平行四边形、特殊平行四边形测验
【3套】特殊平行四边形习题(含答案)
特殊平行四边形习题(含答案)特殊平行四边形习题一、选择题1.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于( )A.20B.15C.10D.5答案 B ∵四边形ABCD是菱形,∴AB=BC,AB∥CD,∴∠B+∠BCD=180°,∴∠B=180°-∠BCD=180°-120°=60°,∴△ABC是等边三角形,故△ABC的周长=3AB=15.2.如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )A.AB=CDB.AD=BCC.AC=BDD.AB=BC答案 C 可添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴平行四边形ABCD是矩形,故选C.3.已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE 的长为( )A.6cmB.4cmC.3cmD.2cm答案 C 因为菱形的四条边相等且对角线互相垂直平分,所以可以由OE∥DC证得点E是BC 的中点,此时利用三角形的中位线或直角三角形斜边上中线的性质都可以求得OE的长为3 cm.4.如图,在菱形ABCD中,AB=8,点E、F分别在AB、AD上,且AE=AF,过点E作EG∥AD交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O.当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为( )A.6.5B.6C.5.5D.5答案 C 设AE=x,则EB=8-x,∵四边形ABCD是菱形,AE=AF,EG∥AD,FH∥AB,∴四边形AEOF和四边形OHCG都是菱形.∵四边形AEOF与四边形CGOH的周长之差为12,∴4x-4(8-x)=12,解得x=5.5.故选C.5.如图,将一个长为10cm,宽为8cm的矩形纸片先按照从左向右对折,再按照从下向上的方向对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下(如图1-4-5①),再打开,得到如图1-4-5②所示的小菱形的面积为( )A.10cm2B.20cm2C.40cm2D.80cm2答案 A 由题意可得AC=5cm, BD=4cm,故小菱形的面积为×4×5=10(cm2).故选A.6.如图,正方形ABCD中,E、F是对角线AC上两点,连接BE、BF、DE、DF,则添加下列条件:①∠ABE=∠CBF;②AE=CF;③AB=AF;④BE=BF.可以判定四边形BEDF是菱形的条件有( )A.1个B.2个C.3个D.4个答案 C 连接BD,交AC于点O,在正方形ABCD中,AB=BC,∠BAC=∠ACB,AC⊥BD,OB=OD,①在△ABE与△CBF中,∴△ABE≌△CBF(ASA),∴AE=CF,∵OA=OC,∴OE=OF,又∵AC⊥BD,∴四边形BEDF是菱形,故①正确.②正方形ABCD 中,OA=OB=OC=OD,∵AE=CF,∴OE=OF,又EF⊥BD,BO=OD,∴四边形BEDF是菱形,故②正确.③由AB=AF不能推出四边形BEDF其他边的关系,故不能判定它是菱形,故③错误.④在正方形ABCD 中,OA=OC=OB=OD,AC⊥BD,∵BE=BF,EF⊥BD,∴OE=OF,∴四边形BEDF是菱形,故④正确.故选C.7.如图所示,在菱形ABCD中,BE⊥AD,BF⊥CD,E、F为垂足,AE=ED,则∠EBF等于( )A.75°B.60°C.50°D.45°答案 B 连接BD.因为BE⊥AD,AE=ED,所以AB=BD.又因为AB=AD,所以△ABD是等边三角形,所以∠A=60°,所以∠ADC=120°.在四边形BEDF 中,∠EBF=360°-∠BED-∠BFD-∠ADC=360°-90°-90°-120°=60°,故选B.8.如图所示,矩形纸片ABCD中,AB=6cm, BC=8cm,现将其沿EF对折,使得点C与点A重合,则AF长为( )A .cm B.cm C.cm D.8cm答案 B 设AF=x cm,则D'F=DF=(8-x)cm,在Rt△AFD'中,(8-x)2+62=x2,解得x=.9.如图所示,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为( )A.15°或30°B.30°或45°C.45°或60°D.30°或60°答案 D 画出所剪的图形示意图如图.∵四边形ABCD是菱形,∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,∵∠BAD=120°,∴∠ABC=180°-∠BAD=180°-120°=60°,∴∠ABD=30°,∠BAC=60°.∴剪口与第二次折痕所成的角的度数应为30°或60°.故选D.10.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△AOB=S四边形DEOF,其中正确的有( )A.4个B.3个C.2个D.1个答案 B ∵四边形ABCD为正方形,∴AB=AD=DC,∠D=∠BAD=90°,∵CE=DF,∴DE=AF,∴△DEA≌△AFB,∴AE=BF,∠DEA=∠AFB,又∠DEA+∠DAE=90°,∴∠AFB+∠DAE=90°,∴∠AOF=90°,即AE⊥BF.由△DEA≌△AFB得S△DEA=S△AFB,∴S△DEA-S△AOF=S△AFB-S△AOF,∴S△AOB=S四边形DEOF,所以正确的是(1)(2)(4),共3个,故选B.二、填空题11.如图,菱形ABCD中,对角线AC、BD相交于点O,不添加任何辅助线,请添加一个条件,使四边形ABCD是正方形(填一个即可).答案AC=BD(答案不唯一)12.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM 的周长为.答案20解析在Rt△ABC中,由勾股定理易得AC=13,由矩形的性质得AO=BO=AC=,而OM是△ACD 的中位线,所以OM=CD=,所以四边形ABOM的周长为AB+BO+OM+AM=5+++6=20.13.如图,已知矩形ABCD的对角线AC与BD相交于点O,若AO=1,那么BD= .答案2解析∵在矩形ABCD中,AC与BD相交于点O,AO=1,∴AO=CO=BO=DO=1,∴BD=2.14.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.答案3解析∵AE垂直平分OB,AB=3,∴AB=AO=3,∵四边形ABCD是矩形,∴BO=AO=3,∴BD=2BO=6,∴AD===3.15.如图,两个完全相同的三角尺ABC和DEF在直线l上滑动.要使四边形CBFE为菱形,还需添加的一个条件是(写出一个即可).答案CB=BF(或BE⊥CF或∠EBF=60°或BD=BF等,答案不唯一)解析由已知得CB∥EF,CB=EF,∴四边形CBFE是平行四边形.因此可以添加CB=BF;BE⊥CF;∠EBF=60°;BD=BF等,都能说明四边形CBFE是菱形.16.如图,正方形ABCO的顶点C,A分别在x轴,y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是.答案(2+,1)解析过点D作DF⊥x轴,垂足为F,在正方形ABCO中,∠BCO=90°,所以∠BCF=90°,在菱形BDCE中,BD=DC,又因为∠D=60°,所以△BCD是等边三角形,因为BC=2,所以CD=2,又∠BCD=60°,所以∠DCF=30°,在Rt△DCF中,因为∠DCF=30°,CD=2,所以DF=CD=1,由勾股定理得CF=,所以OF=OC+CF=2+,所以点D的坐标为(2+,1).17.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.答案13解析连接BE,EF,FD,AC,∵菱形、正方形为轴对称图形,对角线所在直线是其对称轴,∴B,E,F,D在同一条直线上,∵S正方形AECF=AC·EF=AC2=50cm2,∴AC=10cm,∵S菱形ABCD=AC·BD=120cm2,∴BD=24cm.设AC,BD的交点为O,由菱形的性质可得AC⊥BD,AO=5cm,OB=12 cm,∴AB===13cm.18.如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.答案3解析设AC与EG相交于点O,∵四边形ABCD是菱形,∠BAD=120°,∴∠EAC=∠DAC=60°,∠B=60°,AB=BC.∴△ABC是等边三角形.又∵AB=6,∴△ABC的面积为18.∴菱形ABCD的面积为36,∵EG⊥AC,∴∠AOE=∠AOG=90°.∴∠AGE=90°-60°=30°.∵△BEF与△GEF关于直线EF对称,点B的对称点是点G,∴∠EGF=∠B=60°,∴∠AGF=∠EGF+∠AGE=90°.∴FG⊥AD,∴FG===3.三、解答题19.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.答案(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,又∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB.∴DE∥AC.∴四边形ACDE是平行四边形.(2)∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,∴AD=CD==5.又∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8.∴△ADE的周长为AD+AE+DE=5+5+8=18.20.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.答案(1)证明:∵AF∥BC,∴∠EAF=∠EDB,∵E是AD的中点,∴AE=DE,在△AEF和△DEB中,∴△AEF≌△DEB(ASA),∴AF=BD,∵在△ABC中,∠BAC=90°,AD是中线,∴AD=BD=DC=BC,∴AD=AF.(2)四边形ADCF是正方形.∵AF=BD=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AB=AC,AD是中线,∴AD⊥BC,∵AD=AF,∴四边形ADCF是正方形.21.如图,在正方形ABCD中,点E、F分别在边AB、BC上,∠ADE=∠CDF.(1)求证:AE=CF;(2)连接DB交EF于点O,延长OB至点G,使OG=OD,连接EG、FG,判断四边形DEGF是否为菱形,并说明理由.答案(1)证明:在正方形ABCD中,AD=CD,∠A=∠C=90°,在△ADE和△CDF中,∴△ADE≌△CDF(ASA),∴AE=CF.(2)四边形DEGF是菱形.理由如下:在正方形ABCD中,AB=BC,∵AE=CF,∴AB-AE=BC-CF,即BE=BF,∴BD垂直平分EF,∴OE=OF,又∵OG=OD,∴四边形DEGF为平行四边形,∵△ADE≌△CDF,∴DE=DF,∴四边形DEGF是菱形.22.如图,AB∥CD,点E、F分别在AB、CD上,连接EF.∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索.过G作MN∥EF,分别交AB、CD于点M、N,过H 作PQ∥EF,分别交AB、CD于点P、Q,得到四边形MNQP.此时,他猜想四边形MNQP是菱形.请在下列框图中补全他的证明思路.答案(1)证明:∵EH平分∠BEF,∴∠FEH=∠BEF.∵FH平分∠DFE,∴∠EFH=∠DFE.∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=(∠BEF+∠DFE)=×180°=90°,又∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°-(∠FEH+∠EFH)=180°-90°=90°.同理可证,∠EGF=90°.∵EG平分∠AEF,∴∠FEG=∠AEF.∵EH平分∠BEF,∴∠FEH=∠BEF.∵点A、E、B在同一条直线上,∴∠AEB=180°,即∠AEF+∠BEF=180°.∴∠FEG+∠FEH=(∠AEF+∠BEF)=×180°=90°,即∠GEH=90°.∴四边形EGFH是矩形.(2)本题答案不唯一,下面答案供参考.例如,FG平分∠CFE;GE=FH;∠GME=∠FQH;∠GEF=∠EFH.23.已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD 的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图①,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”,不需要证明)(2)如图②,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图③,在(2)的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.答案(1)成立.(2)仍然成立.证明:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°.在△ADF和△DCE中,∴△ADF≌△DCE(SAS),∴AF=DE,∠FAD=∠EDC,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE.(3)四边形MNPQ是正方形.证明:如图,设MQ,DE分别交AF于点G,O,PQ交DE于点H,∵点M,N,P,Q分别为AE,EF,FD,AD的中点,∴MQ=PN=DE,PQ=MN=AF,MQ∥DE,PQ∥AF,∴四边形OHQG是平行四边形,∵AF=DE,∴MQ=PQ=PN=MN,∴四边形MNPQ是菱形,∵AF⊥DE,∴∠AOD=90°,∴∠HQG=∠AOD=90°,∴四边形MNPQ是正方形.人教版八年级数学下册第十八章平行四边形单元检测卷一、选择题1.如图,在平行四边形ABCD中,下列结论中错误的是( )A.∠1=∠2B.∠BAD=∠BCDC.AB=CDD.AC=BC2.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是( )A.10B.14C.20D.223.四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD.从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )A.3种B.4种C.5种D.6种4.如图,在△ABC中,AB=6,AC=10,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为( )A.8B.10C.12D.165.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC至F,使CF=BC,若AB=10,则EF的长是( )A.5B.4C.3D.26.下列命题中正确的是( )A.两条对角线相等的平行四边形是矩形B.有三个角是直角的多边形是矩形C.两条对角线相等的四边形是矩形D.有一个角是直角的四边形是矩形7.如图,菱形ABCD的周长为20,一条对角线AC的长为8,另一条对角线BD的长为( )A.16B.12C.6D.48.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长为( )A.4B.6C.8D.109.如图,以正方形ABCD的对角线AC为一边作菱形AEFC,则∠FAB=( )A.30°B.45°C.22.5°D.135°10.如图,直线EF经过矩形ABCD对角线的交点O,分别交AB、CD于点E、F,那么图中阴影部分的面积是矩形ABCD的面积的( )A. B. C. D.二、填空题11.如图,平行四边形ABCD的周长为20,对角线AC的长为5,则△ABC的周长为.12.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件: ,使四边形AECF是平行四边形(只填一个即可).13.如图,在矩形ABCD中,对角线AC、BD相交于点O,直线EF是OA的中垂线,分别交AD、OA 于点E、F.若AB=6 cm,BC=8 cm,则△DEO的周长= cm.14.如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CD的中点,则OE的长等于.15.如图,在正方形ABCD中,点E是BC上的一定点,且BE=5,EC=7,点P是BD上的一动点,则PE+PC的最小值是.16.如图所示,平行四边形ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD、BC于点M、N,若△CON的面积为2,△DOM的面积为4,则△AOB的面积为.三、解答题17.如图,四边形ABCD是平行四边形,点E在BA的延长线上,且BE=AD,点F在AD上,AF=AB,求证:△AEF≌△DFC.18.如图,四边形ABCD是平行四边形,DE平分∠ADC,交AB于点E,BF平分∠ABC,交CD于点F.(1)求证:DE=BF;(2)连接EF,写出图中所有的全等三角形.(不要求证明)19.在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F,求证:DF=DC.20.如图,在▱ABCD中,E、F为BC上的两点,且BE=CF,AF=DE.求证:(1)△ABF≌△DCE;(2)四边形ABCD是矩形.21.已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=6,∠BCD=120°,求四边形AODE的面积.22.如图,在直角梯形纸片ABCD中,AB∥DC,∠A=90°,CD>AD,将纸片沿过点D的直线折叠,使点A落在边CD上的点E处,折痕为DF.连接EF并展开纸片.求证:四边形ADEF是正方形.23.在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.参考答案1-10 DBBDA ACCCB11.1512.答案不唯一,如AF=CE13.1314.415.1316.617.证明∵四边形ABCD是平行四边形,∴AB=CD且AB∥CD,∴∠EAF=∠ADC,又∵AF=AB,BE=AD,∴AF=CD,AE=DF,在△AEF和△DFC中,∴△AEF≌△DFC.18.(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CDE=∠AED,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠ADE=∠AED,∴AE=AD,同理,CF=CB,又AD=CB,AB=CD,∴AE=CF,∴DF=BE,∴四边形DEBF是平行四边形,∴DE=BF.(2)△ADE≌△CBF,△DFE≌△BEF.19.证明∵四边形ABCD是矩形,∴AB=CD,AD∥BC,∠B=90°.∵DF⊥AE,∴∠AFD=∠B=90°.∵AD∥BC,∴∠DAE=∠AEB,又∵AD=AE,∴△ADF≌△EAB,∴DF=AB,∴DF=DC.20.证明(1)∵BE=CF,BF=BE+EF,CE=CF+EF,∴BF=CE.∵四边形ABCD是平行四边形,∴AB=DC.在△ABF和△DCE中,∴△ABF≌△DCE(SSS).(2)∵△ABF≌△DCE,∴∠B=∠C.∵四边形ABCD是平行四边形,∴AB∥CD.∴∠B+∠C=180°.∴∠B=∠C=90°.∴四边形ABCD是矩形.21.(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,即∠AOD=90°,∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵∠AOD=90°,∴▱AODE是矩形.(2)∵四边形ABCD是菱形,∴AO=OC=AC,BO=OD,AB=BC,AB∥CD,∴∠ABC+∠BCD=180°,∵∠BCD=120°,∴∠ABC=60°,∴△ABC是等边三角形.∴AC=AB=6,∴OA=3.在Rt△ABO中,由勾股定理得BO=3,∴DO=3,∴S矩形AODE=AO·DO=3×3=9.22.证明∵△DEF由△DAF折叠得到,∴∠DEF=∠A=90°,DA=DE,∵AB∥CD,∴∠ADE=180°-∠A=90°.∵∠DEF=∠A=∠ADE=90°,∴四边形ADEF是矩形.又∵DA=DE,∴四边形ADEF是正方形.23.证明(1)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,∵在△ADE和△CBF中,∴△ADE≌△CBF(SAS).(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,∴EB=DF,又∵DF∥EB,∴四边形DEBF是平行四边形,又∵DF=BF,∴四边形DEBF为菱形.人教版八年级下册第十八章平行四边形单元测试含答案一、选择题1、下列说法错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形 B.每组邻边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形 D.四个角都相等的四边形是矩形2、如图,在平行四边形ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是A.1 B. 2 C.3 D.43、如图,将长方形ABCD沿AE折叠,使点D落在BC边上的点F,若∠BAF = 60°,则∠DAE = ()(A)15°(B)30°(C)45°(D)60°4、在□ABCD中,AB=3,BC=4,当□ABCD的面积最大时,下列结论正确的有()①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③ B.①②④ C.②③④ D.①③④5、四边形ABCD的对角线AC、BD相交于点O.下列条件中,能判断四边形ABCD是平行四边形的是()A.AD=BC,AB∥CD B.AO=CO,AD=BCC.AD∥BC,∠ADC=∠ABC D.AD=BC,∠ABD=∠CDB6、如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点E作垂线交BC于点F,已知BC=10,△ABD的面积为12,则EF的长为( )A.4.8 B.3.6 C.2.4 D.1.27、如图,在矩形COED中,点D的坐标是(1,2),则CE的长是()A. B.2 C. D.8、如图,正方形ABCD的边长为1,则正方形ACEF的面积为()A. 2B. 3C. 4D. 5二、填空题9、已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x= .10、如图,▱ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE 的周长为 ______ .11、如图,在△ABC中,点D、E、F分别是边AB、BC、CA上的中点,且AB=6cm,AC=8cm,则四边形ADEF的周长等于cm.12、如图,矩形中,、交于点,,平分交于点,连接,则。
初中数学特殊的平行四边形50题(含答案)
特殊的平行四边形练习题(50题)菱形、矩形、正方形一、单选题(共18题;共36分)1.下列条件中,能判定一个四边形为矩形的条件是( )A. 对角线互相平分的四边形B. 对角线相等且平分的四边形C. 对角线相等的四边形D. 对角线相等且互相垂直的四边形【答案】B【解析】【解答】解:A、对角线互相平分的四边形是平行四边形,故A不符合题意;B、对角线相等且平分的四边形是矩形,故B符合题意;C、对角线相等的四边形不是矩形,故C不符合题意;D、对角线相等且互相垂直的四边形不是矩形,故D不符合题意.故答案为:B.【分析】根据矩形的判定方法,逐项进行判断,即可求解2.如图,点A、D、G、M在半圆上,四边形ABOC、DEOF、HNMO均为矩形,设BC=a ,EF=b ,NH= c ,则下列各式中正确的是()A. a > b > cB. a =b =cC. c > a > bD. b > c > a【答案】B【解析】【解答】解:连接OA、OD、OM,如图所示:则OA=OD=OM,∵四边形ABOC、DEOF、HNMO均为矩形,∴OA=BC=a,OD=EF=b,OM=NH=c,∴a=b=c;故答案为:B.【分析】连接OA、OD、OM,则OA=OD=OM,由矩形的对角线相等得出OA=BC=a,OD=EF=b,OM=NH=c,再由同圆的半径相等即可得出a=b=c.3.如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是( )A. 1B. 2C.D.【答案】 D【解析】【解答】解:连接DE交AC于P,连接BD,BP,由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,∴PE+PB=PE+PD=DE,即DE就是PE+PB的最小值,∵∠BAD=60°,AD=AB,∴△ABD是等边三角形,∴AD=BD,∵AE=BE=AB=1,∴DE⊥AB,在Rt△ADE中,DE=,∴ PE+PB的最小值是.故答案为:D.【分析】连接DE交AC于P,连接BD,BP,根据菱形的性质得出B、D关于AC对称,得出DE就是PE+PB 的最小值,根据等边三角形的判定与性质得出DE⊥AB,再根据勾股定理求出DE的长,即可求解.4.若正方形的对角线长为2 cm,则这个正方形的面积为()A. 4B. 2C.D.【答案】B【解析】【解答】解:设正方形的边长为xcm,根据题意得:x2+x2=22,∴x2=2,∴正方形的面积=x2=2(cm2).故答案为:B.【分析】设正方形的边长为xcm,利用勾股定理列出方程,求出x2=2,即可求出正方形的面积为2.5.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A. 72B. 24C. 48D. 96【答案】C【解析】【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=4,∴BD=8,∵OA=6,∴AC=12,∴菱形ABCD的面积= AC•BD=×12×8=48.故答案为:C.【分析】根据菱形的性质得O为BD的中点,再由直角三角形斜边上的中线等于斜边的一半,得BD的长度,最后由菱形的面积公式求得面积.6.将一张长方形纸片折叠成如图所示的形状,则∠ABC等于( )A. 73°B. 56°C. 68°D. 146°【答案】A【解析】【解答】如图,∵∠CBD=34°,∴∠CBE=180°﹣∠CBD=146°,由折叠的性质可得∠ABC=∠ABE= ∠CBE=73°.故答案为:A【分析】根据补角的知识可求出∠CBE,从而根据折叠的性质∠ABC=∠ABE= ∠CBE,可得出∠ABC的度数.7.如图,已知矩形AOBC的顶点O(0,0),A(0,3),B(4,0),按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OC,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠BOC内交于点F;③作射线OF,交边BC于点G,则点G的坐标为()A. (4,1)B. (4,)C. (4,)D. (4,)【答案】B【解析】【解答】解:∵四边形AOBC是矩形,A(0,3),B(4,0),∴OB=4,OA=BC=3,∠OBC=90°,∴OC==5,作GH⊥OC于H,如图,由题意可知:OG平分∠BOC,∵GB⊥OB,GH⊥OC,∴GB=GH,设GB=GH=x,由S△OBC=×3×4=×5×x+ ×4×x,解得:x=,∴G(4,).故答案为:B.【分析】根据勾股定理可得OC的长,作GH⊥OC于H,根据角平分线的性质可得GB=GH,然后利用面积法求出GB即可.8.如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E→B的路径匀速运动到点B停止,作PQ⊥CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是( )A. 2B.C.D. 1【答案】B【解析】【解答】解:由图象可知:AE=3,BE=4,在Rt ABE中,∠AEB=90°AB= =5当x=6时,点P在BE上,如图,此时PE=4-(7-x)=x-3=6-3=3∵∠AEB=90°, PQ⊥CD∴∠AEB=∠PQE=90°,在矩形ABCD中,AB//CD∴∠QEP=∠ABE∴PQE BAE, ∴=∴=∴PQ=故答案为:B.【分析】由图象可知:AE=3,BE=4,根据勾股定理可得AB=5,当x=6时,点P在BE上,先求出PE的长,再根据△ PQE ∽△ BAE,求出PQ的长.9.如图,在平面直角坐标系中,已知点,.若平移点到点,使以点,,,为顶点的四边形是菱形,则正确的平移方法是()A. 向左平移1个单位,再向下平移1个单位B. 向左平移个单位,再向上平移1个单位C. 向右平移个单位,再向上平移1个单位D. 向右平移1个单位,再向上平移1个单位【答案】 D【解析】【解答】解:因为B(1,1)由勾股定理可得OB=,所以OA=OB,而AB<OA.故以AB为对角线,OB//AC,由O(0,0)移到点B(1,1)需要向右平移1个单位,再向上平移1个单位,由平移的性质可得由A(,0)移到点C需要向右平移1个单位,再向上平移1个单位,故选D.【分析】根据平移的性质可得OB//AC,平移A到C,有两种平移的方法可使O,A,B,C四点构成的四边形是平行四边形;而OA=OB>AB,故当OA,OB为边时O,A,B,C四点构成的四边形是菱形,故点A平移到C的运动与点O平移到B的相同.10.如图,把长方形ABCD沿EF对折,若∠1=500,则∠AEF的度数等于()A. 25ºB. 50ºC. 100ºD. 115º【答案】 D【解析】解析:∵把矩形ABCD沿EF对折,∴AD∥BC,∠BFE=∠2,∵∠1=50°,∠1+∠2+∠BFE=180°,∴∠BFE==65°,∵∠AEF+∠BFE=180°,∴∠AEF=115°.故选D11.在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A. ②③B. ③④C. ①②④D. ②③④【答案】 D【解析】【解答】∵AB=1,AD=,∴BD=AC=2,OB=OA=OD=OC=1.∴△OAB,△OCD为正三角形.AF平分∠DAB,∴∠FAB=45°,即△ABF是一个等腰直角三角形.