逻辑推理的重要性,提高他们在解决问题时的逻辑思维能力。
2.增强学生的数学建模素养:让学生在实际问题中运用配方法求解一元二次方程,培养他们将现实问题转化为数学模型的能力,从而提高解决实际问题的数学素养。
其次,在新课讲授环节,我发现学生们在理解配方法的原理和步骤上存在一定困难。虽然我通过详细的解释和举例来说明,但仍有部分学生感到困惑。在以后的教学中,我需要更加关注学生的反馈,针对他们的疑难点进行有针对性的讲解和练习。同时,可以增加一些互动环节,让学生在课堂上及时提问,以便于我了解他们的掌握情况。
在实践活动和小组讨论环节,学生们表现得相当积极。他们能够将所学知识应用到实际问题中,并通过小组合作解决问题。这一点让我感到很欣慰。但同时我也注意到,有些小组在讨论过程中出现了偏离主题的现象,导致讨论效果不佳。针对这个问题,我需要在今后的教学中加强对学生讨论方向的引导,确保讨论能够紧紧围绕主题进行。
21.2.1用配方法解一元二次方程(教案)
一、教学内容
本节课选自九年级数学教材《代数与方程》第21章第2节,主题为“21.2.1用配方法解一元二次方程”。教学内容主要包括以下两个方面:
1.掌握配方法解一元二次方程的步骤,并能熟练运用该方法解决实际问题。
2.了解配方法的原理,理解为何配方法可以求解一元二次方程。
a.将一元二次方程的一般形式ax^2 + bx + c = 0转换为完全平方形式。
b.利用完全平方公式解出方程的根。
c.分析解的实际情况,如重根、无解等。
(2)运用配方法解决实际问题:学生需学会将实际问题抽象为一元二次方程,然后运用配方法求解,例如以下例题:

配方法1导学案

配方法1导学案

11.用配方法求解下列问题 (1)求 2x2-7x+2 的最小值 ; (2)求-3x2+5x+1 的最大值。
反 思
=(x+3)2 x2+8x+
=(x+
)2 x2-12x+
=(x-
)2
x2-
2 x+ 5
=(x-
)2
.
自主学习
问题 2:要使一块长方形场地的长比宽多 6m,并且面积为 16m2,场地的长和宽各是多 通 过 预 少? 习,我掌 若设场地宽为 xm,长为(x+6)m,则有 x(x+6)=16 即 x2+6x-16=0 握了: 思考:1、x2+6x-16=0, 利用直接开平方能解吗? 2、观察右侧框图,理解框图中的每一步 x2+6x-16=0 在框图中第二步为什么两边加 9? 移项
解一元二次方程------配方法 第 2 课时 时间 9 月 7 日 年级 九年级 主备教师王波 班级 __姓名
知识升华: 某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长 25m),另外三边用木栏围 成,木栏长 40m. (1) 鸡场的面积能达到 182m2 吗? (2) 鸡场的面积能达到 200m2 吗? (3) 鸡场的面积能达到 250m2 吗? 如果能,请给出设计方案;如果不能,请说明理由.
当堂检测 1.用适当的数填空: ①x2+6x+ =(x+ )2 ②x2-5x+ =(x- )2③x2+ x+ =(x+ )2 ④x2-9x+ =(x- )2 2.将二次三项式 2x2-3x-5 进行配方,其结果为_________. 3.已知 4x2-ax+1 可变为(2x-b)2 的形式,则 ab=_______.

用配方法解一元二次方程学案

用配方法解一元二次方程学案

用配方法解一元二次方程导学案(第一课时)主备人:刘凌云审核人:学习目标:1.会用开平方法解形如(x+m)2=n(n≥0)的方程;理解配方法,会用配方法解简单的数字系数的一元二次方程.2.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界数量关系的一个有效数学模型,增强学生运用数学的意识和能力.3.体会转化的数学思想方法.4.能根据具体问题的实际意义检验结果的合理性.学习重点、难点重点:利用配方法解一元二次方程.难点:把一元二次方程通过配方转化为(x+m)2=n(n≥0)的形式.一、课前预习(提出实际问题,让学生用数学知识解决问题)用彩灯围成一个面积为24平方米的长方形舞台,若要长比宽多2米,那么舞台的长和宽,该如何确定的呢?设计意图:利用现实生活问题,不仅能够生动自然引出我们要解决的数学问题,更重要的是学生们感兴趣,可以激发他们的热情,为下一步探究营造了轻松愉悦的氛围。

