比和比例应用题汇总应用题 分类

合集下载

小学数学比和比例问题知识汇总及解析例题

小学数学比和比例问题知识汇总及解析例题

小学数学学问总结之比和比例应用题【求比的问题】例1 两个同样容器中各装满盐水。

第一个容器中盐及水的比是2∶3,第二个容器中盐及水的比是3∶4,把这两个容器中的盐水混合起来,那么混合溶液中盐及水的比是____。

〔无锡市小学数学竞赛试题〕那么混合溶液中,盐及水的比是:某电子产品去年按定价的80%出售,能获利20%,由于今年买入价降〔1994年全国小学数学奥林匹克决赛试题〕即:【比例问题】例1 甲、乙两包糖的重量比是4∶1,假如从甲包取出10克放入乙包后,甲、乙两包糖的重量比变为7∶5 那么两包糖重量的总和是____克。

〔1989年全国小学数学奥林匹克初赛试题〕例2 甲容器中有纯酒精11升,乙容器中有水15升,第一次将甲容器中的一部分纯酒精倒入乙容器,使酒精及水混合。

第二次将乙容器中的一部分混合液倒入甲容器。

这样甲容器中纯酒精含量为62.5%,乙容器中纯酒精含量为25%,那么,第二次从乙容器倒入甲容器的混合液是____升。

〔1991年全国小学数学奥林匹克决赛试题〕讲析:因为如今乙容器中纯酒精含量为25%,所以,乙容器中酒精及水的比为25%∶〔1-25%〕=1∶3第一次从甲容器中倒5升纯酒精到乙容器,才使得乙容器中纯酒精及水的比恰好是5∶15=1∶3又甲容器中纯酒精含量为62.5%,那么甲容器中酒精及水的比为62.5%∶〔1-62.5%〕=5∶3第二次倒后,要使甲容器中纯酒精及水的比为5∶3,不妨把从甲容器中倒入乙容器的混合液中纯酒精作1份,水作3份。

那么甲容器中剩下的纯酒精便是11-5=6〔升〕6升算作4份,这样可恰好配成5∶3。

而第二次从乙容器倒入甲容器的混合液共为1+3=4〔份〕,所以也应是6升。

一.比的意义和性质〔1〕比的意义两个数相除又叫做两个数的比。

“:〞是比号,读作“比〞。

比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

比的应用题七种类型

比的应用题七种类型

比的应用题七种类型一、已知两个量的比和其中一个量,求另一个量比如说,苹果和梨的数量比是3 : 2,苹果有15个,那梨有多少个呢?就像分糖果一样,苹果占3份是15个,那1份就是15除以3等于5个,梨占2份,所以梨就是5乘以2等于10个。

这就好比你知道一伙人里男生和女生的比例,又知道男生有多少人,就能算出女生有多少人啦。

二、已知两个量的比和总量,求这两个量分别是多少举个例子哈,糖水里糖和水的比是1 : 4,糖水一共50克。

那总共就是1 + 4 = 5份,1份就是50除以5等于10克。

糖占1份就是10克,水占4份就是10乘以4等于40克。

这就像把一堆东西按照一定比例分成两部分,先算出一份是多少,再分别乘以各自的份数就好啦。

三、按比例分配的连比问题例如,甲、乙、丙三个数的比是2 : 3 : 5,它们的和是100。

那一共就是2+3+5 = 10份,1份就是100除以10等于10。

甲就是10乘以2等于20,乙就是10乘以3等于30,丙就是10乘以5等于50。

这就像三个人分蛋糕,按照不同的比例来分,先算出一份蛋糕多大,再根据各自的比例拿蛋糕。

四、已知两个量的比的变化,求原来的量比如说,原来男生和女生的比是3 : 2,后来转走了2名男生,这时候男生和女生的比变成了2 : 2了。

那我们可以设原来男生有3x个,女生有2x个,转走2名男生后,男生就变成3x - 2个了,这时候比例是2 : 2,也就是相等啦,就可以列方程3x - 2 = 2x,解这个方程就能算出x的值,进而算出原来男生和女生的数量了。

这就像一群小动物在搬家,走了几只后比例就变了,我们要倒推回去看原来有多少。

五、已知两个量的比,求部分量占总量的几分之几就像苹果和水果总数的比是1 : 5,那苹果就占水果总数的1除以5等于1/5。

这就好比在一个班级里,男生和全班人数的比例是2 : 7,那男生就占全班人数的2/7。

简单说就是把比当成份数,用其中一份的数量除以总份数就得到占比啦。

比和比例应用题

比和比例应用题

一.比和比例应用题。

(1——5题用正、反比例两种方法解答)1.运一堆煤,计划每天运150吨,20天运完。

实际2天就运了400吨,照这样计算,实际几天运完?2. 修一条公路,计划每天修100米,40天修完;实际2天就修了400米,照这样计算,多少天可完成任务?3.学校买来161米塑料绳,先剪下21米,做12根绳,照这样计算,剩下的塑料绳还可以剪几根跳绳?4. 一辆汽车从甲地到乙地,计划每小时行50千米,7小时到达。

实际3小时行180千米。

照这样速度,行完全程要几小时?5. 由于技术革新,某工人加工一个零件所用的时间由原来的20分钟缩短到8分钟。

现在每天加工24个零件,现在每天比原来多加工多少个零件?6.甲乙两列火车同时从两地相对开出,3小时后两车已行路程和剩下的路程比是5:3。

已知甲每小时行48千米,乙每小时行57千米。

两地相距多少米?7. 甲、乙、丙、丁四人同走一段路,甲、乙的速度比是3:4,乙、丙的速度比是2:3,丙丁的速度比是4:9,甲、丁的速度比是多少?8. 有一杯糖水,糖和水的比是1:10,再加入2克糖,新糖水重79克,求原糖水中糖和水各是多少克?二.分数、百分数应用题。

1. 一个数减去56等于144,这个数减少了百分之几?2.某村去年植树800棵,比今年多25%,今年比去年减少了百分之几?3. 有两筐水果,甲筐水果的16 加上6斤,正好等于乙筐水果的14减去6斤,已知甲筐水果重54斤,那么乙筐水果有多少斤?4. 甲、乙两数和为50,如果甲去掉它的 14,乙去掉1后,两数正好相等,甲数原来是多少?5. 甲、乙两个书架共有图书360本,从甲书架借出 45 ,从乙书架借出34,两书架剩下的书相等。

