2020年安徽省合肥市包河区九年级数学一模试题

合集下载

合肥市2020年九年级上学期第一次质量检测数学试题D卷

合肥市2020年九年级上学期第一次质量检测数学试题D卷

合肥市2020年九年级上学期第一次质量检测数学试题D卷姓名:________ 班级:________ 成绩:________一、单选题1 . 在平面直角坐标系中,若点M在抛物线y=(x﹣3)2﹣4的对称轴上,则点M的坐标可能是()A.(1,0)B.(3,5)C.(﹣3,﹣4)D.(0,﹣4)2 . 如图是二次函数图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc <0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是()A.①②B.②③C.①②④D.②③④3 . 将抛物线y=x2+2x+3向下平移3个单位长度后,所得到的抛物线与直线y=3的交点坐标是()A.(0,3)或(﹣2,3)B.(﹣3,0)或(1,0)C.(3,3)或(﹣1,3)D.(﹣3,3)或(1,3)4 . 三角形两边长分别为和,第三边是方程的解,则这个三角形的周长是()A.14B.18C.14和18D.14或185 . 已知、是方程的两根,则的值为()B.3C.7D.A.6 . 关于抛物线,下列说法错误的是()A.顶点坐标为B.对称轴是直线C.若,则随的增大而增大D.当时,7 . 如果二次函数的图象如图所示,那么一次函数和反比例函数在同一坐标系中的图象大致是()A.B.C.D.8 . 在某次足球训练中,一队员在距离球门12米处挑射,正好射中了2.4米高的球门横梁.若足球运行的路线是抛物线y=ax2+bx+c(如图).现有四个结论:①a﹣b>0;②a<﹣;③﹣<a<0;④0<b<﹣12a.其中正确的结论是()A.①③B.①④C.②③D.②④9 . 下列方程中,是关于的一元二次方程的是()A.B.C.D.10 . 把配方,需在方程的两边都加上()A.5B.25C.2.5D.二、填空题11 . 二次函数y=2x2 - 4x+m满足以下条件:当-2<x<-1时,它的图象位于x轴的上方,当2<x<3时,它的图象位于x轴的下方,则m的值为__________.12 . 抛物线 y=﹣4(x+1)²+1 的开口方向向______,对称轴是______,顶点的坐标是_____.13 . 关于的方程是一元二次方程,则m=________.14 . 已知点A(-4,m)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点的坐标为________.15 . 设、是方程的两个根,且,则__________.16 . 关于x的方程2x2-ax+1=0一个根是1,则它的另一个根为________.三、解答题17 . 如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c的图象交x轴于A(4,0),B(﹣1,0)两点,交y 轴于点C,连结AA.(1)填空:该抛物线的函数解析式为,其对称轴为直线;(2)若P是抛物线在第一象限内图象上的一动点,过点P作x轴的垂线,交AC于点Q,试求线段PQ的最大值;(3)在(2)的条件下,当线段PQ最大时,在x轴上有一点E(不与点O,A重合),且EQ=EA,在x轴上是否存在点D,使得△ACD与△AEQ相似?如果存在,请直接写出点D的坐标;如果不存在,请说明理由.18 . 如图,抛物线y=(x+m)2+m,与直线y=﹣x相交于E,C两点(点E在点C的左边),抛物线与x轴交于A,B两点(点A在点B的左边).△ABC的外接圆⊙H与直线y=﹣x相交于点D.(1)若抛物线与y轴的交点坐标为(0,2),求m的值;(2)求证:⊙H与直线y=1相切;(3)若DE=2EC,求⊙H的半径.19 . 已知关于x的方程x2﹣2kx+k﹣=0的一个根大于1,另一个根小于1,求实数k的取值范围.20 . 如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.求配色条纹的宽度;21 . 如图,在一块三角形区域ABC中,∠C=90°,边AC=8m,BC=6m,现要在△ABC内建造一个矩形水池DEFG,如图的设计方案是使DE在AB上.(1)求△ABC中AB边上的高h;(2)设DG=x,当x取何值时,水池DEFG的面积(S)最大?22 . 为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用(元)与x(m2)的函数关系式为,其图象如图所示:栽花所需费用(元)与x(m2)的函数关系式为(0≤x≤1000).(1)请直接写出、和b的值;(2)设这块1000m2空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用W的最大值;(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.23 . 菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销,李伟为了加快销售,减少损失,对价格经过两次相同百分率的下调后,以每千克元的单价对外批发销售.(1)求每次下调的百分率;(2)小华准备到李伟处购买吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:所有蔬菜打九折销售;方案二:前2吨没有优惠,超过2吨的部分每吨优惠现金400元.请分别写出方案一、方案二购买蔬菜的应付款(元)与购买量(吨)之间的函数解析式.(3)试问购买量在什么范围内,小华选择方案一更优惠,请说明理由.24 . 如图,在平面直角坐标系中,为原点,点,点,且,把绕点逆时针旋转,得,点,旋转后的对应点为,.(1)点的坐标为______.(2)解答下列问题:①设的面积为,用含的式子表示,并写出的取值范围.②当时,求点的坐标(直接写出结果即可).25 . 计算与解方程(1)+(π﹣3)0(2)(3)(4)解方程。

2020年安徽省中考数学一模试卷(含答案解析)

2020年安徽省中考数学一模试卷(含答案解析)

2020年安徽省中考数学一模试卷一、选择题(本大题共9小题,共36.0分)1.下列四个选项中,既是轴对称又是中心对称的图形是()A. 矩形B. 等边三角形C. 正五边形D. 正七边形2.在有理数2,0,−1,−1中,最小的是()2A. 2B. 0C. −1D. −123.改革开放40年,中国教育呈现历史性变化.其中,全国高校年毕业生人数从16.5万增长到820万,40年间增加了近50倍.把数据“820万”用科学记数法可表示为()A. 82×104B. 82×105C. 8.2×105D. 8.2×1064.已知x=1是关于x的一元一次方程2x−a=0的解,则a的值为()A. −1B. −2C. 1D. 25.如图,直线a//b,等边三角形ABC的顶点B在直线b上,∠CBF=20°,则∠ADG的度数为()A. 20°B. 30°C. 40°D. 50°6.二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc>0;②2a+b=0;③9a+3b+c<0;④b2−4ac<0⑤当m≠1时,a+b>am2+bm;其中正确的有()A. 2个B. 3个C. 4个D. 5个7.9.某县以“重点整治环境卫生”为抓手,加强对各乡镇环保建设的投入,计划从2017年起到2019年累计投入4250万元,已知2017年投入1500万元,设投入经费的年平均增长率为x,根据题意,下列所列方程正确的是()A. 1500(1+x)2=4250B. 1500(1+2x)=4250C. 1500+1500x+1500x2=4250D. 1500(1+x)+1500(1+x)2=4250−15008.如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE,则EF等于()A. b3a2B. a3b2C. b4a3D. a4b39.如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ//BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是()A. B.C. D.二、填空题(本大题共5小题,共24.0分)10.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=4,点P是线段AB上一动点.将△ABC绕点C按顺时针方向旋转,得到△A1B1C.点E是A1C上一点,且A1E=2,则PE长度的最小值为______,最大值为______.11.