∴BF=AB=1,BF=BO=1.∵AF平分∠DAB,∴∠FAB=45°,∴∠CAH=45°﹣30°=15°.∵∠ACE=30°(正三角形上的高的性质)∴∠AHC=15°,∴CA=CH由正三角形上的高的性质可知:DE=OD÷2,OD=OB,∴BE=3ED.所以正确的是②③④.故选D.【分析】这是一个特殊的矩形:对角线相交成60°的角.利用等边三角形的性质结合图中的特殊角度解答.本题主要考查了矩形的性质及正三角形的性质.12.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB 上,当△CDE的周长最小时,点E的坐标为()A. (3,1)B. (3,)C. (3,)D. (3,2)【答案】B【解析】【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y= ,∴点E坐标(3,)故选:B.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.13.如图,正方形ABCD的边长为4,M在DC上,且DM=1,N是AC上一动点,则DN+MN的最小值为().A. 3B. 4C. 5D.【答案】C【解析】【分析】由正方形的对称性可知点B与D关于直线AC对称,连接BM交AC于N′点,N′即为所求在Rt△BCM中利用勾股定理即可求出BM的长即可.【解答】∵四边形ABCD是正方形,∴点B与D关于直线AC对称,连接BD,BM交AC于N′,连接DN′,N′即为所求的点,则BM的长即为DN+MN的最小值,∴AC是线段BD的垂直平分线,又CM=CD-DM=4-1=3,在Rt△BCM中,BM==5,故DN+MN的最小值是5.故选C.【点评】本题考查的是轴对称-最短路线问题及正方形的性质,先作出M关于直线AC的对称点M′,由轴对称及正方形的性质判断出点M′在BC上是解答此题的关键.14.将矩形OABC如图放置,O为原点.若点A(﹣1,2),点B的纵坐标是,则点C的坐标是()A. (4,2)B. (2,4)C. (,3)D. (3,)【答案】 D【解析】【解答】解:过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,过点A作AN⊥BF于点N,过点C作CM⊥x轴于点M,∵∠EAO+∠AOE=90°,∠AOE+∠MOC=90°,∴∠EAO=∠COM,又∵∠AEO=∠CMO,∴∠AEO∽△COM,∴=,∵∠BAN+∠OAN=90°,∠EAO+∠OAN=90°,∴∠BAN=∠EAO=∠COM,在△ABN和△OCM中∴△ABN≌△OCM(AAS),∴BN=CM,∵点A(−1,2),点B的纵坐标是,∴BN= ,∴CM= ,∴MO==2CM=3,∴点C的坐标是:(3, ).故选:D.【分析】次题主要考查了矩形的性质以及相似三角形的判定与性质以及结合全等三角形的判定与性质等知识.构造直角三角形,正确得出CM的长是解题的关键.15.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A. 1B. 2C. 3D. 4【答案】 D【解析】【解答】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠C=90°=∠ACB,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB= FB•FG= S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故选:D.【分析】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB= FB•FG= S四边形CEFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.16.如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF⊥ED,连结DF,M 为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为()A. 5B.C.D.【答案】B【解析】【解答】设BE=x,则CE=6-x,∵四边形ABCD矩形,AB=4,∴AB=CD=4,∠C=∠B=90°,∴∠DEC+∠CDE=90°,又∵F是AB的中点,∴BF=2,又∵EF⊥ED,∴∠FED=90°,∴∠FEB+∠DEC=90°,∴∠FEB=∠CDE,∴△BFE∽△CED,∴=,∴=,∴(x-2)(x-4)=0,∴x=2,或x=4,①当x=2时,∴EF=2,DE=4,DF=2,∴AM=ME=,∴AE===2,②当x=4时,∴EF=2,DE=2,DF=2,∴AM=ME=,∴AE==2,AE==4,∴x=4不合题意,舍去故答案为:B.【分析】设BE=x,则CE=6-x,由矩形性质得出AB=CD=4,∠C=∠B=90°,又由EF⊥ED,根据同角的余角相等可得出∠FEB=∠CDE;由相似三角形的判定得出△BFE∽△CED,再根据相似三角形的性质得出=,由此列出方程从而求出x=2或x=4,分情况讨论:①当x=2时,由勾股定理算出AE===2,②当x=4时,由勾股定理算出AE==2,AE==4,故x=4不合题意,舍去.17.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH,其中,正确的结论有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【解答】∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.18.如图,P是正方形ABCD内一点,∠APB=135,BP=1,AP=,求PC的值()A. B. 3 C. D. 2【答案】B【解析】【分析】解答此题的关键是利用旋转构建直角三角形,由勾股定理求解.如图,把△PBC绕点B逆时针旋转90°得到△ABP′,点C的对应点C′与点A重合.根据旋转的性质可得AP′=PC,BP′=BP,△PBP′是等腰直角三角形,利用勾股定理求出,然后由∠APB=135,可得出∠APP′=90°,再利用勾股定理列式计算求出.故选B.二、填空题(共15题;共16分)19.如图所示,△ABC为边长为4的等边三角形,AD为BC边上的高,以AD为边的正方形ADEF的面积为________。
特殊的平行四边形试题及参考答案
第一章特殊平行四边形检测题一、 选择题(每小题3分,共30分)1.下列四边形中,对角线一定不相等的是(D )A.正方形B.矩形C.等腰梯形D.直角梯形3.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是(D ) ①平行四边形;②菱形;③等腰梯形;④对角线互相垂直的四边形.A.①③B.②③C.③④D.②④4.已知一矩形的两边长分别为10 cm 和15 cm ,其中一个内角的平分线分长边为两部分,这两部分的长为(B )A.6 cm 和9 cmB.5 cm 和10 cmC.4 cm 和11 cmD.7 cm 和8 cm5.如图,在矩形中,分别为边的中点.若,,则图中阴影部分的面积为(B )A .3B .4C .6D.86.如图,在菱形中,,∠,则对角线等于(D )A .20B .15C .10D .57.若正方形的对角线长为2 cm ,则这个正方形的面积为(B )A.4B .2C .D .8.矩形、菱形、正方形都具有的性质是( C )A .每一条对角线平分一组对角B .对角线相等C .对角线互相平分D .对角线互相垂直A. B . C . D .(1) (2)一、 填空题(每小题3分,共24分)11.已知菱形的边长为6,一个内角为60°,则菱形的较短对角线的长是___6______.13.如图,四边形ABCD 是正方形,延长AB 到点E ,使,则∠BCE 的度数是22.5°.14.如图,矩形的两条对角线交于点,过点作的垂线,分别交,于点,,连接,已知△的周长为24 cm ,则矩形的周长是48cm.15.已知,在四边形ABCD 中,90A B C ∠=∠=∠=︒,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是____________. 16.已知菱形的周长为,一条对角线长为,则这个菱形的面积为____96_____.17.如图,在矩形ABCD 中,对角线与相交于点O ,且,则BD 的长为____4____cm ,BC 的长为_______cm.三、解答题(共66分)19.(8分)如图,在△ABC 中,AB =AC ,AD 是△ABC 外角的平分线,已知∠BAC =∠ACD .(1)求证:△ABC ≌△CDA ;(2)若∠B =60°,求证:四边形ABCD 是菱形.证明:(1)∵AB =AC ,∴∠B =∠ACB ,∴∠FAC =∠B +∠ACB =2∠BCA .第5题图 第6题图∵AD平分∠FAC,∴∠FAC=2∠CAD,∴∠CAD=∠ACB.在△ABC和△CDA中,∠BAC=∠DCA,AC=AC,∠DAC=∠ACB,∴△ABC≌△CDA.(2)∵∠FAC=2∠ACB,∠FAC=2∠DAC,∴∠DAC=∠ACB,∴AD∥BC.∵∠BAC=∠ACD,∴AB∥CD,∴四边形ABCD是平行四边形.∵∠B=60°,AB=AC,∴△ABC是等边三角形,∴AB=BC,∴平行四边形ABCD是菱形.20.(8分)如图,在□ABCD中,E为BC边上的一点,连接AE、BD且AE=AB.(1)求证:∠ABE=∠EAD;(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.证明:(1)在□ABCD中,AD∥BC,∴∠AEB=∠EAD.∵AE=AB,∴∠ABE=∠AEB,∴∠ABE=∠EAD.(2)∵AD∥BC,∴∠ADB=∠DBE.∵∠ABE=∠AEB,∠AEB=2∠ADB,∴∠ABE=2∠ADB,∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB,∴AB=AD.又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.22.(8分)如图,正方形ABCD的边长为3,E,F分别是AB,BC边上的点,且∠EDF=45°.将△DAE 绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.(1)证明:∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,∴F,C,M三点共线,DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°.∵∠EDF=45°,∴∠FDM=∠EDF=45°.在△DEF和△DMF中,DE=DM,∠EDF=∠MDF,DF=DF,∴△DEF≌△DMF(SAS),∴EF=MF.(2)解:设EF=MF=x,∵AE=CM=1,且BC=3,∴BM=BC+CM=3+1=4,∴BF=BM-MF=BM-EF=4-x.∵EB=AB-AE=3-1=2,在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即22+(4-x)2=x2,解得:x=,即EF=.23.(8分)如图,在矩形中,相交于点,平分,交于点.若,求∠的度数.解:因为平分,所以.又知,所以因为,所以△为等边三角形,所以因为,所以△为等腰直角三角形,所以.所以,,所以=75°24.(8分)如图所示,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=23,求AB的长.25.(8分)已知:如图,在四边形中,∥,平分∠,,为的中点.试说明:互相垂直平分.解:如图,连接∵AB⊥AC,∴∠BAC=90°.因为在Rt△中,是的中点,所以是R t△的斜边BC上的中线,所以,所以.因为平分,所以,所以所以∥.又AD∥BC,所以四边形是平行四边形.又,所以平行四边形是菱形,所以互相垂直平分.。
第一章 特殊平行四边形 单元测试(含答案)
第一章特殊平行四边形一、选择题1. 下列四边形对角线相等但不一定垂直的是( )A.平行四边形B.矩形C.菱形D.正方形2. 平行四边形ABCD中,AC,BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是( )A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD3. 如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD的周长为( )A.16B.24C.413D.8134. 如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为( )D.34 A.5B.4C.3425. 如图,菱形ABCD的对角线AC,BD的长分别为6 cm,8 cm,则这个菱形的周长为( )A.5 cm B.10 cm C.14 cm D.20 cm6. 如图,点P是矩形ABCD的边上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( )A.4.8B.5C.6D.7.27. 如图,点E是正方形ABCD中CD上的一点,把△ADE绕点A顺时针旋转90∘到△ABF的位置,若四边形AECF的面积为16,DE=1,则EF的长是( )A.4B.5C.217D.348. 如图,在矩形ABCD中,EG垂直平分BD于点G,若AB=4,BC=3,则线段EG的长度是( )A.32B.158C.52D.39. 如图,正方形ABCD的边长为2,点E,F分别为边AD,BC上的点,且EF=5,点G,H 分别边AB,CD上的点,连接GH交EF于点P.若∠EPH=45∘,则线段GH的长为( )A.5B.2103C.253D.710. 如图,在矩形ABCD中,AB=3,AD=4,以BC为斜边在矩形的外部作直角三角形BEC,点F是CD的中点,则EF的最大值为( )A.732B.4C.5D.92二、填空题11. 菱形的对角线长为6和8,则菱形的高为.12. 如图,连接四边形ABCD各边中点,得到四边形EFGH,只要添加条件,就能保证四边形EFGH是矩形.13. 在菱形ABCD中,对角线AC,BD交于点O,点F为BC中点,过点F作FE⊥BC于点F交BD于点E,连接CE,若∠BDC=34∘,则∠ECA=.14. 如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为.15. 在矩形ABCD中,AB=4,BC=3,折叠矩形ABCD,使点B与点D重合,则BF的长为.16. 如图,菱形ABCD中,AB=2,∠BAD=60∘,点E是边AB的中点,点P在对角线AC上移动.则PB+PE的最小值是.三、解答题17. 已知如图,在菱形ABCD中,对角线AC,BD相交于点O,DE∥AC,AE∥BD.(1) 求证:四边形AODE是矩形.(2) 若AB=6,∠BCD=120∘,求四边形AODE的面积.18. 如图,在正方形ABCD中,点F是BC延长线上一点,过点B作BE⊥DF于点E,交CD于点G,连接CE.(1) 若正方形ABCD边长为3,DF=4,求CG的长.(2) 求证:EF+EG=2CE.19. 在平行四边形ABCD中,对角线AC,BD相交于点O.EF过点O且与ABCD分别相交于点E,F.(1) 如图①,求证:OE=OF;(2) 如图②,若EF⊥DB,垂足为O,求证:四边形BEDF是菱形.20. 回答下列问题.(1) 提出问题:如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH.(2) 类比探究:如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG 于点O,探究线段EF与HG的数量关系,并说明理由.21. 如图,矩形ABCD中,点E,F分别在边AB,CD上,点G,H在对角线AC上,EF与AC相交于点O,AG=CH,BE=DF.(1) 求证:四边形EGFH是平行四边形.(2) 当EG=EH时,连接AF.①求证:AF=FC.②若DC=8,AD=4,求AE的长.答案一、选择题1. B2. B3. C4. D5. D6. A7. D8. B9. B10. D二、填空题11. 24512. AC⊥BD13. 2214. 615. 25816. 3三、解答题17.(1) 因为DE∥AC,AE∥BD,所以四边形AODE是平行四边形,因为在菱形ABCD中,AC⊥BD,所以∠AOD=90∘,所以四边形AODE是矩形.(2) 因为∠BCD=120∘,AB∥CD,所以∠ABC=180∘−120∘=60∘,因为AB=BC,所以△ABC是等边三角形,所以OA=12×6=3,OB=32×6=33,因为四边形ABCD是菱形,所以OD=OB=33,所以四边形AODE的面积=OA⋅OD=3×33=93.18.(1) ∵四边形ABCD是正方形,∴∠BCG=∠DCB=∠DCF=90∘,BC=DC,∵BE⊥DF,∴∠CBG+∠F=∠CDF+∠F,∴∠CBG=∠CDF,在△CBG和△CDF中,{∠BCG=∠DCF=90∘,BC=CD,∠CBG=∠CDF,∴△CBG≌△CDF(ASA),∴BG=DF=4,∴在Rt△BCG中,CG2+BC2=BG2,∴CG=42−32=7.(2) 过点C作CM⊥CE交BE于点M,∵△CBG≌△CDF,∴CG=CF,∠F=∠CGB,∵∠MCG+∠DCE=∠ECF+∠DCE=90∘,∴∠MCG=∠ECF,在 △MCG 和 △ECF 中,{∠MCG =∠ECF,CG =CF,∠F =∠CGB,∴△MCG ≌△ECF (ASA),∴MG =EF ,CM =CE ,∴△CME 是等腰直角三角形,∴ME =2CE ,又 ∵ME =MG +EG =EF +EG , ∴EF +EG =2CE .19.(1) ∵ 四边形 ABCD 是平行四边形, ∴OB =OD ,AB ∥CD ,∴∠EBO =∠FDO ,在 △OBE 与 △ODF 中,{∠EBO =∠FDO,OB =OD,∠BOE =∠DOF, ∴△OBE ≌△ODF (ASA),∴OE =OF ;(2) ∵OB =OD ,OE =OF , ∴ 四边形 BEDF 是平行四边形, ∵EF ⊥BD ,∴ 四边形 BEDF 是菱形.20.(1) ∵ 四边形 ABCD 是正方形, ∴AB =DA ,∠ABE =90∘=∠DAH , ∴∠HAO +∠OAD =90∘,∵AE⊥DH,∴∠ADO+∠OAD=90∘,∴∠HAO=∠ADO,在△ABE和△DAH中,{∠BAE=∠HDA,AB=AD,∠B=∠HAD,∴△ABE≌△DAH(ASA),∴AE=DH.(2) EF=GH,理由:将PE平移到AM处,则AM∥EF,AM=EF,将GH平移到DN处,则DN∥GH,DN=GH,∵EF⊥GH,∴AM⊥DN,根据(1)的结论得AM=DN,∴EF=GH.21.(1) ∵矩形ABCD中,AB∥CD,∴∠FCH=∠EAG,又∵CD=AB,BE=DF,∴CF=AE,且CH=AG,∠FCH=∠EAG,∴△AEG≌△CFH(SAS),∴GE=FH,∠CHF=∠AGE,∴∠FHG=∠EGH,∴FH∥GE,∴四边形EGFH是平行四边形.(2) ①连接AF,∵EG=EH,四边形EGFH是平行四边形,∴四边形GFHE为菱形,∴EF垂直平分GH,又∵AG=CH,∴EF垂直平分AC,∴AF=CF=AE.②设AE=x,则FC=AF=x,DF=8−x,在Rt△ADF中,AD2+DF2=AF2,∴42+(8−x)2=x2,解得x=5,∴AE=5.。
平行四边形和特殊四边形提高练习常考题和培优题(供参考)
平行四边形和特殊四边形提高练习常考题和培优题一.选择题(共5小题)1.如图,把大小相同的两个矩形拼成如下形状,则△FBD是()A.等边三角形B.等腰直角三角形C.一般三角形D.等腰三角形2.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=,CE=3,H 是AF的中点,那么CH的长是()A.3.5 B.C. D.23.如图,在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O 作OE垂直AC交AD于点E,则AE的长是()A.3 B.5 C.2.4 D.2.54.如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,EF=7,BC=10,则△EFM的周长是()A.17 B.21 C.24 D.275.如图,在矩形ABCD中,AB=6,AD=8,P是AD上不与A和D重合的一个动点,过点P分别作AC和BD的垂线,垂足为E、F,则PE+PF的值为()A.10 B.4.8 C.6 D.5二.填空题(共4小题)6.如图,在矩形ABCD中,对角线AC与BD相交于点O,AE平分∠BAD交BC 于点E,若∠CAE=15°,则∠BOE的度数等于.7.如图,将平行四边形ABCD的边DC延长到E,使CE=CD,连接AE交BC于F,∠AFC=n∠D,当n=时,四边形ABEC是矩形.8.如图,在正五边形ABCDE中,连接AC、AD、CE,CE交AD于点F,连接BF,则线段AC、BF、CD之间的关系式是.9.如图,在平面直角坐标系中,O为原点,四边形OABC是矩形,A(﹣10,0),C(0,3),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标是.三.解答题(共31小题)10.如图,正方形ABCD中,AE=AB,直线DE交BC于点F,求∠BEF的度数.11.如图,梯形ABCD中,AD∥BC,AB=CD,对角线AC、BD交于点O,AC⊥BD,E、F、G、H分别为AB、BC、CD、DA的中点.(1)求证:四边形EFGH为正方形;(2)若AD=1,BC=3,求正方形EFGH的边长.12.如图,点E、F分别是正方形ABCD的边CD和AD的中点,BE和CF交于点P.求证:AP=AB.13.如图,点P为正方形ABCD对角线BD上一点,PE⊥BC于E,PF⊥DC于F.(1)求证:PA=EF;(2)若正方形ABCD的边长为a,求四边形PFCE的周长.14.如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于G,连接DG.(1)求∠EDG的度数.(2)如图2,E为BC的中点,连接BF.①求证:BF∥DE;②若正方形边长为6,求线段AG的长.15.如图①,在正方形ABCD中,F是对角线AC上的一点,点E在BC的延长线上,且BF=EF.(1)求证:BF=DF;(2)求证:∠DFE=90°;(3)如果把正方形ABCD改为菱形,其他条件不变(如图②),当∠ABC=50°时,∠DFE=度.16.已知正方形ABCD中,对角线AC、BD相交于O.①如图1,若E是AC上的点,过A 作AG⊥BE于G,AG、BD交于F,求证:OE=OF②如图2,若点E在AC的延长线上,AG⊥EB交EB的延长线于G,AG延长DB 延长线于点F,其它条件不变,OE=OF还成立吗?17.如图,点P是菱形ABCD中对角线AC上的一点,且PE=PB.(1)求证:PE=PD;(2)求证:∠PDC=∠PEB;(3)若∠BAD=80°,连接DE,试求∠PDE的度数,并说明理由.18.如图,正方形ABCD中,AB=1,点P是BC边上的任意一点(异于端点B、C),连接AP,过B、D两点作BE⊥AP于点E,DF⊥AP于点F.(1)求证:EF=DF﹣BE;(2)若△ADF的周长为,求EF的长.19.如图,正方形ABCD的对角线AC、BD的交点为O,以O为端点引两条互相垂直的射线OM、ON,分别交边AB、BC于点E、F.(1)求证:0E=OF;(2)若正方形的边长为4,求EF的最小值.20.如图,在正方形ABCD中,点E是边AD上任意一点,BE的垂直平分线FG 交对角AC于点F.求证:(1)BF=DF;(2)BF⊥FE.21.已知:如图所示,四边形ABCD中,∠ABC=∠ADC=90°,M是AC上任一点,O是BD的中点,连接MO,并延长MO到N,使NO=MO,连接BN与ND.(1)判断四边形BNDM的形状,并证明;(2)若M是AC的中点,则四边形BNDM的形状又如何?说明理由.22.如图,在△ABC中,O是边AC上的一动点,过点O作直线MN∥BC,设MN 交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:OE=OF;(2)当点O运动到何处时,四边形AECF是矩形?23.(1)如图矩形ABCD的对角线AC、BD交于点O,过点D作DP∥OC,且DP=OC,连接CP,判断四边形CODP的形状并说明理由.(2)如果题目中的矩形变为菱形,结论应变为什么?说明理由.(3)如果题目中的矩形变为正方形,结论又应变为什么?说明理由.24.如图1,已知AB∥CD,AB=CD,∠A=∠D.(1)求证:四边形ABCD为矩形;(2)E是AB边的中点,F为AD边上一点,∠DFC=2∠BCE.①如图2,若F为AD中点,DF=1.6,求CF的长度:②如图2,若CE=4,CF=5,则AF+BC=,AF=.25.如图,直线a、b相交于点A,C、E分别是直线b、a上两点且BC⊥a,DE ⊥b,点M、N是EC、DB的中点.求证:MN⊥BD.26.如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?(3)经过多长时间,当PQ不平行于CD时,有PQ=CD.27.如图,E、F是正方形ABCD的边AD上的两个动点,满足AE=DF.连接CF 交BD于G,连接BE交AG于H.已知正方形ABCD的边长为4cm,解决下列问题:(1)求证:BE⊥AG;(2)求线段DH的长度的最小值.28.如图,点M是矩形ABCD的边AD的中点,点P是BC边上一动点,PE⊥MC,PF⊥BM,垂足为E、F.(1)当矩形ABCD的长与宽满足什么条件时,四边形PEMF为矩形?猜想并证明你的结论.(2)在(1)中,当点P运动到什么位置时,矩形PEMF变为正方形,为什么?29.某校数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD 中,AB=4,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.(1)求证:AP=CQ;(2)如图②,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;(3)在(2)的条件下,若AP=1,求PE的长.30.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,求t的值.31.如图,在Rt△ABC中,∠ABC=90°,点D是AC的中点,作∠ADB的角平分线DE交AB于点E,(1)求证:DE∥BC;(2)若AE=3,AD=5,点P为BC上的一动点,当BP为何值时,△DEP为等腰三角形.请直接写出所有BP的值.32.已知:如图,BF、BE分别是∠ABC及其邻补角的角平分线,AE⊥BE,垂足为点E,AF⊥BF,垂足为点F.EF分别交边AB、AC于点M、N.求证:(1)四边形AFBE是矩形;(2)BC=2MN.33.如图,在边长为5的菱形ABCD中,对角线BD=8,点O是直线BD上的动点,OE⊥AB于E,OF⊥AD于F.(1)对角线AC的长是,菱形ABCD的面积是;(2)如图1,当点O在对角线BD上运动时,OE+OF的值是否发生变化?请说明理由;(3)如图2,当点O在对角线BD的延长线上时,OE+OF的值是否发生变化?若不变请说明理由,若变化,请直接写出OE、OF之间的数量关系,不用明理由.34.如图,已知Rt△ABD≌Rt△FEC,且B、D、C、E在同一直线上,连接BF、AE.(1)求证:四边形ABFE是平行四边形.(2)若∠ABD=60°,AB=2cm,DC=4cm,将△ABD沿着BE方向以1cm/s的速度运动,设△ABD运动的时间为t,在△ABD运动过程中,试解决以下问题:(1)当四边形ABEF是菱形时,求t的值;(2)是否存在四边形ABFE是矩形的情形?如果存在,求出t的值,如果不存在,请说明理由.35.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.(2)如图1,求AF的长.(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t的值.36.如图1,E,F是正方形ABCD的边上两个动点,满足AE=DF,连接CF交BD 于G,连接BE交AG于点H(1)求证:AG⊥BE;(2)如图2,连DH,若正方形的边长为4,则线段DH长度的最小值是.37.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E时AD边的中点,点M时AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形.(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.38.如图,已知正方形OABC的边长为4,顶点A、C分别在x、y轴的正半轴上,M是BC的中点,点P(0,m)是线段oc上的一动点9点P不与点O、C重合0,直线PM交AB的延长线于点D.(1)求点D的坐标;(用含m的代数式表示)(2)若△APD是以AP边为一腰的等腰三角形,求m的值.39.如图,在△ABC中,∠ABC=90°,点D为AC的中点,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)证明:四边形BDFG是菱形;(2)若AC=10,CF=6,求线段AG的长度.40.如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连接EF与边CD相交于点G,连接BE与对角线AC相交于点H,AE=CF,BE=EG.(1)求证:EF∥AC;(2)求∠BEF大小;(3)若EB=4,则△BAE的面积为.初二数学平行四边形和特殊四边形提高练习常考题和培优题参考答案与试题解析一.选择题(共5小题)1.(2012春•炎陵县校级期中)如图,把大小相同的两个矩形拼成如下形状,则△FBD是()A.等边三角形B.等腰直角三角形C.一般三角形D.等腰三角形【分析】根据正方形性质得出FG=BC,∠G=∠C=90°,GB=CD,根据SAS证△FGB ≌△BCD,推出∠FBG=∠BDC,BF=BD,求出∠DBC+∠FBG=90°,求出∠FBD的度数即可.【解答】解:∵大小相同的两个矩形GFEB、ABCD,∴FG=BE=AD=BC,GB=EF=AB=CD,∠G=∠C=∠ABG=∠ABC=90°,∵在△FGB和△BCD中,∴△FGB≌△BCD,∴∠FBG=∠BDC,BF=BD,∵∠BDC+∠DBC=90°,∴∠DBC+∠FBG=90°,∴∠FBD=180°﹣90°=90°,即△FBD是等腰直角三角形,故选B.