若想求出舞台的长和宽,需解方程x2 + 2x-24=0 (学生解方程有困难,教师需引导。

)前面我们可求出了x2 + 2x-24=0方程中x的近似值,你能求出它的精确值吗?今天就学习用配方法解一元二次方程.二、课内探究1.自主学习师:你都会解哪些简单的一元二次方程?(请同学自由回答)生:例如x2=4 (x+3)2=9x=±2 x+3=±3x1=0 x2= - 6师:形如x2=4、(x+3)2=9 的一元二次方程有什么特点呢?你是如何解它们的?(独立思考后,与同桌互相交流)生:方程都可以写成(x+m)2=n(n≥0) 的形式。

两边开平方便可求出方程的解。

2.合作探究师:方程x2+8x-9=0 该如何解呢?(停顿,留给学生时间思考。

若仍没有学生想到办法,教师进一步引导。

)师:方程x2+10x+25=16(x+5) 2 =16x+5=±4x1= -1 x2= - 9师:看来将一个一般形式的一元二次方程,转化为(x+m)2=n(n≥0)的形式利用开平方法就可以求解。

配方法解一元二次方程教案

配方法解一元二次方程教案

配方法解一元二次方程教学目标: 1、 ⑴知识与技能⑴、会用配方法解简单的一元二次方程;⑵、了解用配方法解一元二次方程的一般步骤;2、过程与方法理解并掌握配方法;⑵、通过探索配方法的过程,体会“等价转化”的数学思想方法,培养观察、比较、分析、概括、归纳的能力;3、情感态度与价值观教学重点:运用配方法解一元二次方程。

教学难点:运用配方法解二次项系数为1的一元二次方程时,理解配系数时方程等式两边同时加上一次项系数一半的平方。

学情分析:班上许多学生对于平方根的概念有所遗忘,对于完全平方公式掌握的不是很好,在观察常数项与一次项系数之间的关系时,部分学生会有难度。

学法指导:启发探究,合作交流教学过程:(一)创设情境,提出问题上节课我们由“梯子底端滑动滑动多少米?”的问题,得到方程015122=-+x x ,你能求出方程的精确值吗?(二)对比探究,解决问题1.平方根的定义大家还记得吗?谁能描述一下学生回忆,教师补充订正2.出示方程225x =,你能根据平方根的定义和开方求出该方程的解吗?学生独立解方程3.出示方程219x -=(2)及2690x x ++=,观察这两个方程有什么特点?你能解这两个方程?学生讨论得出,方程左边是完全平方式右边是个常数,4.你能仿照上题的解法就这两个方程吗?学生解方程你能解怎样的一元二次方程?方程左边是完全平方式右边是个常数,5.你能把这种特点表示用一个通用的公式表示出来吗?p n mx =-2)((p ≥0) 有了上面的解题经验,大家来思考一下,这个方程01662=-+x x 该怎样来解? 学生分组讨论学生板演过程 ,教师对过程进行订正6.教师介绍配方法的定义。

7.配方法的关键就是配方,怎样进行配方呢?出示问题22)6(___12x +=-+x x ___)(__42-=+-x x x22__)(__8+=++x x x8.学生讨论完成:在上面的等式中,常数项与一次项之间有什么联系? 常数项等与一次项系数一般的平方。

用配方法求解一元二次方程 导学案

用配方法求解一元二次方程   导学案

丹东市第二十四中学 2.2 用配方法求解一元二次方程主备:曹玉辉 辅备:杨会、吴玉娟 审核: 2014年8月13日 一、学习准备:一元二次方程的一般形式是什么? 二、学习目标1.会用开平方法解一元二次方程;理解配方的概念并掌握配方的技巧; 2.通过自主探索和小组合作,学会运用配方法解一元二次方程; 三、自学提示: (一)探究新知:知识点1 直接开平方法解一元二次方程:【知识链接1】求一个非负数的平方根:如果92=x ,则x =_______;如果52=x ,则x =_______;如果02=x ,则x =_______。