分解因式:xy−x=______.12.不等式组{3x+4≥0,12x−24≤1的所有整数解的积为________.13.一抛物线和抛物线y=−2x2的形状相同、开口方向相反,顶点坐标是(1,3),则该抛物线的解析式为_______.14.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB的距离的最小值是___________三、计算题(本大题共1小题,共8.0分)15.计算:|√3−2|+(π−2019)0−(−13)−1+3tan30°四、解答题(本大题共8小题,共82.0分)16.《九章算术》是我国古代第一部数学专著,成于公元一世纪左右.此专著中有这样一道题:今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价几何?这道题的意思是:今有若干人共买一头羊.若每人出5文钱,则还差45文钱;若每人出7文钱,则仍然差3文钱.求买羊的人数和这头羊的价格.17.如图,在平面直角坐标系中,△OAB的三个顶点的坐标分别为A(6,3),B(0,5).(1)画出△OAB绕原点O逆时针方向旋转90°后得到的△OA1B1;(2)画出△OAB关于原点O的中心对称图形△OA2B2;(3)直接写出∠OAB的度数.18.如图,是由边长相等的小正方形组成的几何图形,S n(n≥1)表示第n个图形中小正方形的个数.(1)观察下列图形与等式得关系,并填空:(2)根据(1)中的两个结论填空:S12=______,S n=______(用含有n的代数式表示)19.图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度ℎ(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)20.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为点E,连接DE,点F为线段DE上一点,且∠AFE=∠B.(1)判断△ADF_________△DEC(填“相似”、“不相似”或“无法判断”);(2)若AB=4,AD=3√3,AE=3.求AF的长.21.如图,在△ABC中,AD⊥BC,AE平分∠BAC交BC于点E.(1)∠B=30°,∠C=70°,求∠EAD的大小;(2)若∠B<∠C,则2∠EAD与∠C−∠B是否相等?若相等,请说明理由.22.某饮料厂生产一种饮料,经测算,用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数.(1)根据表中提供的数据,求y与x的函数关系式;当水价为每吨10元时,1吨水生产出的饮料所获的利润是多少?(2)为节约用水,这个市规定:该厂日用水量不超过20吨时,水价为每吨4元;日用水量超过20吨时,超过部分按每吨40元收费.设该厂日用水量为t吨,当日所获利润为W元,求W与t 的函数关系式;已知该厂原来日用水量不少于20吨,后来该厂加强管理,积极节水,使日用水量不超过30吨,但仍不少于20吨,求该厂的日利润的取值范围.23.22.如图,已知四边形ABCD是菱形,点E是对角线AC上一点,连接BE并延长交AD于点F,交CD的延长线于点G,连接DE.(1)ΔABE≌ΔADE;(2)EB2=EF⋅EG;(3)若菱形ABCD的边长为4,∠ABC=60∘,AE:EC=1:3,求BG的长.【答案与解析】1.答案:A解析:解:A、矩形是轴对称图形,也是中心对称图形,故此选项正确;B、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;C、正五边形是轴对称图形,不是中心对称图形,故此选项错误;D、正七边形是轴对称图形,不是中心对称图形,故此选项错误.故选:A.根据轴对称图形与中心对称图形的概念求解.本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.答案:C解析:此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.解:根据有理数比较大小的方法,可得−1<−1<0<2,2故最小的有理数是−1.故选:C.3.答案:D解析:解:820万=8200000=8.2×106故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.答案:D解析:本题考查了一元一次方程的解,解一元一次方程,解题的关键是:熟记解一元一次方程的一般步骤.将x=1代入方程2x+a=3,然后解关于a的一元一次方程即可.解:∵x=1是关于x的方程2x−a=0的解,∴2×1−a=0,解得a=2.故选D.5.答案:C解析:解:∵△ABC是等边三角形,∴∠ACB=60°,过C作CM//直线a,∵直线a//直线b,∴直线a//直线b//CM,∵∠ACB=60°,∠1=20°,∴∠1=∠MCB=20°,∴∠2=∠ACM=∠ACB−∠MCB=60°−20°=40°,∴∠ADG=∠2=40°.故选C.过C作CM//直线a,根据等边三角形性质求出∠ACB=60°,根据平行线的性质求出∠1=∠MCB,∠2=∠ACM,即可求出答案.本题考查了平行线的性质,等边三角形的性质的应用,解此题的关键是能正确作出辅助线,注意:两直线平行,内错角相等.6.答案:B解析:【试题解析】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y 轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y 轴交点.抛物线与y轴交于(0,c).=1及函数的最大值逐一判断可根据抛物线的开口方向、x=0、x=3时的函数值、对称轴x=−b2a得.解:∵抛物线开口向下,∴a<0,>0,∵−b2a∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,∴结论①错误;=1,∵x=−b2a∴b=−2a,即2a+b=0∴结论②正确;∵当x=−1和x=3时,函数值小于0,∴y=9a+3b+c<0,∴结论③正确;∵二次函数与x轴有两个不同交点,则Δ>0,即b2−4ac>0∴④错误;由图象知当x=1时函数取得最大值,∴当m≠1时,am2+bm+c<a+b+c,即a+b>m(am+b),故⑤正确;故选:B.7.答案:D解析:本题考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.解:设2017−2019年投入经费的年平均增长率为x,则2018年投入1500(1+x)万元,2019年投入1500(1+x)2万元,根据题意得1500(1+x)+1500(1+x)2=4250−1500.故选D.8.答案:C解析:本题考查了相似三角形的判定与性质,本题中相似三角形比较容易找到,难点在于根据对应边成比例求解线段的长度,注意仔细对应,不要出错.依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度.解:∵AB=AC,∴∠ABC=∠ACB,又∵∠CBD=∠A,∴△ABC∽△BDC,又∵∠DCE=∠CBD,∴△BCD∽△CDE,又∵∠EDF=∠DCE,∴△CDE∽△DFE,∴ACBC =BCDC,CDBD=DECD,EFDE=DECE,且易知BC=BD=b,EC=DC,∴CD=b2a ,DE=b3a2,EF=b4a3,故选C.9.答案:C解析:本题考查了动点问题的函数图象,等腰直角三角形的判定与性质,三角形的面积,二次函数图象,求出点Q到AD的距离,从而列出y与x的关系式是解题的关键.判断出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出AE,BE,然后表示出PE,QE,再求出点Q到AD的距离,然后根据三角形的面积公式表示出y与x的关系式,再根据二次函数图象解答.解:∵∠ABE=45°,∠A=90°,∴△ABE是等腰直角三角形,∴AE=AB=2,BE=√2AB=2√2,∵BE=DE,PD=x,∴PE=DE−PD=2√2−x,∵PQ//BD,BE=DE,∴QE=PE=2√2−x,又∵△ABE是等腰直角三角形,∴点Q到AD的距离=√22(2√2−x)=2−√22x,∴△PQD的面积y=12x(2−√22x)=−√24(x−√2)2+√22,纵观各选项,只有C选项符合.故选C.10.