【点评】本题考查了等腰直角三角形,全等三角形的性质和判定,正方形性质的应用,关键是证出△FGB≌△BCD,主要考查学生运用性质进行推理的能力.2.(2015春•江阴市期中)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=,CE=3,H是AF的中点,那么CH的长是()A.3.5 B.C. D.2【分析】根据正方形的性质求出AB=BC=,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,求出AM=4,FM=2,∠AMF=90°,根据正方形性质求出∠ACF=90°,根据直角三角形斜边上的中线性质求出CH=AF,根据勾股定理求出AF即可.【解答】解:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=,CE=3,∴AB=BC=,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,则AM=BC+CE=4,FM=EF﹣AB=2,∠AMF=90°,∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°,∵H为AF的中点,∴CH=AF,在Rt△AMF中,由勾股定理得:AF==2,∴CH=,故选:C.【点评】本题考查了勾股定理,正方形的性质,直角三角形斜边上的中线的应用,解此题的关键是能正确作出辅助线,并求出AF的长和得出CH=AF,有一定的难度.3.(2015春•泗洪县校级期中)如图,在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则AE的长是()A.3 B.5 C.2.4 D.2.5【分析】根据矩形的性质得出∠CDE=90°,AD=BC=8,AB=DC=4,AO=OC,根据线段垂直平分线性质得出AE=CE,在Rt△CDE中,由勾股定理得出CE2=CD2+DE2,代入求出即可.【解答】解:∵在矩形ABCD中,AB=4,BC=8,∴∠CDE=90°,AD=BC=8,AB=DC=4,AO=OC,∵OE⊥AC,∴AE=CE,在Rt△CDE中,由勾股定理得:CE2=CD2+DE2,即AE2=42+(8﹣AE)2,解得:AE=5,故选B.【点评】本题考查了矩形的性质,勾股定理,线段垂直平分线性质的应用,解此题的关键是得出关于AE的方程.4.(2015秋•无锡期中)如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,EF=7,BC=10,则△EFM的周长是()A.17 B.21 C.24 D.27【分析】根据CF⊥AB于F,BE⊥AC于E,M为BC的中点,利用直角三角形斜边上的中线等于斜边的一半,求出FM和ME的长,即可求解.【解答】解:∵CF⊥AB,M为BC的中点,∴MF是Rt△BFC斜边上的中线,∴FM=BC=×10=5,同理可得,ME=BC=×10=5,又∵EF=7,∴△EFM 的周长=EF +ME +FM=7+5+5=17.故选A .【点评】此题主要考查学生对直角三角形斜边上的中线这个知识点的理解和掌握,解答此题的关键是利用直角三角形斜边上的中线等于斜边的一半,求出FM 和ME 的长.5.(2015春•乌兰察布校级期中)如图,在矩形ABCD 中,AB=6,AD=8,P 是AD 上不与A 和D 重合的一个动点,过点P 分别作AC 和BD 的垂线,垂足为E 、F ,则PE +PF 的值为( )A .10B .4.8C .6D .5【分析】连接OP ,利用勾股定理列式求出BD ,再根据矩形的对角线相等且互相平分求出OA 、OD ,然后根据S △AOD =S △AOP +S △DOP 列方程求解即可.【解答】解:如图,连接OP ,∵AB=6,AD=8,∴BD===10,∵四边形ABCD 是矩形,∴OA=OD=×10=5,∵S △AOD =S △AOP +S △DOP , ∴××6×8=×5•PE +×5•PF ,解得PE +PF=4.8.故选B .【点评】本题考查了矩形的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.二.填空题(共4小题)6.(2016春•东平县期中)如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,AE 平分∠BAD 交BC 于点E ,若∠CAE=15°,则∠BOE 的度数等于 75° .【分析】由矩形ABCD ,得到OA=OB ,根据AE 平分∠BAD ,得到等边三角形OAB ,推出AB=OB ,求出∠OAB 、∠OBC 的度数,根据平行线的性质和等角对等边得到OB=BE ,根据三角形的内角和定理即可求出答案.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,AC=BD,OA=OC,OB=OD,∠BAD=90°,∴OA=OB,∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE=45°=∠AEB,∴AB=BE,∵∠CAE=15°,∴∠DAC=45°﹣15°=30°,∠BAC=60°,∴△BAO是等边三角形,∴AB=OB,∠ABO=60°,∴∠OBC=90°﹣60°=30°,∵AB=OB=BE,∴∠BOE=∠BEO=(180°﹣30°)=75°.故答案为75°.【点评】本题主要考查了三角形的内角和定理,矩形的性质,等边三角形的性质和判定,平行线的性质,角平分线的性质,等腰三角形的判定等知识点,解此题的关键是求出∠OBC的度数和求OB=BE.7.(2014春•武昌区期中)如图,将平行四边形ABCD的边DC延长到E,使CE=CD,连接AE交BC于F,∠AFC=n∠D,当n=2时,四边形ABEC是矩形.【分析】首先根据四边形ABCD是平行四边形,得到四边形ABEC是平行四边形,然后证得FC=FE,利用对角线互相相等的四边形是矩形判定四边形ABEC是矩形.【解答】解:当∠AFC=2∠D时,四边形ABEC是矩形.∵四边形ABCD是平行四边形,∴BC∥AD,∠BCE=∠D,由题意易得AB∥EC,AB∥EC,∴四边形ABEC是平行四边形.∵∠AFC=∠FEC+∠BCE,∴当∠AFC=2∠D时,则有∠FEC=∠FCE,∴FC=FE,∴四边形ABEC是矩形,故答案为:2.【点评】此题考查了平行四边形的性质以及矩形的判定.此题难度适中,注意掌握数形结合思想的应用,解题的关键是了解矩形的判定定理.8.(2015春•南长区期中)如图,在正五边形ABCDE中,连接AC、AD、CE,CE 交AD于点F,连接BF,则线段AC、BF、CD之间的关系式是AC2+BF2=4CD2.【分析】首先根据菱形的判定方法,判断出四边形ABCF是菱形,再根据菱形的性质,即可判断出AC⊥BF;然后根据勾股定理,可得OB2+OC2=BC2,据此推得AC2+BF2=4CD2即可.【解答】解:∵五边形ABCDE是正五边形,∴AB∥CE,AD∥BC,∴四边形ABCF是平行四边形,又∵AB=BC=CD=DE=EA,∴四边形ABCF是菱形,∴AC⊥BF,∴OB2+OC2=BC2,∵AC=2OC,BF=2OB,∴AC2+BF2=(2OC)2+(2OB)2=4OC2+4OB2=4BC2,又∵BC=CD,∴AC2+BF2=4CD2.故答案为:AC2+BF2=4CD2.【点评】(1)此题主要考查了菱形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.(2)此题还考查了勾股定理的应用:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方,要熟练掌握.9.(2015春•株洲校级期中)如图,在平面直角坐标系中,O为原点,四边形OABC是矩形,A(﹣10,0),C(0,3),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标是(﹣4,3),或(﹣1,3),或(﹣9,3).【分析】先由矩形的性质求出OD=5,分情况讨论:(1)当OP=OD=5时;根据勾股定理求出PC,即可得出结果;(2)当PD=OD=5时;①作PE⊥OA于E,根据勾股定理求出DE,得出PC,即可得出结果;②作PF⊥OA于F,根据勾股定理求出DF,得出PC,即可得出结果.【解答】解:∵A(﹣10,0),C(0,3),∴OA=10,OC=3,∵四边形OABC是矩形,∴BC=OA=10,AB=OC=3,∵D是OA的中点,∴AD=OD=5,分情况讨论:(1)当OP=OD=5时,根据勾股定理得:PC==4,∴点P的坐标为:(﹣4,3);(2)当PD=OD=5时,分两种情况讨论:①如图1所示:作PE⊥OA于E,则∠PED=90°,DE==4,∴PC=OE=5﹣4=1,∴点P的坐标为:(﹣1,3);②如图2所示:作PF⊥OA于F,则DF==4,∴PC=OF=5+4=9,∴点P的坐标为:(﹣9,3);综上所述:点P的坐标为:(﹣4,3),或(﹣1,3),或(﹣9,3);故答案为:(﹣4,3),或(﹣1,3),或(﹣9,3).【点评】本题考查了矩形的性质、坐标与图形性质、等腰三角形的性质、勾股定理;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.三.解答题(共31小题)10.(2012春•西城区校级期中)如图,正方形ABCD中,AE=AB,直线DE交BC 于点F,求∠BEF的度数.【分析】设∠BAE=x°,根据正方形性质推出AB=AE=AD,根据等腰三角形性质和三角形的内角和定理求出∠AEB和∠AED的度数,根据平角定义求出即可.【解答】解:设∠BAE=x°,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵AE=AB,∴AB=AE=AD,∴∠ABE=∠AEB=(180°﹣∠BAE)=90°﹣x°,∠DAE=90°﹣x°,∠AED=∠ADE=(180°﹣∠DAE)=[180°﹣(90°﹣x°)]=45°+x°,∴∠BEF=180°﹣∠AEB﹣∠AED,=180°﹣(90°﹣x°)﹣(45°+x°),=45°,答:∠BEF的度数是45°.【点评】本题考查了三角形的内角和定理,等腰三角形性质,正方形性质的应用,解此题的关键是如何把已知角的未知角结合起来,题目比较典型,但是有一定的难度.11.(2012秋•高淳县期中)如图,梯形ABCD中,AD∥BC,AB=CD,对角线AC、BD交于点O,AC⊥BD,E、F、G、H分别为AB、BC、CD、DA的中点.(1)求证:四边形EFGH为正方形;(2)若AD=1,BC=3,求正方形EFGH的边长.【分析】(1)先由三角形的中位线定理求出四边相等,然后由AC⊥BD入手,进行正方形的判断.(2)连接EG,利用梯形的中位线定理求出EG的长,然后结合(1)的结论求出EH2=2,也即得出了正方形EHGF的边长.【解答】(1)证明:在△ABC中,∵E、F分别是AB、BC的中点,∴EF=同理FG=,GH=,HE=在梯形ABCD中,∵AB=DC,∴AC=BD,∴EF=FG=GH=HE∴四边形EFGH为菱形.设AC与EH交于点M在△ABD中,∵E、H分别是AB、AD的中点,∴EH∥BD,同理GH∥AC又∵AC⊥BD,∴∠BOC=90°.∴∠EHG=∠EMC=∠BOC=90°∴四边形EFGH为正方形.(2)解:连接EG,在梯形ABCD中,∵E、G分别是AB、DC的中点,∴EG=(AD+BC)=(1+3)=2,在Rt△HEG中,EG2=EH2+HG2,4=2EH2,EH2=2,则EH=.即四边形EFGH的边长为.【点评】此题考查了等腰梯形的性质及三角形、梯形的中位线定理,解答本题的关键是根据三角形的中位线定理得出EH=HG=GF=FE,这是本题的突破口.12.(2013秋•青岛期中)如图,点E、F分别是正方形ABCD的边CD和AD的中点,BE和CF交于点P.求证:AP=AB.【分析】延长CF、BA交于点M,先证△BCE≌△CDF,再证△CDF≌△AMF得BA=MA 由直角三角形中斜边中线等于斜边的一半,可得Rt△MBP中AP=BM,即AP=AB.【解答】证明:延长CF、BA交于点M,∵点E、F分别是正方形ABCD的边CD和AD的中点,∴BC=CD,∠BCE=∠CDF,CE=DF,∴△BCE≌△CDF,∴∠CBE=∠DCF.∵∠DCF+∠BCP=90°,∴∠CBE+∠BCP=90°,∴∠BPM=∠CBE+∠BCP=90°.又∵FD=FA,∠CDF=∠MAF,∠CFD=∠MFA,∴△CDF≌△AMF,∴CD=AM.∵CD=AB,∴AB=AM.∴PA是直角△BPM斜边BM上的中线,∴AP=BM,即AP=AB.【点评】本题考查了正方形各边长相等、各内角为直角的性质,全等三角形的判定和对应边相等的性质,直角三角形斜边中线长为斜边长一半的性质,本题中求证△CDF≌△AMF是解题的关键.13.(2015春•禹州市期中)如图,点P为正方形ABCD对角线BD上一点,PE⊥BC于E,PF⊥DC于F.(1)求证:PA=EF;(2)若正方形ABCD的边长为a,求四边形PFCE的周长.【分析】(1)连接PC,证四边形PFCE是矩形,求出EF=PC,证△ABP≌△CBP,推出AP=PC即可;(2)证△CBD是等腰直角三角形,求出BF、PF,求出周长即可.【解答】解:证明:(1)连接PC,∵四边形ABCD是正方形,∴AB=CB,∠ABD=∠CBD=45°,∠C=90°,在△ABP与△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PE⊥BC,PF⊥CD,∴∠PFC=90°,∠PEC=90°.又∵∠C=90°,∴四边形PFCE是矩形,∴EF=PC,∴PA=EF.(2)由(1)知四边形PFCE是矩形,∴PE=CF,PF=CE,又∵∠CBD=45°,∠PEB=90°,∴BE=PE,又BC=a,∴矩形PFCE的周长为2(PE+EC)=2(BE+EC)=2BC=2a.【点评】本题主要考查正方形的性质,全等三角形的性质和判定等知识点的连接和掌握,能证出AP=PC是解此题的关键.14.(2015秋•福建校级期中)如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于G,连接DG.(1)求∠EDG的度数.(2)如图2,E为BC的中点,连接BF.①求证:BF∥DE;②若正方形边长为6,求线段AG的长.【分析】(1)由正方形的性质可得DC=DA.∠A=∠B=∠C=∠ADC=90°,由折叠的性质得出∠DFE=∠C,DC=DF,∠1=∠2,再求出∠DFG=∠A,DA=DF,然后由“HL”证明Rt△DGA≌Rt△DGF,由全等三角形对应角相等得出∠3=∠4,得出∠2+∠3=45°即可;(2)①由折叠的性质和线段中点的定义可得CE=EF=BE,∠DEF=∠DEC,再由三角形的外角性质得出∠5=∠DEC,然后利用同位角相等,两直线平行证明即可;②设AG=x,表示出GF、BG,根据点E是BC的中点求出BE、EF,从而得到GE 的长度,再利用勾股定理列出方程求解即可;【解答】(1)解:如图1所示:∵四边形ABCD是正方形,∴DC=DA.∠A=∠B=∠C=∠ADC=90°,∵△DEC沿DE折叠得到△DEF,∴∠DFE=∠C,DC=DF,∠1=∠2,∴∠DFG=∠A=90°,DA=DF,在Rt△DGA和Rt△DGF中,,∴Rt△DGA≌Rt△DGF(HL),∴∠3=∠4,∴∠EDG=∠3+∠2=∠ADF+∠FDC,=(∠ADF+∠FDC),=×90°,=45°;(2)①证明:如图2所示:∵△DEC沿DE折叠得到△DEF,E为BC的中点,∴CE=EF=BE,∠DEF=∠DEC,∴∠5=∠6,∵∠FEC=∠5+∠6,∴∠DEF+∠DEC=∠5+∠6,∴2∠5=2∠DEC,即∠5=∠DEC,∴BF∥DE;②解:设AG=x,则GF=x,BG=6﹣x,∵正方形边长为6,E为BC的中点,∴CE=EF=BE=×6=3,∴GE=EF+GF=3+x,在Rt△GBE中,根据勾股定理得:(6﹣x)2+32=(3+x)2,解得:x=2,即线段AG的长为2.【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、翻折变换的性质;熟练掌握正方形的性质,并能进行推理论证与计算是解决问题的关键.15.(2016春•召陵区期中)如图①,在正方形ABCD中,F是对角线AC上的一点,点E在BC的延长线上,且BF=EF.(1)求证:BF=DF;(2)求证:∠DFE=90°;(3)如果把正方形ABCD改为菱形,其他条件不变(如图②),当∠ABC=50°时,∠DFE=50度.【分析】(1)根据正方形的四条边都相等可得BC=DC,对角线平分一组对角可得∠BCF=∠DCF,然后利用“边角边”证明即可;(2)易证∠FBE=∠FEB,又因为∠FBE=∠FDC,所以可证明∠FEB=∠FDC,进而可证明∠DFE=90°;(3)根据全等三角形对应角相等可得∠CBF=∠CDF,根据等边对等角可得∠CBF=∠E,然后求出∠DFE=∠DCE,再根据两直线平行,同位角相等可得∠DCE=∠ABC,从而得解.【解答】(1)证明:在正方形ABCD中,BC=DC,∠BCF=∠DCF=45°,∵在△BCF和△DCF中,,∴△BCF≌△DCF(SAS);∴BF=DF;(2)证明:∵BF=EF,∴∠FBE=∠FEB,又∵∠FBE=∠FDC,∴∠FEB=∠FDC,又∵∠DGF=∠EGC,∴∠DFG=∠ECG=90°,即∠DFE=90°;(3)证明:由(1)知,△BCF≌△DCF,∴∠CBF=∠CDF,∵EE=FB,∴∠CBF=∠E,∵∠DGF=∠EGC(对顶角相等),∴180°﹣∠DGF﹣∠CDF=180°﹣∠EGC﹣∠E,即∠DFE=∠DCE,∵AB∥CD,∴∠DCE=∠ABC,∴∠DFE=∠ABC=50°,故答案为:50.【点评】本题考查了正方形的性质,全等三角形的判定与性质,菱形的性质,等边对等角的性质,熟记正方形的性质确定出∠BCF=∠DCF是解题的关键.16.(2015秋•泗县期中)已知正方形ABCD中,对角线AC、BD相交于O.①如图1,若E是AC上的点,过A 作AG⊥BE于G,AG、BD交于F,求证:OE=OF②如图2,若点E在AC的延长线上,AG⊥EB交EB的延长线于G,AG延长DB 延长线于点F,其它条件不变,OE=OF还成立吗?【分析】①由正方形的性质得出OA=OB,AC⊥BD,得出∠BOE=∠AOF=90°,由角的互余关系得出∠OBE=∠OAF,由ASA证明△BOE≌△AOF,得出对应边相等即可;②由正方形的性质得出OA=OB,AC⊥BD,得出∠BOE=∠AOF=90°,由角的互余关系得出∠OBE=∠OAF,由ASA证明△BOE≌△AOF,得出对应边相等即可.【解答】①证明:∵四边形ABCD是正方形,∴OA=OB,AC⊥BD,∴∠BOE=∠AOF=90°,∴∠OEB+∠OBE=90°,∵AG⊥BE,∴∠AGE=90°,∴∠OEB+∠OAF=90°,∴∠OBE=∠OAF,在△BOE和△AOF中,,∴△BOE≌△AOF(ASA),∴OE=OF;②解:OE=OF还成立;理由如下:∵四边形ABCD是正方形,∴OA=OB,AC⊥BD,∴∠BOE=∠AOF=90°,∴∠OEB+∠OBE=90°,∵AG⊥BE,∴∠AGE=90°,∴∠OEB+∠OAF=90°,∴∠OBE=∠OAF,在△BOE和△AOF中,,∴△BOE≌△AOF(ASA),∴OE=OF.【点评】本题考查了正方形的性质、全等三角形的判定与性质;熟练掌握正方形的性质,并能进行推理论证是解决问题的关键.17.(2016春•邳州市期中)如图,点P是菱形ABCD中对角线AC上的一点,且PE=PB.(1)求证:PE=PD;(2)求证:∠PDC=∠PEB;(3)若∠BAD=80°,连接DE,试求∠PDE的度数,并说明理由.【分析】(1)由菱形的性质得出AB=BC=CD=AD,AB∥CD,∠DCP=∠BCP,由SAS 证明△CDP≌△CBP,得出PB=PD,再由PE=PB,即可得出结论;(2)由等腰三角形的性质得出∠PBC=∠PEB,由全等三角形的性质得出∠PDC=∠PBC,即可得出∠PDC=∠PEB;(3)由四边形内角和定理得出∠DPE=100°,由等腰三角形的性质和三角形内角和定理即可得出结果.【解答】(1)解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AB∥CD,∠DCP=∠BCP,在△DCP和△BCP中,,∴△CDP≌△CBP(SAS),∴PB=PD,∵PE=PB,∴PE=PD;(2)证明:∵PE=PB,∴∠PBC=∠PEB,∵△CDP≌△CBP,∴∠PDC=∠PBC,∴∠PDC=∠PEB;(3)解:如图所示:∠PDE=40°;理由如下:在四边形DPEC中,∵∠DPE=360°﹣(∠PDC+∠PEC+∠DCB)=360°﹣(∠PEB+∠PEC+∠DCB)=360°﹣(180°+80°)=100°,∵PE=PD∴∠PDE=∠PED=40°.【点评】本题考查了菱形的性质、全等三角形的判定与性质、等腰三角形的性质;熟练掌握菱形的性质,证明三角形全等是解决问题的关键.18.(2016春•昆山市期中)如图,正方形ABCD中,AB=1,点P是BC边上的任意一点(异于端点B、C),连接AP,过B、D两点作BE⊥AP于点E,DF⊥AP于点F.(1)求证:EF=DF﹣BE;(2)若△ADF的周长为,求EF的长.【分析】(1)由正方形的性质得出AD=AB,证出∠DAF=∠ABE,由AAS证明△ADF ≌△BAE,得出AF=BE,DF=AE,即可得出结论;(2)设DF=a,AF=b,EF=DF﹣AF=a﹣b>0,由已知条件得出DF+AF=,即a+b=,由勾股定理得出a2+b2=1,再由完全平方公式得出a﹣b即可.【解答】(1)证明:∵BE⊥AP,DF⊥AP,∴∠DFA=∠AEB=90°,∠ABE+∠BAE=90°,∵四边形ABCD为正方形,∴AD=AB,∠DAB=90°=∠DAF+∠BAE,∴∠DAF=∠ABE,在△ADF和△BAE中,,∴△ADF≌△BAE(AAS),∴AF=BE,DF=AE,∴EF=AE﹣AF=DF﹣BE;(2)解:设DF=a,AF=b,EF=DF﹣AF=a﹣b>0,∵△ADF的周长为,AD=1,∴DF+AF=,即a+b=,由勾股定理得:DF2+AF2=AD2,即a2+b2=1,∴(a﹣b)2=2(a2+b2)﹣(a+b)2=2﹣=,∴a﹣b=,即EF=.【点评】本题考查了正方形的性质、全等三角形的判定与性质、勾股定理等知识;熟练掌握正方形的性质,由勾股定理得出a与b的关系式是解决问题(2)的关键.19.(2015春•繁昌县期中)如图,正方形ABCD的对角线AC、BD的交点为O,以O为端点引两条互相垂直的射线OM、ON,分别交边AB、BC于点E、F.(1)求证:0E=OF;(2)若正方形的边长为4,求EF的最小值.【分析】(1)根据正方形的性质可得∠EAO=∠FBO=45°,OA=OB,再根据同角的余角相等可得∠AOE=∠BOE,然后利用“角边角”证明△AOE和△BOF全等,根据全等三角形对应边相等即可得证;(2)根据等腰直角三角形△EOF,当OE最小时,再根据勾股定理得出EF的最小值.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠AOB=90°,∠EAO=∠FBO=45°,∴∠AOE+∠BOE=90°,∵OE⊥OF,∴∠BOF+∠BOE=90°,∴∠AOE=∠BOF,在△AOE与△BOF中,,∴△AOE≌△BOF(ASA),∴OE=OF;(2)由(1)可知,△EOF是等腰直角三角形,∠EOF是直角,当OE最小时,EF的值最小,∵OA=OB,OE⊥AB,∴点E是AB的中点,∴OE=AB,∵AB=4,∴OE=2,∴EF=,即EF的最小值是2.【点评】本题考查了正方形的性质,解决此类问题的关键是正确的利用旋转不变量.正确作出辅助线是关键.20.(2016春•江宁区期中)如图,在正方形ABCD中,点E是边AD上任意一点,BE的垂直平分线FG交对角AC于点F.求证:(1)BF=DF;(2)BF⊥FE.【分析】(1)由正方形的性质得出AB=AD,∠BAF=∠DAF=45°,由SAS证明△BAF ≌△DAF,得出对应边相等即可;(2)由线段垂直平分线的性质得出BF=EF,证出EF=DF,得出∠FDE=∠FED,再由全等三角形的性质证出∠ABF=∠FED,由邻补角关系得出∠FED+∠FEA=180°,证出∠ABF+∠FEA=180°,由四边形内角和得出∠BAE+∠BFE=180°,求出∠BFE=90°即可.【解答】证明:如图所示:(1)∵四边形ABCD是正方形,∴AB=AD,∠BAF=∠DAF=45°,∠BAE=90°,在△BAF和△DAF中,,∴△BAF≌△DAF(SAS),∴BF=DF;(2)∵BE的垂直平分线FG交对角AC于点F,∴BF=EF,∵BF=DF,∴EF=DF,∴∠FDE=∠FED,∵△BAF≌△DAF,∴∠ABF=∠FDE,∴∠ABF=∠FED,∵∠FED+∠FEA=180°,∴∠ABF+∠FEA=180°,∴∠BAE+∠BFE=180°,∴∠BFE=90°,∴BF⊥FE.【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、四边形内角和定理等知识;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.21.(2015春•台州校级期中)已知:如图所示,四边形ABCD中,∠ABC=∠ADC=90°,M是AC上任一点,O是BD的中点,连接MO,并延长MO到N,使NO=MO,连接BN与ND.(1)判断四边形BNDM的形状,并证明;(2)若M是AC的中点,则四边形BNDM的形状又如何?说明理由.【分析】(1)由对角线互相平分的四边形是平行四边形即可得出结论;(2)由直角三角形斜边上1的中线性质得出BM=AC,DM=AC,得出BM=DM,即可得出结论.【解答】(1)解:四边形BNDM是平行四边形,理由如下:。
特殊平行四边形测试题
特殊平行四边形测试题特殊平行四边形是指在平行四边形的基础上,具备某种特定性质的四边形。
它们在几何学中具有一定的研究价值和实际应用。
本文将介绍几道特殊平行四边形的测试题,并详细解答每道题目。
一、题目一已知平行四边形ABCD中,角A的度数是60°,角B的度数是120°,连结BD并延长交线段AC于点E。
请判断并证明四边形AEBD是否为一个特殊平行四边形。
解答:首先,连接AE。
由于平行四边形ABCD的对角线互相平分,所以有∠BED=∠BAC=60°。
然后,观察四边形AEBD。
由于∠BAD=∠BDA=180°-60°-120°=60°,而∠BED=60°,所以∠BAD=∠BED,即两对角相等。
最后,观察四边形AEBD的边长。
根据平行四边形性质,AB∥CD,AE∥BD,因此四边形AEBD为平行四边形。
综上所述,四边形AEBD满足特殊平行四边形的性质,即AEBD为一个特殊平行四边形。
二、题目二在平行四边形ABCD中,连结AC并延长交线段BD于点E,若∠BAC=50°,∠ACB=30°,请判断并证明四边形AEBD是否为一个特殊平行四边形。
解答:首先,连接AE。
由平行四边形的性质可知,∠BAD=∠BDA=180°-∠BAC-∠ACB=180°-50°-30°=100°。
然后,观察四边形AEBD。
由于∠BAC=50°,而∠BED=∠BAC=50°,因此∠BAC=∠BED,即两对角相等。
最后,观察四边形AEBD的边长。
根据平行四边形性质,AB∥CD,AE∥BD,因此四边形AEBD为平行四边形。
综上所述,四边形AEBD满足特殊平行四边形的性质,即AEBD为一个特殊平行四边形。
三、题目三在平行四边形ABCD中,连结AC并延长交线段BD于点E,若∠AEB=110°,请判断并证明四边形AEBD是否为一个特殊平行四边形。
特殊的平行四边形练习题