甲、乙两个书架各有多少本书?6. 某班女生是男生的80%,最近又转来一名女生,结果女生是男生的56,现在全班有学生多少人?7. 六年级甲、乙两班共有110名学生,已知甲班的学生的 23 与乙班学生的45的和是80人。

比的应用题典型题归类

比的应用题典型题归类

比的应用题典型题归类一、比的概念及基本性质比是数学中常用的一种比较两个数量大小关系的方法。

在解决实际问题时,经常会遇到涉及到比的应用题。

比的应用题主要包括比例、百分数、倍数等类型。

下面将对这些典型题目进行分类和归纳,以便更好地理解和掌握比的应用。

二、比例问题1. 比例问题一:已知一个长度为a的线段与一个长度为b的线段的比是m:n,求第一个线段的长度。

解析:根据比例关系可以得到 a/b = m/n,求解得到 a = mb/n。

2. 比例问题二:已知一个物体的重量与其体积的比是m:n,求该物体的质量。

解析:根据比例关系可以得到 m/n = p/V,其中p为物体的密度,V 为物体的体积,求解得到 m = p * V。

三、百分数问题1. 百分数问题一:某商品原价100元,现折扣20%,求折后价格。

解析:原价100元,折扣20%,即折扣为100 * 20% = 20元,所以折后价格为100 - 20 = 80元。

2. 百分数问题二:某数增加了p%,求增加前的数。

解析:设增加前的数为x,则增加了p%后的数为x + x * p% = x(1 + p/100),所以增加前的数为x = (增加后的数)/(1 + p/100)。

四、倍数问题1. 倍数问题一:某任务A需要3个小时完成,任务B比A多完成1/3的工作,求任务B完成所需的时间。

解析:设任务B完成所需的时间为x小时,则任务A完成的工作量为1,任务B完成的工作量为1 + 1/3。

根据工作量和时间的关系可得到:3/1 = x / (1 + 1/3),求解得到 x = 2小时。

2. 倍数问题二:某矿井A挖掘一定数量的煤需要9天,矿井B比A 快1/4,求矿井B挖掘同样数量的煤需要多少天。

解析:设矿井B挖掘同样数量的煤需要x天,则矿井A的挖掘速度为1,矿井B的挖掘速度为1 + 1/4。

根据速度和时间的关系可得到:9/1 = x / (1 + 1/4),求解得到 x = 6天。

毕业复习应用题(分数、百分数、比和比例、方程)基础+培优

毕业复习应用题(分数、百分数、比和比例、方程)基础+培优

小升初毕业复习分数,比与比例题型汇总独家原创最新最全命中分数基础题题型一:单位一不变1、笑笑读一本故事书,第一天读了全书的40%,第二天读了全书的41,两天共读了52页,这本故事书有多少页?2、工程队修一条路,第一天修了全长的51,第二天修了全长的25%,还剩下154千米没修,这条路全长多少千米?3、水泥厂仓库里有水泥500吨,甲车队一次可以运走总数的12%,乙车队一次可以运走总数 20%。

如果让两个车队一起来运,一次共运走多少吨水泥?题型二:单位一改变4、一本小说,小明第一天看了全书的31,第二天看了剩下的32,还剩下全书的几分之几没看?5、张明看一本120页的故事书,第一天看了全书的41,第二天看了余下的52,第三天应从第几页看起?6、修路队在一条公路上施工。

第一天修了这条公路的14 ,第二天修了余下的23,已知这两天共修路1200米,这条公路全长多少米?题型三:比一个数几分之几多(少)几7、某工厂二月份比元月份增产110,三月份比二月份减产110.问三月份比元月份增产了还是减产了,增加或减少了百分之几?8、一件商品先涨价15,然后再降价15,问现在的价格和原价格比较升高、降低还是不变,升高、降低了百分之几?9、小李看了一本书,第一天看了全书的121还少5页,第二天看了全书的151还多3页,还剩206页,这本书共有多少页?10、一筐鸡蛋,第一次取出全部的一半多2个,第二次取出余下的一半少2个,篮子里还剩20个,篮子里原来有鸡蛋多少个?题型四:甲比乙多(少)几分之几11、(2017一中系)甲数比乙数多54,乙数比甲数少()() 12、水结成冰时,冰的体积比水增加 111,当冰化成水时,水的体积比冰减少题型五:总量为不变量。

13、某校六年级有甲、乙两个班,甲班人数是乙班的75,如果从乙班调3人到甲班,甲班人数是乙班人数的54,甲、乙两班原来有多少人?14、有两筐梨。

乙筐是甲筐的35 ,从甲筐取出5千克梨放入乙筐后,乙筐的梨是甲筐的79 。

六年级比和比例应用题

六年级比和比例应用题

六年级比和比例应用题一、比和比例的基础知识1. 比的意义- 两个数相除又叫做两个数的比。

例如:公式,其中公式是前项,公式是后项,公式是比号。

- 比值是比的前项除以后项所得的商,如公式的比值为公式。

2. 比例的意义- 表示两个比相等的式子叫做比例。

例如:公式,其中公式和公式是比例的外项,公式和公式是比例的内项。

- 比例的基本性质:在比例里,两个外项的积等于两个内项的积。

如在公式中,公式。

二、比和比例应用题类型及解析1. 按比例分配问题- 题目:学校把公式本图书按照公式分给四、五、六年级,每个年级各分得多少本图书?- 解析:- 首先求出总份数:公式(份)。

- 然后计算每份的本数:公式(本)。

- 四年级分得的本数:公式(本)。

- 五年级分得的本数:公式(本)。

- 六年级分得的本数:公式(本)。

2. 比例尺问题- 题目:在一幅比例尺为公式的地图上,量得甲、乙两地的距离是公式厘米,那么甲、乙两地的实际距离是多少千米?- 解析:- 根据比例尺的定义,图上距离与实际距离的比等于比例尺。

设甲、乙两地的实际距离是公式厘米。

- 可得公式,根据比例的基本性质公式厘米。

- 因为公式千米公式厘米,所以公式厘米公式千米。

3. 比例关系问题(正比例和反比例)- 正比例题目:一辆汽车公式小时行驶公式千米,照这样的速度,公式小时行驶多少千米?- 解析:- 因为速度一定,路程和时间成正比例关系。