答案:2√3−24√3+2解析:解:∵∠C=90°,∠ABC=30°,AC=4,∴BC=4√3∵将△ABC绕点C按顺时针方向旋转,得到△A1B1C∴AC=A1C=4,且A1E=2∴CE=2∴点E在以C为圆心,CE为半径的圆上,如图,当点C,点E,点P共线,且PC⊥AB时,PE长度最小,∵PC⊥AB,∠ABC=30°∴PC=12BC=2√3∴PE最小值为2√3−2当点P与点B重合,且点E在PC的延长线上时,PE长度最大,∴PE最大值为:4√3+2故答案为:2√3−2,4√3+2由直角三角形的性质可得BC=4√3,由旋转的性质可得AC=A1C=4,可得CE=2,即点E在以C 为圆心,CE为半径的圆上,则当点C,点E,点P共线,且PC⊥AB时,PE长度最小,当点P与点B重合,且点E在PC的延长线上时,PE长度最大.本题考查了旋转的性质,直角三角形的性质,确定点E的轨迹是本题的关键.11.答案:x(y−1)解析:解:xy−x=x(y−1).故答案为:x(y−1).直接提取公因式x,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.答案:0解析:本题考查解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相乘即可求解.解:{3x+4≥0①12x−24≤1②,解不等式①得:x≥−43,解不等式②得:x≤50,∴不等式组的整数解为−1,0,1, (50)所以所有整数解的积为0,故答案为0.13.答案:y=2(x−1)2+3解析:本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.直接利用顶点式写出抛物线解析式.解:抛物线解析式为y=2(x−1)2+3.故答案为y=2(x−1)2+3.14.答案:1.2解析:本题考查翻折变换、最短问题、相似三角形的判定和性质、勾股定理.垂线段最短等知识,解题的关键是正确找到点P位置,属于中考常考题型.延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AFM∽△ABC,得到AFAB =FMBC求出FM即可解决问题.解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.(点P在以F为圆心CF为半径的圆上,当FP⊥AB时,点P到AB的距离最小)∵∠A=∠A,∠AMF=∠C=90°,∴△AFM∽△ABC,∴AFAB =FMBC,∵CF=2,AC=6,BC=8,∴AF=4,AB=√AC2+BC2=10,∴410=FM8,∴FM=3.2,∵PF=CF=2,∴PM=1.2∴点P到边AB距离的最小值是1.2.故答案为1.2.15.答案:解:原式=2−√3+1−(−3)+3×√3=2−√3+1+3+√3=6.3解析:直接利用绝对值的性质、零指数幂、负整数指数幂的性质以及特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.16.答案:解:设买羊的人数为x人,则这头羊的价格是(5x+45)文,也可表示为(7x+3)文,所以根据题意得:5x+45=7x+3,解得:x=21,所以7x+3=150,经检验,符合题意,答:买羊的人数为21人,这头羊的价格是150文.解析:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.设买羊的人数为x人,则这头羊的价格是(5x+45)文,也可表示为(7x+3)文,根据羊的价格不变,即可得出关于x的一元一次方程,解之即可得出结论.17.答案:解:(1)△OA1B1如图所示;(2)△OA2B2如图所示;(3)如图,∠OAB为等腰直角三角形的一个锐角,所以,∠OAB=45°.解析:(1)根据网格结构找出点A、B绕原点O逆时针方向旋转90°后的对应点A1、B1的位置,然后与点O顺次连接即可;(2)根据网格结构找出点A、B关于原点O的中心对称点A2、B2的位置,然后与点O顺次连接即可;(3)根据网格结构可以作出以∠OAB为锐角的等腰直角三角形,然后根据等腰直角三角形的性质解答.本题考查了利用旋转变换作图,等腰直角三角形的性质,熟练掌握网格结构准确找出对应点的位置是解题的关键.18.答案:(1)n,n2;(2)78;n2+n.2解析:解:(1)S n−S n−1=n,S n+S n−1=n2,故答案为n,n2;(2)由S n−S n−1=n,S n+S n−1=n2,S12−S11=12,S12+S11=122,2S12=12+122=156,∴S12=78;∵S n−S n−1=n,S n+S n−1=n2,∴2S n=n2+n,S n=n2+n,2.故答案为78;n2+n2(1)观察规律发现S n−S n−1=n,S n+S n+1=n2;(2)由(1)可得S12−S11=12,S12+S11=122,将两式相加,可得S12=78,同理将S n−S n−1=n,S n+S n+1=n2两式相加求出S n.此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.19.答案:解:过C点作FG⊥AB于F,交DE于G.∵CD与地面DE的夹角∠CDE为12°,∠ACD为80°,∴∠ACF=∠FCD−∠ACD=∠CGD+∠CDE−∠ACD=90°+12°−80°=22°,∴∠CAF=68°,在Rt△ACF中,CF=AC⋅sin∠CAF=0.8×0.93≈0.744m,在Rt△CDG中,CG=CD⋅sin∠CDE=1.6×0.21≈0.336m,∴FG=FC+CG=0.744+0.336≈1.1m.答:故跑步机手柄的一端A的高度约为1.1m.解析:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是用数学知识解决实际问题.过C点作FG⊥AB于F,交DE于G.在Rt△ACF中,根据三角函数可求CF,在Rt△CDG 中,根据三角函数可求CG,再根据FG=FC+CG即可求解.20.答案:解:(1)相似;(2)∵四边形ABCD是平行四边形,∴AD//BC CD=AB=4又∵AE⊥BC,∴AE⊥AD;在Rt△ADE中,DE=√AD2+AE2=√(3√3)2+32=6,∵△ADF∽△DEC,∴ADDE =AFCD;∴3√36=AF4,∴AF=2√3.解析:本题主要考查的是平行四边形的性质及相似三角形的判定和性质.(1)△ADF和△DEC中,易知∠ADF=∠CED(平行线的内错角),而∠AFD=∠C,由此可判定两个三角形相似;(2)在Rt△ADE中,即可求出DE的值;从而根据相似三角形得出的成比例线段求出AF的长.解:(1)∵四边形ABCD是平行四边形,∴AD//BC,AB//CD,∴∠ADF=∠CED,∵∠AFD+∠AFE=180°,∠ABC+∠BCD=180°,∠AFE=∠B,∴∠AFD=∠BCD,∴△ADF∽△DEC.故答案为相似;(2)见答案.21.答案:解:(1)∵∠B=30°,∠C=70°,∴∠BAC=180°−∠B−∠C=80°,∵AE平分∠BAC,∴∠EAC=12∠BAC=40°,∵AD是高,∠C=70°,∴∠DAC=90°−∠C=20°,∴∠EAD=∠EAC−∠DAC=40°−20°=20°;(2)由(1)知,∠EAD=∠EAC−∠DAC=12∠BAC−(90°−∠C)①把∠BAC=180°−∠B−∠C代入①,整理得,∠EAD=12∠C−12∠B,∴2∠EAD =∠C −∠B .解析:本题利用了三角形内角和定理、角的平分线的定义、直角三角形的性质求解.(1)由三角形内角和定理可求得∠BAC 的度数,在Rt △ADC 中,可求得∠DAC 的度数,AE 是角平分线,有∠EAC =12∠BAC ,故∠EAD =∠EAC −∠DAC ;(2)由(1)知,用∠C 和∠B 表示出∠EAD ,即可知2∠EAD 与∠C −∠B 的关系.22.答案:解:(1)设用1吨水生产的饮料所获利润y(元)与1吨水的价格x(元)的一次函数式为y =kx +b ,(k ≠0)根据题意得:一次函数y =kx +b 过(4,200)和(6,198),∴{198=6k +b 200=4k +b , 解得{k =−1b =204, ∴所求一次函数式是y =−x +204,当x =10时,y =−10+204=194(元);答:y 与x 的函数关系式为y =−x +204,当水价为每吨10元时,1吨水生产出的饮料所获的利润是194元.(2)当1吨水的价格为40元时,所获利润是:y =−40+204=164(元).∴日利润W 与t 的函数关系式是W =200×20+(t −20)×164,即W =164t +720,∵20≤t ≤30, 当t =20时,W =164t +720=4000;当t =30时,W =164t +720=5640;∴4000≤w ≤5640.解析:本题考查的是用一次函数解决实际问题,注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y 随x 的变化,结合自变量的取值范围确定最值.(1)用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数.