试求下列方程的根:(1) 092=-x (2)052=-x【探究1】1、对于方程4)3(2=+x ,你能用上面的方法来求解吗?你是如何解的? 2、你能把方程0562=++x x 转化成4)3(2=+x 吗?你是如何转化的? 知识点2 配方法解一元二次方程【知识链接2】1、完全平方式——运算形式形如222b ab a +±的二次三项式。

试着写出两个完全平方式:___________________,_____________________。

2、配方——对二次三项式q px x ++2,配上适当的数(不改变式子的值),使得式子中的一部分是一个完全平方式,如342++x x ,将式子加1,再减1(不改变式子的值),即可得1)44(2-++x x ,从而得到1)2(2-+x 。

试着将下列式子配方:(1) 142+-x x (2)4152++x x 【探究2】对于方程02=++q px x ,可先将方程变形为______2=+px x ,然后将方程左边进行配方(根据等式基本性质,两边同时加上2)2(p (一次项系数的一半的平方)即可),如0562=++x x ,移项得:______62=+x x ,两边同时加上_____,可得____________,从而得__________________,这样就可以用“开平方”的方法求解方程了。

一元二次方程的应用的导学案

一元二次方程的应用的导学案

一元二次方程的应用的导学案
教学目标
1.利用方程解决实际问题.
2.能根据具体问题的实际意义检验结果的合理性.
3.进一步训练利用配方法解题的技能.
教学过程
一、巧设情景问题,引入新课
用配方法解下列一元二次方程:
(1)x2+6x+8=0;(2)x2-8x+15=0;(3)x2-3x-7=0;
(4)3x2-8x+4=0;(5)6x2-11x-10=0;
利用配方法求解方程时,一定要注意:
①方程的二次项系数不为1时,首先应把它化为二次项系数是1的形式,这是利用配方法求解方程的前提.
②配方法中方程的两边都加上一次项系数一半的平方的前提是方程的二次项系数为1.
二、讲授新课
在一块长16 m,宽12 m的矩形荒地上,要建造一个花园,并使花园所占面积为荒地面积的一半,你能给出设计方案吗?
方案一:
方案二:

方案三:
方案四:
三.课堂练习
(一)课本P 55随堂练习 1
1.小颖的设计
方案如图所示,你能帮助她求出
图中的x 吗?
(二)看课本
P 53~P 54,然后小结.
四.课时小结
本节课我们通过列方程解决实际问题,进一步了解了一元二次方程是刻画现实世界中数量关系的一个有效数学模型,并且知道在解决实际问题时,要根据具体问题的实际意义检验结果的合理性.
另外,还应注意用配方法解题的技能.
五、教后反思:。

《一元二次方程的解法》 导学案

《一元二次方程的解法》 导学案

《一元二次方程的解法》导学案一、学习目标1、理解一元二次方程的概念,掌握一元二次方程的一般形式。

2、熟练掌握直接开平方法、配方法、公式法和因式分解法解一元二次方程。

3、能根据方程的特点,灵活选择合适的解法,提高解题能力。

二、学习重难点1、重点(1)一元二次方程的四种解法。

(2)选择合适的方法解一元二次方程。

2、难点(1)配方法的理解和运用。

(2)公式法中求根公式的推导和应用。

三、知识回顾1、什么是方程?含有未知数的等式叫做方程。

2、我们学过哪些方程?一元一次方程、二元一次方程等。

四、一元二次方程的概念1、定义:只含有一个未知数,并且未知数的最高次数是 2 的整式方程叫做一元二次方程。

2、一般形式:$ax^2 + bx + c = 0$($a≠0$),其中$ax^2$是二次项,$a$是二次项系数;$bx$是一次项,$b$是一次项系数;$c$是常数项。