特殊的平行四边形练习题一.选择题(共12小题)1.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5 D.42.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.3.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D 是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1) B.(3,)C.(3,)D.(3,2)4.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.45.如图,菱形ABCD中,AB∥y轴,且B(﹣3,1),C(1,4),则点A的坐标为()A.(﹣3,5)B.(1,8) C.(﹣3,6)D.(1,9)6.如图,正方形AEFG的边AE放置在正方形ABCD的对角线AC上,EF与CD交于点M,得四边形AEMD,且两正方形的边长均为2,则两正方形重合部分(阴影部分)的面积为()A.﹣4+4B.4+4 C.8﹣4D.+17.如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF 的周长为4,则正方形ABCD的边长为()A.2 B.3 C.4 D.58.如图,在正方形ABCD中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为()A.B.C.D.9.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB上一动点,过点D 作DE⊥AC于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是()A.5 B.4.8 C.4.6 D.4.410.如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6,那么AC的长等于()A.12 B.16 C.4 D.811.如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE 沿AE所在直线翻折得△AB′E,AB′与CD边交于点F,则B′F的长度为()A.1 B.C.2D.2﹣212.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点,若AM=2,则正方形的边长为()A.4 B.3 C.2+D.二.填空题(共5小题)13.如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE ⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值是.14.如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是.15.如图,平行四边形ABCD的周长为20cm,对角线相交于点O,且EO⊥BD于点O交AD于E,则△ABE的周长为cm.16.如图,P是平行四边形ABCD内一点,且S△PAB=5,S△PAD=2,则阴影部分的面积为.17.如图,D,E分别为△ABC的AC,BC边的中点,将此三角形沿DE折叠,使点C落在AB边上的点P处.若∠CDE=50°,则∠APD等于.三.解答题(共13小题)18.如图1,正方形ABCD中,E为BC上一点,过B作BG⊥AE于G,延长BG 至点F使∠CFB=45°(1)求证:AG=FG;(2)如图2延长FC、AE交于点M,连接DF、BM,若C为FM中点,BM=10,求FD的长.19.感知:如图1,在正方形ABCD中,E是AB上一点,将点E绕点C顺时针旋转90°到点F,易知△CEB≌△CFD.探究:如图2,在图1中的基础上作∠ECF的角平分线CG,交AD于点G,连接EG,求证:EG=BE+GD.应用:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC.E 是AB上一点,且∠DCE=45°,AD=6,DE=10,求直角梯形ABCD的面积.20.如图,在矩形ABCD中,AB=24cm,BC=8cm,点P从A开始沿折线A﹣B﹣C ﹣D以4cm/s的速度移动,点Q从C开始沿CD边以2cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动时间为t(s).当t为何值时,四边形QPBC为矩形?21.如图,在边长为4的菱形ABCD中,BD=4,E、F分别是AD、CD上的动点(包含端点),且AE+CF=4,连接BE、EF、FB.(1)试探究BE与BF的数量关系,并证明你的结论;(2)求EF的最大值与最小值.22.如图所示,在正方形ABCD的边CB的延长线上取点F,连结AF,在AF上取点G,使得AG=AD,连结DG,过点A作AE⊥AF,交DG于点E.(1)若正方形ABCD的边长为4,且AB=2FB,求FG的长;(2)求证:AE+BF=AF.23.如图,点E为矩形ABCD外一点,DE⊥BD于点D,DE=CE,BD的垂直平分线交AD于点F,交BD于点G.连接EF交BD于点H.(1)若∠CDE=∠DEH=∠HEC,求∠ABG的度数;(2)求证:H是EF的中点.24.如图,菱形ABCD中,点E、M在AD上,且CD=CM,点F为AB上的点,且∠ECF=∠B.(1)若菱形ABCD的周长为8,且∠D=67.5°,求△MCD的面积;(2)求证:BF=EF﹣EM.25.如图,在菱形ABCD中,∠B=60°,点E、F分别在边BC、CD上.(1)若AB=4,试求菱形ABCD的面积;(2)若∠AEF=60°,求证:AB=CE+CF.26.如图,已知正方形ABCD中,边长为10厘米,点E在AB边上,BE=6厘米.(1)如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q 在线段CD上由C点向D点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPE与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动,求经过多长时间点P与点Q第一次在正方形ABCD边上的何处相遇?27.如图,在正方形ABCD中,E、F分别为BC、AB上两点,且BE=BF,过点B 作AE的垂线交AC于点G,过点G作CF的垂线交BC于点H延长线段AE、GH 交于点M.(1)求证:∠BFC=∠BEA;(2)求证:AM=BG+GM.28.如图,正方形ABCD中,对角线AC与BD相交于O,∠ADE=15°,过D作DG ⊥ED于D,且AG=AD,过G作GF∥AC交ED的延长线于F.(1)若ED=,求AG;(2)求证:2DF+ED=BD.29.已知正方形ABCD如图所示,连接其对角线AC,∠BCA的平分线CF交AB 于点F,过点B作BM⊥CF于点N,交AC于点M,过点C作CP⊥CF,交AD延长线于点P.(1)若正方形ABCD的边长为4,求△ACP的面积;(2)求证:CP=BM+2FN.30.在正方形ABCD中,点E为BC边上的一点,连接DE,点G为DE中点,连接GA、GB、GC,GB与AC交于点H,过点B作BM垂直DE延长线于点M.(1)求证:GA=GB;(2)若AH=CH,求证:AG=BM.特殊的平行四边形练习题参考答案与试题解析一.选择题(共12小题)1.(2016•枣庄)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5 D.4【解答】解:∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,=,∵S菱形ABCD∴,∴DH=,故选A.2.(2016•威海)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.【解答】解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∴BH=,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故选:D.3.(2016•苏州)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1) B.(3,)C.(3,)D.(3,2)【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.4.(2016•龙岩模拟)如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【解答】解:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选:C.5.(2016•青山区模拟)如图,菱形ABCD中,AB∥y轴,且B(﹣3,1),C(1,4),则点A的坐标为()A.(﹣3,5)B.(1,8) C.(﹣3,6)D.(1,9)【解答】解:作BM⊥CD于M,如图所示:∵B(﹣3,1),C(1,4),∴BN=3,BM=3+1=4,CM=4﹣1=3,ON=1,∴BC==5,∵四边形ABCD是菱形,∴AB=BC=5,∵AB∥y轴,∴点A的坐标为(﹣3,6);故选:C.6.(2016•高县一模)如图,正方形AEFG的边AE放置在正方形ABCD的对角线AC 上,EF 与CD 交于点M ,得四边形AEMD ,且两正方形的边长均为2,则两正方形重合部分(阴影部分)的面积为( )A .﹣4+4B .4+4C .8﹣4D .+1【解答】解:∵四边形ABCD 是正方形,∴∠D=90°,∠ACD=45°,AD=CD=2,则S △ACD =AD•CD=×2×2=2; AC=AD=2,则EC=2﹣2,∵△MEC 是等腰直角三角形,∴S △MEC =ME•EC=(2﹣2)2=6﹣4,∴阴影部分的面积=S △ACD ﹣S △MEC =2﹣(6﹣4)=4﹣4. 故选:A .7.(2016•扬州二模)如图,在正方形ABCD 中,E 、F 分别是边BC 、CD 上的点,∠EAF=45°,△ECF 的周长为4,则正方形ABCD 的边长为( )A .2B .3C .4D .5【解答】解:将△DAF 绕点A 顺时针旋转90度到△BAF′位置,由题意可得出:△DAF ≌△BAF′,∴DF=BF′,∠DAF=∠BAF′,∴∠EAF′=45°,在△FAE和△EAF′中,,∴△FAE≌△EAF′(SAS),∴EF=EF′,∵△ECF的周长为4,∴EF+EC+FC=FC+CE+EF′=FC+BC+BF′=DF+FC+BC=4,∴2BC=4,∴BC=2.故选A.8.(2016•苏州模拟)如图,在正方形ABCD中,AD=5,点E、F是正方形ABCD 内的两点,且AE=FC=3,BE=DF=4,则EF的长为()A.B.C.D.【解答】解:延长AE交DF于G,如图:∵AB=5,AE=3,BE=4,∴△ABE是直角三角形,∴同理可得△DFC是直角三角形,可得△AGD是直角三角形,∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE,在△AGD和△BAE中,,∴△AGD≌△BAE(ASA),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,同理可得:GF=1,∴EF=,故选D.9.(2016•桂林模拟)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB 上一动点,过点D作DE⊥AC于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是()A.5 B.4.8 C.4.6 D.4.4【解答】解:如图,连接CD.∵∠ACB=90°,AC=6,BC=8,∴AB==10,∵PE⊥AC,PF⊥BC,∠C=90°,∴四边形CFDE是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时,线段EF的值最小,=BC•AC=AB•CD,此时,S△ABC即×8×6=×10•CD,解得CD=4.8,∴EF=4.8.故选B.10.(2010•天门校级自主招生)如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6,那么AC的长等于()A.12 B.16 C.4 D.8【解答】解:在AC上取一点G使CG=AB=4,连接OG∵∠ABO=90°﹣∠AHB,∠OCG=90°﹣∠OHC,∠OHC=∠AHB∴∠ABO=∠OCG∵OB=OC,CG=AB∴△OGC≌△OAB∴OG=OA=6,∠BOA=∠GOC∵∠GOC+∠GOH=90°∴∠GOH+∠BOA=90°即:∠AOG=90°∴△AOG是等腰直角三角形,AG=12(勾股定理)∴AC=16.故选B.11.(2016•平房区模拟)如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC 边上的高,将△ABE沿AE所在直线翻折得△AB′E,AB′与CD边交于点F,则B′F 的长度为()A.1 B.C.2D.2﹣2【解答】解:∵在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,∴AE=,由折叠易得△ABB′为等腰直角三角形,∴S=BA•AB′=2,S△ABE=1,△ABB′∴CB′=2BE﹣BC=2﹣2,∵AB∥CD,∴∠FCB′=∠B=45°,又由折叠的性质知,∠B′=∠B=45°,∴CF=FB′=2﹣.故选C.12.(2016•夏津县一模)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点,若AM=2,则正方形的边长为()A.4 B.3 C.2+D.【解答】解:过点M作MF⊥AC于点F,如图所示.∵MC平分∠ACB,四边形ABCD为正方形,∴∠CAB=45°,FM=BM.在Rt△AFM中,∠AFM=90°,∠FAM=45°,AM=2,∴FM=AM•sin∠FAM=.AB=AM+MB=2+.故选C.二.填空题(共5小题)13.(2016春•柳州期末)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值是.【解答】解:∵PE⊥AB,PF⊥AC,∠BAC=90°,∴∠EAF=∠AEP=∠AFP=90°,∴四边形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交点就是M点,∵当AP的值最小时,AM的值就最小,∴当AP⊥BC时,AP的值最小,即AM的值最小.∵AP×BC=AB×AC,∴AP×BC=AB×AC,在Rt△ABC中,由勾股定理,得BC==10,∵AB=6,AC=8,∴10AP=6×8,∴AP=∴AM=,故答案为:.14.(2017•桂林一模)如图,在边长为4的菱形ABCD中,∠A=60°,M是AD 边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是2﹣2.【解答】解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MF⊥DC于点F,∵在边长为4的菱形ABCD中,∠A=60°,M为AD中点,∴MD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=1,∴FM=DM×cos30°=,∴MC==2,∴A′C=MC﹣MA′=2﹣2.故答案为:2﹣2.15.(2017春•广安月考)如图,平行四边形ABCD的周长为20cm,对角线相交于点O,且EO⊥BD于点O交AD于E,则△ABE的周长为10cm.【解答】解:∵AC,BD相交于点O,∴O为BD的中点,∵OE⊥BD,∴BE=DE,△ABE的周长=AB+AE+BE=AB+AD=×20=10(cm),故答案为:10.16.(2016•甘肃模拟)如图,P是平行四边形ABCD内一点,且S△PAB=5,S△PAD=2,则阴影部分的面积为3.【解答】解:∵S △PAB +S △PCD =S ▱ABCD =S △ACD ,∴S △ACD ﹣S △PCD =S △PAB ,则S △PAC =S △ACD ﹣S △PCD ﹣S △PAD ,=S △PAB ﹣S △PAD ,=5﹣2,=3.故答案为:3.17.(2016秋•安丘市校级月考)如图,D ,E 分别为△ABC 的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若∠CDE=50°,则∠APD 等于 50° .【解答】解:由折叠得:∠PDE=∠CDE=50°,∵D ,E 分别为△ABC 的AC ,BC 边的中点,∴DE ∥AB ,∴∠APD=∠PDE=50°,故答案为:50°.三.解答题(共13小题)18.(2016•重庆模拟)如图1,正方形ABCD 中,E 为BC 上一点,过B 作BG ⊥AE 于G ,延长BG 至点F 使∠CFB=45°(1)求证:AG=FG;(2)如图2延长FC、AE交于点M,连接DF、BM,若C为FM中点,BM=10,求FD的长.【解答】(1)证明:过C点作CH⊥BF于H点,∵∠CFB=45°∴CH=HF,∵∠ABG+∠BAG=90°,∠FBE+∠ABG=90°∴∠BAG=∠FBE,∵AG⊥BF,CH⊥BF,∴∠AGB=∠BHC=90°,在△AGB和△BHC中,∵∠AGB=∠BHC,∠BAG=∠HBC,AB=BC,∴△AGB≌△BHC,∴AG=BH,BG=CH,∵BH=BG+GH,∴BH=HF+GH=FG,∴AG=FG;(2)解:∵CH⊥GF,∴CH∥GM,∵C为FM的中点,∴CH=GM,∴BG=GM,∵BM=10,∴BG=2,GM=4,∴AG=4,AB=10,∴HF=2,∴CF=2×=2,∴CM=2,过B点作BK⊥CM于K,∵CK=CM=CF=,∴BK=3,过D作DQ⊥MF交MF延长线于Q,∴△BKC≌△CQD∴CQ=BK=3,DQ=CK=,∴QF=3﹣2=,∴DF==2.19.(2016•广水市一模)感知:如图1,在正方形ABCD中,E是AB上一点,将点E绕点C顺时针旋转90°到点F,易知△CEB≌△CFD.探究:如图2,在图1中的基础上作∠ECF的角平分线CG,交AD于点G,连接EG,求证:EG=BE+GD.应用:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC.E 是AB上一点,且∠DCE=45°,AD=6,DE=10,求直角梯形ABCD的面积.【解答】探究:证明:∵根据旋转的性质得:△EBC≌△FDC,∴CE=CF,DF=BE,∵CG平分∠ECF,∴∠ECG=∠FCG,在△ECG和△FCG中∴△ECG≌△FCG(SAS),∴EG=GF,∵GF=DG+DF=DG+BE,∴EG=BE+GD;应用:解:如图3,过C作CH⊥AD于H,旋转△BCE到△CHM,则∠A=∠B=∠CHA=90°,∵AB=BC,∴四边形ABCH是正方形,∵∠DCE=45°,AH=BC,∴∠DCH+∠ECB=90°﹣45°=45°,∵由已知证明知:△EBC≌△MHC,∴∠ECB=∠MCH,∴∠DCH+∠MCH=45°,∴CD平分∠ECM,∴由探究证明知:DE=BE+DH,在Rt△AED中,DE=10,AD=6,由勾股定理得:AE=8,设BE=x,则BC=AB=x+8=AH,即x+8=6+10﹣x,x=4,BE=4,AB=4+8=12,BC=AB=12,∴梯形ABCD的面积是×(6+12)×12=108.20.(2017•临沂模拟)如图,在矩形ABCD中,AB=24cm,BC=8cm,点P从A 开始沿折线A﹣B﹣C﹣D以4cm/s的速度移动,点Q从C开始沿CD边以2cm/s 的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动时间为t(s).当t为何值时,四边形QPBC为矩形?【解答】解:根据题意得:CQ=2t,AP=4t,则BP=24﹣4t,∵四边形ABCD是矩形,∴∠B=∠C=90°,CD∥AB,∴只有CQ=BP时,四边形QPBC是矩形,即2t=24﹣4t,解得:t=4,答:当t=4s时,四边形QPBC是矩形.21.(2016•黄埔区模拟)如图,在边长为4的菱形ABCD中,BD=4,E、F分别是AD、CD上的动点(包含端点),且AE+CF=4,连接BE、EF、FB.(1)试探究BE与BF的数量关系,并证明你的结论;(2)求EF的最大值与最小值.【解答】解:(1)BE=BF,证明如下:∵四边形ABCD是边长为4的菱形,BD=4,∴△ABD、△CBD都是边长为4的正三角形,∵AE+CF=4,∴CF=4﹣AE=AD﹣AE=DE,又∵BD=BC=4,∠BDE=∠C=60°,在△BDE和△BCF中,,∴△BDE≌△BCF(SAS),∴BE=BF;(2)∵△BDE≌△BCF,∴∠EBD=∠FBC,∴∠EBD+∠DBF=∠FBC+∠DBF,∴∠EBF=∠DBC=60°,又∵BE=BF,∴△BEF是正三角形,∴EF=BE=BF,当动点E运动到点D或点A时,BE的最大值为4,当BE⊥AD,即E为AD的中点时,BE的最小值为,∵EF=BE,∴EF的最大值为4,最小值为.22.(2014秋•重庆月考)如图所示,在正方形ABCD的边CB的延长线上取点F,连结AF,在AF上取点G,使得AG=AD,连结DG,过点A作AE⊥AF,交DG于点E.(1)若正方形ABCD的边长为4,且AB=2FB,求FG的长;(2)求证:AE+BF=AF.【解答】解:(1)∵四边形ABCD是正方形,且边长为4,∴∠ABF=90°,AB=AD=4,∵在Rt△ABF中,AB=2FB,∴FB=×4=2,∴AF==2,∵AG=AD=4,∴FG=AF﹣AG=2﹣4;(2)证明:在BC上截取BM=AE,连接AM,∵AG=AD,AB=AD,∴AG=AB,∵AE⊥AF,∴∠EAG=∠ABM=90°,在△AGE和△BAM中,,∴△AGE≌△BAM(SAS),∴∠AMB=∠AEG,∠BAM=∠AGD,∵AG=AD,∴∠AGD=∠ADG,∴∠BAM=∠ADG,∵∠BAD=90°,∴∠FAB+∠BAE=∠BAE+∠EAD=90°,∴∠FAB=∠EAD,∴∠AEG=∠EAD+∠ADG=∠FAB+∠BAM=∠FAM,∴∠FAM=∠AMB,∴AF=FM=BF+BM=BF+AE.23.(2013•沙坪坝区校级模拟)如图,点E为矩形ABCD外一点,DE⊥BD于点D,DE=CE,BD的垂直平分线交AD于点F,交BD于点G.连接EF交BD于点H.(1)若∠CDE=∠DEH=∠HEC,求∠ABG的度数;(2)求证:H是EF的中点.【解答】(1)解:设∠CDE=x°,∵DE=CE,∴∠CDE=∠DCE=x°,∵∠CDE=∠DEH=∠HEC,∴∠deh=x°,∠HEC=2x°,∵∠CDE+∠DEC+∠DCE=180°,∴5x=180°,x=36°,∵DE⊥BD,∴∠EDB=90°,∴∠BDC=90°﹣36°=54°,∵四边形ABCD是矩形,∴AB∥CD,∴∠ABG=∠BDC=54°;(2)证明:连接AC,GE,∵四边形ABCD是矩形,∴AC=BD,AG=GC,BG=GD,∴GD=GC,∴G在CD的垂直平分线上,∵DE=CE,∴E在CD的垂直平分线上,∴GE为CD的垂直平分线,∴DM=CM,∵BG=DG,∴GM∥BC,∴∠DGE=∠DBC,∵四边形ABCD是矩形,∴AD∥BC,∴∠DBC=∠FDG,∴∠DGE=∠FDG,∴FD∥GE,∵FG⊥BD,DE⊥BD,∴FG∥DE,∴四边形FDEG是平行四边形,∴H为EF的中点.24.(2013•渝中区校级模拟)如图,菱形ABCD中,点E、M在AD上,且CD=CM,点F为AB上的点,且∠ECF=∠B.(1)若菱形ABCD的周长为8,且∠D=67.5°,求△MCD的面积;(2)求证:BF=EF﹣EM.【解答】解:(1)过点D作DH⊥MC于点H,∵菱形ABCD的周长为8,∴CD=2,∵CD=CM,且∠D=67.5°,∴∠2=∠D=67.5°,∠DCH=45°,CM=2,在Rt△CDH中,DH=DC×sin45°=,=CM•DH=×2×=;∴S△MCD(2)延长AB到N,使BN=EM,连接CN,∵CD=CM,CD=CB,且∠ABC=∠D,∴BC=CM,∠2=∠ABC,∵∠1+∠ABC=∠2+∠5∴∠1=∠5在△BNC和△MEC中,,∴△BNC≌△MEC(SAS),∴∠4=∠3,CE=NC,∵AD∥BC,∴∠2=∠BCM=∠ABC,∵∠ECF=∠ABC,∴∠3+∠BCF=∠4+∠BCF=∠ECF,在△NCF和△ECF中,,∴△NCF≌△ECF(SAS),∴FN=EF,EF=FB+NB=FB+EM,∴FB=EF﹣EM.25.(2013•重庆模拟)如图,在菱形ABCD中,∠B=60°,点E、F分别在边BC、CD上.(1)若AB=4,试求菱形ABCD的面积;(2)若∠AEF=60°,求证:AB=CE+CF.【解答】(1)解:在菱形ABCD中,AB=BC,∵∠B=60°,∴△ABC是等边三角形,∵AB=4,∴等边△ABC底边BC上的高为4×=2,∴菱形ABCD的面积=4×2=8;(2)证明:如图,将△AEC绕点A顺时针旋转60°得到△AE′B,则△AEE′为等边三角形,∴∠AE′E=60°,∵∠AEF=60°,∴∠CEF=∠AEC﹣∠AEF=∠AEC﹣60°,又∵∠BE′E=∠AE′B﹣∠AE′E=∠AE′B﹣60°,∴∠BE′E=∠CEF,∵∠B=60°,菱形的对边AB∥CD,∴∠ECF=180°﹣60°=120°,又∵∠E′BE=∠ABC+∠ABE′=∠ABC+∠ACB=60°+60°=120°,∴∠E′BE=∠ECF,在△EE′B和△FEC中,,∴△EE′B≌△FEC(ASA),∴BE=CF,∴BC=CE+BE=CE+CF,∵AB=BC,∴AB=CE+CF.26.(2015•魏县二模)如图,已知正方形ABCD中,边长为10厘米,点E在AB 边上,BE=6厘米.(1)如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q 在线段CD上由C点向D点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPE与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动,求经过多长时间点P与点Q第一次在正方形ABCD边上的何处相遇?【解答】解:(1)①∵t=1秒,∴BP=CQ=4×1=4厘米,(1分)∵正方形ABCD中,边长为10厘米∴PC=BE=6厘米,(1分)又∵正方形ABCD,∴∠B=∠C,(1分)∴△BPE≌△CQP(1分)②∵V P≠V Q,∴BP≠CQ,又∵△BPE≌△CQP,∠B=∠C,则BP=PC,而BP=4t,CP=10﹣4t,∴4t=10﹣4t(2分)∴点P,点Q运动的时间秒,(1分)∴厘米/秒.(1分)(2)设经过x秒后点P与点Q第一次相遇,由题意,得4.8x﹣4x=30,(1分)解得秒.(1分)∴点P共运动了厘米(1分)∴点P、点Q在A点相遇,∴经过秒点P与点Q第一次在A点相遇.(1分)27.(2015•重庆模拟)如图,在正方形ABCD中,E、F分别为BC、AB上两点,且BE=BF,过点B作AE的垂线交AC于点G,过点G作CF的垂线交BC于点H 延长线段AE、GH交于点M.(1)求证:∠BFC=∠BEA;(2)求证:AM=BG+GM.【解答】证明:(1)在正方形ABCD中,AB=BC,∠ABC=90°,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS),∴∠BFC=∠BEA;(2)连接DG,在△ABG和△ADG中,,∴△ABG≌△ADG(SAS),∴BG=DG,∠2=∠3,∵BG⊥AE,∴∠BAE+∠2=90°,∵∠BAD=∠BAE+∠4=90°,∴∠2=∠3=∠4,∵GM⊥CF,∴∠BCF+∠1=90°,又∠BCF+∠BFC=90°,∴∠1=∠BFC=∠2,∴∠1=∠3,在△ADG中,∠DGC=∠3+45°,∴∠DGC也是△CGH的外角,∴D、G、M三点共线,∵∠3=∠4(已证),∴AM=DM,∵DM=DG+GM=BG+GM,∴AM=BG+GM.28.(2013•重庆模拟)如图,正方形ABCD中,对角线AC与BD相交于O,∠ADE=15°,过D作DG⊥ED于D,且AG=AD,过G作GF∥AC交ED的延长线于F.(1)若ED=,求AG;(2)求证:2DF+ED=BD.【解答】解(1)在正方形ABCD中,AC⊥BD,∠ADO=45°,∵∠ADE=15°,∴∠EDO=30°∵DE=4,∠EOD=90°,∴OD=6,在Rt△AOD中,AD=12,∴AG=AD=12;(2)延长GF,过C作CM∥AG,交GF的延长线于M,连接DM.∵AC∥GF,即AC∥GM,∴四边形ACMG是平行四边形,∴AG=AD=DC=CM,∠AED=∠DFM=120°,∵∠ADE=15°∴∠DAG=30°,∠GAE=∠CMF=75°,∠ACM=105°,∴∠DCM=60°,∴△DCM是等边三角形,∴DM=AD,∵∠DMF=∠ADE=15°∴△AED≌△DFM,∴FM=ED,AE=DF又∵AC=GM,即BD=GF+FM=GF+ED 又在RT△GDF中,∠GFD=60°,∴∠DGF=30°,∴GF=2DF,∴BD=2DF+ED.29.(2013•重庆模拟)已知正方形ABCD如图所示,连接其对角线AC,∠BCA 的平分线CF交AB于点F,过点B作BM⊥CF于点N,交AC于点M,过点C作CP⊥CF,交AD延长线于点P.(1)若正方形ABCD的边长为4,求△ACP的面积;(2)求证:CP=BM+2FN.【解答】解:∵四边形ABCD是正方形,AC是对角线,∴∠1=∠2=22.5°,又∵CP⊥CF,∴∠3+∠FCD=∠1+∠FCD=90°∴∠3=∠1=22.5°∴∠P=67.5°又四边形ABCD为正方形,∴∠ACP=45+22.5=67.5°∴∠P=∠ACP∴AP=AC又AC=AB=4∴AP=4,=AP•CD=4×4=8;∴S△APC(2)∵在△PDC和△FBC中,∴△PDC≌△FBC∴CP=CF在CN上截取NH=FN,连接BH∵FN=NH,且BN⊥FH∴BH=BF∴∠4=∠5∴∠4=∠1=∠5=22.5°又∠4+∠BFC=∠1+∠BFC=90°∴∠HBC=∠BAM=45°在△AMB和△BHC中,,∴△AMB≌△BHC,∴CH=BM∴CF=BM+2FN∴CP=BM+2FN.30.(2013秋•重庆校级期中)在正方形ABCD中,点E为BC边上的一点,连接DE,点G为DE中点,连接GA、GB、GC,GB与AC交于点H,过点B作BM垂直DE延长线于点M.(1)求证:GA=GB;(2)若AH=CH,求证:AG=BM.【解答】(1)证明:∵四边形ABCD是正方形,∴AD=BC,∠BCD=90°,又∵点G为DE中点,∴CG=GE=GD,∴∠GCD=∠GDC,∴∠BCG=∠ADG,在△ADG与△BCG中,,∴△ADG≌△BCG(SAS),∴GA=GB.(2)证明:如图,过点H作HN⊥BC于N,∵AC是正方形ABCD的对角线,∴∠ACB=45°,∴△CHN为等腰直角三角形,∴HN=CN,易得AB∥HN,∴==,∴=,∴∠HBN=30°,∵∠ABC=90°,∴∠ABG=90°﹣30°=60°,∴△ABG是等边三角形,由(1)知GA=GB,∴AD=AG=AB,∴∠AGD=(180°﹣30°)=75°,∴∠BGM=180°﹣75°﹣60°=45°,∵BM⊥E,∴△BMG是等腰直角三角形,∴BG=BM,∴AG=BM.第41页(共41页)。
第一章《特殊平行四边形》单元测试卷(含答案解析)
第一章《特殊平行四边形》单元测试卷班级:___________ 姓名:___________ 得分:___________一.选择题:(每小题3分,共36分)1.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补2.矩形具有而菱形不一定具有的性质是()A.内角和等于3600B.对角互补C.对边平行且相等D.对角线互相平分3.已知四边形ABCD是平行四边形,下列结论不正确的是()A.当AC=BD时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AB=BC时,它是菱形4.如图所示,四边形ABCD的对角线互相平分,要使四边形ABCD成为矩形,需要添加的条件是()A.AB=CD B.AD=BD C.AB=BC D.AC=BD(第4题) (第5题) (第6题)5.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()A.cm B.2cm C.2cm D.4cm6.如图,四边形ABCD是平行四边形,下列说法不正确的是()A.当AC=BD时,四边形ABCD是矩形;B.当AB=BC时,四边形ABCD是菱形;C.当AC⊥BD时,四边形ABCD是菱形;D.当∠DAB=90°时,四边形ABCD是正方形7.正方形具有而菱形不具有的性质是()A.对角线平分一组对角B.对角线相等C.对角线互相垂直平分D.四条边相等N分别是边AB、BC的中点,则PM+PN的最小值是()A.5 B.10 C.14 D.不确定(第8题) (第9题) (第10题)9.如图所示,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,若OE=4,则菱形ABCD的周长是()A.8 B.16 C.24 D.3210.如图,AC、BD是矩形ABCD的对角线,过点D作DE∥AC,交BC的延长线于E,则图中与△ABC全等的三角形共有()A.1个B.2个C.3个D.4个11.如图,在菱形ABCD中,∠BAD=82°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.67°B.57°C.60°D.87°(第11题) (第12题)12.如图,将n个边长都为1cm的正方形按如图所示摆放,点A1、A2、…、A n分别是正方形的中心,则n个这样的正方形重叠部分的面积和为()A2B 2 C 2 D cm2二.填空题:(每小题3分,共12分13.如图,四边形ABCD中,点E、F、G、H分别为边AB、BC、CD、DA的中点,请你(第13题) (第14题) (第15题)14.如图,l∥m,矩形ABCD的顶点B在直线m上,则∠α= 度.15.如图,E是边长为1的正方形ABCD对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BD于点R,则PQ+PR的值为。