可以设出一次函数关系式,然后根据表中所给的条件(4,200),(6,198)可求出解析式,即可求出结果;(2)根据函数式可求出一吨水价是40元的利润,然后根据题意可得W =200×20+164(t −20),把t =20与t =30代入计算即可求出日利润的取值范围.23.答案:(1)证明见解析;(2)证明见解析;(3)BG =4√13.解析:(1)用SAS证明即可;(2)先证明△EDF∽△EGD,得到ED2=EF⋅EG,代换ED=EB即可;(3)根据已知先求出BE和EF值,再根据EB2=EF⋅EG求出EG值,最后用BG=BE+EG计算即可.【详解】解:(1)∵ABCD是菱形,∴AB=AD,∠BAC=∠DAC,∵AE=AE,∴ΔABE≌ΔADE;(2)∵AB//CG,∴∠ABG=∠EGD,由(1)得ΔABE≌ΔADE,∴∠ABG=∠ADE,∴EGD=∠ADE,∵∠FED=∠DEG,∴ΔEDF∽ΔEGD,∴EDEG =EFED,∴ED2=EF⋅EG,由ΔABE≌ΔADE得ED=EB,∴EB2=EF⋅EG;(3)∵菱形ABCD,∴AB=BC,∵∠ABC=60∘,∴ΔABC为等边三角形,∴AC=AB=4.连接BD交AC于点O,则AC⊥BD,OA=OC=2,OB=2√3,∵AE:EC=1:3,∴AE=OE=1,∴BE=√(2√3)2+12=√13,∵AD//BC,∴AEEC =EFBE=13,∴EF=13BE=√133,由(2)得EB2=EF⋅EG,∴EG=EB2EF =√13)2√133=3√13,∴BG=BE+EG=4√13.本题主要考查相似三角形的判定和性质,全等三角形的判定和性质、等边三角形的性质.线段间的转化是解题的关键.。

安徽省合肥市2020年中考数学一模试卷(含解析)

安徽省合肥市2020年中考数学一模试卷(含解析)

安徽省合肥市2020年中考数学一模试卷一、选择题1.下列实数中最小的数是()A.2 B.﹣3 C.0 D.π2.如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A.B.C.D.3.安徽省的陆地面积为139400km2,139400用科学记数法可表示为()A.1394×102B.1.394×104C.1.394×105D.13.94×1044.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5C.(a4)2=a6D.﹣6a6÷2a2=3a35.若分式=0,则x的值是()A.±2 B.2 C.﹣2 D.06.如图是某市2016年四月份每日的最低气温的统计图,则四月份每日的最低气温(单位:℃)众数分别是()A.14 B.30 C.12 D.187.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x 满足()A.16(1+2x)=25 B.25(1﹣2x)=16C.16(1+x)2=25 D.25(1﹣x)2=168.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A.4B.4 C.2D.89.如图,是二次函数y=ax2+bx+c图象的一部分,下列结论中:①abc>0;②a﹣b+c<0;③ax2+bx+c+1=0有两个相等的实数根;④9a+3b+c>0.其中正确的结论的序号为()A.①②B..①③C..②③D..①④10.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A.6 B.2+1 C.9 D.二、填空题(共4小题,每小题5分,满分20分)11.计算:﹣=.12.命题:“若ab=0,则a、b中至少有一个为0”的逆命题是13.如图,已知A为反比例函数(x<0)的图象上一点,过点A作AB⊥y轴,垂足为B,若△OAB的面积为2,则k的值为14.如图,在平面直角坐标系中,已知⊙D经过原点O,与x轴、y轴分别交于A、B两点,B点坐标为(0,2),OC与⊙D交于点C,∠OCA=30°,则图中阴影部分面积为.(结果保留根号和π)三、(本大题共2小题,每小题8分,满分16分)15.解方程:x2=4x.16.如图,已知△ABC三个顶点的坐标分别为A(﹣2,﹣4),B(0,﹣4),C(1,﹣1)(1)请在网格中,画出线段BC关于原点对称的线段B1C1;(2)请在网格中,过点C画一条直线CD,将△ABC分成面积相等的两部分,与线段AB 相交于点D,写出点D的坐标;(3)若另有一点P(﹣3,﹣3),连接PC,则tan∠BCP=.四、(本大题共2小题,每小题8分,满分16分)17.光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其它天气平均每天可发电5度,已知某月(按30天计)共发电550度.(1)求这个月晴天的天数.(2)已知该家庭每月平均用电量为150度,若按每月发电550度计,至少需要几年才能收回成本(不计其它费用,结果取整数).18.观察一组数据:2,4,7,11,16,22,29,…,它们有一定的规律,若记第一个数为a1,第二个数记为a2,…,第n个数记为a n.(1)请写出29后面的第一个数;(2)通过计算a2﹣a1,a3﹣a2,a4﹣a3,…由此推算a100﹣a99的值;(3)根据你发现的规律求a100的值.五、(本大题共2小题,每小题10分,满分20分)19.图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).20.如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=6,求四边形BEFD的周长.六、(本大题12分)21.为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图;(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?七、(本大题12分)22.如图,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2x+c与直线y=kx+b都经过A (0,﹣3)、B(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过M作x 轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M 的坐标;若不存在,请说明理由;(3)设点P是直线AB下方抛物线上的一动点,当△PAB面积最大时,求点P的坐标,并求△PAB面积的最大值.八、(本大题14分)23.数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD(∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点).(1)初步尝试如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;(2)类比发现如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;(3)深入探究如图3,若AD=3AB,探究得:的值为常数t,则t=.参考答案一、选择题(共10小题,每小题4分,满分40分)1.下列实数中最小的数是()A.2 B.﹣3 C.0 D.π【分析】先根据实数的大小比较法则比较数的大小,再得出选项即可.解:∵﹣3<0<2<π,∴最小的数是﹣3,故选:B.2.如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解:从上面看易得第一层有1个正方形,第二层有2个正方形,如图所示:故选:B.3.安徽省的陆地面积为139400km2,139400用科学记数法可表示为()A.1394×102B.1.394×104C.1.394×105D.13.94×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:将139400用科学记数法表示为:1.394×105.故选:C.4.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5C.(a4)2=a6D.﹣6a6÷2a2=3a3【分析】根据合并同类项、同底数幂的乘法和幂的乘方以及整式的除法解答即可.解:A、a+2a=3a,错误;B、a3•a2=a5,正确;C、(a4)2=a8,错误;D、﹣6a6÷2a2=﹣3a4,错误;故选:B.5.若分式=0,则x的值是()A.±2 B.2 C.﹣2 D.0【分析】分式的值为0时,分子等于0且分母不等于0.解:依题意得:x2﹣4=0且x﹣2≠0,解得x=﹣2.