设公式小时行驶公式千米。

- 速度公式路程公式时间,先求出速度为公式(千米/小时)。

- 可列出比例公式,根据比例的基本性质公式,解得公式千米。

- 反比例题目:一间教室,如果用边长为公式分米的方砖铺地,需要公式块。

如果改用边长为公式分米的方砖铺地,需要多少块?- 解析:- 教室地面的面积是一定的,方砖的面积和所需块数成反比例关系。

- 边长为公式分米的方砖面积为公式平方分米,公式块的面积就是公式平方分米。

- 边长为公式分米的方砖面积为公式平方分米。

比和比例应用题

比和比例应用题

比和比例应用题【双基再现】1.比例尺应用题2.按比例分配应用题3.正、反比例应用【例题解析】例1. 加工一个零件,甲、乙、丙所需时间比为6︰7︰8.现在有3650个零件要加工,如果规定3人用同样的时间完成任务,各应加工多少个?例2.下表是一根木料锯成的段数与锯的次数之间的关系的分析表。

⑴请你根据实际生活经验完成此表。

⑵若一根木料锯成5段要8分钟,那么锯成6段需要多少分钟?例3. 一段路程分为上坡、平路、下坡三段。

各段路程比依次为2:3:4,王叔叔走这三段路程所用的时间比依次为4:5:6,。

已知王叔叔上坡速度是每小时4千米,路程总长36千米。

王叔叔走完全程需要多少小时?例4.一个圆柱容器内放有一个长方体形铁块。

先打开水龙头往容器中灌水,3分钟时水面恰好没过长方体的顶面,再过18分钟水已灌满容器。

已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比。

例5.小丽和小芳玩跳绳比赛,两轮结束后,小丽和小芳跳的次数比是2︰3.第三轮小丽先跳,小丽跳后两人的次数比变成了3︰2,接着小芳来跳,第三轮结束后,两人跳的次数比是9︰10,已知第三轮比赛中小丽比小芳多跳了30次。

你能根据上面所提供的信息求出第三轮跳完时两人各跳了多少次吗?【效果评估】1.有正方形和长方形两种不同的纸板,正方形纸板与长方形纸板总块数的比是2︰5.现在用这些纸板拼成一些竖式或横式的无盖纸盒。

如右图甲为横式纸盒,用长方形纸板做底面;图乙为竖式纸盒,用正方形纸板做底面。

⑴假设有a个横式纸盒,b个竖式纸盒,则两种类型的纸盒中共有()个正方形纸板,()个长方形纸板⑵求a :b2.在比例尺是1 :500 的图纸上,量得一个正方形花坛的边长是4厘米。

这个花坛的实际面积是多少平方米?3.在比例尺是1 :6000000的铁路运行图上,量得甲、乙两城间的铁路线长7.2厘米。

一列客车从甲城开往乙城用了4.5小时,这列客车平均每小时行多少千米?4.两个同学一起做同样多的口算题,小明做了13时问小华:“你做到哪里了?”小华说:“我还有45道题。

比例以及比例尺应用题(含答案)

比例以及比例尺应用题(含答案)