特殊的平行四边形及其梯形测试
特殊的平行四边形及其梯形测试班级 姓名 分数一.填空题1.已知平行四边形ABCD 的周长是28cm ,CD-AD=2cm ,那么AB=______cm ,BC=______cm . 2.菱形的两条对角线分别是6cm ,8cm ,则菱形的边长为_____,一组对边的距离为_____ 3.在菱形ABCD 中,∠ADC=120°,则BD :AC 等于________4.已知正方形的边长为a ,则正方形内任意一点到四边的距离之和为_____. 5.矩形ABCD 被两条对角线分成的四个小三角形的周长之和是86cm ,对角线长是13cm ,则矩形ABCD 的周长是6.如图,将一张等腰直角三角形纸片沿中位线剪开,可以拼出不同形状的四边形, 请写出其中两个不同的四边形的名称: .7.如图,有一张面积为1的正方形纸片ABCD ,M ,N 分别是AD ,BC 边的中点,将C 点折叠至MN 上,落在P 点的位置,折痕为BQ ,连结PQ ,则PQ =8.如图,梯形ABCD 中,1AD BC AB CD AD ===∥,,60B ∠= ,直线MN 为梯形ABCD 的对称轴,P 为MN 上一点,那么PC PD +的最小值为 .9.如图,OBCD 是边长为1的正方形,∠BOx=60°,则点C 的坐标为________10.如图,把正方形ABCD 沿着对角线AC 的方向移动到正方形D C B A ''''的位置,它们的重叠部分的面积是正方形ABCD 面积的一半,若AC =2,则正方形移动的距离A A '是第3题图二.选择题 11.如图,平行四边形ABCD 中,对角线AC 和BD 相交于点O ,如果12AC =,10BD =,AB m =,那么m 的取值范围是( )A.56m<< B. 111m << C.222m <<D 1012m <<1 2.在矩形ABCD 中,68AB BC ==,,若将矩形折叠,使B 点与D 点重合,则折痕EF 的长为( )A . 154B . 152C .6D .5 13.已知点(20)A ,、点B (12-,0)、点C (0,1),以A 、B 、C 三点为顶点画平行四边形,则第四个顶点不可能在 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限DAO CBMD QBAFCBE F ABCD14.用两个完全相同的直角三角板,不能..拼成下列图形的是( ) A.平行四边形 B.等腰三角形 C.梯形 D.矩形 15.平行四边形ABCD 中,AB 3=,5BC =,AC 的垂直平分线交AD 于E ,则CDE △的周长是( )A.10 B.9 C.8 D.6 16.如图所示,矩形ABCD 中,AB=12AD ,E 为BC 上的一点,且AE=AD ,则∠EDC 的度数是(• )A .45°B .15°C .30°D .75° 17.在平行四边形ABCD 中,∠B =110°,延长AD 至F ,延长CD 至E ,连接EF ,则∠E +∠F =( ) A.30° B. 110° C.70° D.50° 18.如图,E 是正方形ABCD 的边BC 延长线上一点,且BC=CE ,若CE=5cm ,则CF 的长为( )A .2.5cmB .3cmC .5cmD .4.5cm19.下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是( )AB CD20.在梯形ABCD 中,A D ∥BC ,∠A=90°,AD=2,AB=BC=4,在线段AB 上有一动点E ,设BE=x, △DEC 的面积为y,则y 与x 之间满足的关系式是( )A 、y=20-xB 、y=16-2xC 、y=8-xD 、y=4-x三.解答题21.如图,在等腰梯形ABCD 中,AD BC ∥,60C ∠=,10AD =,18AB =. 求BC 的长.22.如图,在四边形ABCD 中,点F,F 是对角线BD 上的两点,且BE=DF, (1)若四边形AECF 是平行四边形,试说明四边形ABCD 是平行四边形; (2)若四边形AECF 是菱形,那么四边形ABCD 也是菱形吗?为什么?中点 中点 ABA BCD(3)若四边形AECF 是矩形,试判断四边形ABCD 是否为矩形,不必写理由.23.如图,P 是正方形ABCD 对角线BD 上一点,PE ⊥DC ,PF ⊥BC ,E ,F 分别是垂足,求证:AP=EF .24.如图甲,李叔叔想要检测雕塑底座正面四边形ABCD 是否为矩形,但他随身只带了有刻度的卷尺,请你设计一种方案,帮助李叔叔检测四边形ABCD 是否为矩形(图乙供设计备用).D A C BBC AD (图甲)(图乙)25.如图,梯形ABCD 中,120AD BC AB DC ADC =∠=∥,,,对角线CA 平分DCB ∠,E 为BC 的中点,试求DCE △与四边形ABED 面积的比.四.能力拓展1.现有若干张边长不相等但都大于4cm 的正方形纸片,从中任选一张,如图从距离正方形的四个顶点2cm 处,沿45角画线,将正方形纸片分成5部分,则中间阴影部分的面积是 cm 2;若在上述正方形纸片中再任选一张重复上述过程,并计算阴影部分的面积,你能发现什么规律? .2.如图,在ABC △中,90ACB =∠,2AC =,3BC =.D 是BC 边上一点,直线DE BC ⊥于D ,交AB 于E ,CF AB ∥交直线DE 于F .设CD x =. (1)当x 取何值时,四边形EACF 是菱形?请说明理由; (2)当x 取何值时,四边形EACD 的面积等于2?ED FB CAB E 22cm2cm。
特殊平行四边形练习题周日
特殊的平行四边形同步练习题一填空题:1.矩形除了具备平行四边形的性质外,还有一些特殊性质:四个角 ,对角线 .2.在矩形ABCD 中,对角线AC 、BD 交于点O ,若100AOB ∠=,则OAB ∠= .3.已知菱形一个内角为120,且平分这个内角的一条对角线长为8cm ,则这个菱形的周长为 . 4.矩形的两条对角线把这个矩形分成了四个 三角形.菱形的两条对角线把这个菱形分成了 四个 三角形.正方形的两条对角线把这个正方形分成了四个 三角形. 5.如图,把两个大小完全相同 的矩形拼成“L ”型图案,则FAC ∠= ,FCA ∠= .6.正方形的边长为a ,则它的对角线长 ,若正方形的对角线长为b , 它的边长为 .7.边长为a 的正方形,在一个角剪掉一个边长为的b 正方形,则所剩余图形的周长为 .8.顺次连接四边形各边中点,所得的图形是 .顺次连接对角线 的四边形的各边中点所得的图形是矩形.顺次连接对角线 的四边形的各边中点所得的四边形是菱形.顺次连接对角线 的四边形的各边中点所得的四边形是正方形.8.已知长方形ABCD ,AB =3cm ,AD =4cm ,过对角线BD 的中点O 做BD 的垂直平分 线EF ,分别交AD 、BC 于点E 、F ,则AE 的长为_______________.9.正方形ABCD 的边长为4,M 、N 分别是BC 、CD 上的两个动点, 且始终保持AM ⊥MN .当BM = 时,四边形ABCN 的面积最大.10.如同,矩形纸片ABCD 中,AB =2cm ,点E 在BC 上,且 AE =EC .若将纸片沿AE 折叠,点B 恰好与AC 上的点'B 重合,则AC = cm .二.选择题:1.正方形具备而菱形不具备的性质是( )A.对角线互相平分B.对角线互相垂直C.对角线相等D.每条对角线平分一组对角 2.下列命题是真命题的是( )A.有一个角是直角的四边形是矩形B.有一组邻边相等的四边形是菱形C. 有三个角是直角的四边形是矩形D.有三条边相等的四边形是菱形3.从菱形的钝角顶点,向对角的两边条垂线,垂足恰好在该边的中点,则菱形的内角中钝角的度数是( )A.150B. 135C. 120D.1004.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是( ) ①平行四边形 ②菱形 ③等腰梯形 ④对角线互相垂直的四边形A.①③B.②③C.③④D.②④5.在平行四边形、菱形、矩形、正方形中,能够找到一个点,使该点到各顶点距离相等的图形是( ) A.平行四边形和菱形 B.菱形和矩形 C.矩形和正方形 D.菱形和正方形6.矩形的边长为10cm 和15cm ,其中一个内角的角平分线分长边为两部份, 这两部份的长为( )A.6cm 和9cmB. 5cm 和10cmC. 4cm 和11cmD. 7cm 和8cm7.如图,点E 是正方形ABCD 对角线AC 上一点,AF ⊥BE 于点F ,交BD 于点G , 则下述结论中不成立的是( )A.AG=BEB.△ABG ≌△BCEC.AE=DGD.∠AGD=∠DAG8.顺次连接四边形ABCD 各边的中点所得四边形是菱形,则四边形ABCD 一定是A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形 9.下列四边形中,对角线相等且互相垂直平分的是A.平行四边形B.正方形C.等腰梯形D.矩形10. 菱形具有而矩形不一定具有的性质是 ( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补 三.解答题2. 已知,AD 是△ABC 的角平分线,DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于 点F. 求证:四边形AEDF 是菱形.6.如图,已知点F 是正方形ABCD 的边BC 的中点,CG 平分∠DCE ,GF ⊥AF. 求证:AF=FG.11. 已知:正方形ABCD 中,45MAN ∠=,MAN ∠绕点A 顺时针旋转,它的两边分别交CB DC ,(或它们的延长线)于点M N ,.当MAN ∠绕点A 旋转到BM DN =时(如图1),易证BM DN MN +=. (1)当MAN ∠绕点A 旋转到BM DN ≠时(如图2),线段BM DN ,和MN 之间有怎样的数量关系?写出猜想,并加以证明.(2)当MAN ∠绕点A 旋转到如图3的位置时,线段BM DN ,和MN 之间又有怎样的数量关系?请直接写出你的猜想.BBM BCN CNCNM 图1图2图3AA A DD DBC一、选择题(本大题共12小题,每小题3分,共36分)1、如图,E F 、是ABCD 对角线AC 上两点,且AE CF =,连结DE 、BF ,则图中共有全等三角形的对数是( )A.1对 B.2对 C.3对 D.4对 2、如图,在在平行四边形ABCD 中,对角线AC BD ,相交于点O ,E F ,是对角线AC 上的两点,当E F ,满足下列哪个条件时,四边形DEBF 不一定是是平行四边形( ) A.OE OF = B.DE BF = C.ADE CBF ∠=∠ D.ABE CDF ∠=∠3、在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( ).A .测量对角线是否相互平分B .测量两组对边是否分别相等C .测量一组对角线是否都为直角D .测量其中三角形是否都为直角4、如果一个四边形绕对角线的交点旋转90 ,所得的图形与原来的图形重合,那么这个四边形一定是( ) A.平行四边形 B.矩形 C.菱形 D.正方形5、下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是A B C D6. 已知点(20)A ,、点B (12-,0)、点C (0,1),以A 、B 、C 三点为顶点画平行四边形,则第四个顶点不可能在 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7、如图,在平行四边形ABCD 中,AC BD ,相交于点O .下列结论:①OA OC =,②BAD BCD ∠=∠,③AC BD ⊥,④180BAD ABC ∠+∠= .其中,正确的个数有( )A.1个 B.2个 C.3个 D.4个8、如图,平行四边形ABCD 中,AB 3=,5BC =,AC 的垂直平分线交AD 于E ,则CDE △的周长是( ) A.6 B.8 C.9 D.1010、如图,正方形ABCD 的边长为2,点E 在AB 边上,四边形EFGB 也为正方形,设AFC △的面积为 S ,则( )A.2S = B. 2.4S = C.4S = D.S 与BE 长度有关12、 已知:如图,正方形ABCD ,AC 、BD 相交于点O ,E 、F 分别 为BC 、CD 上的两点,BE=CF ,AE 、BF 分别交BD 、AC 于M 、N 两点, 连结OE 、OF.下列结论,其中正确的是( ).中点 中点A B D C A BOF E ABCDO MEN F AC①AE=BF;②AE⊥BF;③OM=ON=12DF ;④CE+CF=22AC .(A )①②④ (B )①②(C )①②③④ (D )②③④二、填空题(本大题共4小题,每小题3分,共12分)14、已知菱形ABCD 的边长为6,∠A =60°,如果点P 是菱形内一点,且PB =PD =2,那么AP 的长为 .15、在四边形ABCD 中,对角线AC 、BD 交于点O ,从(1)AB CD =;(2)AB CD ∥;(3)OA OC =;(4)OB OD =;(5)AC BD ⊥;(6)AC 平分BAD ∠这六个条件中,选取三个推出四边形ABCD 是菱形.如(1)(2)(5)⇒ABCD 是菱形,再写出符合要求的两个: ⇒ABCD 是菱形; ⇒ABCD 是菱形. 三、解答题23、(8分)在矩形纸片ABCD 中,AB =6BC =,沿EF 折叠后,点C 落在AB 边上的点P 处,点D 落在点Q 处,AD 与PQ 相交于点H ,30BPE ∠=. (1)求BE 、QF 的长; (2)求四边形PEFH 的面积.24、(本小题10分)如图1,在正方形ABCD 中,点E 、F 分别为边BC 、CD 的中点,AF 、DE 相交于点G ,则可得结论:①AF=DE ,②AF ⊥DE (不须证明).(1)如图②,若点E 、F 不是正方形ABCD 的边BC 、CD 的中点,但满足CE=DF ,则上面的结论①、②是否仍然成立?(请直接回答“成立”或“不成立”)(2)如图③,若点E 、F 分别在正方形ABCD 的边CB 的延长线和DC 的延长线上,且CE=DF ,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)如图④,在(2)的基础上,连接AE 和EF ,若点M 、N 、P 、Q 分别为AE 、EF 、FD 、AD 的中点,请先判断四边形MNPQ 是“矩形、菱形、正方形、等腰梯形”中的哪一种,并写出证明过程.。
特殊平行四边形检测试卷
第一章 特殊平行四边形检测试卷一、选择题1. 不能判定四边形ABCD 为平行四边形的题设是( ) (A )AB 平行且等于CD 。
(B )∠A=∠C ,∠B=∠D 。
(C )AB=AD ,BC=CD 。
(D )AB=CD ,AD=BC 。
2.矩形、菱形、正方形都具有的性质是 ( ) A.每一条对角线平分一组对角 B.对角线相等 C.对角线互相平分 D.对角线互相垂直3. 如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,若BD 、AC 的和为cm 18,CD :DA=2:3,△AOB 的周长为cm 13,那么BC 的长是 ( ) A. cm 6 B. cm 9 C. cm 3 D. cm 124.在直角三角形ABC 中,∠ACB =︒90,∠B =︒60,AC =cm 3,则AB 边上的中线长为 ( ) A. cm 1 B. cm 2 C. cm5.1 D. cm 3 5. 下列说法错误的是( )A.一组对边平行且一组对角相等的四边形是平行四边形.B.每组邻边都相等的四边形是菱形.C.对角线互相垂直的平行四边形是正方形.D.四个角都相等的四边形是矩形. 6.下列命题中,真命题是 ( )A .两条对角线垂直的四边形是菱形B .对角线垂直且相等的四边形是正方形C .两条对角线相等的四边形是矩形D .两条对角线相等的平行四边形是矩形 7.将两块能完全重合的两张等腰直角三角形纸片拼成下列图形:①平行四边形(不包括菱形、矩形、正方形)②矩形③正方形④等边三角形⑤等腰直角三角形 ( )A .①③⑤B .②③⑤C .①②③D .①③④⑤8.如图,已知菱形ABCD 与△ABE,其中D 在BE 上.若AB=17,BD=16,AE=25,则DE 的长度为 ( )A.8B.9C.11D.129. 如图在矩形ABCD 中,AB=10,BC=5,点E,F 分别在AB,CD 上,将矩形ABCD 沿EF 折叠,使点A,D 分别落在矩形ABCD 外部的点A 1,D 1处,则阴影部分图形的周长为 ( ) A.15B.20C.25D.3010.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为28,则OH 的长等于( )A. 3.5B. 4C. 7D. 1411.给出以下三个命题:①对角线相等的四边形是矩形;②对角线互相垂直的四边形是菱形;③对角线互相垂直的矩形是正方形;④菱形对角线的平方和等于边长平方的4倍,其中真命题的是( )A .③B .①②C .②③D .③④ 12.如图,正方形ABCD 中,AB=3,点E 在边CD 上,且CD=3DE.将△ADE 沿AE 对折至△AFE,延长EF 交边BC 于点G,连接AG,CF.下列结论: ①点G 是BC 的中点; ②FG=FC; ③∠GAE =︒45. 其中正确的是 ( )A.①②B.①③C.②③D.①②③ABCDO二、填空题:13.①等边三角形②菱形③平行四边形④矩形(5)正方形五个图形中,既是轴对称图形又是中心对称图形的是 (填写序号).14. 在Rt⊿ABC中,∠ACB =90°,∠A =30°,AC =32,则AB边上的中线为,高为15.菱形ABCD的边长为8cm,∠BAD=120°,则AC= ,BD= ,面积= 。
中考数学专题12 平行四边形与特殊的平行四边形-三年(2019-2021)中考真题数学分项汇编
专题12.平行四边形与特殊的平行四边形一、单选题1.(2021·四川南充市·中考真题)如图,在矩形ABCD 中,15AB =,20BC =,把边AB 沿对角线BD 平移,点'A ,'B 分别对应点A ,B .给出下列结论:①顺次连接点'A ,'B ,C ,D 的图形是平行四边形;②点C 到它关于直线'AA 的对称点的距离为48;③''A C B C -的最大值为15;④''A C B C +的最小值为)A .1个B .2个C .3个D .4个2.(2021·浙江绍兴市·中考真题)如图,菱形ABCD 中,60B ∠=︒,点P 从点B 出发,沿折线BC CD -方向移动,移动到点D 停止.在ABP △形状的变化过程中,依次出现的特殊三角形是( ) A .直角三角形→等边三角形→等腰三角形→直角三角形B .直角三角形→等腰三角形→直角三角形→等边三角形C .直角三角形→等边三角形→直角三角形→等腰三角形D .等腰三角形→等边三角形→直角三角形→等腰三角形3.(2021·山东泰安市·中考真题)如图,在平行四边形ABCD 中,E 是BD 的中点,则下列四个结论:①AM CN =;②若MD AM =,90A ∠=︒,则BM CM =;③若2MD AM =,则MNC BNE S S =△△;④若AB MN =,则MFN △与DFC △全等.其中正确结论的个数为( )A .1个B .2个C .3个D .4个4.(2021·四川南充市·中考真题)如图,在菱形ABCD 中,60A ∠=︒,点E ,F 分別在边AB ,BC 上,2AE BF ==,DEF 的周长为AD 的长为( )A B .C 1 D .15.(2021·江苏宿迁市·中考真题)折叠矩形纸片ABCD ,使点B 落在点D 处,折痕为MN ,已知AB =8,AD =4,则MN 的长是( )A B .C D .6.(2021·河北中考真题)如图1,ABCD 中,AD AB >,ABC ∠为锐角.要在对角线BD 上找点N ,M ,使四边形ANCM 为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案( )图2A .甲、乙、丙都是B .只有甲、乙才是C .只有甲、丙才是D .只有乙、丙才是7.(2021·四川眉山市·中考真题)正八边形中,每个内角与每个外角的度数之比为( )A .1:3B .1:2C .2:1D .3:18.(2021·天津中考真题)如图,ABCD 的顶点A ,B ,C 的坐标分别是()()()2,0,1,2,2,2---,则顶点D 的坐标是( )A .()4,1-B .()4,2-C .()4,1D .()2,19.(2021·浙江嘉兴市·中考真题)如图,在ABC ∆中,90BAC ∠=︒,AB =AC =5,点D 在AC 上,且2AD =,点E 是AB 上的动点,连结DE ,点F ,G 分别是BC ,DE 的中点,连接AG ,FG ,当AG =FG 时,线段DE 长为( )A B .2 C D .410.(2021·安徽中考真题)如图,在菱形ABCD 中,2AB =,120A ∠=︒,过菱形ABCD 的对称中心O 分别作边AB ,BC 的垂线,交各边于点E ,F ,G ,H ,则四边形EFGH 的周长为( )A .3+B .2+C .2+D .1+11.(2021·重庆中考真题)如图,把含30°的直角三角板PMN 放置在正方形ABCD 中,30PMN ∠=︒,直角顶点P 在正方形ABCD 的对角线BD 上,点M ,N 分别在AB 和CD 边上,MN 与BD 交于点O ,且点O 为MN 的中点,则AMP ∠的度数为( )A .60°B .65°C .75°D .80°12.(2021·四川乐山市·中考真题)如图,已知点P 是菱形ABCD 的对角线AC 延长线上一点,过点P 分别作AD 、DC 延长线的垂线,垂足分别为点E 、F .若120ABC ∠=︒,2AB =,则PE PF -的值为( )A .32BC .2D .5213.(2021·四川自贡市·中考真题)如图,在正方形ABCD 中,6AB =,M 是AD 边上的一点,:1:2AM MD =.将BMA △沿BM 对折至BMN △,连接DN ,则DN 的长是( )A .52BC .3 D14.(2021·浙江宁波市·中考真题)如图是一个由5张纸片拼成的ABCD ,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为1S ,另两张直角三角形纸片的面积都为2S ,中间一张矩形纸片EFGH 的面积为3S ,FH 与GE 相交于点O .当,,,AEO BFO CGO DHO 的面积相等时,下列结论一定成立的是( )A .12S SB .13S S =C .AB AD = D .EH GH =15.(2021·江苏扬州市·中考真题)如图,点A 、B 、C 、D 、E 在同一平面内,连接AB 、BC 、CD 、DE 、EA ,若100BCD ∠=︒,则A B D E ∠+∠+∠+∠=( )A .220︒B .240︒C .260︒D .280︒16.(2021·重庆中考真题)如图,正方形ABCD 的对角线AC ,BD 交于点O ,M 是边AD 上一点,连接OM ,过点O 做ON ⊥OM ,交CD 于点N .若四边形MOND 的面积是1,则AB 的长为( )A .1BC .2D .17.(2021·四川遂宁市·中考真题)如图,在矩形ABCD 中,AB =5,AD =3,点E 为BC 上一点,把△CDE 沿DE 翻折,点C 恰好落在AB 边上的F 处,则CE 的长是( )A .1B .43C .32D .5318.(2021·江苏连云港市·中考真题)如图,将矩形纸片ABCD 沿EF 折叠后,点D 、C 分别落在点1D 、1C 的位置,1ED 的延长线交BC 于点G ,若64EFG ∠=︒,则EGB ∠等于( )A .128︒B .130︒C .132︒D .136︒19.(2021·浙江温州市·中考真题)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD 如图所示.过点D 作DF 的垂线交小正方形对角线EF 的延长线于点G ,连结CG ,延长BE 交CG 于点H .若2AE BE =,则CG BH 的值为( )A .32BCD 20.(2021·四川南充市·中考真题)如图,点O 是ABCD 对角线的交点,EF 过点O 分別交AD ,BC 于点E ,F .下列结论成立的是( )A .OE OF =B .AE BF =C .DOC OCD ∠=∠ D .CFE DEF ∠=∠21.(2021·四川资阳市·中考真题)下列命题正确的是( )A .每个内角都相等的多边形是正多边形B .对角线互相平分的四边形是平行四边形C .过线段中点的直线是线段的垂直平分线D .三角形的中位线将三角形的面积分成1∶2两部分 22.(2021·浙江嘉兴市·中考真题)将一张三角形纸片按如图步骤①至④折叠两次得图⑤,然后剪出图⑤中的阴影部分,则阴影部分展开铺平后的图形是( )A .等腰三角形B .直角三角形C .矩形D .菱形23.(2021·四川泸州市·中考真题)下列命题是真命题的是( )A .对角线相等的四边形是平行四边形B .对角线互相平分且相等的四边形是矩形C .对角线互相垂直的四边形是菱形D .对角线互相垂直平分的四边形是正方形24.(2020·广西贵港市·中考真题)如图,点E ,F 在菱形ABCD 的对角线AC 上,120ADC =∠︒,50BEC CBF ∠=∠=︒,ED 与BF 的延长线交于点M .则对于以下结论:①30BME ∠=︒;②ADE ABE ≌;③EM BC =;④AE BM +=.其中正确结论的个数是( )A .1个B .2个C .3个D .4个25.(2020·广西贵港市·中考真题)如图,动点M 在边长为2的正方形ABCD 内,且AM BM ⊥,P 是CD 边上的一个动点,E 是AD 边的中点,则线段PE PM +的最小值为( )A 1B 1CD 126.(2020·辽宁朝阳市·中考真题)如图,在正方形ABCD 中,对角线,AC BD 相交于点O ,点E 在BC 边上,且2CE BE =,连接AE 交BD 于点G ,过点B 作BF AE ⊥于点F ,连接OF 并延长,交BC 于点M ,过点O 作OP OF ⊥交DC 于占N ,94MONC S =四边形,现给出下列结论:①13GE AG =;②sin BOF ∠=③OF =OG BG =;其中正确的结论有( ) A .①②③B .②③④C .①②④D .①③④ 27.(2020·辽宁锦州市·中考真题)如图,在菱形ABCD 中,P 是对角线AC 上一动点,过点P 作PE BC ⊥于点E .PF AB ⊥于点F .若菱形ABCD 的周长为20,面积为24,则PE PF +的值为( )A .4B .245C .6D .48528.(2020·四川眉山市·中考真题)如图,正方形ABCD 中,点F 是BC 边上一点,连接AF ,以AF 为对角线作正方形AEFG ,边FG 与正方形ABCD 的对角线AC 相交于点H ,连接DG .以下四个结论:①EAB GAD ∠=∠;②AFC AGD ∆∆∽;③22AE AH AC =⋅;④DG AC ⊥.其中正确的个数为( ) A .1个 B .2个 C .3个 D .4个29.(2020·山东威海市·中考真题)如图,在平行四边形ABCD 中,对角线BD AD ⊥,10AB =,6AD =,O 为BD 的中点,E 为边AB 上一点,直线EO 交CD 于点F ,连结DE ,BF .下列结论不成立的是( ) A .四边形DEBF 为平行四边形 B .若 3.6AE =,则四边形DEBF 为矩形C .若5AE =,则四边形DEBF 为菱形D .若 4.8AE =,则四边形DEBF 为正方形30.(2020·山东东营市·中考真题)如图,在正方形ABCD 中,点P 是AB 上一动点(不与A B 、重合) ,对角线AC BD 、相交于点,O 过点P 分别作AC BD 、的垂线,分别交AC BD 、于点,E F 、交AD BC 、于点M N 、.下列结论:①APE AME ≌;②PM PN AC +=;③222PE PF PO +=;④POF BNF ;⑤点O 在M N 、两点的连线上.其中正确的是( )A .①②③④B .①②③⑤C .①②③④⑤D .③④⑤31.(2019·广东中考真题)已知菱形ABCD ,,E F 是动点,边长为4,,120BE AF BAD =∠=︒ ,则下列结论正确的有几个( )①BEC AFC ∆∆≌;②ECF ∆为等边三角形 ③AGE AFC ∠=∠; ④若1AF=,则13GF GE = A .1 B .2 C .3 D .4 32.(2019·四川绵阳市·中考真题)如图,在四边形ABCD 中,AB DC ,90ADC ∠=,5AB =,3CD AD ==,点E 是线段CD 的三等分点,且靠近点C ,FEG ∠的两边与线段AB 分别交于点F 、G ,连接AC 分别交EF 、EG 于点H 、K .若32BG =,45FEG ∠=,则HK =( )A .3B .6C .2D .633.(2019·四川眉山市·中考真题)如图,在菱形ABCD 中,已知4AB =,60ABC ∠=,60EAF ∠=,点E 在CB 的延长线上,点F 在DC 的延长线上,有下列结论:①BE CF =;②EAB CEF ∠=∠;③ABE EFC ∆∆;④若15BAE ∠=,则点F 到BC 的距离为2-.则其中正确结论的个数是( )A .1个B .2个C .3个D .4个 34.(2019·山东济南市·中考真题)如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45°,AE 、AF 分别交BD 于M 、N ,连按EN 、EF 、有以下结论:①AN =EN ,②当AE =AF 时,BE EC=2,③BE+DF =EF ,④存在点E 、F ,使得NF >DF ,其中正确的个数是( )A .1B .2C .3D .4 二、填空题目35.(2021·江西中考真题)如图,将ABCD 沿对角线AC 翻折,点B 落在点E 处,CE 交AD 于点F ,若80B ∠=︒,2ACE ECD ∠=∠,FC a =,FD b =,则ABCD 的周长为______.36.(2021·青海中考真题)如图,在ABC 中,D ,E ,F 分别是边AB ,BC ,CA 的中点,若DEF 的周长为10,则ABC 的周长为______.37.(2021·北京中考真题)如图,在矩形ABCD 中,点,E F 分别在,BC AD 上,AF EC =.只需添加一个条件即可证明四边形AECF 是菱形,这个条件可以是______________(写出一个即可).38.