故选:C.6.如图是某市2016年四月份每日的最低气温的统计图,则四月份每日的最低气温(单位:℃)众数分别是()A.14 B.30 C.12 D.18【分析】根据众数的定义直接求解即可.解:由条形统计图中出现频数最大条形最高的数据是在第三组,14℃,故众数是14℃;故选:A.7.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x 满足()A.16(1+2x)=25 B.25(1﹣2x)=16C.16(1+x)2=25 D.25(1﹣x)2=16【分析】等量关系为:原价×(1﹣降价的百分率)2=现价,把相关数值代入即可.解:第一次降价后的价格为:25×(1﹣x);第二次降价后的价格为:25×(1﹣x)2;∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选:D.8.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A.4B.4 C.2D.8【分析】由题意得到三角形DEC与三角形ABC相似,由相似三角形面积之比等于相似比的平方两三角形面积之比,进而求出四边形ABDE与三角形ABC面积之比,求出四边形ABDE 面积,即可确定出三角形ABC面积.解:∵AB⊥AD,AD⊥DE,∴∠BAD=∠ADE=90°,∴DE∥AB,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∵DE=1,AB=2,即DE:AB=1:2,∴S△DEC:S△ACB=1:4,∴S四边形ABDE:S△ACB=3:4,∵S四边形ABDE=S△ABD+S△ADE=×2×2+×2×1=2+1=3,∴S△ACB=4,故选:B.9.如图,是二次函数y=ax2+bx+c图象的一部分,下列结论中:①abc>0;②a﹣b+c<0;③ax2+bx+c+1=0有两个相等的实数根;④9a+3b+c>0.其中正确的结论的序号为()A.①②B..①③C..②③D..①④【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对各个结论进行判断.解:①由抛物线的开口方向向上可推出a>0,与y轴的交点为在y轴的负半轴上可推出c=﹣1<0,对称轴为x=﹣>1>0,a>0,得b<0,故abc>0,故①正确;②由对称轴为直线x=﹣>1,抛物线与x轴的一个交点交于(2,0),(3,0)之间,则另一个交点在(0,0),(﹣1,0)之间,所以当x=﹣1时,y>0,所以a﹣b+c>0,故②错误;③抛物线与y轴的交点为(0,﹣1),由图象知二次函数y=ax2+bx+c图象与直线y=﹣1有两个交点,故ax2+bx+c+1=0有两个不相等的实数根,故③错误;④x=3时,y=ax2+bx+c=9a+3b+c>0,故④正确;故选:D.10.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A.6 B.2+1 C.9 D.【分析】如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题.解:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=90°,∵∠OP1B=90°,∴OP1∥AC∵AO=OB,∴P1C=P1B,∴OP1=AC=4,∴P1Q1最小值为OP1﹣OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=5+3=8,∴PQ长的最大值与最小值的和是9.故选:C.二、填空题(共4小题,每小题5分,满分20分)11.计算:﹣=.【分析】先化简=2,再合并同类二次根式即可.解:=2﹣=.故答案为:.12.命题:“若ab=0,则a、b中至少有一个为0”的逆命题是若a,b至少有一个为0,则ab=0【分析】根据逆命题的概念得出原命题的逆命题即可.解:命题:“若ab=0,则a、b中至少有一个为0”的逆命题是若a,b至少有一个为0,则ab=0,故答案为:若a,b至少有一个为0,则ab=0.13.如图,已知A为反比例函数(x<0)的图象上一点,过点A作AB⊥y轴,垂足为B,若△OAB的面积为2,则k的值为﹣4【分析】利用反比例函数比例系数k的几何意义得到|k|=2,然后根据反比例函数的性质确定k的值.解:∵AB⊥y轴,∴S△OAB=|k|=2,而k<0,∴k=﹣4.故答案为﹣4.14.如图,在平面直角坐标系中,已知⊙D经过原点O,与x轴、y轴分别交于A、B两点,B点坐标为(0,2),OC与⊙D交于点C,∠OCA=30°,则图中阴影部分面积为2π﹣2.(结果保留根号和π)【分析】连接AB,根据∠AOB=90°可知AB是直径,再由圆周角定理求出∠OBA=∠C=30°,由锐角三角函数的定义得出OA及AB的长,根据S阴影=S半圆﹣S△ABO即可得出结论.解:连接AB,∵∠AOB=90°,∴AB是直径,根据同弧对的圆周角相等得∠OBA=∠C=30°,∵OB=2,∴OA=OB tan∠ABO=OB tan30°=2×=2,AB=AO÷sin30°=4,即圆的半径为2,∴S阴影=S半圆﹣S△ABO=﹣×2×2=2π﹣2.故答案为:2π﹣2.三、(本大题共2小题,每小题8分,满分16分)15.解方程:x2=4x.【分析】先移项得到x2﹣4x=0,然后利用因式分解法求解.解:x2﹣4x=0,x(x﹣4)=0,x=0或x﹣4=0,所以x1=0,x2=4.16.如图,已知△ABC三个顶点的坐标分别为A(﹣2,﹣4),B(0,﹣4),C(1,﹣1)(1)请在网格中,画出线段BC关于原点对称的线段B1C1;(2)请在网格中,过点C画一条直线CD,将△ABC分成面积相等的两部分,与线段AB 相交于点D,写出点D的坐标;(3)若另有一点P(﹣3,﹣3),连接PC,则tan∠BCP= 1 .【分析】(1)根据坐标画得到对应点B1、C1,连接即可;(2)取AB的中点D画出直线CD,(3)得出△PBC为等腰直角三角形,∠PCB=45°,可求出tan∠BCP=1解:如图:(1)作出线段B1、C1连接即可;(2)画出直线CD,点D坐标为(﹣1,﹣4),(3)连接PB,∵PB2=BC2=12+32=10,PC2=22+42=20,∴PB2+BC2=PC2,∴△PBC为等腰直角三角形,∴∠PCB=45°,∴tan∠BCP=1,故答案为1.四、(本大题共2小题,每小题8分,满分16分)17.光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其它天气平均每天可发电5度,已知某月(按30天计)共发电550度.(1)求这个月晴天的天数.(2)已知该家庭每月平均用电量为150度,若按每月发电550度计,至少需要几年才能收回成本(不计其它费用,结果取整数).【分析】(1)设这个月有x天晴天,根据总电量550度列出方程即可解决问题.(2)需要y年才可以收回成本,根据电费≥40000,列出不等式即可解决问题.解:(1)设这个月有x天晴天,由题意得30x+5(30﹣x)=550,解得x=16,故这个月有16个晴天.(2)需要y年才可以收回成本,由题意得(550﹣150)•(0.52+0.45)•12y≥40000,解得y≥8.6,∵y是整数,∴至少需要9年才能收回成本.18.观察一组数据:2,4,7,11,16,22,29,…,它们有一定的规律,若记第一个数为a1,第二个数记为a2,…,第n个数记为a n.(1)请写出29后面的第一个数;(2)通过计算a2﹣a1,a3﹣a2,a4﹣a3,…由此推算a100﹣a99的值;(3)根据你发现的规律求a100的值.【分析】(1)根据差值的规律计算即可;(2)a2﹣a1,=2,a3﹣a2=3,a4﹣a3=4…由此推算a100﹣a99=100;(3)根据a100=2+2+3+4+…+100=1+×100计算即可;解:(1)29后面的第一位数是37;(2)由题意:a2﹣a1,=2,a3﹣a2=3,a4﹣a3=4…由此推算a100﹣a99=100;(3)a100=2+2+3+4+…+100=1+×100=5051五、(本大题共2小题,每小题10分,满分20分)19.图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).【分析】过点A作AD⊥BC于点D,延长AD交地面于点E,根据锐角三角函数的定义即可求出答案.解:过点A作AD⊥BC于点D,延长AD交地面于点E,∵sin∠ABD=,∴AD=92×0.94≈86.48,∵DE=6,∴AE=AD+DE=92.5,∴把手A离地面的高度为92.5cm.20.如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=6,求四边形BEFD的周长.