比例以及比例尺应用题(含答案)篇一:比例尺应用题60题(有答案过程)比例尺应用题专项练习60题(有答案)1.一幅地图的比例尺是1:800000,在一幅地图上量得甲乙两地的距离是2.5厘米,,则甲乙两地的实际距离是多少千米?2.在比例尺是的地图上,测得甲乙两地的距离是8厘米,在另一幅1:4000000的地图上,甲乙两地相距多少厘米?3.在一幅地图上量得北京到沈阳的铁路长5厘米,地图的比例尺是1:7000000,北京到沈阳的铁路实际有多少千米?4.在比例尺是1:100的图纸上,量得一个正方形花坛的边长是10厘米这个花坛的实际面积是多少平方米?5.在比例尺是1:5000的图纸上,量得一个长方形花园的长是10cm,宽是8cm,这个花园的实际面积是多少平方米?6.在比例尺的地图上,量得A、B两地的距离长12厘米,甲乙两车同时从AB两地相对开出,经过4小时两车相遇,已知甲乙两车的速度比是3:2,甲乙两车的速度各是多少千米?7.某县人民政府门前的广场是一个长方形,长180米,宽100米.请你选择一个合适的比例尺,在下边的图纸内画出广场的平面图,并在图上注明长和宽.我设计的比例尺是.8.在比例尺是的地图上,有一段长是40厘米的道路.一辆时速是50千米的汽车走完这段路需要多少分钟?9.北京到上海大约相距1050千米,在比例尺为1:30000000的一幅地图上,量得两地相距多少厘米?10.在一张比例尺是1:5000000的地图上,小明量得北京到上海的距离是28.8cm,已知火车每小时行120千米,姥姥四月三十日晚7:00上车,小明应最晚在什么时候去接站?11.在如图中量出所需的数据(取整厘米数),再计算.A、B两地相距80千米,A、C两地相距多少千米呢?12.在标有比例尺的地图上,量得两地间相距12厘米,一列客车和一列货车从两地同时相向而行,4小时相遇,已知客车与货车的速度比是3:2,客车每小时行驶多少千米.13.在比例尺为1:6000000的中国地图上,量得两地间的距离是10厘米,甲、乙两列火车同时从两地相对开出, 6小时相遇.甲车每小时行55千米,乙车每小时行多少千米?14.金牛与武汉的距离为120km,画在比例尺为1:600000的地图上长度为dm?15.在一幅比例尺是1:2000000的地图上,量得甲、乙两地相距10厘米,一辆汽车从甲地开往乙地,每小时行60 千米,行驶2.5小时后,离乙地还有多远?16.一个零件长0.02厘米,在一幅比例尺是150:1的地图上应画多少厘米?17.在比例尺是1:1000的地图上,量得一块长方形的菜地长5cm,宽6cm,如果在这块菜地的实际面积的上种上菠菜,剩下的按1:5种白菜和萝卜,白菜和萝卜各能种多少平方米?18.用60厘米长的铁丝围成一个直角三角形,三角形三条边的比是3:4:5.求该三角形的面积?19.在比例尺是小时行80km,需要多少小时才能到达?20.一块三角形菜地,底长80m,高60m,画在比例尺是1:500的地图上,面积是多少cm?21.在一幅比例尺是1:6000000的地图上,量得A、B两地间距离是8厘米.一列火车上午9时开始以每小时120 千米的速度从A地开往B地,则下午几时到达B地?22.有一块草地(如图)测出主要数据,标在图上,若这幅图的比例尺是1:1000,算出这块地的实际面积.2的地图上,量的A、B相距25.5cm,一辆汽车由A地去B地,每23.在一幅地图上量得甲乙两地相距1.2厘米.一辆汽车从甲地开往乙地,每小时行45千米,4小时到达,求这幅地图的比例尺.篇二:比例应用题(答案)动脑筋题――比例问题(1)年级姓名一、填空题 1. 4:( )=设4:x=16=( )?10=( )% 2021?y?10?z%,可以求得x=5,y=8, z=80. 202.在3:5里,如果前项加上6,要使比值不变,后项应加 .在3:5里,如果前项加6,前项为3+6=9,即扩大了9?3=3倍,要使比值不变,后项也应扩大3倍,即为5?3=15.后项应增加15-5=10.3.12:1的图纸上,精密零件的长度为6厘米,它的实际长度是毫米.根据:实际距离=图上距离?比例尺.可得:6?(12:1)=0.5(厘米)=5(毫米).4.某生产队有一块正方形菜地,边长120米,在总面积中种植西红柿、南瓜、1茄子面积的比是25:1:,三种蔬菜各种了亩. 2总面积:120?120=14400(平方米) 约为20.4亩、0.8亩、0.4亩5.买甲、乙两种铅笔共210支,甲种铅笔每支价值3分,乙种铅笔每支价值4分,两种铅笔用去的钱相同,甲种铅笔买了支.甲、乙两种铅笔单价之比为3:4,又两种笔用去的单价相同,故甲乙两种铅笔444数之比为4:3.其中甲占总数的即,甲种铅笔数为210??120(支). 74?376.车库中停放若干辆双轮摩托车和四轮小卧车,车的辆数与车的轮子数的比是2:5.问:摩托车的辆数与小卧车的辆数的比是 .因为2:5=4:10,所以4辆车共有10个轮子,如果4辆车全是小卧车,那么轮子数应为16个,比实际多6个.故每4辆车中有摩托车(4?4-10)?(4-2)=3(辆),有小卧车1辆.所以摩托车与小卧车的辆数之比为3:1.1117.自然数A、B满足??,且A:B=7:13.那么,A+B= . AB182111161???设A=7K,B=13K,??,故K=12,从而AB7K13K91K182A+B=20K=240.8.光明小学有三个年级,一年级学生占全校学生人数的25%,二年级与三年级学生人数的比是3:4,已知一年级比三年级学生少40人,一年级有学生人.43?. 二、三年级占全校总数的1-25%=75%,故三年级占全校总数的75%?4?3735一年级比三年级少的40人占全校的?25%?.于是全校有728540??224(人),一年级学生有224?25%=56(人). 289.水泥、石子、黄砂各有5吨,用水泥、石子、黄砂按5:3:2拌制某种混凝土,若用完石子,水泥缺吨.黄砂多吨.33石子占总份数的,即.当石子用5吨时,混凝土共有5?3?210325125??16(吨),因为水泥占总份数的即,那么16吨混凝土中的水1035?3?223211泥应为16??8(吨). 323221?3(吨) 同法可求得16吨混凝土中的黄砂为:16?5?3?2331112水泥缺8?5?3(吨),黄砂多5?3?1(吨). 333310.甲、乙两人步行的速度比是13:11.如果甲、乙分别由A、B两地同时出发相向而行,0.5小时后相遇,如果它们同向而行,那么甲追上乙需要小时.设甲的速度为每小时行13K米,乙的速度为每小时行11K千米,则两地相距(13K+11K)?0.5=12K千米.甲追上乙需12K?(13K-11K)=6(小时).二、解答题11.已知甲、乙两数的比为5:3,并且它们最大公约数与最小公倍数的和是1040,那么甲数是多少,乙数是多少.设甲和乙的最大公约数为K,则甲数为5K,乙数为3K,它们的最小公倍数为15K.于是K+15K=1040,解得K=65.从而甲数为5?65=325,乙数为3?65=195.12.有一块铜锌合金,其中铜与锌的比是2:3.现在加入锌6克,共得新合金36克,求在新合金内铜与锌的比.旧合金的重量为36-6=30(克). 222?,故旧合金中有铜30??12(克),有锌铜在旧合金中占2?35530-12=18(克).新合金中,铜仍为12克,锌为18+6=24(克),于是铜与锌的比为12:24=1:2.13.一段路程分成上坡、平路、下坡三段,各段路程长之比依次是1:2:3.某人走各段路所用时间之比依次是4:5:6.已知他上坡时速度为每小时3千米.路程全长50千米.问:此人走完全程用了多少时间?11125?,上坡路程为50??上坡路占总路程的(千米),上坡时间为1?2?36632525?3?(小时). 39255125256150平路时间为??(小时),下坡时间为??(小时). 94369436251251505??10(小时) 全程时间为?936361214.一个圆柱体的容器中,放有一个长方形铁块.现在打开一个水龙头往容器中注水,3分钟时,水恰好没过长方体的顶面,又过了18分钟,水灌满容器.已知容器的高度是50厘米.长方体的高度是20厘米,那么长方体底面积:容器底面面积等于多少?注满容器20厘米高的水与30厘米高的水所用时间之比为20:30=2:3.注202厘米的水的时间为18??12(分),这说明注入长方形铁块所占空间的水要用时3间为12-3=9(分).已知长方形铁块高为20厘米,因此它们底的面积比等于它们的体积之比,而它们的体积比等于所注入时间之比,故长方形底面面积:容器底面面积=9:12=3:4.篇三:比和比例及列方程解应用题比和比例及列方程解应用题、浓度应用题一、有关比的应用题(按比例分配)A、已知各部分的总和与各部分量的比,求各部分量解决这种应用题有两种方法:归一法和分数乘法(1)归一法:总数量÷总份数(把比的各项相加)=每份数每份数×各自的份数=各部分的量(2)分数乘法:总数量×各部分的份数\总份数=各部分的量1、一个长方形,长与宽的比是4:3,这个长方形的周长是280厘米,它的面积是多少平方厘米?2、一个长方体的棱长总和是96分米,长、宽、高的比是3:3:2,它的表面积和体积各是多少?3、工程队修一条路,已经修好的和未修的比是1:2,如果再修1.5千米,刚好修完着条路的一半,这条公路全长多少米?4、青年运输队计划3天运完一批货物。