(2021·四川广元市·中考真题)如图,在正方形ABCD 中,点O 是对角线BD 的中点,点P 在线段OD 上,连接AP 并延长交CD 于点E ,过点P 作PF AP ⊥交BC 于点F ,连接AF 、EF ,AF 交BD 于G ,现有以下结论:①AP PF =;②DE BF EF +=;③PB PD -=;④AEF S 为定值;⑤APG PEFG S S =四边形.以上结论正确的有________(填入正确的序号即可).39.(2021·浙江金华市·中考真题)如图,菱形ABCD 的边长为6cm ,60BAD ∠=︒,将该菱形沿AC 方向平移得到四边形A B C D '''',A D ''交CD 于点E ,则点E 到AC 的距离为____________cm .40.(2021·江苏南京市·中考真题)如图,将ABCD 绕点A 逆时针旋转到AB C D '''的位置,使点B '落在BC 上,B C ''与CD 交于点E ,若3,4,1AB BC BB '===,则CE 的长为________.41.(2021·湖北黄冈市·中考真题)如图,正方形ABCD 中,1AB =,连接AC ,ACD ∠的平分线交AD 于点E ,在AB 上截取AF DE =,连接DF ,分别交CE ,AC 于点G ,H ,点P 是线段GC 上的动点,PQ AC ⊥于点Q ,连接PH .下列结论:①CE DF ⊥;②DE DC AC +=;③EA =;④PH PQ +的最小值是2.其中所有正确结论的序号是_____. 42.(2021·湖南株洲市·中考真题)《蝶几图》是明朝人戈汕所作的一部组合家具的设计图(蜨,同“蝶”),它的基本组件为斜角形,包括长斜两只、右半斜两只、左半斜两只、闺一只、小三斜四只、大三斜两只,共十三只(图①中的“様”和“隻”为“样”和“只”).图②为某蝶几设计图,其中ABD △和CBD 为“大三斜”组件(“一様二隻”的大三斜组件为两个全等的等腰直角三角形),已知某人位于点P 处,点P 与点A 关于直线DQ 对称,连接CP 、DP .若24ADQ ∠=︒,则DCP ∠= ___________度.43.(2021·江苏苏州市·中考真题)如图,四边形ABCD 为菱形,70ABC ∠=︒,延长BC 到E ,在DCE ∠内作射线CM ,使得15ECM ∠=︒,过点D 作DF CM ⊥,垂足为F ,若DF =BD 的长为______.(结果保留根号)44.(2021·浙江嘉兴市·中考真题)如图,在ABCD 中,对角线AC ,BD 交于点O ,AB AC ⊥,AH BD⊥于点H ,若AB =2,BC =AH 的长为__________________. 45.(2021·江苏扬州市·中考真题)如图,在ABCD 中,点E 在AD 上,且EC 平分BED ∠,若30EBC ∠=︒,10BE =,则ABCD 的面积为________.46.(2021·四川成都市·中考真题)如图,在矩形ABCD 中,4,8AB AD ==,点E ,F 分别在边,AD BC 上,且3AE =,按以下步骤操作:第一步,沿直线EF 翻折,点A 的对应点'A 恰好落在对角线AC 上,点B 的对应点为'B ,则线段BF 的长为_______;第二步,分别在,'EF A B 上取点M ,N ,沿直线MN 继续翻折,使点F 与点E 重合,则线段MN 的长为_______.47.(2021·山东泰安市·中考真题)如图,将矩形纸片ABCD 折叠(AD AB >),使AB 落在AD 上,AE 为折痕,然后将矩形纸片展开铺在一个平面上,E 点不动,将BE 边折起,使点B 落在AE 上的点G 处,连接DE ,若DE EF =,2CE =,则AD 的长为________.48.(2021·江苏连云港市·中考真题)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,OE AD ⊥,垂足为E ,8AC =,6BD =,则OE 的长为______.49.(2021·四川南充市·中考真题)如图,点E 是矩形ABCD 边AD 上一点,点F ,G ,H 分别是BE ,BC ,CE 的中点,3AF =,则GH 的长为________.50.(2021·四川遂宁市·中考真题)如图,正方形ABCD 中,点E 是CD 边上一点,连结BE ,以BE 为对角线作正方形BGEF ,边EF 与正方形ABCD 的对角线BD 相交于点H ,连结AF ,有以下五个结论:①ABF DBE ∠=∠;②ABF DBE ∽;③AF BD ⊥;④22BG BH BD =;⑤若:1:3CE DE =,则:17:16BH DH =,你认为其中正确是_____(填写序号)51.(2021·青海中考真题)如图,正方形ABCD 的边长为8,M 是DC 边上一点,且2DM =,N 是对角线AC 上一动点,则DN MN +的最小值为______.52.(2020·柳州市柳林中学中考真题)如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE沿BE 折叠,点C 恰好落在边AD 上的点F 处,点G 在AF 上,将△ABG 沿BG 折叠,点A 恰好落在线段BF 上的H 处,有下列结论:①∠EBG =45°;②2S △BFG =5S △FGH ;③△DEF ∽△ABG ;④4CE =5ED .其中正确的是_____.(填写所有正确结论的序号)53.(2020·山东济南市·中考真题)如图,在矩形纸片ABCD 中,AD =10,AB =8,将AB 沿AE 翻折,使点B 落在B '处,AE 为折痕;再将EC 沿EF 翻折,使点C 恰好落在线段EB '上的点C '处,EF 为折痕,连接AC '.若CF =3,则tan B AC ''∠=_____.54.(2020·西藏中考真题)如图,在矩形ABCD 中,E 为AB 的中点,P 为BC 边上的任意一点,把PFE 沿PE 折叠,得到PBE △,连接CF .若AB =10,BC =12,则CF 的最小值为_____.55.(2020·辽宁大连市·中考真题)如图,矩形ABCD 中,6,8AB AD ==,点E 在边AD 上,CE 与BD 相交于点F .设DE x =,BF y =,当08x 时,y 关于x 的函数解析式为_____.56.(2020·辽宁鞍山市·中考真题)如图,在菱形ABCD 中,60ADC ∠=︒,点E ,F 分别在AD ,CD 上,且AE DF =,AF 与CE 相交于点G ,BG 与AC 相交于点H .下列结论:①ACF CDE △≌△;②2CG GH BG =⋅;③若DF 2CF =,则7CE GF =;④2ABCG S =四边形.其中正确的结论有_______.(只填序号即可)57.(2020·内蒙古鄂尔多斯市·中考真题)如图,已知正方形ABCD ,点M 是边BA 延长线上的动点(不与点A 重合),且AM <AB ,△CBE 由DAM △平移得到,若过点E 作EH ⊥AC ,H 为垂足,则有以下结论:①点M 位置变化,使得∠DHC =60°时,2BE =DM ;②无论点M 运动到何处,都有DM HM ; ③在点M 的运动过程中,四边形CEMD 不可能成为菱形;④无论点M 运动到何处,∠CHM 一定大于135°. 以上结论正确的有_____(把所有正确结论的序号都填上).58.(2020·四川雅安市·中考真题)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD ,对角线AC BD 、交于点O .若24AD BC ==,,则22AB CD +=__________. 三、解答题59.(2021·浙江绍兴市·中考真题)如图,矩形ABCD 中,4AB =,点E 是边AD 的中点,点F 是对角线BD 上一动点,30ADB ∠=︒.连结EF ,作点D 关于直线EF 的对称点P .(1)若EF BD ⊥,求DF 的长.(2)若PE BD ⊥,求DF 的长.(3)直线PE 交BD 于点Q ,若DEQ 是锐角三角形,求DF 长的取值范围.60.(2021·浙江温州市·中考真题)如图,在ABCD 中,E ,F 是对角线BD 上的两点(点E 在点F 左侧),且90AEB CFD ∠=∠=︒.(1)求证:四边形是平行四边形.(2)当,,时,求的长.61.(2021·北京中考真题)如图,在四边形ABCD 中,90ACB CAD ∠=∠=︒,点E 在BC 上,//,AE DC EF AB ⊥,垂足为F .(1)求证:四边形是平行四边形;(2)若平分,求和的长.62.(2021·四川南充市·中考真题)如图,点E 在正方形ABCD 边AD 上,点F 是线段AB 上的动点(不与点A 重合).DF 交AC 于点G ,GH AD ⊥于点H ,1AB =,13DE =. (1)求tan ACE ∠.(2)设AF x =,GH y =,试探究y 与x 的函数关系式(写出x 的取值范围). (3)当ADF ACE ∠=∠时,判断EG 与AC 的位置关系并说明理由.AECF 5AB =3tan 4ABE ∠=CBE EAF ∠=∠BD AECD AE 4,5,cos 5BAC BE B ∠==BFAD63.(2021·山东聊城市·中考真题)如图,在四边形ABCD 中,AC 与BD 相交于点O ,且AO =CO ,点E 在BD 上,满足∠EAO =∠DCO .(1)求证:四边形AECD 是平行四边形; (2)若AB =BC ,CD =5,AC =8,求四边形AECD 的面积.64.(2021·山东泰安市·中考真题)四边形ABCD 为矩形,E 是AB 延长线上的一点.(1)若AC EC =,如图1,求证:四边形BECD 为平行四边形;(2)若AB AD =,点F 是AB 上的点,AF BE =,EG AC ⊥于点G ,如图2,求证:DGF △是等腰直角三角形.65.(2021·四川广元市·中考真题)如图1,在ABC 中,90ACB ∠=︒,AC BC =,点D 是AB 边上一点(含端点A 、B ),过点B 作BE 垂直于射线CD ,垂足为E ,点F 在射线CD 上,且EF BE =,连接AF 、BF .(1)求证:;(2)如图2,连接,点P 、M 、N 分别为线段、、的中点,连接、、.求的度数及的值;(3)在(2)的条件下,若接写出面积的最大值.66.(2021·四川广元市·中考真题)如图,在平行四边形ABCD 中,E 为DC 边的中点,连接AE ,若AE 的延长线和BC 的延长线相交于点F .(1)求证:;(2)连接和相交于点为G ,若的面积为2,求平行四边形的面积.ABF CBE ∽AE AC AE EF PM MN PN PMN ∠MNPMBC =PMN BC CF =AC BE GEC ABCD67.(2021·江苏宿迁市·中考真题)在①AE=CF;②OE=OF;③BE∥DF这三个条件中任选一个补充在下面横线上,并完成证明过程.已知,如图,四边形ABCD是平行四边形,对角线AC、BD相交于点O,点E、F在AC上,(填写序号).求证:BE=DF.注:如果选择多个条件分别解答,按第一个解答计分.68.(2021·山西中考真题)综合与实践,问题情境:数学活动课上,老师出示了一个问题:如图①,在ABCD ⊥,垂足为E,F为CD的中点,连接EF,BF,试猜想EF与BF的数量关系,并加以证中,BE AD明;独立思考:(1)请解答老师提出的问题;实践探究:(2)希望小组受此问题的启发,将ABCD沿着BF(F为CD的中点)所在直线折叠,如图DC并延长交AB于点G,请判断AG与BG的数量关系,并加以证明;②,点C的对应点为'C,连接'问题解决:(3)智慧小组突发奇想,将ABCD沿过点B的直线折叠,如图③,点A的对应点为'A,使⊥于点H,折痕交AD于点M,连接'A M,交CD于点N.该小组提出一个问题:若此ABCD 'A B CDAB=,BC=BHNM)的面积.请你思考此问题,的面积为20,边长5直接写出结果.69.(2021·浙江绍兴市·中考真题)问题:如图,在ABCD 中,8AB =,5AD =,DAB ∠,ABC ∠的平分线AE ,BF 分别与直线CD 交于点E ,F ,求EF 的长. 答案:2EF =.探究:(1)把“问题”中的条件“8AB =”去掉,其余条件不变.①当点E 与点F 重合时,求AB 的长;②当点E 与点C 重合时,求EF 的长.(2)把“问题”中的条件“8AB =,5AD =”去掉,其余条件不变,当点C ,D ,E ,F 相邻两点间的距离相等时,求ADAB的值.70.(2021·浙江嘉兴市·中考真题)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD 绕点A 顺时针旋转()090αα︒<≤︒,得到矩形'''AB C D[探究1]如图1,当90α=︒时,点'C 恰好在DB 延长线上.若1AB =,求BC 的长.[探究2]如图2,连结'AC ,过点'D 作'//'D M AC 交BD 于点M .线段'D M 与DM 相等吗?请说明理由.[探究3]在探究2的条件下,射线DB 分别交'AD ,'AC 于点P ,N (如图3),MN ,PN 存在一定的数量关系,并加以证明.祝你考试成功!祝你考试成功!21/ 21。
初中数学特殊平行四边形的性质与判定基础题(含答案)
初中数学特殊平行四边形的性质与判定基础题一、单选题(共12道,每道8分)1.菱形具有而一般平行四边形不具有的性质是()A.两组对边分别平行B.两组对边分别相等C.一组邻边相等D.对角线相互平分答案:C试题难度:三颗星知识点:菱形的性质2.菱形的两对角线的长分别为12、16,那么菱形的面积是()A.192B.96C.48D.24答案:B试题难度:三颗星知识点:菱形的面积3.已知菱形周长是24,一个内角为60°,则菱形的面积为()A.6B.18C. D.答案:C试题难度:三颗星知识点:菱形的性质4.下列命题正确的是(__)A.邻角相等的四边形是菱形B.有一组邻边相等的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形答案:D试题难度:三颗星知识点:菱形的判定5.平行四边形ABCD的对角线AC,BD相交于点O,且AB=5,AO=4,BO=3,则四边形ABCD 是()A.菱形B.矩形C.正方形D.梯形答案:A试题难度:三颗星知识点:菱形的判定6.矩形具有而平行四边形不具有的性质()A.两组对角分别相等B.对角线相等C.对角线互相平分D.两组对边分别相等答案:B试题难度:三颗星知识点:矩形的性质7.下列说法中不能判定四边形是矩形的是(__)A.四个角都相等的四边形B.有一个角为90°的平行四边形C.对角线相等的平行四边形D.对角线互相平分的四边形答案:D试题难度:三颗星知识点:矩形的判定8.如图,四边形ABCD是矩形,且∠AOB=60°,AB=4,则BD的长为()A.4B.6C.8D.10答案:C试题难度:三颗星知识点:矩形的计算9.正方形ABCD的两条对角线AC,BD相交于点O,则图中共有()个等腰直角三角形A.6B.8C.10D.4答案:B试题难度:三颗星知识点:正方形性质10.能判定四边形是正方形的是()A.对角线互相垂直且相等的四边形B.对角线互相垂直的平行四边形C.对角线相等的菱形D.对角线互相垂直平分的四边形答案:C试题难度:三颗星知识点:正方形判定11.将4个边长都为1cm的正方形按如图所示摆放,点A1,A2,…,A4分别是正方形的中心,则这4个正方形重叠形成的重叠部分的面积和为(__)cm2.A.2B.1C.4D.答案:B试题难度:三颗星知识点:正方形的性质与计算112.已知如图,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F,求证:四边形AEDF是菱形.证明:如图,∵DE∥AC交AB于E,DF∥AB交AC于F∴_______________________________∵AD是△ABC的角平分线∴∠1=∠2∵______________________________∴∠1=∠3∴___________________________∴AF=DF∴__________________________下列选项填入以上空格,正确的是()①四边形AEDF是菱形;②∠2=∠3;③四边形AEDF为平行四边形;④DF∥AB.A.③④①②B.③①②④C.③①④②D.③④②①答案:D试题难度:三颗星知识点:特殊平行四边形的证明题规范书写。
2024中考备考数学重难点03 平行四边形与特殊平行四边形8大题型+满分技巧+限时分层检测
重难点03 平行四边形与特殊平行四边形中考数学中《平行四边形、矩形、菱形》部分主要考向分为五类:一、多边形内角和(每年1道,3~4分)二、平行四边形的性质与判定(每年1道,3~8分)三、矩形的性质与判定(每年1~2题,3~12分)四、菱形的性质与判定(每年1~2题,3~12分)五、正方形的性质(每年1道,3~12分)平行四边形和特殊平行四边形在中考数学中是占比比较大的一块考点,考察内容主要有各个特殊四边形的性质、判定、以及其应用;考察题型上从选择到填空再都解答题都有,题型变化也比较多样;并且考察难度也都是中等和中等偏上,难度较大,综合性比较强。
所以需要考生在复习这块内容的时候一定要准确掌握其性质与判定,并且会在不同的结合问题上注意和其他考点的融合。
考向一:多边形内角和【题型1 多边形的内角和的计算】满分技巧多边形内角和公式:()()31802≥︒⨯-nn任意多边形的外角和为360°正多边形的一个内角:()nnn︒-︒︒⨯-360180/18021.(2023•北京)正十二边形的外角和为()A.30°B.150°C.360°D.1800°2.(2023•襄阳)五边形的外角和等于()A.180°B.360°C.540°D.720°3.(2023•重庆)如图,正五边形ABCDE中,连接AC,那么∠BAC的度数为.4.(2023•济宁)一个多边形的内角和是540°,则这个多边形是边形.考向二:平行四边形的性质与判定【题型2 平行四边形的性质】满分技巧1.平行四边形的性质可以从三个方面记,①边:对边平行且相等;②角:对角相等,邻角互补;③对角线:对角线互相平分;2.平行四边形的问题经常转化为全等三角形的判定与性质类问题来解决。
1.(2023•益阳)如图,▱ABCD的对角线AC,BD交于点O,下列结论一定成立的是()A.OA=OB B.OA⊥OB C.OA=OC D.∠OBA=∠OBC2.(2023•海南)如图,在▱ABCD中,AB=8,∠ABC=60°,BE平分∠ABC,交边AD于点E,连接CE,若AE=2ED,则CE的长为()A.6B.4C.D.3.(2023•泸州)如图,▱ABCD的对角线AC,BD相交于点O,∠ADC的平分线与边AB相交于点P,E是PD中点,若AD=4,CD=6,则EO的长为()A.1B.2C.3D.44.(2023•福建)如图,在▱ABCD中,O为BD的中点,EF过点O且分别交AB,CD于点E,F.若AE=10,则CF的长为.5.(2023•聊城)如图,在▱ABCD中,BC的垂直平分线EO交AD于点E,交BC于点O,连接BE,CE,过点C作CF∥BE,交EO的延长线于点F,连接BF.若AD=8,CE=5,则四边形BFCE的面积为.6.(2023•哈尔滨)已知四边形ABCD是平行四边形,点E在对角线BD上,点F在边BC上,连接AE,EF,DE=BF,BE=BC.(1)如图①,求证△AED≌△EFB;(2)如图②,若AB=AD,AE≠ED,过点C作CH∥AE交BE于点H,在不添加任何辅助线的情况下,请直接写出图②中四个角(∠BAE除外),使写出的每个角都与∠BAE相等.【题型3 平行四边形的判定和性质的综合】满分技巧1、平行四边形的判定也可以从三个方面记,①边:两组对边分别平行;两组对边分别相等;一组对边平行且相等;②角:两组对角分别相等;③对角线:对角线互相平分;2、平行四边形的判定和性质经常综合在一起考,即先考判定一个四边形是平行四边,然后再利用平行四边形的性质去解剩余的问题。
特殊平行四边形综合题(培优)
特殊平行四边形综合题(培优)一.选择题(共9小题)1.如图.任意四边形ABCD中,E,F,G,H分别是各边上的点,对于四边形E,F,G,H的形状,小聪进行了探索,下列结论错误的是()A.E,F,G,H是各边中点,且AC=BD时,四边形EFGH是菱形B.E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH是矩形C.E,F,G,H不是各边中点,四边形EFGH可以是平行四边形D.E,F,G,H不是各边中点,四边形EFGH不可能是菱形2.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=8,BD=6,则四边形EFGH的面积为()A.14B.12C.24D.483.依次连接四边形ABCD的四边中点得到的图形是正方形,则四边形ABCD的对角线需满足()A.AC=BD B.AC⊥BDC.AC=BD且AC⊥BD D.AC⊥BD且AC与BD互相平分4.顺次连接正方形各边中点所成的四边形的面积与原正方形的面积之比为()A.1:B.1:C.1:3D.1:25.如图,正方形ABCD中,AE=BF,下列说法中,正确的有()①AF=DE;②AF⊥DE;③AO=OF;④S△AOD=S四边形BEOF.A.1个B.2个C.3个D.4个6.顺次连接凸四边形各边中点所得到的四边形是正方形时,原四边形对角线需满足的条件是()A.对角线相等且垂直B.对角线相等C.对角线垂直D.一条对角线平分另一条对角线7.如图,矩形ABCD中,对角线AC,BD交于点O,如果∠ADB=35°,那么∠AOB的度数为()A.35°B.45°C.70°D.110°8.下列命题中,正确的是()A.一组对边平行且另一组对边相等的四边形是平行四边形B.两组邻边分别相等的四边形是平行四边形C.两组对边分别平行的四边形是平行四边形D.对角线互相垂直的四边形是平行四边形9.如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=6,则OC=()A.12B.C.6D.3二.填空题(共21小题)10.如图,点A、B、C为平面内不在同一直线上的三点.点D为平面内一个动点.线段AB,BC,CD,DA的中点分别为M、N、P、Q.在点D的运动过程中,有下列结论:①存在无数个中点四边形MNPQ是平行四边形;②存在无数个中点四边形MNPQ是菱形;③存在无数个中点四边形MNPQ是矩形;④存在无数个中点四边形MNPQ是正方形.所有正确结论的序号是.11.如图,点A,B,C为平面内不在同一直线上的三点,点D为平面内一个动点,线段AB,BC,CD,DA的中点分别为M,N,P,Q.在点D的运动过程中,有下列结论:①存在无数个中点四边形MNPQ是平行四边形;②存在无数个中点四边形MNPQ是菱形;③存在无数个中点四边形MNPQ是矩形;④中点四边形MNPQ不可能是正方形;所有结论正确的序号是.12.如图,点A,B,C为平面内不在同一直线上的三点.点D为平面内一个动点.线段AB,BC,CD,DA的中点分别为M,N,P,Q.在点D的运动过程中,有下列结论:①存在无数个中点四边形MNPQ是平行四边形;②存在无数个中点四边形MNPQ是菱形;③存在无数个中点四边形MNPQ是矩形;④存在两个中点四边形MNPQ是正方形.所有正确结论的序号是.13.如图,四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.请你添加一个条件,使四边形EFGH为矩形,应添加的条件是.14.小明作生成“中点四边形”的数学游戏,具体步骤如下:(1)任画两条线段AB、CD,且AB与CD交于点O,O与A、B、C、D任意一点均不重合.连接AC、BC、BD、AD,得到四边形ACBD;(2)分别作出AC、CB、BD、DA的中点A1,B1,C1,D1,这样就得到一个“中点四边形”.①若AB⊥CD,则四边形A1B1C1D1的形状一定是,这样作图的依据是.②请你再给出一个AB与CD之间的关系,并写出在该条件下得到的“中点四边形”A1B1C1D1的形状.15.如图,矩形ABCD中,AD=a,AB=b,依次连接它的各边中点得到第一个四边形E1F1G1H1,再依次连接四边形E1F1G1H1的各边中点得到第二个四边形E2F2G2H2,按此方法继续下去,得到的第n个四边形E n F n G n H n的面积等于.16.已知:顺次连接矩形各边的中点,得到一个菱形,如图①;再顺次连接菱形各边的中点,得到一个新的矩形,如图②;然后顺次连接新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第4个图形中直角三角形的个数有个;第2014个图形中直角三角形的个数有个.17.已知:四边形ABCD的面积为1.如图1,取四边形ABCD各边中点,则图中阴影部分的面积为;如图2,取四边形ABCD各边三等分点,则图中阴影部分的面积为;…;取四边形ABCD各边的n(n为大于1的整数)等分点,则图中阴影部分的面积为.18.梯形的高为4cm,中位线长为5cm,则梯形的面积为cm2.19.如图,点E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下面四个结论:(1)AE=BF,(2)AE⊥BF,(3)AO=OE,(4)S△AOB=S四边,其中正确结论的序号是.形DEOF20.若梯形的面积为12cm2,高为3cm,则此梯形的中位线长为cm.21.已知一个梯形的面积为22cm2,高为2cm,则该梯形的中位线的长等于cm.22.如图,正方形ABCD中,O是AC的中点,E是AD上一点,连接BE,交AC于点H,作CF⊥BE于点F,AG⊥BE于点G,连接OF,则下列结论中,①AG=BF;②OF平分∠CFG;⑤CF﹣BF=EF;④GF=OF,正确的有.(填序号)23.如图,点E是正方形ABCD的对角线BD上一点.EF⊥BC,EG⊥CD,垂足分别是F,G,GF=5,则AE=.24.如图,平行四边形ABCD的对角线AC与BD相交于点O,且∠OCD=90°.若E是BC边的中点,AC=6,BD=10,则OE的长为.25.如图,在平行四边形ABCD中,∠ABC的平分线交AD于点E,AB=2,BC=5,则DE =.26.如图,菱形ABCD的边长为2,∠BAD=60°,点E是AD边上一动点(不与A,D重合),点F是CD边上一动点,DE+DF=2,则∠EBF=°,△BEF面积的最小值为.27.在平面直角坐标系xOy中,菱形ABCD的四个顶点都在坐标轴上.若A(﹣4,0),B (0,﹣3),则菱形ABCD的面积是.28.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,使得点D落在点D'处,则FC=.29.如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是.30.在数学家吴文俊主编的《“九章算术”与刘徽》一书中,小宇同学看到一道有趣的数学问题:古代数学家刘徽使用“出入相补”原理,即割补法,把筝形转化为与之面积相等的矩形,从而得到“筝形的面积等于其对角线乘积之半”.(说明:一条对角线垂直平分另一条对角线的四边形是筝形)请根据如图完成这个数学问题的证明过程.证明:证明:S筝形ABCD=S△AOB+S△AOD+S△COB+S△COD.易知,S△AOD=S△BEA,S△COD=S△BFC,由等量代换可得:S筝形ABCD=S△AOB++S△COB+=S矩形EFCA=AE•AC=•.三.解答题(共30小题)31.在正方形ABCD中,P是边BC上一动点(不与点B、C重合),E是AP的中点,过点E作MN⊥AP,分别交AB、CD于点M,N.(1)判定线段MN与AP的数量关系,并证明;(2)连接BD交MN于点F.①根据题意补全图形;②用等式表示线段ME,EF,FN之间的数量关系,直接写出结论.32.如图,已知在四边形中,AC⊥BD交于点O,E、F、G、H分别是四边上的中点,求证:四边形EFGH是矩形.33.我们规定:一组邻边相等且对角互补的四边形叫做“完美四边形”.(1)在①平行四边形,②菱形,③矩形,④正方形中,一定为“完美”四边形的是(请填序号);(2)在“完美”四边形ABCD中,AB=AD,∠B+∠D=180°,连接AC.①如图1,求证:AC平分∠BCD;小明通过观察、实验,提出以下两种想法,证明AC平分∠BCD:想法一:通过∠B+∠D=180°,可延长CB到E,使BE=CD,通过证明△AEB≌△ACD,从而可证AC平分∠BCD;想法二:通过AB=AD,可将△ACD绕点A顺时针旋转,使AD与AB重合,得到△AEB,可证C,B,E三点在一条直线上,从而可证AC平分∠BCD.请你参考上面的想法,帮助小明证明AC平分∠BCD;②如图2,当∠BAD=90°,用等式表示线段AC,BC,CD之间的数量关系,并证明.34.如图,在等边△ABC中,作∠ACD=∠ABD=45°,边CD、BD交于点D,连接AD.(1)请直接写出∠CDB的度数;(2)求∠ADC的度数;(3)用等式表示线段AD、BD、CD三者之间的数量关系,并证明.35.如图,四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点.(1)判断四边形EFGH是何种特殊的四边形,并说明你的理由;(2)要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是.36.在正方形ABCD中,点E是边BC上的中点,在边CD上取一点F,使得AE平分∠BAF.(1)依题意补充图形;(2)小玲画图结束后,通过观察、测量,提出猜想:线段AF等于线段BC与线段CF 的和.小玲把这个猜想与同学们进行交流.通过讨论,形成了证明该猜想的几种想法:想法1:考虑到AE平分∠BAF,且∠B=90°.若过点E作EM⊥AF,则易证AM=AB =BC.这样,只需证明FM=FC即可.因∠EMF=∠C=90°,证FM=FC即证EF平分∠MEC,所以连接EF.想法2:考虑到E是BC中点,若延长AE,交DC的延长线于点G,则易证CG=AB,则CF+BC=CF+CG=FG.要证AF=BC+CF,只需证F A=FG即可.想法3:小米在课外小组学习了梯形中位线的相关知识,考虑到正方形ABCD所以有BC =AB,因此BC+CF=AB+CF,是梯形上、下底之和,结合“E是BC中点”,易联想到梯形中位线的性质,从而解决问题.…请你参考上面的想法,帮助小玲证明AF=BC+CF.(一种方法即可)37.已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是,证明你的结论;(2)当四边形ABCD的对角线满足条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?.38.(1)如图1,正方形ABCD中,E、F分别是BC、CD边上的点,且满足BE=CF,连接AE、BF交于点H..请直接写出线段AE与BF的数量关系和位置关系;(2)如图2,正方形ABCD中,E、F分别是BC、CD边上的点,连接BF,过点E作EG⊥BF于点H,交AD于点G,试判断线段BF与GE的数量关系,并证明你的结论;(3)如图3,在(2)的条件下,连接GF、HD.