【分析】(1)根据三角形的中位线的性质得到DF∥BC,EF∥AB,根据平行四边形的判定定理即可得到结论;(2)根据直角三角形的性质得到DF=DB=DA=AB=3,推出四边形BEFD是菱形,于是得到结论.【解答】(1)证明:∵D,E,F分别是AB,BC,AC的中点,∴DF∥BC,EF∥AB,∴DF∥BE,EF∥BD,∴四边形BEFD是平行四边形;(2)解:∵∠AFB=90°,D是AB的中点,AB=6,∴DF=DB=DA=AB=3,∵四边形BEFD是平行四边形,∴四边形BEFD是菱形,∵DB=3,∴四边形BEFD的周长为12.六、(本大题12分)21.为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图;(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?【分析】(1)根据C类人数有15人,占总人数的25%可得出总人数,求出A类人数,进而可得出结论;(2)直接根据概率公式可得出结论;(3)求出“实践活动类”的总人数,进而可得出结论.解:(1)总人数=15÷25%=60(人).A类人数=60﹣24﹣15﹣9=12(人).∵12÷60=0.2=20%,∴m=20.条形统计图如图;(2)抽到选“体育特长类”或“艺术特长类”的学生的概率==;(3)∵800×25%=200,200÷20=10,∴开设10个“实验活动类”课程的班级数比较合理.七、(本大题12分)22.如图,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2x+c与直线y=kx+b都经过A (0,﹣3)、B(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过M作x 轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M 的坐标;若不存在,请说明理由;(3)设点P是直线AB下方抛物线上的一动点,当△PAB面积最大时,求点P的坐标,并求△PAB面积的最大值.【分析】(1)将A(0,﹣3)、B(3,0)两点坐标分别代入二次函数的解析式和一次函数解析式即可求解;(2)先求出C点坐标和E点坐标,则CE=2,分两种情况讨论:①若点M在x轴下方,四边形CEMN为平行四边形,则CE=MN,②若点M在x轴上方,四边形CENM为平行四边形,则CE=MN,设M(a,a﹣3),则N(a,a2﹣2a﹣3),可分别得到方程求出点M的坐标;(3)如图,作PG∥y轴交直线AB于点G,设P(m,m2﹣2m﹣3),则G(m,m﹣3),可由,得到m的表达式,利用二次函数求最值问题配方即可.解:(1)∵抛物线y=ax2﹣2x+c经过A(0,﹣3)、B(3,0)两点,∴,∴,∴抛物线的解析式为y=x2﹣2x﹣3,∵直线y=kx+b经过A(0,﹣3)、B(3,0)两点,∴,解得:,∴直线AB的解析式为y=x﹣3,(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点C的坐标为(1,﹣4),∵CE∥y轴,∴E(1,﹣2),∴CE=2,①如图,若点M在x轴下方,四边形CEMN为平行四边形,则CE=MN,设M(a,a﹣3),则N(a,a2﹣2a﹣3),∴MN=a﹣3﹣(a2﹣2a﹣3)=﹣a2+3a,∴﹣a2+3a=2,解得:a=2,a=1(舍去),∴M(2,﹣1),②如图,若点M在x轴上方,四边形CENM为平行四边形,则CE=MN,设M(a,a﹣3),则N(a,a2﹣2a﹣3),∴MN=a2﹣2a﹣3﹣(a﹣3)=a2﹣3a,∴a2﹣3a=2,解得:a=,a=(舍去),∴M(,),综合可得M点的坐标为(2,﹣1)或().(3)如图,作PG∥y轴交直线AB于点G,设P(m,m2﹣2m﹣3),则G(m,m﹣3),∴PG=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,∴S△PAB=S△PGA+S△PGB===﹣,∴当m=时,△PAB面积的最大值是,此时P点坐标为().八、(本大题14分)23.数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD(∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点).(1)初步尝试如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;(2)类比发现如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;(3)深入探究如图3,若AD=3AB,探究得:的值为常数t,则t=.【分析】(1)①先证明△ABC,△ACD都是等边三角形,再证明∠BCE=∠ACF即可解决问题.②根据①的结论得到BE=AF,由此即可证明.(2)设DH=x,由题意,CD=2x,CH=x,由△ACE∽△HCF,得=由此即可证明.(3)如图3中,作CN⊥AD于N,CM⊥BA于M,CM与AD交于点H.先证明△CFN∽△CEM,得=,由AB•CM=AD•CN,AD=3AB,推出CM=3CN,所以==,设CN=a,FN=b,则CM=3a,EM=3b,想办法求出AC,AE+3AF即可解决问题.【解答】解;(1)①∵四边形ABCD是平行四边形,∠BAD=120°,∴∠D=∠B=60°,∵AD=AB,∴△ABC,△ACD都是等边三角形,∴∠B=∠CAD=60°,∠ACB=60°,BC=AC,∵∠ECF=60°,∴∠BCE+∠ACE=∠ACF+∠ACE=60°,∴∠BCE=∠ACF,在△BCE和△ACF中,∴△BCE≌△ACF.②∵△BCE≌△ACF,∴BE=AF,∴AE+AF=AE+BE=AB=AC.(2)设DH=x,由题意,CD=2x,CH=x,∴AD=2AB=4x,∴AH=AD﹣DH=3x,∵CH⊥AD,∴AC==2x,∴AC2+CD2=AD2,∴∠ACD=90°,∴∠BAC=∠ACD=90°,∴∠CAD=30°,∴∠ACH=60°,∵∠ECF=60°,∴∠HCF=∠ACE,∴△ACE∽△HCF,∴==2,∴AE=2FH.(3)如图3中,作CN⊥AD于N,CM⊥BA于M,CM与AD交于点H.∵∠ECF+∠EAF=180°,∴∠AEC+∠AFC=180°,∵∠AFC+∠CFN=180°,∴∠CFN=∠AEC,∵∠M=∠CNF=90°,∴△CFN∽△CEM,∴=,∵AB•CM=AD•CN,AD=3AB,∴CM=3CN,∴==,设CN=a,则CM=3a,∵∠MAH=60°,∠M=90°,∴∠AHM=∠CHN=30°,∴HC=2a,HM=a,HN=a,∴AM=a,AH=a,∴AC==a,AE+3AF=(EM﹣AM)+3(AH+HN﹣FN)=EM﹣AM+3AH+3HN﹣3FN=3AH+3HN﹣AM=a,∴==.故答案为.。

2020年安徽省中考数学一模试卷 (含解析)

2020年安徽省中考数学一模试卷 (含解析)

2020年安徽省中考数学一模试卷一、选择题(本大题共10小题,共40.0分)1.比−4小的数是()A. −2B. −1C. −6D. 62.计算a6÷(−a)2的结果是()A. a3B. a4C. −a3D. −a43.由一个圆柱体与一个长方体组成的几何体如图所示,这个几何体的左视图是()A.B.C.D.4.2018年安徽省上半年实现GDP约为14264亿元,将14264亿用科学记数法表示为()A. 0.14264×1013B. 1.4264×1013C. 1.4264×1012D. 1.4264×1045.方程x2−kx+1=0有两个相等的实数根,则k的值是()A. 2B. −2C. ±2D. 06.一组数据:201、200、199、202、200,分别减去200,得到另一组数据:1、0、−1、2、0,其中判断错误的是()A. 前一组数据的中位数是200B. 前一组数据的众数是200C. 后一组数据的平均数等于前一组数据的平均数减去200D. 后一组数据的方差等于前一组数据的方差减去2007.一次函数y=kx−1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A. (−5,3)B. (1,−3)C. (2,2)D. (5,−1)8.已知Rt△ABC中,∠C=90°,CD是AB边上的高,且AB=5,cosA=45,则CD的长为()A. 35B. 45C. 125D. 1659.下列命题为假命题的是()A. 对顶角相等B. 垂线段最短C. 同位角相等D. 同角的补角相等10.如图,边长分别为2和4的两个等边三角形,开始它们在左边重叠,大△ABC固定不动,然后把小△A′B′C′自左向右平移,直至移到点B′到C重合时停止.