五、一元二次方程的解法1、直接开平方法(1)适用条件:方程形如$x^2 = p$($p≥0$)或$(x + m)^2 = n$($n≥0$)。

(2)解法:对于$x^2 = p$,直接开平方得$x = ±\sqrt{p}$;对于$(x + m)^2 = n$,开平方得$x + m = ±\sqrt{n}$,即$x = m ±\sqrt{n}$。

例如:解方程$x^2 = 9$,解得$x = ±3$;解方程$(x 2)^2 =16$,$x 2 = ±4$,$x = 2 ± 4$,即$x_1 = 6$,$x_2 =-2$。

2、配方法(1)步骤:①移项:把常数项移到方程右边;②二次项系数化为 1:方程两边同时除以二次项系数;③配方:方程两边同时加上一次项系数一半的平方;④写成完全平方式:$(x + m)^2 = n$的形式;⑤直接开平方求解。

例如:解方程$x^2 + 4x 5 = 0$移项得:$x^2 + 4x = 5$二次项系数化为 1 得:$x^2 + 4x + 4 = 5 + 4$配方得:$(x + 2)^2 = 9$开平方得:$x + 2 = ±3$解得:$x_1 = 1$,$x_2 =-5$3、公式法(1)求根公式:对于一元二次方程$ax^2 + bx + c =0$($a≠0$),其求根公式为$x =\frac{b ±\sqrt{b^2 4ac}}{2a}$。

解一元二次方程——配方法导学案(新版新人教版)

解一元二次方程——配方法导学案(新版新人教版)