比的应用题七种类型公式

比的应用题七种类型公式

比的应用题七种类型公式比的应用题是数学中常见的问题类型之一,涉及到几种不同的公式和解题方法。

本文将介绍七种常见的比的应用题类型和相应的解题公式,以帮助学生更好地理解和解决这类问题。

一、比例问题比例问题是最基础的比的应用题。

比例是指两个量之间的比关系。

比例问题的解题思路是设定一个未知量x作为问题的解答,确定其他已知量与未知量的比例关系,通过比例关系列方程求解未知量。

例如,某车辆以每小时90公里的速度行驶,求行驶6小时后的总路程。

设总路程为x公里,根据题意可知,行驶时间与总路程成正比,且行驶时间为6小时,设置比例关系式:$\dfrac{6}{x}=\dfrac{90}{1}$。

通过交叉相乘求解得到x=540,因此行驶6小时后的总路程为540公里。

二、百分数百分数是指以100为基数的比例,通常用百分号表示。

百分数问题需要根据已知百分数和相应的数量关系求解未知量。

例如,某商品原价100元,现在以打八折的价格出售,求现价。

设现价为x元,打折的价格与原价成正比,且打折8折,设置比例关系式:$\dfrac{x}{100}=\dfrac{8}{10}$。

通过交叉相乘求解得到x=80,因此现价为80元。

三、倍数问题倍数是指一个数是另一个数的几倍,解倍数问题需要根据倍数关系求解未知量。

例如,某水果店进货价是售价的1/3,求商品的进货价。

设商品的进货价为x元,根据题意可知进货价与售价成正比,且售价是进货价的3倍,设置比例关系式:$\dfrac{x}{1}=\dfrac{1}{3}$。

通过交叉相乘求解得到x=1/3,因此商品的进货价为1/3元。

四、线性比例问题线性比例问题是指两个量之间的变化是成比例关系的问题,解题思路是使用线性函数的表达式进行求解。

例如,某工人一天能生产100个产品,求n天能生产的产品数量。

设n天生产的产品数量为y个,根据题意可知,生产的产品数量与天数n成正比,且比例系数是100,设置线性函数的表达式:y=100n。

2021小升初比和比例经典应用题汇总

2021小升初比和比例经典应用题汇总

1.在一张比例尺为1:500 的平面图上,量得一个长方形的周长是48 厘米,已知长方形长与宽的比是5:3。

这一个长方形实际的长、宽各是多少米?2.在一幅中国地图上,用5 厘米长的线段表示实际距离1600 千米,怎样用线段比例尺表示?如果在这幅地图上量得广州到北京的距离是6 厘米,则广州到北京的实际距离大约是多少千米?3.一个长方体精密零件画在图纸上长2 厘米,宽1.5 厘米,高1.2 厘米。

这个精密零件的实际长是5 毫米,它的体积是多少?4.甲、乙两城市间的航空线在1:6000000 的地图上长15 厘米,一架民航客机从甲城飞往乙城,时速是750 千米,飞行30 分钟后离乙城还有多远?5.在一幅比例尺是1/4000000的地图上,最得甲、乙两地的距离是4.5 厘米,如果一辆汽车从甲地开往乙地,要行5 小时,则汽车平均每小时行多少千米?6.将一堆糖果全部分给甲、乙、丙三个小朋友。

原计划甲、乙、丙三人所得糖果数的比为5:4:3。

实际上,甲、乙、丙三人所得糖果数的比为7:6:5,其中有一位小朋友比原计划多得了15 块糖果。

那么这位小朋友是谁?他实际所得的糖果数为多少块?7.某校图书室原来有故事书和科技书若干本,要使科技书和故事书的本数比是5:2,就要再购进科技书112 本,这个数正好是原来两种书总数的10%。

问:图书室原来有科技书多少本?8.在比例尺是1/5000000的地图上,量得两地之间的距离是6 厘米。

甲、乙两辆汽车同时从两地相对开出3 小时后相遇。

已知甲、乙两车的速度比是3:2,甲车每小时行多少干米?乙车行完全程要几小时?9.在比例尺是1:2000000 的地图上,量得甲、乙两地的距离是3 厘米,如果汽车以每小时30 千米的速度在上午9:30 从甲地出发,到达乙地是什么时候?10.在一幅比例尺是1:9000000 的地图上,量得A城和B城之间的距离是11 厘米。

一列火车在上午8 时15 分从A城出发,必须在当天的16 时30分到达B城,它平均每小时应行驶多少千米?11.快、慢两列火车同时从甲、乙两地相对开出,快车每小时行80 千米,比慢车快10千米,4小时后两车还相距全程的1/4。

小学六年级数学比例、百分比、圆应用题大全及答案

小学六年级数学比例、百分比、圆应用题大全及答案

小学六年级数学应用题大全——比例应用题1、一个长方形的周长是24厘米,长与宽的比是2:1 ,这个长方形的面积是多少平方厘米?2、一个长方体棱长总和为96 厘米,长、宽、高的比是3∶2 ∶1 ,这个长方体的体积是多少?3、一个长方体棱长总和为96 厘米,高为4厘米,长与宽的比是 3 ∶2 ,这个长方体的体积是多少?4、某校参加电脑兴趣小组的有42人,其中男、女生人数的比是 4 ∶3,男生有多少人?5、有两筐水果,甲筐水果重32千克,从乙筐取出20%后,甲乙两筐水果的重量比是4:3,原来两筐水果共有多少千克?6、做一个600克豆沙包,需要面粉红豆和糖的比是3:2:1,面粉红豆和糖各需多少克?7、小明看一本故事书,第一天看了全书的1/9,第二天看了24页,两天看了的页数与剩下页数的比是1:4,这本书共有多少页?8、一个三角形的三个内角的比是2:3:4,这三个内角的度数分别是多少?小学六年级数学应用题大全——分数应用题1、一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?2、一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?3、修筑一条公路,完成了全长的2/3后,离中点16.5千米,这条公路全长多少千米?4、师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?5、仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?6、甲乙两地相距1152千米,一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快 2/7,两车经过多少小时相遇?7、一件上衣比一条裤子贵160元,其中裤子的价格是上衣的3/5,一条裤子多少元?8、饲养组有黑兔60只,白兔比黑兔多1/5,白兔有多少只?9、学校要挖一条长80米的下水道,第一天挖了全长的1/4,第二天挖了全长的1/2,两天共挖了多少米?还剩下多少米?小学六年级数学应用题大全——百分数应用题1、某化肥厂今年产值比去年增加了 20%,比去年增加了500万元,今年道值是多少万元?2、果品公司储存一批苹果,售出这批苹果的30%后,又运来160箱,这时比原来储存的苹果多1/10 ,这时有苹果多少箱?3、一件商品,原价比现价少百分之20,现价是1028元,原价是多少元?4、教育储蓄所得的利息不用纳税。