设小三角形移动的距离为x,两个三角形的重合部分的面积为y,则y关于x的函数图象是()A. B.C. D.二、填空题(本大题共4小题,共20.0分)11.化简:√25=.12.分解因式:16m2−4=.13.如图,直线l⊥x轴于点P,且与反比例函数y1=k1x(x>0)及y2=k2x(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为3,则k1−k2=______.14.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=____________°.三、解答题(本大题共9小题,共90.0分)15.解不等式:x−22<7−x3.16.如图,已知A(1,−1),B(3,−3),C(4,−1)是直角坐标平面上三点.(1)请画出△ABC关于x轴对称的△A1B1C1;(2)请画出△A1B1C1绕点O逆时针旋转90°后的△A2B2C2;(3)判断以B,B1,B2,为顶点的三角形的形状(无需说明理由).17.观察下列各式:2×6+4=42…………①4×8+4=62…………②6×10+4=82…………③……探索以上式子的规律:(1)试写出第5个等式;(2)试写出第n个等式(用含n的式子表示),并用你所学的知识说明第n个等式成立.18.塔是一种亚洲常见的有着特定的形式和风格的传统建筑.在成都某公园内有一座古塔,如图小亮的目高CD为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶仰角∠AEH为62.3°.(点D、B、F在同一水平线上,参考数据:sin62.3°≈0.89,cos62.3°≈0.46,tan62.3°≈1.9)(1)求小亮与塔底中心的距离BD;(用含a的式子表示)(2)若小亮与小琴相距52米,求慈氏塔的高度AB.19.据了解某市区居民生活用水开始实行阶梯式计量水价,实行的阶梯式计量水价分为三级(污水处理费、垃圾处理费等另计),如下表所示:例:若某用户2016年9月份的用水量为35吨,按三级计算则应交水费为:20×1.6+10×2.4+ (35−20−10)×4.8=80(元)(1)如果小白家2016年6月份的用水量为10吨,则需缴交水费______ 元;(2)如果小明家2016年7月份缴交水费44元,那么小明家2016年7月份的用水量为多少吨?(3)如果小明家2016年8月份的用水量为a吨,那么则小明家该月应缴交水费多少元?(用含a的代数式表示)20.如图,在△ABC中,AB=BC,以AB为直径的⊙O交BC于点D,交AC于点F,过点C作CE//AB,与过点A的切线相交于点E,连接AD.(1)求证:AD=AE;(2)若AB=10,AC=4√5,求AE的长.21.合肥46中体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)“喜欢乒乓球”的学生所占的百分比是__________并请补全条形统计图(图2);(2)请你估计全校1200名学生中“喜欢足球”项目的有__________名;(3)在扇形统计图中,“喜欢篮球”部分所对应的圆心角是__________度;(4)从“喜欢排球”的6人(4男2女)和“喜欢其他”的2人(1男1女)中各选1人参加座谈,被选中的两人恰好是1男1女的概率是多少?22.如图,已知点A(0,2),B(2,2),C(−1,−2),抛物线F:y=x2−2mx+m2−2与直线x=−2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y p,求y p的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤−2,比较y1与y2的大小.23.已知矩形ABCD的对角线AC、BD相交于点O,∠AOB=60°,点E为边BC上的一点,连接EO并延长,交CD的延长线于点F.(1)如图1,若EF⊥AC.①求证:BC=OF②求证:AB2=BE⋅OF(2)如图2,若AB=BE⋅BC,求OFOD 的值.【答案与解析】1.答案:C解析:本题考查了有理数比较大小,两负数比较大小,绝对值大的数反而小是解题关键.根据两负数比较大小,绝对值大的数反而小,可得答案.解:−6<−4,故选C.2.答案:B解析:解:原式=a6÷a2=a4.故选B.首先计算(−a)2,然后利用同底数的幂的除法法则即可求解.本题考查同底数幂的除法法则,理解法则是关键.3.答案:D解析:解:从左面可看到一个长方形和上面的中间有一个小长方形.故选D.找到从左面看所得到的图形即可.本题主要考查了三视图的知识,左视图是从物体的左面看得到的视图.4.答案:C解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:14264亿=1.4264×1012,故选C.5.答案:C解析:本题考查了根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2−4ac>0时,方程有两个不相等的实数根;当b2−4ac=0时,方程有两个相等的实数根;当b2−4ac<0时,方程无实数根.根据已知得出△=0,代入求出即可.解:∵方程x2−kx+1=0有两个相等的实数根,∴△=(−k)2−4×1×1=0,解得:k=±2,故选C.6.答案:D解析:本题主要考查方差,中位数,众数,算术平均数,一组数据中出现次数最多的那个数据叫做这组数据的众数;一组数据按从大到小(或从小到大)的顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数;方差为这组数据与平均数差的平方的平均数,据此可逐项求解.解:A.前组数据的众数是200,故该选项说法正确;B.前组数据的中位数是200,故该选项说法正确;C.后一组数据的平均数等于前一组数据的平均数减去200,故该选项说法正确;D.后一组数据的方差等于前一组数据的方差,故该选项说法错误.故选D.7.答案:C解析:本题考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k >0是解题的关键. 将选项的各点代入解析式,求出k 的值,再与0比较大小即可.解:一次函数y =kx −1的图象的y 值随x 值的增大而增大,∴k >0,A .把点(−5,3)代入y =kx −1得到:k =−45<0,不符合题意;B .把点(1,−3)代入y =kx −1得到:k =−2<0,不符合题意;C .把点(2,2)代入y =kx −1得到:k =32>0,符合题意;D .把点(5,−1)代入y =kx −1得到:k =0,不符合题意;故选C . 8.答案:C解析:解:∵Rt △ABC 中,∠C =90°,AB =5,cosA =45,cosA =AC AB ,∴AC =4,∴BC =√52−42=3,∵AC⋅BC 2=AB⋅CD 2, ∴4×32=5×CD 2,解得,CD =125,故选:C . 根据Rt △ABC 中,∠C =90°,AB =5,cosA =45,可以求得AC 的长,然后根据勾股定理即可求得BC 的长,然后根据等积法即可求得CD 的长.本题考查解直角三角形、勾股定理,解答本题的关键是明确题意,利用锐角三角函数和勾股定理解答. 9.答案:C解析:此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.根据真命题与假命题的定义分别进行判断即可求出答案;正确的命题叫真命题,错误的命题叫做假命题.解:A.对顶角相等;真命题;B.垂线段最短;真命题;C.同位角相等;假命题;同位角不一定相等;D.同角的补角相等;真命题;故选C.10.答案:C解析:本题考查动点问题的函数图象,根据题意可知在点C′移动到点C的过程中,重合部分的面积不变,可以算出相应的面积,C′继续向右移动可以求出相应的重合部分的面积,从而可得到相应的函数解析式,从而可以明确哪个选项是正确的.解:由题意可知,当C′从左向右移动到C的位置时,△ABC与△A′B′C′重合的面积是△A′B′C′的面积,∵△A′B′C′是等边三角形,边长等于2,∴S△A′B′C′=2×√3×12=√3;①当x≤2时,两个三角形重叠面积为:y=12×2×√3=√3;②当2<x≤4时,两个三角形重叠面积为:y=12(4−x)×√32(4−x)=√34x2−2√3x4√3=√34(4−x)2此时函数图象为抛物线,开口向上,顶点坐标是(4,0).故选C.11.答案:5解析:本题主要考查二次根式的性质与化简,属于简单题.直接利用二次根式的性质化简求出即可.解:√25=5.故答案为5.12.答案:4(2m+1)(2m−1)解析:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.