解一元二次方程——配方法导学案(新版新人教版)第3课时解一元二次方程-配方法一、学习目标1.掌握用配方法解一元二次方程的一般步骤;.学会利用配方法解一元二次方程.二、知识回顾1.形如的一元二次方程,利用求平方根的方法,立即可得ax+=±从而解出方程的根,这种解一元二次方程的方法叫“直接开平方法”..如果方程能化成x2=p或2=p的形式,那么利用直接开平方法可得x=±或x+n=±.三、新知讲解1.配方法的依据配方法解一元二次方程的依据是完全平方公式及直接开平方法..配方法的步骤化——化二次项系数为1如果一元二次方程的二次项系数不是1,那么在方程的两边同时除以二次项系数,把二次项系数化为1.移——移项通过移项使方程左边为二次项和一次项右边为常数项配——配方在方程两边都加上一次项系数一半的平方根据完全平方公式把原方程变为的形式.解——用直接开平方法解方程.四、典例探究.配方法解一元二次方程【例1】用配方法解下列方程时,配方有错误的是A.x2﹣2x﹣99=0化为2=100B.x2+8x+9=0化为2=25 c.2t2﹣7t﹣4=0化为2=D.3x2﹣4x﹣2=0化为2=总结:配方法解一元二次方程的一般步骤:把二次项的系数化为1;把常数项移到等号的右边;等式两边同时加上一次项系数一半的平方.用直接开平方法解这个方程.练1用配方法解方程:x2﹣2x﹣24=0;3x2+8x-3=0;x=120..用配方法求多项式的最值【例2】当x,y取何值时,多项式x2+4x+4y2﹣4y+1取得最小值,并求出最小值.总结:配方法是求代数式的最值问题中最常用的方法.基本思路是:把代数式配方成完全平方式与常数项的和,根据完全平方式的非负性求代数式的最值.练2用配方法证明:二次三项式﹣8x2+12x﹣5的值一定小于0.练3已知a、b、c为△ABc三边的长.求证:a2﹣b2+c2﹣2ac<0.当a2+2b2+c2=2b时,试判断△ABc的形状.五、课后小测一、选择题.若把代数式x2﹣2x+3化为2+形式,其中,为常数,结果为A.2+4B.2+2c.2+4D.2+2.一元二次方程x2﹣8x﹣1=0配方后为A.2=17B.2=15c.2=17D.2=17或2=17二、填空题.一元二次方程x2﹣6x+a=0,配方后为2=1,则a=..当x=时,代数式3x2﹣6x的值等于12.三、解答题.用配方法解方程:x2﹣2x﹣4=0..试说明:不论x,y取何值,代数式x2+4y2﹣2x+4y+5的值总是正数.你能求出当x,y取何值时,这个代数式的值最小吗?.阅读下面的材料并解答后面的问题:小李:能求出x2+4x﹣3的最小值吗?如果能,其最小值是多少?小华:能.求解过程如下:因为x2+4x﹣3=x2+4x+4﹣4﹣3=﹣=2﹣7而2≥0,所以x2+4x﹣3的最小值是﹣7.问题:小华的求解过程正确吗?你能否求出x2﹣3x+4的最小值?如果能,写出你的求解过程..阅读下面的解答过程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4﹣2+4∵2≥0∴2+4≥4∴y2+4y+8的最小值为4仿照上面的解答过程,求2++4的最小值和4﹣2x﹣x2的最大值..已知代数式x2﹣2x﹣2+5﹣5的最小值是﹣23,求的值.0.配方法可以用来解一元二次方程,还可以用它来解决很多问题.例如:因为3a2≥0,所以3a2+1≥1,即:3a2+1有最小值1,此时a=0;同样,因为﹣32≤0,所以﹣32+6≤6,即﹣32+6有最大值6,此时a=﹣1.①当x=时,代数式﹣22+3有最值为.②当x=时,代数式﹣x2+4x+3有最值为.③矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?典例探究答案:【例1】【解析】配方法的一般步骤:把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方.根据以上步骤进行变形即可.解:A、∵x2﹣2x﹣99=0,∴x2﹣2x=99,∴x2﹣2x+1=99+1,∴2=100,故A选项正确.B、∵x2+8x+9=0,∴x2+8x=﹣9,∴x2+8x+16=﹣9+16,∴2=7,故B选项错误.c、∵2t2﹣7t﹣4=0,∴2t2﹣7t=4,∴t2﹣t=2,∴t2﹣t+=2+,∴2=,故c选项正确.D、∵3x2﹣4x﹣2=0,∴3x2﹣4x=2,∴x2﹣x=,∴x2﹣x+=+,∴2=.故D选项正确.故选:B.点评:此题考查了配方法解一元二次方程,选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.练1.【解析】移项,得x2﹣2x=24,配方,得:x2﹣2x+1=24+1,即:2=25,开方,得:x﹣1=±5,∴x1=6,x2=﹣4.两边除以3,得:,移项,得:,配方,得:,即:,开方,得:∴整理,得:,配方,得:,即:,开方,得:∴点评:本题考查了解一元二次方程﹣﹣配方法.【例2】【解析】把所给代数式整理为两个完全平方式子与一个常数的和,最小值应为那个常数,从而确定最小值.解:x2+4x+4y2﹣4y+1=x2+4x+4+4y2﹣4y+1﹣4=2+2﹣4,又∵2+2的最小值是0,∴x2+4x+4y2﹣4y+1的最小值为﹣4.∴当x=﹣2,y=时有最小值为﹣4.点评:本题考查配方法的应用;根据﹣4y,4x把所给代数式整理为两个完全平方式子的和是解决本题的关键.练2.【解析】将﹣8x2+12x﹣5配方,先把二次项系数化为1,然后再加上一次项系数一半的平方,然后根据配方后的形式,再根据a2≥0这一性质即可证得.