求证:①FG+BE≥BF;②∠HGF=∠HDF.39.已知:如图,梯形ABCD中,AD∥BC,AD+BC=10,M是AB的中点,MD⊥DC,D 是垂足,sin∠C=,求梯形ABCD的面积.40.如图,在正方形ABCD中,点E、F分别在BC、CD上,BE=CF,连接AE、BF相交于点G.现给出了四个结论:①AE=BF;②∠BAE=∠CBF;③BF⊥AE;④AG=FG.请在这些结论中,选择一个你认为正确的结论,并加以证明.结论:.41.如图,在梯形ABCD中,AD∥BC,∠B=∠ACD.(1)请再写出图中另外一对相等的角;(2)若AC=6,BC=9,试求梯形ABCD的中位线的长度.42.已知:如图,梯形ABCD中,AB∥CD,中位线EF长为20,AC与EF交于点G,GF ﹣GE=5.求AB、CD的长.43.已知:在梯形ABCD中,AD∥BC,点E在AB上,点F在DC上,且AD=a,BC=b.(1)如果点E、F分别为AB、DC的中点,如图.求证:EF∥BC,且EF=;(2)如果,如图,判断EF和BC是否平行,并用a、b、m、n的代数式表示EF.请证明你的结论.44.如图,在正方形ABCD中,点E在线段CB的延长线上,连接AE,并将线段AE绕点E 顺时针旋转90°,得到线段FE,连接AF,BD,CF,线段AF与线段BD相交于点M.(1)请写出∠ECF的度数,并给出证明;(2)求证:点M是线段AF的中点;(3)直接写出线段CF,BM和AD的数量关系.45.四边形ABCD是正方形,将线段CD绕点C逆时针旋转2α(0°<α<45°),得到线段CE,CE=CD,连接DE,过点B作BF⊥DE交DE的延长线于点F,连接BE.(1)依题意补全图1;(2)直接写出∠FBE的度数;(3)连接AF,用等式表示线段AF与DE的数量关系,并证明.46.在正方形ABCD中,P是射线CB上的一个动点,过点C作CE⊥AP于点E,射线CE 交直线AB于点F,连接BE.(1)如图1,当点P在线段CB上时(不与端点B,C重合).①求证:∠BCF=∠BAP;②求证:EA=EC+EB;(2)如图2,当点P在线段CB的延长线上时(BP<BA),依题意补全图2并用等式表示线段EA,EC,EB之间的数量关系.47.如图,在正方形ABCD中,点E是直线AC上任意一点(不与点A,C重合),过点E 作EF⊥BE交直线CD于点F,过点F作FG⊥AC交直线AC于点G.(1)如图1,当点E在线段AC上时,猜想EG与AB的数量关系;(2)如图2,当点E在线段AC的延长线上时,补全图形,并判断(1)中EG与AB的数量关系是否仍然成立.如果成立,请证明;如果不成立,请说明理由.48.已知正方形ABCD,点E是直线BC上一点(不与B,C重合),∠AEF=90°,EF交正方形外角的平分线CF所在的直线于点F.(1)如图1,当点E在线段BC上时,①请补全图形,并直接写出AE,EF满足的数量关系;②用等式表示CD,CE,CF满足的数量关系,并证明.(2)当点E在直线BC上,用等式表示线段CD,CE,CF之间的数量关系(直接写出即可).49.如图①,如果四边形ABCD满足AB=AD,CB=CD,∠B=∠D=90°,那么我们把这样的四边形叫做“完美筝形”.将一张如图①所示的“完美筝形”纸片ABCD先折叠成如图②所示形状,再展开得到图③,其中CE,CF为折痕,∠BCE=∠ECF=∠FCD,点B′为点B的对应点,点D′为点D的对应点,连接EB',FD′相交于点O.简单应用:(1)在平行四边形、矩形、菱形、正方形四种图形中,一定为“完美筝形”的是.(2)请你结合图1写出一条完美筝形的性质.(3)当图3中的∠BCD=120°时,∠AEB′=.(4)当图2中的四边形AECF为菱形时,对应图③中的“完美筝形”有(写出筝形的名称:例筝形ABCD).50.在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明:CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),求出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.51.在平行四边形ABCD中,E是AD上一点,AE=AB,过点E作射线EF.(1)若∠DAB=60°,EF∥AB交BC于点H,请在图1中补全图形,并判断四边形ABHE 的形状;(2)如图2,若∠DAB=90°,EF与AB相交,在EF上取一点G,使得∠EGB=∠EAB,连接AG,请在图2中补全图形,猜想线段EG,AG,BG之间的数量关系,并证明你的结论;(3)如图3,若∠DAB=α(0°<α<90°),EF与AB相交,在EF上取一点G,使得∠EGB=∠EAB,连接AG.请在图3中补全图形(要求:尺规作图,保留作图痕迹),直接写出线段EG,AG,BG之间的数量关系(用含α的式子表示).52.如图,在四边形ABCD中,AB=AD,CB=CD,我们把这种两组邻边分别相等的四边形叫做筝形.根据学习平行四边形性质的经验,小文对筝形的性质进行了探究.(1)小文根据筝形的定义得到筝形边的性质是;(2)小文通过观察、实验、猜想、证明得到筝形角的性质是“筝形有一组对角相等”.请你帮他将证明过程补充完整.已知:如图,在筝形ABCD中,AB=AD,CB=CD.求证:.证明:(3)小文连接筝形的两条对角线,探究得到筝形对角线的性质是.(写出一条即可)53.如果一个四边形ABCD满足AB=AD且BC=CD,则称四边形ABCD为筝形.(1)如图1,连接筝形ABCD的对角线AC、BD交于点H,求证:AC⊥BD.(2)求证:筝形ABCD的面积S=AC•BD.(3)如图2,在筝形ABCD中,AB=AD=5,BC=CD,BD=8,过点B作BF⊥CD于点,交AC于点E,过点F作FM⊥AB于点M,若四边形ABED是菱形,求FM的长.54.已知,在菱形ABCD中,∠ADC=60°,点F为CD上任意一点(不与C、D重合),过点F作CD的垂线,交BD于点E,连接AE.(1)①依题意补全图1;②线段EF、CF、AE之间的等量关系是.(2)在图1中将△DEF绕点D逆时针旋转,当点F、E、C在一条直线上(如图2).线段EF、CE、AE之间的等量关系是.写出判断线段EF、CE、AE之间的等量关系的思路(可以不写出证明过程)55.在菱形ABCD中,∠BAD=120°,射线AP位于该菱形外侧,点B关于直线AP的对称点为E,连接BE、DE,直线DE与直线AP交于F,连接BF,设∠P AB=α.(1)依题意补全图1;(2)如图1,如果0°<α<30°,判断∠ABF与∠ADF的数量关系,并证明;(3)如图2,如果30°<α<60°,写出判断线段DE,BF,DF之间数量关系的思路;(可以不写出证明过程)(4)如果60°<α<90°,直接写出线段DE,BF,DF之间的数量关系.56.在菱形ABCD中,∠ABC=60°,点P在对角线BD上,点Q在直线AD上,且∠CPQ =120°.(1)如图1,若点P为菱形ABCD的对角线的交点.①依题意补全图1;②猜想PC与PQ的数量关系并加以证明;(2)如图2,若∠CPD=80°,连接CQ,写出求∠PQD度数的思路.57.在菱形ABCD中,∠ADC=120°,点E是对角线AC上一点,连接DE,∠DEC=50°,将线段BC绕点B逆时针旋转50°并延长得到射线BF,交ED的延长线于点G.(1)依题意补全图形;(2)求证:EG=BC;(3)用等式表示线段AE,EG,BG之间的数量关系:.58.如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形ABE.点F是对角线BD上一动点(点F不与点B 重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.(1)求AO的长;(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC =AM;(3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.59.请阅读下列材料:问题:如图1,在菱形ABCD和菱形BEFG中,点A、B、E在同一条直线上,P是线段DF的中点,连接PG、PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系及数量关系.小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)直接写出上面问题中线段PG与PC的位置关系及的值;(2)如图2,在正方形ABCD和正方形BEFG中,点A、B、E在同一条直线上,P是线段DF的中点,连接PG、PC,探究PG与PC的位置关系及数量关系;(3)将图2中的正方形BEFG绕点B顺时针旋转,原问题中的其他条件不变(如图3),你在(2)中得到的两个结论是否发生变化?写出你的猜想并加以证明.60.在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.(1)如图1,求证:ME=MF;(2)如图2,点G是线段BC上一点,连接GE、GF、GM,若△EGF是等腰直角三角形,∠EGF=90°,求AB的长;(3)如图3,点G是线段BC延长线上一点,连接GE、GF、GM,若△EGF是等边三角形,则AB=.。
特殊的平行四边形专项练习(含答案)
特殊的平行四边形(含答案)一、选择题(本大题共49小题,共147.0分)1.一个菱形的周长是20cm,两条对角线长的比是4︰3,则这个菱形的面积是()A. 12cm2B. 96cm2C. 48cm2D. 24cm22.若菱形的周长为8,高为1,则菱形两邻角的度数之比是()A. 3:1B. 4:1C. 5:1D. 6:13.如图,在矩形ABCD中,O为AC中点,EF过O点,且EF⊥AC分别交DC于F,交AB于E,点G是AE中点,且∠AOG=30°.①DC=3OG;②OG=12BC;③△OGE是等边三角形;④S△AOE=16S矩形ABCD.则结论正确的个数为()A. 4B. 3C. 2D. 14.如图,ABCD是一张平行四边形纸片,要求利用所学知识作出一个菱形,甲、乙两位同学的作法如下:则关于甲、乙两人的作法,下列判断正确的为()A. 仅甲正确B. 仅乙正确C. 甲、乙均正确D. 甲、乙均错误5.如图,在菱形ABCD中,∠A=130°,连接BD,∠DBC等于()A. 25°B. 35°C. 50°D. 65°6.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为()A. 5cmB. 4.8cmC. 4.6cmD. 4cm7.如图,矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为()A. 36°B. 27°C. 18°D. 9°8.如图,四边形ABCD是菱形,AC=12,BD=16,AH⊥BC于H,则AH等于()A. 4B. 5C. 245D. 4859.菱形具有而一般平行四边形不具有的性质是()A. 两组对边分别相等B. 两条对角线相等C. 四个内角都是直角D. 每一条对角线平分一组对角10.如图,在菱形ABCD中,∠BAD=100°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF等于()A. 60°B. 50°C. 30°D. 20°11.如图,在矩形ABCD中,F是BC中点,E是AD上一点,且∠ECD=30°,∠BEC=90°,EF=4cm,则矩形的面积为().A. 16cm2B. 8√3cm2C. 16√3cm2D. 32cm212.如图,正方形ABCD中,BE=FC,CF=2FD,AE,BF交于点G,连接AF,给出下列结论:①AE⊥BF;②AE=BF;③BG=43GE;④S四边形CEGF=S▵ABG.其中正确的个数为()A. 1个B. 2个C. 3个D. 4个13.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE//AC,DF//AB,分别交AB,AC于E、F两点,下列说法错误的是()A. 四边形AEDF是平行四边形B. 若AB⊥AC,则四边形AEDF是矩形C. 若BD=CD,则四边形AEDF是正方形D. 若AD平分∠BAC,则四边形AEDF是菱形14.如图,在矩形ABCD中,AB>BC,点E,F,G,H分别是边DA,AB,BC,CD的中点,连接EG,HF,则图中的矩形共有()A. 5个B. 8个C. 9个D. 11个15.如图,将长方形纸片折叠,使A点落BC上的F处,折痕为BE,若沿EF剪下,则折叠部分是一个正方形,其数学原理是()A. 邻边相等的矩形是正方形B. 对角线相等的菱形是正方形C. 两个全等的直角三角形构成正方形D. 轴对称图形是正方形16.平行四边形、矩形、菱形、正方形都具有的性质是()A. 对角线互相平分B. 对角线互相垂直C. 对角线相等D. 对角线互相垂直平分且相等17.如图,在菱形ABCD中,E,F,G,H分别是菱形四条边的中点,连结EG与FH,交点为O,则图中的菱形共有()A. 4个B. 5个C. 6个D. 7个18.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60∘,则花坛对角线AC的长等于()A. 6√3米B. 6米C. 3√3米D. 3米19.如图,在平行四边形ABCD中,AD=2AB,CE⊥AB于点E,点F、G分别是AD、BC的中点,连接CF、EF、FG,下列结论:①CE⊥FG;②四边形ABGF是菱形;③EF=CF;④∠EFC=2∠CFD.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个20.如图①,正方形A的一个顶点与正方形B的对称中心重合,重叠部分面积是正方形A面积的12,如图②,移动正方形A的位置,使正方形B的一个顶点与正方形A 的对称中心重合,则重叠部分面积是正方形B面积的()A. 12B. 14C. 16D. 1821.如图①、图②,在给定的一张矩形纸片上作一个正方形,甲、乙两人的作法如下:甲:以点A为圆心,AD长为半径画弧,交AB于点E,以点D为圆心,AD长为半径画弧,交CD于点F,连接EF,则四边形AEFD即为所求;乙:作∠DAB的平分线,交CD于点M,同理作∠ADC的平分线,交AB于点N,连接MN,则四边形ADMN即为所求.对于以上两种作法,可以做出的判定是()A. 甲正确,乙错误B. 甲、乙均正确C. 乙正确,甲错误D. 甲、乙均错误22.如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点,当AB︰AD的比为()时,四边形MENF是正方形.A. 1︰1B. 1︰2C. 2︰3D. 1︰423.如图,在菱形ABCD中,∠ADC=72∘,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是()A. 108∘B. 72∘C. 90∘D. 100∘24.在一次数学课上,张老师出示了一个题目:“如图,▱ABCD的对角线相交于点O,过点O作EF垂直于BD交AB,CD分别于点F,E,连接DF,BE.请根据上述条件,写出一个正确结论.”其中四位同学写出的结论如下:小青:OE=OF;小何:四边形DFBE是正方形;小夏:S四边形AFED=S四边形FBCE;小雨:∠ACE=∠CAF.这四位同学写出的结论中不正确的是()A. 小青B. 小何C. 小夏D. 小雨25.如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为()A. (√3,−1)B. (2,−1)C. (1,−√3)D. (−1,√3)26.七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是()A. 1和1B. 1和2C. 2和1D. 2和227.四边形ABCD的对角线AC,BD,下面给出的三个条件中,选取两个,能使四边形ABCD是矩形,①AC,BD互相平分;②AC⊥BD;③AC=BD,则正确的选法是()A. ①②B. ①③C. ②③D. 以上都可以28.如图,菱形ABCD周长为20,对角线AC、BD相交于点O,E是CD的中点,则OE的长是()A. 2.5B. 3C. 4D. 529.如图,在正方形ABCD中,E是BC边上的一点,BE=2,EC=4,将正方形边AB沿AE折叠到AF,延长EF交DC于G,连接AG.现在有如下四个结论:①∠EAG=45°;②FG=FC;③FC//AG;④S△GFC=3.6.其中结论正确的个数是()A. 1B. 2C. 3D. 430.在菱形ABCD中,AC、BD为对角线,若AC=4,BD=8,则菱形ABCD的面积是()A. 12B. 16C. 24D. 3231.四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABC′D′.若∠D′AB=30°,则菱形ABC′D′的面积与正方形ABCD的面积之比是()A. 1B. 12C. √22D. √3232.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为()A. 8B. 12C. 16D. 3233.矩形OABC在平面直角坐标系中的位置如图所示,已知B(2√3,2),点A在x轴上,点C在y轴上,P是对角线OB上一动点(不与原点重合),连接PC,过点P作PD⊥PC,交x轴于点D.下列结论:①OA=BC=2√3;②当点D运动到OA的中点处时,PC2+PD2=7;③在运动过程中,∠CDP是一个定值;④当△ODP为等腰三角形时,点D的坐标为(2√33,0).其中正确结论的个数是()A. 1个B. 2个C. 3个D. 4个34.如图,矩形ABCD中,点E在BC边上,DF⊥AE于F,若EF=CE=1,AB=3,则线段AF的长为()A. 2√5B. 4C. √10D. 3√235.如图,在矩形ABCD中,BC=8,CD=6,E为AD上一点,将△ABE沿BE折叠,点A恰好落在对角线BD上的点F处,则折线BE的长为()A. 2√5B. 3√3C. 3√5D. 6√336.如图,菱形ABCD的边长为13,对角线AC=24,点E、F分别是边CD、BC的中点,连接EF并延长与AB的延长线相交于点G,则EG=()A. 13B. 10C. 12D. 537.下列说法正确的是()A. 一组对边平行另一组对边相等的四边形是平行四边形B. 对角线互相垂直平分的四边形是菱形C. 对角线相等的四边形是矩形D. 对角线互相垂直且相等的四边形是正方形38.如图,在菱形ABCD中,∠BCD=60°,BC的垂直平分线交对角线AC于点F,垂足为E,连接BF、DF,则∠DFC的度数是()A. 130°B. 120°C. 110°D. 100°39.若菱形的周长为16,高为2,则菱形两邻角的度数之比为()A. 4:1B. 5:1C. 6:1D. 7:140.已知四边形ABCD是平行四边形,AC,BD相交于点O,下列结论错误的是()A. OA=OC,OB=ODB. 当AB=CD时,四边形ABCD是菱形C. 当∠ABC=90°时,四边形ABCD是矩形D. 当AC=BD且AC⊥BD时,四边形ABCD是正方形41.下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A. 由②推出③,由③推出①B. 由①推出②,由②推出③C. 由③推出①,由①推出②D. 由①推出③,由③推出②42.菱形不具备的性质是()A. 是轴对称图形B. 是中心对称图形C. 对角线互相垂直D. 对角线一定相等43.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A. 485B. 325C. 245D. 12544.下列说法正确的有几个()①对角线互相平分的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③对角线互相垂直且相等的平行四边形是正方形;④对角线相等的平行四边形是矩形.A. 1个B. 2个C. 3个D. 4个45.在矩形ABCD中,AC、BD相交于点O,若△AOB的面积为2,则矩形ABCD的面积为()A. 4B. 6C. 8D. 1046.如图,已知正方形ABCD边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE长为()A. 2√2−2B. √3−1C. 2−√2D. √2−147.如图,在菱形ABCD中,对角线AC、BD相交于点O,H为BC中点,AC=6,BD=8.则线段OH的长为()A. 125B. 52C. 3D. 548.如图所示,点O是矩形ABCD对角线AC的中点,OE//AB交AD于点E.若OE=3,BC=8,则OB的长为()A. 4B. 5C. √342D. √3449.菱形的对角线不一定具有的性质是()A. 互相平分B. 互相垂直C. 每一条对角线平分一组对角D. 相等二、填空题(本大题共21小题,共63.0分)50.如图,将两条宽度都为6的纸片重叠在一起,使∠ABC=60°,则四边形ABCD的面积为________.51.如图,在菱形ABCD中,对角线AC、BD相交于点O,H为边AD的中点,菱形ABCD的周长为28,则OH的长等于________.52.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是______.53.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是______.54.菱形的面积是24,一条对角线长是6,则菱形的边长是______.55.如图,四边形ABCD为菱形,四边形AOBE为矩形,O,C,D三点的坐标为(0,0),(2,0),(0,1),则点E的坐标为______.56.如图,在菱形ABCD中,AB=18cm,∠A=60°,点E以2cm/s的速度沿AB边由A向B匀速运动,同时点F以4cm/s的速度沿CB边由C向B运动,F到达点B时两点同时停止运动.设运动时间为t秒,当△DEF为等边三角形时,t的值为______.57.如图1,已知四边形ABCD是正方形,将△DAE,△DCF分别沿DE,DF向内折叠得到图2,此时DA与DC重合(A、C都落在G点),若GF=4,EG=6,则DG的长为______.58.已知矩形ABCD,对角线AC、BD相交于点O,点E为BD上一点,OE=1,连接AE,∠AOB=60°,AB=2,则AE的长为______.59.菱形ABCD中,∠A=60°,AB=9,点P是菱形ABCD内一点,PB=PD=3√3,则AP的长为______.60.如图,在平面直角坐标系中,菱形OABC的一个顶点在原点O处,且∠AOC=60°,A点的坐标是(0,4),则直线AC的表达式是______.61.如图,将菱形ABCD折叠,使点B落在AD边的点F处,折痕为CE.若∠D=70°,则∠AEF=______.62.如图,已知点P(2,0),Q(8,0),A是x轴正半轴上一动点,以OA为一边在第一象限内作正方形OABC,当PB+BQ取最小值时,点B的坐标是______.63.已知正方形ABCD,以∠BAE为顶角,边AB为腰作等腰△ABE,连接DE,则∠DEB=______.64.一个菱形的周长为52cm,一条对角线长为10cm,则其面积为______ cm2.65.菱形有一个内角为60°,较短的对角线长为6,则它的面积为______.66.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD=2BE,∠DAE=∠DEA,EO=1,则线段AE的长为______.67.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2019次,点B的落点依次为B1,B2,B3,…,则B2019的坐标为______.68.如图,在Rt△ABC中,∠A=90°,AB=6,BC=10,P是BC边上的一点,作PE垂直AB,PF垂直AC,垂足分别为E、F,求EF的最小值是______.69.如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为______.70.若顺次连接四边形ABCD四边中点形成的四边形为矩形,则四边形ABCD满足的条件为______.三、解答题(本大题共19小题,共152.0分)71.如图,在▵ABCD中,E,F分别为边AB,CD的中点,BD是对角线.(1)求证:△ADE≌△CBF;(2)若∠ADB是直角,请证明四边形BEDF是菱形.72.如图,在△ABC中,D,E分别是AB,AC的中点,连接DE并延长DE至点F,使EF=DE,连接CF.(1)求证:四边形DBCF是平行四边形;(2)探究:当△ABC满足什么条件时,四边形ADCF是矩形,并说明理由.73.如图1,直角梯形ABCD中,AD//BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.(1)AM=______,AP=______.(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值;(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,则AC=______.74.如图,在长方形纸片ABCD中,AD//BC,将长方形纸片折叠,使点D与点B重合,点C落在点C′处,折痕为EF.(1)求证:BE=BF.(2)若∠ABE=18°,求∠BFE的度数.(3)若AB=4,AD=8,求AE的长.75.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于点D,交AB于点E,点F在DE的延长线上,且AF=CE.(1)四边形ACEF是平行四边形吗?说明理由.(2)当∠B的大小满足什么条件时,四边形ACEF为菱形?请说明你的结论.(3)四边形ACEF有可能是正方形吗?为什么?76.如图,P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足,若CF=3,CE=4,求AP的长.77.如图,长方形纸片ABCD中,AB=8cm,把长方形纸片沿直线AC折叠,点B落在点E处,AE交cm,求AD.DC于点F,AF=25478.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为点E、F,且BE=DF.求证:▱ABCD是菱形.CE.79.如图,AE=AC,点B是CE的中点,且AD//CE,AD=12(1)若AE=25,CE=14,求△ACE的面积;(2)求证:四边形ABCD是矩形.80.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)在点M移动过程中:①当四边形AMDN成矩形时,求此时AM的长;②当四边形AMDN成菱形时,求此时AM的长.81.如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时旋转90°,得到线段CQ,连接BP,DQ.(1)如图1,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图2,求证:BE⊥DQ;②如图3,若△BCP为等边三角形,判断△DEP的形状,并说明理由.82.如图,在四边形ABCD中,BC=CD,∠C=2∠BAD.O是四边形ABCD内一点,且OA=OB=OD.求证:(1)∠BOD=∠C;(2)四边形OBCD是菱形.83.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)连接OE,若AD=10,EC=4,求OE的长度.84.如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DE=BF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)连接AF,CE.当BD平分∠ABC时,四边形AFCE是什么特殊四边形?请说明理由.85.如图,以矩形OABC的顶点O为坐标原点,OA所在直线为x轴,OC所在直线为y轴建立平面直角坐标系.已知,OA=2,OC=4,点D为x轴上一动点,以BD为一边在BD右侧作正方形BDEF.(1)若点D与点A重合,请直接写出点E的坐标;(2)若点D在OA的延长线上,且EA=EB,求点E的坐标;(3)若OE=2√17,求点E的坐标.86.如图,BD是△ABC的角平分线,过点D作DE//BC交AB于点E,DF//AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=6,求菱形BEDF的面积.87.已知抛物线y=ax2+bx+c(a≠0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC=3.(1)求抛物线的解析式及顶点D的坐标;(2)过点A作AM⊥BC,垂足为M,求证:四边形ADBM为正方形;(3)点P为抛物线在直线BC下方图形上的一动点,当△PBC面积最大时,求点P的坐标;QC是否存在最小值?若存在,求岀(4)若点Q为线段OC上的一动点,问:AQ+12这个最小值;若不存在,请说明理由.88.如图所示,顺次延长正方形ABCD的各边AB,BC,CD,DA至E,F,G,H,且使BE=CF=DG=AH.求证:四边形EFGH是正方形.89.已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE//AC,AE//BD.(1)求证:四边形AODE是矩形;(2)若AB=2,DE=1,求四边形AODE的面积.答案和解析1.【答案】D【解析】【分析】此题主要考查菱形的性质,根据菱形的对角线互相垂直平分,利用勾股定理求解.【解答】解:设菱形的对角线长分别为8x cm和6x cm,已知菱形的周长为20cm,故菱形的边长为5cm,根据菱形的性质可知,菱形的对角线互相垂直平分,即可知(4x)2+(3x)2=25,解得x=1,故菱形的对角线长分别为8cm和6cm,×8×6=24(cm2).所以菱形的面积为122.【答案】C【解析】【分析】本题考查了菱形的性质、含30°角的直角三角形的判定;熟练掌握菱形的性质和含30°角的直角三角形的判定是解决问题的关键.先根据菱形的性质求出边长AB=2,再根据直角三角形的性质求出∠B=30°,得出∠DAB=150°,即可得出结论.【解答】解:如图所示:∵四边形ABCD是菱形,菱形的周长为8,∴AB=BC=CD=DA=2,∠DAB+∠B=180°,∵AE=1,AE⊥BC,∴AE=1AB,2∴∠B=30°,∴∠DAB=150°,∴∠DAB:∠B=5:1;故选C.3.