比的应用题题型总结

比的应用题题型总结

比的应用题题型总结比的应用题题型总结比是数学中常见的一种运算方法,通过比较两个数的大小关系,能够更直观地理解数学中的大小关系。

在数学应用题中,比的应用题是考察学生在实际运用比的概念解决问题的能力。

下面将对比的应用题题型进行总结。

一、找倍数在找倍数的应用题中,常常给出两个数,要求找到这两个数的最小公倍数或者最大公约数。

这类题目考察学生对倍数和公因数的理解,还要求学生能够运用最小公倍数和最大公约数的相关性质去解决实际问题。

例如:1. 甲、乙两人同时从某地出发,甲每30分钟走一公里,乙每40分钟走一公里,两人同时走到终点,他们走了多少公里?解析:甲每30分钟走一公里,乙每40分钟走一公里。

可以看出,甲和乙同时走的一段时间内,甲走3个单位长度,乙走2个单位长度。

所以,在6个时间段内,甲走了18个单位长度,乙走了12个单位长度。

所以,他们一起走了30个单位长度。

二、付款比例在付款比例的应用题中,通常是给出支付的总金额,以及若干个项的比例,要求计算出每个项的具体金额。

这类题目主要考察学生对比例的理解和运用,以及解决实际问题的能力。

例如:1. 某商品原价为120元,现以某种折扣出售,甲、乙两人按照5:4的比例共购买了10件,那么甲购买了几件?解析:甲购买的件数应该是乙购买件数的5/9,即5/9*10=5.56件。

由于购买的商品必须是整数件数,所以甲购买了6件。

三、人员比例在人员比例的应用题中,常常给出参与某项工作的人数比例,以及需要计算某类人数的细节。

这类题目考察学生对比例的理解和应用,以及解决实际问题的能力。

例如:1. 某工厂汽车检修团队里,甲乙两类技工比例为5:3,如果需要招聘5名新技工,那么需要招聘几名甲技工?解析:甲乙两类技工的比例为5:3,我们可以设甲技工的人数为5x,乙技工的人数为3x。

要招聘5名新技工,那么甲技工的人数应该是总人数的5/8,即5/(5+3+5)=1/3,所以甲技工应该招聘1/3*5=1.67人,即2人。

比的应用题类型总结

比的应用题类型总结

比的应用题类型总结比的应用题类型总结比的应用题是数学中的一个重要部分,涉及到了比例关系的理解和运用。

在中小学教育中,比的应用题也是一个考查学生综合运算能力和解决实际问题能力的重要环节。

以下是关于比的应用题类型的一些总结和分析。

1. 简单比例关系简单比例关系是最基础的比的应用题类型之一。

通常,我们需要根据给定的比例关系,求解未知量。

例如:“小明用15天做完了作业,如果他每天多用2小时,那么他需要多少天才能做完?”这个问题中,我们需要根据每天的工作时间与总工作量之间的比例关系来计算未知天数。

2. 定比例关系定比例关系是比的应用题中较为常见的一种形式。

通常,我们需要根据已知比例关系,确定其他未知量。

例如:“如果用2台机器可以生产100件产品,那么6台机器可以生产多少件产品?”这个问题中,我们需要根据已知的机器数量与产品数量之间的比例关系计算未知量。

3. 多重比例关系多重比例关系是比的应用题中的复杂情况之一。

在这种类型的问题中,我们需要根据不同的比例关系,求解多个未知量。

例如:“小明用2小时可以完成1/3作业,小红用3小时可以完成2/5作业,如果他们一起工作,那么需要多少时间才能完成整个作业?”在这个问题中,我们需要分别考虑小明和小红的工作效率,并将它们的比例关系相加来计算未知的时间。

4. 长度比例问题长度比例问题是比的应用题中的一个常见变体。

在这种类型的问题中,我们需要根据长度的比例关系,计算其他未知量。

例如:“一根长20cm的木棍,在模型比例为1/100的情况下,制成1:100的模型时,模型的长是多少?”在这个问题中,我们需要根据木棍和模型之间的长度比例关系计算未知的模型长度。

总结起来,比的应用题主要包括简单比例关系、定比例关系、多重比例关系和长度比例问题等几个不同的类型。

在解决这些问题时,我们需要理解和运用比的概念和计算方法。

对于学生来说,要注意理解问题的要求,分析给定的比例关系,选择合适的计算方法,并进行适当的计算和推导。

比的应用题型归类

比的应用题型归类

比的应用题型归类比的应用题型归类在数学中,比作为一个基本的数学运算概念,在我们的日常生活中也有着广泛的应用。

从购物打折到比较物品的大小,比都在起到着重要的作用。

在解决比的应用题时,我们需要根据问题的具体情况,选择适当的方法和策略。

本文将比的应用题型归类,以便我们更好地理解和应用比的概念解决实际问题。

第一类:比例关系在这一类问题中,我们需要根据比例关系来求解未知的量。

典型的问题包括利润分成、速度与时间的关系等。

解决这类问题时,我们需要先根据已知信息建立比例关系,然后利用比例的性质来推导出未知量。

例如:例题1:某公司的利润分成方案是将总利润的1/3分给经理,剩下的利润平均分给员工。

如果经理拿到的利润是24万元,那么总利润是多少万?解答:设总利润为x万元,则员工平均分得的利润为(x - 24) / 2 万元。

根据题目的条件,可以得到比例关系:24 / x = 1 / 3。

通过这个比例关系,我们可以求解出x的值。

第二类:比较大小在这一类问题中,我们需要根据比较大小关系来判断或求解未知的量。

典型的问题包括身高比较、货物比较等。

解决这类问题时,我们需要将不同的量进行比较,根据已知的比较关系来推导出未知的大小关系。

例如:例题2:甲、乙、丙三个人的身高比分别是4:5:6,如果乙的身高是170厘米,那么丙的身高是多少厘米?解答:根据题目的条件,我们可以建立如下比例关系:4:5 = 170:乙的身高。