解:﹣8x2+12x﹣5=﹣8﹣5=﹣8[x2﹣x+2]﹣5+8×2=﹣82﹣,∵2≥0,∴﹣82≤0,∴﹣82﹣<0,即﹣8x2+12﹣5的值一定小于0.点评:此题考查了学生的应用能力,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.练3.【解析】将不等式的左边因式分解后根据三角形三边关系判断代数式的符号即可;将等式右边的项移至左边,然后配方即可.解:a2﹣b2+c2﹣2ac=2﹣b2=∵a、b、c为△ABc三边的长,∴>0,<0,∴a2﹣b2+c2﹣2ac<0.由a2+2b2+c2=2b得:a2﹣2ab+b2+b2﹣2bc+c2=0配方得:2+2=0∴a=b=c∴△ABc为等边三角形.点评:本题考查了配方法的应用,解题的关键是对原式正确的配方.课后小测答案:一、选择题.【解析】二次项系数为1,则常数项是一次项系数的一半的平方.解:x2﹣2x+3=x2﹣2x+1+2=2+2.故选:B.点评:此题考查了学生的应用能力,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值..【解析】先移项,得x2﹣8x=1,然后在方程的左右两边同时加上16,即可得到完全平方的形式.解:移项,得x2﹣8x=1,配方,得x2﹣8x+16=1+16,即2=17.故选A.点评:本题考查了用配方法解一元二次方程,对多项式进行配方,不仅应用于解一元二次方程,还可以应用于二次函数和判断代数式的符号等,应熟练掌握.二、填空题.【解析】利用完全平方公式化简后,即可确定出a的值.解:∵2=x2﹣6x+9,∴a=9;故答案为:9.点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键..【解析】根据题意列出方程,两边除以3变形后,再加上1配方后,开方即可求出解.解:根据题意得:3x2﹣6x=12,即x2﹣2x=4,配方得:x2﹣2x+1=5,即2=5,开方得:x﹣1=±,解得:x=1±.故答案为:1±.点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.三、解答题.【解析】按照配方法的一般步骤计算:把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.解:把方程x2﹣2x﹣4=0的常数项移到等号的右边,得到x2﹣2x=4,方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=4+1,配方得2=5,∴x﹣1=±,∴x1=1﹣,x2=1+.点评:本题考查了用配方法解一元二次方程的步骤,解题的关键是牢记步骤,并能熟练运用,此题比较简单,易于掌握..【解析】原式利用完全平方公式变形,根据完全平方式恒大于等于0,即可求出最小值.解:原式=x2﹣2x+1+4y2+4y+1+3=2+2+3≥3,当x=1,y=﹣时,x2+4y2﹣2x+4y+5有最小值是3.点评:此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键..【解析】对于x2+4x﹣3和x2﹣3x+4都是同时加上且减去一次项系数一半的平方.配成一个完全平方式与常数的和,利用完全平方式为非负数的性质得到原代数式的最小值.解:正确能.过程如下:x2﹣3x+4=x2﹣3x+﹣+4=2+∵2≥0,所以x2﹣3x+4的最小值是.点评:此题考查配方法的运用,配方法是常用的数学思想方法.不仅用于解方程,还可利用它解决某些代数式的最值问题.它的一个重要环节就是要配上一次项系数一半的平方.同时要理解完全平方式的非负数的性质..【解析】多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;多项式配方后,根据完全平方式恒大于等于0,即可求出最大值.解:2++4=2+,∵2≥0,∴2+≥.则2++4的最小值是;﹣x2+2x=﹣2+5,∵﹣2≤0,∴﹣2+5≤5,则4﹣x2+2x的最大值为5.点评:此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键..【解析】先将原式变形为x2﹣2﹣2+5﹣5=2﹣22+5﹣5,由非负数的性质就可以求出最小值.解:x2﹣2﹣2+5﹣5=2﹣22+5﹣5.∵代数式x2﹣2﹣2+5﹣5的最小值是﹣23,∴﹣22+5﹣5=﹣23解得=﹣2或=点评:本题考查了配方法的运用,非负数的性质,一个数的偶次幂为非负数的运用.解答时配成完全平方式是关键.0.【解析】①由完全平方式的最小值为0,得到x=1时,代数式的最大值为3;②将代数式前两项提取﹣1,配方为完全平方式,根据完全平方式的最小值为0,即可得到代数式的最大值及此时x的值;③设垂直于墙的一边长为x,根据总长度为16,表示出平行于墙的一边为,表示出花园的面积,整理后配方,利用完全平方式的最小值为0,即可得到面积的最大值及此时x 的值.解:①∵2≥0,∴当x=1时,2的最小值为0,则当x=1时,代数式﹣22+3的最大值为3;②代数式﹣x2+4x+3=﹣+7=﹣2+7,则当x=2时,代数式﹣x2+4x+3的最大值为7;③设垂直于墙的一边为x,则平行于墙的一边为,∴花园的面积为x=﹣2x2+16x=﹣2+32=﹣22+32,则当边长为4米时,花园面积最大为322.故答案为:①1;大;3;②2;大;7点评:此题考查了配方法的应用,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