【答案】B【解析】【分析】本题考查了矩形的性质,直角三角形斜边上的中线等于斜边的一半的性质,等边三角形的判定与性质,等腰三角形的判定与性质,三角形的面积,设出AE、OG,然后用a表示出相关的边更容易理解,根据直角三角形斜边上的中线等于斜边的一半可得OG= AG=GE=12AE,再根据等边对等角可得∠OAG=30°,根据直角三角形两锐角互余求出∠GOE=60°,从而判断出△OGE是等边三角形,判断出③正确;设AE=2a,根据等边三角形的性质表示出OE,利用勾股定理列式求出AO,从而得到AC,再求出BC,然后利用勾股定理列式求出AB=3a,从而判断出①正确,②错误;再根据三角形的面积和矩形的面积列式求出判断出④正确.【解答】解:∵EF⊥AC,点G是AE中点,∴OG=AG=GE=12AE,∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°−∠AOG=90°−30°=60°,∴△OGE是等边三角形,故③正确;设AE=2a,则OE=OG=a,由勾股定理得,AO=√AE2−OE2=√(2a)2−a2=√3a,∵O为AC中点,∴AC=2AO=2√3a,∴BC=12AC=12×2√3a=√3a,在Rt△ABC中,由勾股定理得,AB=√(2√3a)2−(√3a)2=3a,∵四边形ABCD是矩形,∴CD=AB=3a,∴DC=3OG,故①正确;∵OG=a,12BC=√32a,∴OG≠12BC,故②错误;∵S△AOE=12a⋅√3a=√32a2,S ABCD=3a⋅√3a=3√3a2,∴S△AOE=16S ABCD,故④正确;综上所述,结论正确是①③④共3个.故选B.4.【答案】C【解析】【分析】此题主要考查了菱形的判定,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).【解答】解:甲的作法正确;∵四边形ABCD是平行四边形,∴AD//BC,∴∠DAC=∠ACB,∵EF是AC的垂直平分线,∴AO=CO,在△AOE和△COF中,{∠EAO =∠FCO AO =CO ∠AOE =∠COF, ∴△AOE≌△COF(ASA),∴AE =CF ,又∵AE//CF ,∴四边形AECF 是平行四边形,∵EF ⊥AC ,∴四边形AECF 是菱形;乙的作法正确;∵AD//BC ,∴∠1=∠2,∠6=∠7,∵BF 平分∠ABC ,AE 平分∠BAD ,∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∴AB =AF ,AB =BE ,∴AF =BE∵AF//BE ,且AF =BE ,∴四边形ABEF 是平行四边形,∵AB =AF ,∴平行四边形ABEF 是菱形;故选C .5.【答案】A【解析】【试题解析】【分析】此题主要考查了菱形的性质,正确应用菱形的性质是解题关键.直接利用菱形的性质得出∠ABC 的度数,进而得出∠DBC 的度数.【解答】解:∵在菱形ABCD中,∠A=130°,∴∠ABC=180°−130°=50°,∴∠DBC=12∠ABC=25°.故选:A.6.【答案】A【解析】【分析】本题主要考查菱形的判定和性质,证得四边形ABCD是菱形是解题的关键.作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由AR= AS得平行四边形ABCD是菱形,再根据根据勾股定理求出AB即可.【解答】解:如图,作AR⊥BC于R,AS⊥CD于S,连接AC,BD交于点O,由题意知,AD//BC,AB//CD,∴四边形ABCD是平行四边形.∵两张纸条等宽,∴AR=AS.∵AR⋅BC=AS⋅CD,∴BC=CD,∴平行四边形ABCD是菱形,∴AC⊥BD.在Rt△AOB中,OA=12AC=3cm,OB=12BD=4cm,∴AB=√OA2+OB2=√32+42=5cm.故选A.7.【答案】C【解析】【分析】本题考查了矩形的性质、等腰三角形的判定与性质、角的互余关系,熟练掌握矩形的性质,并能进行推理计算是解决问题的关键,解答此题由矩形的性质得出OC=OD,得出∠ODC=∠OCD,求出∠EDC=36°,再由角的互余关系求出∠ODC,即可得出∠BDE的度数.【解答】解:∵四边形ABCD是矩形,∴∠ADC=90°,OC=12AC,OD=12BD,AC=BD,∴OC=OD,∴∠ODC=∠OCD,∵∠ADE:∠EDC=3:2,∴∠EDC=25×90°=36°,∵DE⊥AC,∴∠DEC=90°,∴∠ODC=∠OCD=90°−36°=54°,∴∠BDE=∠ODC−∠EDC=54°−36°=18°.故选C.8.【答案】D【解析】【分析】本题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.根据菱形的性质得出BO、CO的长,在Rt△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AH,即可得出AH的长度.【解答】解:∵四边形ABCD是菱形,AC=12,BD=16,∴CO=12AC=6,BO=12BD=8,CO⊥BO,∴BC=√BO2+CO2=√62+82=10,∴S菱形ABCD =12AC⋅BD=12×16×12=96,∵S菱形ABCD=BC×AH,∴BC×AH=96,∴AH=9610=485.故选D.9.【答案】D【解析】【分析】此题主要考查了菱形的性质和平行四边形的性质,关键是根据菱形对角线垂直及平行四边形对角线平分的性质的理解.根据菱形的特殊性质可知对角线互相垂直.【解答】解:A.两组对角分别相等,两者均有此性质,故此选项不正确;B.两条对角线相等,两者均没有此性质,故此选项不正确;C.四个内角都是直角,两者均不具有此性质,故此选项不正确;D.每一条对角线平分一组对角,菱形具有而一般平行四边形不具有此性质,故此选项正确.故选D.10.【答案】C【解析】【分析】本题考查了三角形外角的性质,全等三角形性质和判定,线段垂直平分线性质,菱形的性质的应用,注意:菱形的四条边相等,菱形的对角线互相平分、垂直,且每一条对角线平分一组对角.连接BF,根据菱形性质得出AD=AB,∠DCB=100°,∠DCA= 50°,∠DAC=∠BAC=50°,根据线段垂直平分线得出AF=BF,求出∠FAB=∠FBA= 50°,求出∠AFB=80°,证△DAF≌△BAF,求出∠DFA=∠BFA=80°,根据三角形外角性质求出即可.【解答】解:如图,连接BF.∵在菱形ABCD中,∠BAD=100°,∴∠DAC=∠BAC=50°,∠ADC=∠ABC=180°−100°=80°.∵EF是线段AB的垂直平分线,∴AF=BF.∴∠ABF=∠CAB=50°.在△ADF与△ABF中,∵{AD=AB,∠DAF=∠BAF, AF=AF,∴△ADF≌△ABF(SAS),∴∠ADF=∠ABF=50°,∴∠CDF=∠ADC−∠ADF=80°−50°=30°.11.【答案】C【解析】【分析】本题考查了矩形的性质,直角三角形斜边上的中线等于斜边的一半的性质,等边三角形的判定及性质,求出矩形的宽是解题的关键.根据直角三角形斜边上的中线等于斜边的一半求出BC,然后判断出△CEF是等边三角形,过点E作EG⊥CF于G,根据等边三角形的性质及勾股定理求出EG,然后根据矩形的面积公式列式进行计算即可得解.【解答】解:作EG⊥BC于G.∵F是BC中点,∠BEC=90°,∴EF=BF=FC,BC=2EF=2×4=8(cm),∵∠ECD=30°,∴∠BCE=60°,∴△CEF是等边三角形,∴CE=EF=4cm,∠CEG=30°,∴CG=12CE=2cm,则EG=√CE2−CG2=2√3(cm),∴矩形的面积=8×2√3=16√3(cm2).故选C.12.【答案】C【解析】【分析】此题考查三角形全等的判定和性质、正方形的性质和勾股定理。
18.2特殊的平行四边形测试
板书设计
布置作业
教学反思
检查意见
绥中一中教案
课题
18.2特殊的平行四边形测试
课型
测试
课时
2课
执教人
教学目标
知识技能:通过测试,综合考察学生对特殊的平行四边形的性质和判定的掌握情况,查缺补漏及时辅导。
数学思考:通过测试,发展逻辑推理问题的能力,及识图的能力。
解决问题:通过测试,学生能灵活应用所学知识解决问题,学会数形结合。
情感态度:激发学习数学的热情,提高分析问题的能力。
教学重点
特殊的平行四边形的性质和判定
教学方法
练习法
教学难点
运用特殊的平行四边形的性质和判定解决实际问题
课前准备
教学过程
教学环节
集体备课
个人备课
指导学生先写姓名,准备答卷。
正确答题,写好解题过程。
讲评试卷,重点讲解。
一.选择题:3、4、8
二.填空题:3、6
人教版苏科版初中数学—特殊的平行四边形(单元测试卷)
特殊的平行四边形单元测试卷班级小组姓名成绩(满分120)一、选择题(共10小题,每题3分,共30分)1.如图,矩形ABCD的两条对角线相交于点O,60AD=,则AC的长是()∠=︒,2AODA.2B.4C.D.2.矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等3.矩形ABCD的对角线AC、BD相交于点O,120∆的周长为()AODAC=,则ABO∠=︒,8A.16B.12C.24D.204.平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB BC⊥⊥D.AB BD=B.AC BD=C.AC BD5.如图,将矩形ABCD沿对角线BD折叠,使点C和点C'重合,若2AB=,则C D'的长为()A.1B.2C.3D.46.如图,四边形ABCD为平行四边形,延长AD到E,使DE AD=,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB BE=B.BE DC⊥C.90⊥ADB∠=︒D.CE DE7.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B '处,若2AE =,6DE =,60EFB ∠=︒,则矩形ABCD 的面积是()A.12B.24C.D.8.如图,长方形ABCD 中,M 为CD 中点,今以B 、M 为圆心,分别以BC 长、MC 长为半径画弧,两弧相交于P 点.若70PBC ∠=︒,则MPC ∠的度数为何?()A.20B.35C.40D.559.如图,已知四边形ABCD 是矩形,把矩形沿直线AC 折叠,点B 落在点E 处,连接DE .若:3:5OE AO =,则AD AB 的值为()A.12B.3C.23D.2210.如图,点E 是矩形ABCD 的边CD 上一点,把ADE ∆沿AE 对折,点D 的对称点F 恰好落在BC 上,已知折痕AE =,且34EC BF FC AB ==,那么该矩形的周长为()A.72cmB.36cm C.20cm D.16cmO二、填空题(共5小题,每题3分,共15分)11.如图,矩形ABCD 中,点E 、F 分别是AB 、CD 的中点,连接DE 和BF ,分别取DE 、BF 的中点M 、N ,连接AM ,CN ,MN ,若AB =,BC =,则图中阴影部分的面积为.12.如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 的坐标分别为(10,0),(0,4),点D 是OA 的中点,点P 在BC 边上运动,当ODP ∆是腰长为5的等腰三角形时,点P 的坐标为.13.如图,将矩形ABCD 沿对角线AC 剪开,再把ACD ∆沿CA 方向平移得到△111A C D ,连结1AD 、1BC .若30ACB ∠=︒,2AC =,1CC x =,则下列结论:①△11A AD ≅△1CC B ;②当1x =时,四边形11ABC D 是菱形;③当2x =时,1BDD ∆为等边三角形;其中正确的是(填序号).14.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点O 作OE AC ⊥交AB 于E ,若4BC =,8AB =,则BE 的长为.15.如图,在矩形ABCD中,点E是边CD的中点,将ADE∆沿AE折叠后得到AFE∆,且点F在矩形ABCD内部.将AF延长交边BC于点G.若1CGGB k=,则ADAB=用含k的代数式表示).三、解答题(共10小题,共75分,)16.(9分)如图,将ABCD的边AB延长至点E,使AB BE=,连接DE,EC,DE交BC于点O.(1)求证:ABD BEC∆≅∆;(2)连接BD,若2BOD A∠=∠,求证:四边形BECD是矩形.17.(9分)如图,在ABC∆中,AB BC=,BD平分ABC∠.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.18.(9分)在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为菱形,且2AB=,求BC的长.=,连接AF,DE交于点O.求19.(9分)如图,在矩形ABCD中,E,F为BC上两点,且BE CF证:∆≅∆;(1)ABF DCE∆是等腰三角形.(2)AOD20.(9分)在矩形ABCD中,点E是BC上一点,AE AD=,DF AE⊥,垂足为F;求证:DF DC=.21.(10分)如图,在矩形ABCD 中,E 、F 分别是边AB 、CD 的中点,连接AF ,CE .(1)求证:BEC DFA ∆≅∆;(2)求证:四边形AECF 是平行四边形.22.(10分)如图,将一张矩形纸片ABCD 沿直线MN 折叠,使点C 落在点A 处,点D 落在点E 处,直线MN 交BC 于点M ,交AD 于点N .(1)求证:CM CN =;(2)若CMN ∆的面积与CDN ∆的面积比为3:1,求MN DN的值.23.(10分)如图,在ABCD 中,DE AB ⊥,BF CD ⊥,垂足分别为E ,F .(1)求证:ADE CBF ∆≅∆;(2)求证:四边形BFDE 为矩形.。
平行四边形及特殊的平行四边形测试题.doc
平行四边形及特殊的平行四边形测试题一、选择题(每小题3分,共30分)1.如图,在ABCD中,对角线AC、BD相交于点O,若BD、AC的和为18 cm,CD︰DA=2︰3,△AOB的周长为13 cm,那么BC的长是()A.6 cmB.9 cmC.3 cmD.12 cm2. 一个等腰梯形的两底之差为12,高为6,则等腰梯形的锐角为()A.30° B. 45° C. 60° D. 75°3. (2013·山东泰安中考)如图,在ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为()A.23B. 43C.4D.84.如图,在梯形中,∥,∠∠90°,分别是的中点,若 cm, cm,那么()A.4 cmB.5 cmC.6.5 cmD.9 cm5.直角梯形的两个直角顶点到对腰中点的距离()A.相等B.不相等C.可能相等也可能不相等D.无法比较6.在平面中,下列命题为真命题的是()A.四边相等的四边形是正方形 B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形7.从菱形的钝角顶点,向对角的两条边作垂线,垂足恰好是该边的中点,则菱形的内角中钝角的度数是()A.150°B. 135°C. 120°D. 100°8.如图所示,在菱形ABCD中,对角线AC与BD相交于点O,OE∥DC且交BC于点E,AD=6 cm,则OE的长为()A.6 cmB.4 cmC.3 cmD.2 cm9. 如图,四边形ABCD是矩形,F是AD上一点,E是CB延长线上一点,且四边形AECF是等腰梯形,下列结论中,不一定正确的是()A.AE=FCB.AD=BCC.BE=AFD.∠E=∠CFD10. (2013·山东聊城中考)下列命题中的真命题是()A.三个角相等的四边形是矩形B.对角线互相垂直且相等的四边形是正方形 C.顺次连接矩形四边中点得到的四边形是菱形 D.正五边形既是轴对称图形又是中心对称图形二、填空题(每小题3分,共24分)11.已知菱形的周长为40 cm,一条对角线长为16 cm,则这个菱形的面积是 .12.如图,EF过平行四边形ABCD的对角线的交点O,交AD于点E,交BC于点F,已知AB = 4,BC = 5,OE = 1.5,那么四边形EFCD的周长是 .13.已知:如图,在平行四边形ABCD中,AB= 12,AB边上的高DF为3,BC边上的高DE为6,则平行四边形ABCD的周长为 .14.如图▣ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为 .15.已知菱形一个内角为120°,且平分这个内角的一条对角线长为8 cm,则这个菱形的周长为 .16.如图,把两个大小完全相同的矩形拼成“L”型图案,则∠________,∠________.17.已知菱形的边长为6,一个内角为60°,则菱形较短的对角线长是 .18.如图所示,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕其顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是 .二、解答题(共66分)19.(8分)如图,在四边形中,,⊥,⊥,垂足为,,求证:四边形是平行四边形.20.(8分)如图,在△中,∠,⊥于,平分∠,交于,交于点,⊥于,求证:四边形是菱形.30,21.(8分)如图,在正方形,过作∥,∠交于点,求证:22.(8分)辨析纠错已知:如图,在△中,是∠的平分线,∥,∥.求证:四边形是菱形.对于这道题,小明是这样证明的:证明:∵平分∠,∴∠1=∠2(角平分线的定义).∵∥,∴∠2=∠3(两直线平行,内错角相等).∴∠1=∠3(等量代换).∴(等角对等边).同理可证,∴四边形是菱形(菱形定义).老师说小明的证明过程有错误,你能看出来吗?(1)请你帮小明指出他的错误是什么?(先在解答过程中标出来,再说明他错误的原因)(2)请你帮小明做出正确的解答.23.(8分)如图,在中,,点E为中点,求∠的度数.24.(8分)如图,在△中,∠0°,BC 的垂直平分线DE交BC于点D,交AB于点E,F在DE上,且.⑴求证:四边形是平行四边形;⑵当∠B满足什么条件时,四边形ACEF是菱形?并说明理由.25.(8分)(2013·山东聊城中考)如图,在四边形ABCD中,∠A= ∠BCD=90°,BC=CD,CE⊥AD,垂足为E.求证:AE=CE.26. (10分)(2013·山东临沂中考)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.第三章证明(三)检测题参考答案1.A 解析:因为 cm,所以cm. 因为△的周长为13 cm,所以 cm.又因为,所以 cm.2.B 解析:如图,在梯形ABCD中,高则所以∠,故选B.3. B解析:∵AE是∠BAD的平分线,∴∠BAE=∠DAE.在ABCD中,∵AB∥CD,∴∠BAE=∠AFD=∠DAE,∴AD=DF.∵点F是CD的中点,AB=CD=4,∴DF=AD=2.在Rt△ADG中,∵DG=1,AD=2,∴AG=,∴AF=2.∵AD∥BE,∴∠ADF=∠FCE.又∵DF=CF,∠AFD=∠EFC,∴△ADF≌△ECF,∴EF=AF=2,∴AE=4.4.A 解析:如图,作EG∥AB,EH∥DC,因为∠∠,所以∠.因为四边形和四边形都是平行四边形,所以.又因为cm, cm,所以cm,,根据直角三角形斜边上的中线等于斜边的一半,得 cm.5.A 解析:如图,在直角梯形中,是的中点,设是的中点,连接,则E是梯形的中位线,所以∥,即⊥.又,所以是的垂直平分线,所以.6. C 解析:四边相等的四边形不一定是正方形,也可能是菱形,故选项A错误;对角线相等的四边形不一定是菱形,也可能是矩形,等腰梯形,故选项B错误;四个角相等的四边形是矩形,故选项C正确;对角线互相垂直的四边形不一定是平行四边形,故选项D错误.7.C 解析:如图,在菱形中⊥连接,因为,所以是的垂直平分线,所以,所以三角形是等边三角形,所以∠,从而∠.8. C 解析:OE=AB=AD=×6=3(cm).9. C 解析:由等腰梯形的条件可知A正确;由四边形ABCD是矩形,可知B正确;又∠E=∠FCB,由AD//BC得∠CFD=∠FCB,故∠E=∠CFD,D正确;只有C不一定正确.10. C 解析:判断一个命题是否为真命题,需要分析题设是否能推出结论,进而利用排除法得出答案.不是真命题的可以利用反例排除:三个角相等的四边形不一定是矩形,例如三个角分别为80°,第四个角为120°的四边形不是矩形,故选项A错误;如图,对角线互相垂直且相等的四边形不一定是正方形,故选项B错误;正五边形只是轴对称图形,不是中心对称图形,故选项D错误;对于选项C,由三角形的中位线性质和矩形的性质以及菱形的判定,可得本选项正确.11.解析:如图,菱形ABCD的周长为40 cm,cm,则cm,cm,又OA⊥OB,所以cm,AC = 12 cm,所以菱形的面积为=96 cm2.12.12 解析:由平行四边形可得,∠∠OCB,又∠∠,所以△≌△,所以,,所以四边形的周长为.13.36 解析:由平行四边形的面积公式,得,即,解得,所以平行四边形的周长为.14. 15 解析:本题综合考查了平行四边形的性质以及三角形的中位线定理.∵点E,O分别是CD,BD的中点,∴OE是△DBC的一条中位线,∴OE=BC,∴△DOE的周长=OE+DE+OD=BC+CD+BD= (BC+CD)+6=ABCD的周长+6=9+6=15.15.32 cm 解析:由菱形有一个内角为120°,可知菱形有一个内角是60°,由题意可知菱形的边长为8 cm,从而周长为(cm).。
特殊的平行四边形测试题及答案
特殊的平行四边形测试题及答案特殊的平行四边形测试题一一、填空题1.用一把刻度尺来判定一个零件是矩形的方法是 . 2.如果边长分别为4cm 和5cm 的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm .3.如图,正方形ABCD 的边长为4cm ,则图中阴影部分的面积为 cm 2.4.若在DE ∥BC ,DF ∥AC ,EF ∥AB ,图中共有_______个平行四边形.5若四边形ABCD 是平行四边形,请补充条件(写一个即可),使四边形ABCD 是菱形.6.在平行四边形ABCD 中,已知对角线AC 和BD 相交于点O ,△ABO 的周长为17,AB =6,那么对角线AC +BD =⒎ 以正方形ABCD 的边BC 为边做等边△BCE ,则∠AED 的度数为 . 8.延长正方形ABCD 的边AB 到E ,使BE =AC ,则∠E =° 9.已知菱形ABCD 的边长为6,∠A =60°,如果点P 是菱形内一点,且PB =PD =2那么AP 的长为.10.在平面直角坐标系中,点A 、B 、C 的坐标分别是A(-2,5),B(-3,-1),C(1,-1),在第一象限内找一点D ,使四边形ABCD 是平行四边形,那么点D 的坐标是.二、选择题11.如图4在平行四边形ABCD 中,∠B=110°,延长AD 至F ,延长CD 至E ,连结EF ,则∠E +∠F =( ) A .110° B .30° C .50° D .70° 12.菱形具有而矩形不具有的性质是 ( )A .对角相等B .四边相等C .对角线互相平分D .四角相等 13.平行四边形ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 的中点.若OE=3 cm ,则AB 的长为 ( )A .3 cmB .6 cmC .9 cmD .12 cm14.已知:如图,在矩形ABCD 中,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.若AB =2,AD =4,则图中阴影部分的面积为 ( )A .8B .6C .4D .315.将两块能完全重合的两张等腰直角三角形纸片拼成下列图形:①平行四边形(不包括菱形、矩形、正方形)②矩形③正方形④等边三角形⑤等腰直角三角形( ) A .①③⑤ B .②③⑤ C .①②③ D .①③④⑤(6)EA F DC B H G- 2 -16.如图是一块电脑主板的示意图,每一转角处都是直角,数据如图所示(单位:mm),则该主板的周长是 ( )A .88 mmB .96 mmC .80 mmD .84 mm 17、(13甘肃省白银市)如图,把矩形ABCD 沿EF 对折后使两部分重合,若150∠=,则AEF ∠=()A .110°B .115°C .120°D .130°18、(13哈尔滨市)某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学19.2特殊的平行四边形测试题
考试时间:100分钟,满分:120分
一、填空题(每题3分,共30分)
1.用一把刻度尺来判定一个零件是矩形的方法是 。
2.如果边长分别为4cm 和5cm 的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm .
3.已知菱形两条对角线的长分别为5cm 和8cm ,则这个菱形的面积是 cm 2
. 4.如图1,DE ∥BC ,DF ∥AC ,EF ∥AB ,图中共有_______个平行四边形.
5若四边形ABCD 是平行四边形,请补充条件 (写一个即可),使四边形ABCD 是菱形.
6.如图2,在平行四边形ABCD 中,已知对角线AC 和BD 相交于点O ,△ABO 的周长为17,AB =6,那么对角线AC +BD = ⒎以正方形ABCD 的边BC 为边做等边△BCE ,则∠AED 的度数为 。
8.如图3,延长正方形ABCD 的边AB 到E ,使BE =AC ,则∠E = ° 9.已知菱形ABCD 的边长为6,∠A =60°,如果点P 是菱形内一点,且PB =PD =2那么AP 的长为 .
10.在平面直角坐标系中,点A 、B 、C 的坐标分别是A(-2,5), B(-3,-1),C(1,-1),在第一象限内找一点D ,使四边形 ABCD 是平行四边形,那么点D 的坐标是 . 二、选择题(每题3分,共30分) 11.如图4在平行四边形ABCD 中,∠B=110°,延长AD 至F ,延长CD 至E ,连结EF ,则∠E +∠F =( )
A .110°
B .30°
C .50°
D .70°
12.菱形具有而矩形不具有的性质是 ( ) A .对角相等 B .四边相等 C .对角线互相平分 D .四角相等
13.如图5,平行四边形ABCD 中,对角线AC 、BD 交于点O , 点E 是BC 的中点.若OE=3 cm ,则AB 的长为 ( ) A .3 cm B .6 cm C .9 cm D .12 cm 14.已知:如图6,在矩形ABCD 中,E 、F 、G 、H 分别为边
AB 、BC 、CD 、DA 的中点.若AB =2,AD =4,
则图中阴影部分的面积为 ( ) A .8 B .6 C .4 D .3
15.将两块能完全重合的两张等腰直角三角形纸片拼成下列图形:①平行四边形(不包括菱形、矩形、正方形)②矩形③正方形④等边三角形⑤等腰直角三角形 ( )
A .①③⑤
B .②③⑤
C .①②③
D .①③④⑤
16.如图7是一块电脑主板的示意图,每一转角处都是直角,数据如图所示(单位:mm),则该主板的周长是 ( ) A .88 mm B .96 mm C .80 mm D .84 mm
17、下列汽车标志中,是中心对称图形但不是轴对称图形的有( )个。
(A )2 (B )3 (C )4 (D )5
18、小明将下列 4张牌中的3张旋转180°后得到,
没有动的牌是( )。
(A )2 (B )4 (C )6 (D )8
19、四边形ABCD ,仅从下列条件中任取两个加以组合,使得ABCD 是平行四边形,一共有多少种不同的组合?( ) AB ∥CD BC ∥AD AB=CD BC=AD (A )2组 (B )3组 (C )4组 (D )6组 20、下列说法错误的是( )
(A )一组对边平行且一组对角相等的四边形是平行四边形。
(B )每组邻边都相等的四边形是菱形。
(C )对角线互相垂直的平行四边形是正方形。
(D )四个角都相等的四边形是矩形。
三、阅读理解题(每空2分,共8分)
21、如图8,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 边上的中点,阅读下列材料,回答问题:
⑴连结AC 、BD ,由三角形中位线的性质定理可证四边形 EFGH 是 。
⑵对角线AC 、BD 满足条件 时,四边形 EFGH 是矩形。
⑶对角线AC 、BD 满足条件 时,四边形 EFGH 是菱
形。
⑷对角线AC 、BD 满足条件 时,四边形 EFGH 是正方形。
四、解答题(每题8分,共16分)
22、如图9,四边形ABCD 是菱形,对角线AC =8 cm ,
(3) (2)
(7)
(8)
(4) (5)
(6)
A E F
D
C B H G
BD=6 cm, DH⊥AB于H,求:DH的长
23、已知:如图10,菱形ABCD的周长为16 cm,
∠ABC=60°,对角线AC和BD相交于点O,
求AC和BD的长。
五、证明题(8分+8分+10分+10分)
24、如图11,在正方形ABCD中,P为对角线BD上一点,
PE⊥BC,垂足为E,PF⊥CD,垂足为F,
求证:EF=AP
25、在△ABC中,AB=AC,D是BC的中点,DE⊥AB, DF⊥AC,垂足分别是E,F.
⑴试说明:DE=DF
⑵只添加一个条件,使四边形EDFA是正方形.
请你至少写出两种不同的添加方法.(不另外
添加辅助线,无需证明
26
、如图,ABCD中,AE平分∠BAD交BC于E,EF∥AB交AD于F,试问:四边形ABEF是什么图形吗?
请说明理由。
27、如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD、
△BCE、△ACF,请回答下列问题:
(1)四边形ADEF是什么四边形?并.说明理由
....
(2)当△ABC满足什么条件时,四边形ADEF是菱形?
(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在.
B C
D
E
A B
D
C
P
F (9)
(10)
(11)
(12)
参考答案
一、填空题
⒈先测量两组对边是否相等,然后测量两条对角线是否相等。
⒉2 3.20 4、3 5、AC⊥BD 6、22
7、150°或15°8、22.5° 9、410、(2 ,5)
二、选择题
三、阅读填空
21、⑴平行四边形⑵
AC⊥BD ⑶
AC=BD ⑷AC⊥BD且
AC=BD
四、解答题
22、4.8 cm 23、AC=4
cm , BD=4
24 证明:连结PC
∵四边形ABCD为平行四边形
∴AB=AC ,∠ABD=∠DPC ∠BCD=90°
∵BP=BP
∴△ABP≌△CBP
∴AP = CP
∵PE⊥BC,PF⊥DC
∴四边形PECF为矩形
∴EF=PC
∴EF=AP
25、证明:⑴连结AD
∵AB=AC,D为BC的中点
∴AD为∠BAC的平分线
∵DE⊥AB ,DF⊥AC
∴DE=DF
⑵∠BAC=90°DE⊥DF
26、菱形
∵四边形ABCD为平行四边形
∴AD∥BC ,∠2=∠3 ∵AB∥EF
∴四边形ABED为平行四边形
∵∠2=∠1
∴∠1=∠3
∴AB=BE
∴四边形ABED为菱形
27、⑴平行四边形
⑵当AB=AC即△ABC为等腰三角形时,四边形ADEF为菱形
⑶△ABC为等边三角形时,四边形ADEF不存在
B C D
E。