通过这个比例关系,我们可以求解出乙的身高是176厘米。

进而,根据乙、丙两个人的身高比是5:6,可以推导出丙的身高是211.2厘米。

第三类:增减比例在这一类问题中,我们需要根据比例的增减关系来求解未知的量。

典型的问题包括百分比的增加、减少等。

解决这类问题时,我们需要根据已知的比例关系,利用百分数和增减的概念来推导出未知量。

例题3:某商品的原价是200元,现在打8折出售。

打折后的价格是多少元?解答:打8折表示打折的比例是80%,即原价* 80%。

比和比例应用题汇总应用题分类

比和比例应用题汇总应用题分类

比和比例应用题汇总一、操作题。

1、一个圆形大花坛,量得它的直径是40米,请你仔细把它画在比例尺是的图纸上。

要求:先计算出图上圆的半径长度,再画出平面图。

2、一块长方形菜地,长90米,宽60米。

请你自己设计一个比例尺,再根据你设计的比例尺画出这块菜地的平面图。

3、下图的比例尺是1:2500,量出图上各数据,求出它的实际占地面积是多少平方米?(量时得数保留整厘米)4、下图是按1:60000的比例尺画出的一张试验田的平面图,请量出有关数据,求出试验田的面积是多少公顷。

二、应用题。

(1)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?(2)在一幅的平面图上,量得一块平行四边形的菜地的底是12厘米,高是10厘米,这块菜地的实际面积是多少公顷?(3)甲、乙两地相距240千米,画在比例尺是1∶3000000的地图上,长度是多少厘米?(4)在一幅地图上,用3厘米的线段表示实际距离600千米。

在这幅地图上,量得甲、乙两地的距离是4.5厘米,甲、乙两地的实际距离是多少千米?(5)甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?(6)在一幅比例尺是1:30000 的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?(7)在比例尺是15000000 的地图上,量得甲、乙两地的距离是9.6厘米。

甲、乙两地的实际距离是多少千米?(8)甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?(9)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?(10)在一幅比例尺是14000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?(11)在比例尺是1∶300000的地图上,量得甲、乙两地的距离是12厘米,它们之间的实际距离是多少千米?如果改用1∶500000的比例尺,甲、乙两地的距离应画多少厘米?(12)一辆汽车2小时行驶130千米。

比的应用题归类

比的应用题归类

比的应用题归类一、已知两个数的和与比求这两个数1.红花和黄共共70朵,红花与黄花的比是2:5,求红花与黄花各是多少朵?2. 做一个600克豆沙包,需要面粉红豆和糖的比是3:2:1,面粉红豆和糖各需多少克?3. 一个三角形的三个内角的比是2:3:4,这三个内角的度数分别是多少?4.用24厘米的铁丝围成一个直角三角形,这个三角形三条边长度的比是3∶4∶5,这个直角三角形的面积是多少平方厘米?斜边上的高是多少厘米?5.学校要把150本课外书,按六年级的人数比分给三个班级,六年一班48人,六年二班32人,六年三班40人,每个班级各分到书多少本?6.一桶重200克的盐水,盐和水的质量比是1:24,要使盐和水的质量比是1:29,要加多少克水?7.两桶油共重27千克,大桶的油用去2千克后,剩下的油与小桶内油的重量比是3:2。

求大桶里原来装有多少千克油?8.一个长方形的周长是49米,长和宽的比是4∶3,这个长方形的面积是多少平方米?9.一根绳子长20米,用去多少米,用去的与还剩的比是3:2?10.A、B两数的平均数是45,这两个数的比是2:7,求这两个数各是多少?11. 一个长方体棱长总和为96 厘米,长、宽、高的比是3∶2 ∶1 ,这个长方体的体积是多少?12. 一个长方体棱长总和为96 厘米,高为4厘米,长与宽的比是3 ∶2 ,这个长方体二、已知两个数的差与比,求这两个数。

1、红花比黄花多20朵,红花与黄花的比是7:3,求红花与黄花各是多少朵?2、大母鸡和小母鸡的生蛋数量比是10:9,大鸡比小鸡多生2个蛋,大、小母鸡各生几个蛋?3、妈妈买回来一些苹果和香蕉,苹果和香蕉重量的比是3:2.已知苹果比香蕉多0.5千克,两种水果各有多少千克?4、一批作业本按2:3分给甲乙两班,结果甲班比乙班少分60本,这批作业本共多少本?5、一批作业本,取出它的2/5按2:3分给甲乙两班,结果甲班比乙班少分60本,这批作业本共多少本?6、制作一种零件,甲要5分钟,乙要10分钟,丙要8分钟,现三人共做这种零件若干三、已知一个数与比,求另一个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比和比例应用题汇总一、操作题。

1、一个圆形大花坛,量得它的直径是40米,请你仔细把它画在比例尺是的图纸上。

要求:先计算出图上圆的半径长度,再画出平面图。

2、一块长方形菜地,长90米,宽60米。

请你自己设计一个比例尺,再根据你设计的比例尺画出这块菜地的平面图。

3、下图的比例尺是1:2500,量出图上各数据,求出它的实际占地面积是多少平方米?(量时得数保留整厘米)4、下图是按1:60000的比例尺画出的一张试验田的平面图,请量出有关数据,求出试验田的面积是多少公顷。

二、应用题。

(1)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?(2)在一幅的平面图上,量得一块平行四边形的菜地的底是12厘米,高是10厘米,这块菜地的实际面积是多少公顷?(3)甲、乙两地相距240千米,画在比例尺是1∶3000000的地图上,长度是多少厘米?(4)在一幅地图上,用3厘米的线段表示实际距离600千米。

在这幅地图上,量得甲、乙两地的距离是4.5厘米,甲、乙两地的实际距离是多少千米?(5)甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?(6)在一幅比例尺是1:30000 的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?(7)在比例尺是15000000 的地图上,量得甲、乙两地的距离是9.6厘米。

甲、乙两地的实际距离是多少千米?(8)甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?(9)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?(10)在一幅比例尺是14000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?(11)在比例尺是1∶300000的地图上,量得甲、乙两地的距离是12厘米,它们之间的实际距离是多少千米?如果改用1∶500000的比例尺,甲、乙两地的距离应画多少厘米?(12)一辆汽车2小时行驶130千米。

照这样的速度,从甲地到乙地共行驶5小时。

甲、乙两地相距多少千米?(用比例解)(13)一辆汽车从甲地开往乙地,每小时行64千米,5小时到达。

如果要4小时到达,每小时需行驶多少千米?(用比例解)(14)修一条公路,原计划每天修360米,30天可以修完。

如果要提前5天修完,每天要修多少米?(用比例解)(15)修一条路,如果每天修120米,8天可以修完;如果每天修150米,可以提前几天可以修完?(用比例方法解)(16)修一条公路,总长12千米,开工3天修了1.5千米。