先将常数项移到方程的右边,得
1
鸡西市第十九中学初三数学组
在方程的两边加上一次项系数 6 的一半的平方,即 32 后,得
(x+3)2 = 5
解这个方程,得 x+3 = ± 5 所以 x1 = ―3+ 5 x2 =―3 ― 5
由此可见,只要先把一个一元二次方程变形为(x+m)2= n 的形式 (其中 m、n 都是常数) ,如果 n≥0,再通过直接开平方法求出方程的解,这 种解一元二次方程的方法叫做配方法。 例 1 用配方法解下列方程: (1)x2 – 4x –1 = 0 解: (1) 移项,得 配方,得 即 开平方,得 所以原方程的根是 (2)x2 – 3x –1 = 0 (2)移项,得 配方,得 即 开平方,得 所以原方程的根是 x1= x1= x2 – 4x = 1 x2 – 2×2x + = 1+
鸡西市第十九中学初三数学组
鸡西市第十九中学学案
班级 姓名
学科 时间 学习 目标
课题 配方法(1) 2014 年 月 日 会用配方法解二次项系数为 1 的一元二次方程
数学
课型 人教版
新课
八年级下
经历探究将一般一元二次方程化成( x m) 2 n(n 0) 形式的过程, 进一步理解配方法的意义 使学生掌握配方法,解一元二次方程 把一元二次方程转化为的(x+m)2= n(n≥0)形式
学习内容
重点 难点
【复习引入】 1、 请说出完全平方公式。 (a+b)2 = (a-b)2 = 2、 用直接开平方法解下例方程: (1) ( x 3) 2 5 (2) ( x 5) 2 4 13
3、思考如何解下例方程 (1) x 2 4 x 4 16 (2) x 2 10 x 25 4 13
2x -x=6
2
x² -2x-3=0
x² -4x+3=0
2x² +12x+10=0
4x² -4x-8=0
9x² -6x-8=0
x2+px+q=0(p2-4q≥0).
7、试用配方法证明:代数式 x2+3x-
3 15 的值不小于- 。 2 4
4
(x –
)2 = ,x2=
,x2=
【当堂训练】 1、填空: (1)x2+6x+ =(x+ )2;
2
(2)x2-2x+
Байду номын сангаас
=(x-
)2;
鸡西市第十九中学初三数学组
(3)x2-5x+ (5)x2+px+
=(x=(x+
)2; )2;
(4)x2+x+
=(x+
)2;
(6)4x2+4x+_____=(2x+______)2. ;
【新知探究】 问题 1、请你思考方程 ( x 3) 2 5 与 x 2 6 x 4 0 有什么关系,如何解方程
x 2 6 x 4 0 呢?
问题 2、能否将方程 x 2 6 x 4 0 转化为( x m) 2 n 的形式呢?
x 2 6x 4 0
2、将方程 x2+2x-3=0 化为(x+m)2=n 的形式为 3、用配方法解一元二次方程 x2+8x+7=0,则方程可变形为( ) A.(x-4)2=9 B.(x+4)2=9 C.(x-8)2=16
D.(x+8)2=57
4、已知方程 x2-5x+q=0 可以配方成(xA.
6 4
B.
25 4
5 2 6 ) = 的形式,则 q 的值为( ) 2 4 19 19 C. D. 4 4
5、已知方程 x2-6x+q=0 可以配方成(x-p )2=7 的形式,那么 q 的值是( A.9 B.7 C.2 6、用配方法解下列方程: x2-4x=5; x2-100x-101=0; D.-2

x2+8x+9=0;
y2+2 2 y-4=0;
x2+8x-2=0
x2-5x-6=0.
3
鸡西市第十九中学初三数学组
相关文档
最新文档