照这样计算,修完这条路还要多少天?(用比例解答)(17)修一条路,如果每天修120米,8天可以修完;如果每天多修30米,几天可以修完?(用比例方法解)(18)小明买4本同样的练习本用了4.8元,138元可以买多少本这样的练习本?(用比例解答)(19)工厂有一批煤,计划每天烧2.4吨,42天可以烧完。

实际每天节约1/8,实际可以烧多少天?(用比例方法解)(20)两个底面积相等的长方体,第一个长方体与第二个长方体高的比是7:11,第二个长方体的体积是144立方分米,第一个长方体的体积是多少立方分米? (用比例方法解)(21)解放军某部行军演习,4小时走了22.4千米,照这样的速度又行了6小时,一共行了多少千米?(用比例方法解)(22)一对互相啮合的齿轮,主动轮有60个齿,每分转80转。

从动轮有20个齿,每分转多少转?(用比例方法解)(23)6台榨油机每天榨油48.6吨,现在增加了13台同样的榨油机,每天共榨油多少吨?(用比例方法解)(24)一某工厂要生产一批机器零件,5天生产410个,照这样计算,要生产1066个机器零件需要多少天?(用比例方法解)(25)某工地要运一堆土,每天运150车,需要24天运完,如果要提前4天完成,每天要多运多少车?(用比例方法解)(26)用一边长为30厘米的方砖铺地,需200块,如果改用边长为20厘米的方砖铺地需多少块?(用比例方法解)(27)种农药,药液与水重量的比是1:1000。

(1)、20克药液要加水多少克?(2)、在6000克水中,要加多少克药液?(3)、现在要配制这种农药500.5千克,需要药液和水各多少千克?(28)一种稻谷每1000千克能碾出大米720千克。

照这样计算,要得到180吨大米,需要稻谷多少吨?(29) 某工程队修一条公路,已修了1200米,这时已修的未修的比是3:2,这条公路全长是多少米?(30)园林绿化队要栽一批树苗,第一天栽了总数的15 ,第二天栽了136棵,这时剩下的与已栽的棵数的比是3:5。

这批树苗一共有多少棵?(31)一辆汽车三天共行720千米,第一天行驶5小时,第二天行驶6小时,第三天行驶7小时,如果每小时行驶的路程都相同,这三天各行多少千米?(32) 甲、乙两地相距350千米,一列快车和一列慢车同时从两地相对开出,3.5小时后相遇。

已知快车和慢车的速度比是3:2,这两列火车的速度分别是多少?(33) 甲、乙两堆煤原来吨数比是5:3,如果从甲堆运90吨放入乙堆,这时两堆吨数相等,甲、乙原来各有多少吨?(34)园林绿化队要栽一批树苗,第一天栽了总数的15% ,第二天栽了136棵,这时剩下的与已栽的棵数的比是3:5。

这批树苗一共有多少棵?(35)生产一批零件,计划每天生产160个,27天可以完成,实际每天超产20个,可以提前几天完成?(36)用边长15厘米的方砖铺一块地,需要2000块,如果改用边长为20厘米的方砖铺地,需要多少块?(37)一堆煤用载重4吨的汽车运需20辆才能一次运完,如果改用载重5吨的汽车运,需要几辆才能运完?(38)学生参加搬砖劳动,6人搬砖162块,照这样计算,再增加432块,需要学生多少人?(39)一捆铅丝重520克,剪下20米,这捆铅丝少了130克,这捆铅丝还剩多少米?(40)运来一批纸装订成练习本,每本36页,可订40本,若每本30页,可订多少本?典型应用题具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。

(1)平均数问题:平均数是等分除法的发展。

解题关键:在于确定总数量和与之相对应的总份数。

算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。

数量关系式:数量之和÷数量的个数=算术平均数。

加权平均数:已知两个以上若干份的平均数,求总平均数是多少。

数量关系式(部分平均数×权数)的总和÷(权数的和)=加权平均数。

差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。

数量关系式:(大数-小数)÷2=小数应得数最大数与各数之差的和÷总份数=最大数应给数最大数与个数之差的和÷总份数=最小数应得数。

例:一辆汽车以每小时 100 千米的速度从甲地开往乙地,又以每小时60 千米的速度从乙地开往甲地。

求这辆车的平均速度。

分析:求汽车的平均速度同样可以利用公式。

此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为100 ,所用的时间为,汽车从乙地到甲地速度为 60 千米,所用的时间是,汽车共行的时间为 + = , 汽车的平均速度为 2 ÷ =75 (千米)(2)归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。

根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。

根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。

一次归一问题,用一步运算就能求出“单一量”的归一问题。

又称“单归一。

”两次归一问题,用两步运算就能求出“单一量”的归一问题。

又称“双归一。

”正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。

反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。

解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。

数量关系式:单一量×份数=总数量(正归一)总数量÷单一量=份数(反归一)例一个织布工人,在七月份织布 4774 米,照这样计算,织布 6930米,需要多少天?分析:必须先求出平均每天织布多少米,就是单一量。

693 0 ÷( 477 4 ÷ 31 ) =45 (天)(3)归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。

特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。

数量关系式:单位数量×单位个数÷另一个单位数量 = 另一个单位数量单位数量×单位个数÷另一个单位数量= 另一个单位数量。

例修一条水渠,原计划每天修 800 米, 6 天修完。

实际 4 天修完,每天修了多少米?分析:因为要求出每天修的长度,就必须先求出水渠的长度。

所以也把这类应用题叫做“归总问题”。

不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。

80 0 × 6 ÷ 4=1200 (米)(4)和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。

解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。

解题规律:(和+差)÷2 = 大数大数-差=小数(和-差)÷2=小数和-小数= 大数例某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人?分析:从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成2 个乙班,即 9 4 - 12 ,由此得到现在的乙班是( 9 4 - 12 )÷ 2=41(人),乙班在调出 46 人之前应该为 41+46=87 (人),甲班为 9 4- 87=7 (人)(5)和倍问题:已知两个数的和及它们之间的倍数关系,求两个数各是多少的应用题,叫做和倍问题。

解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。

求出倍数和之后,再求出标准的数量是多少。

根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。

解题规律:和÷倍数和=标准数标准数×倍数=另一个数例:汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆?分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与( 5+1 )倍对应,总车辆数应( 115-7 )辆。

相关文档
最新文档