原式提取4,再利用平方差公式分解即可.解:原式=4(4m2−1)=4[(2m)2−1]=4(2m+1)(2m−1),故答案为4(2m+1)(2m−1).13.答案:6解析:由反比例函数的图象过第一象限可得出k1>0,k2>0,再由反比例函数系数k的几何意义即可得出S△OAP=12k1,S△OBP=12k2,根据△OAB的面积结合三角形之间的关系即可得出结论.本题考查了反比例函数与一次函数的交点问题以及反比例函数系数k的几何意义,属于基础题,用系数k来表示出三角形的面积是关键.解:∵反比例函数y1=k1x (x>0)及y2=k2x(x>0)的图象均在第一象限内,∴k1>0,k2>0.∵AP⊥x轴,∴S△OAP=12k1,S△OBP=12k2.∴S△OAB=S△OAP−S△OBP=12(k1−k2)=3,解得:k1−k2=6.故答案为:6.14.答案:55°解析:本题考查了平行四边形的性质、折叠的性质;由平行四边形和折叠的性质得出∠D1AE=∠BAD是解决问题的关键.由平行四边形的性质和折叠的性质得出∠D1AE=∠BAD,得出∠D1AD=∠BAE即可.解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠的性质得:∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD+∠EAD=∠BAE+∠EAD,∴∠D1AD=∠BAE=55°,故答案为55°.15.答案:解:去分母得:3(x−2)<2(7−x),去括号得:3x−6<14−2x,移项合并得:5x<20,系数化1,得:x<4.解析:根据解不等式的步骤:去分母、去括号、移项、合并同类项、系数化为1求解即可求得答案.此题考查了一元一次不等式的解法.注意解不等式依据不等式的基本性质,特别是在系数化为1这一个过程中要注意不等号的方向的变化.去分母的过程中注意不能漏乘没有分母的项.16.答案:解:(1)△A1B1C1如图所示.(2)△A2B2C2如图所示.(3)△BB1B2是等腰直角三角形.解析:本题考查作图−旋转变换,轴对称变换,等腰三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)分别作出点A1,B1,C1的对应点A2,B2,C2即可.(3)△BB1B2是等腰直角三角形.17.答案:解:(1)第5个等式:10×14+4=122;(2)第n个等式:2n(2n+4)+4=(2n+2)2;证明:∵2n(2n+4)+4=4n2+8n+4,(2n+2)2=4n2+8n+4,∴2n(2n+4)+4=(2n+2)2,故原等式成立.解析:(1)根据观察发现,发现第5个等式:10×14+4=122;(2)根据观察发现,发现第n个等式:2n(2n+4)+4=(2n+2)2;将等式两边展开,即可证明等式相等.本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.18.答案:解:(1)由题意得,四边形CDBG、HBFE为矩形,∴GB=CD=1.7,HB=EF=1.5,∴GH=0.2,在Rt△AHE中,tan∠AEH=AH,HE则AH=HE⋅tan∠AEH≈1.9a,∴AG=AH−GH=1.9a−0.2,在Rt△ACG中,∠ACG=45°,∴CG=AG=1.9a−0.2,∴BD=1.9a−0.2,答:小亮与塔底中心的距离BD为(1.9a−0.2)米;(2)由题意得,1.9a−0.2+a=52,解得,a=18,则AG=1.9a−0.2=34,∴AB=AG+GB=35.7,答:慈氏塔的高度AB为35.7米.解析:本题考查的是解直角三角形的应用−仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.(1)根据正切的定义用a先表示出AH,根据等腰直角三角形的性质计算;(2)根据题意列方程求出a,结合图形计算,得到答案.19.答案:(1)16(2)∵20×1.6=32(元)、20×1.6+10×2.4=56(元)∵32<44<56∴小明家2016年7月份缴交水费属于第二级设小明家2016年7月份的用水量为x吨,根据题意,得:20×1.6+2.4(x−20)=44解得:x=25答:小明家2016年7月份的用水量为25吨;(3).当0≤a≤20时,该月应缴交水费为1.6a元;当20≤a≤30时,该月应缴交水费为1.6×20+2.4(a−20)=2.4a−16元;当a≥30时,该月应缴交水费为1.6×20+2.4×10+4.8(a−30)=4.8a−88元.解析:本题考查了整式的加减、列代数式、列一元一次方程解应用题;明确题意得出关系进行计算是解决问题的关键.(1)判断得到10吨为20吨以下,由表格中的水价计算即可得到结果;(2)判断得7月份用水量在20吨−30吨之间,设为x吨,根据水费列出方程,求出方程的解即可得到结果;(3)根据a的范围,按照第3级收费方式,计算即可得到结果.解:(1)1.6×10=16;故答案为16;(2)见答案;(3)见答案.20.答案:(1)证明:∵AE与⊙O相切,AB是⊙O的直径,∴∠BAE=90°,∠ADB=90°=∠ADC,∵CE//AB,∴∠E=90°,∴∠E=∠ADB,∵在△ABC中,AB=BC,∴∠BAC=∠BCA,∵AB//CE,∴∠BAC=∠ACE,∴∠BCA=∠ACE,又∵AC=AC,∴△ADC≌△AEC(AAS),∴AD═AE;(2)解:设BD=x,CD=10−x,AD2=AB2−BD2=AC2−CD2,即102−x2=(4√5)2−(10−x)2,解得:x=6,∴AD=AE=8.解析:本题主要考查的是切线的性质,圆周角定理及其推论,全等三角形的判定及性质,平行线的性质,等腰三角形的性质,勾股定理等有关知识.(1)利用平行线的性质,圆的性质和等腰三角形的性质,证明△AEC和△ADC全等即可证明AD=AE,(2)设BD=x,CD=10−x,利用勾股定理即可求出AE的长.21.答案:解:(1)28%;(2)192;(3)144;(4)如图:总情况有12种,被选中的两人恰好是1男1女的有6种,被选中的两人恰好是1男1女的概率是612=12.解析:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.(1)先利用喜欢足球的人数和它所占的百分比计算出调查的总人数,再计算出喜欢乒乓球的人数,然后补全条形统计图;(2)用1200乘以样本中喜欢排球的百分比可根据估计全校1200名学生中最喜欢“足球”项目的写生数;(3)用360°乘以喜欢篮球人数所占的百分比即可;(4)画树状图展示所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.解:(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50−8−20−6−2=14(人),×100%=28%,所以喜欢乒乓球的学生所占的百分比=1450补全条形统计图如下:故答案为28%;(2)1200×16%=192(人),故答案为192;(3)篮球”部分所对应的圆心角=360 ∘×40%=144°;(4)见答案.22.答案:解:(1)∵抛物线F经过点C(−1,−2),∴−2=1+2m+m2−2,∴m=−1,∴抛物线F的表达式是y=x2+2x−1.(2)当x=−2时,y P=4+4m+m2−2=(m+2)2−2,∴当m=−2时,y P的最小值为−2.此时抛物线F的表达式是y=(x+2)2−2,∴当x≤−2时,y随x的增大而减小.∵x1<x2≤−2,∴y1>y2.解析:本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.(1)根据待定系数法即可求得;(2)把x=−2代入解析式得到P点的纵坐标y P=4+4m+m2−2=(m+2)2−2,即可得到当m=−2时,y P的最小值为−2,然后根据二次函数的性质即可判断y1与y2的大小.23.答案:证明:(1)①∵四边形ABCD是矩形,∴AB//CD,∠ABC=90°,OB=OA=OC,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=OC,∵EF⊥AC,∴∠COF=90°,∴∠ABC=∠COF,∵AB//CD,∴∠OCF=∠BAC,在△ABC和△COF中{∠BAC=∠OCF AB=OC∠ABC=∠COF,∴△ABC≌△COF(ASA),∴BC=OF;②∵四边形ABCD是矩形,∴OB=OC,∴∠OBC=∠OCB,∵∠AOB=60°,∠AOB=∠OBC+∠OCB,∴∠OBC=∠OCB=30°,∵∠COF=90°=∠AOE,∴∠CEO=60°,∠EOB=30°,∴∠EOB=∠OCB,∵∠EBO=∠OBC,∴△EOB∽△OCB,∴BEBO =BOBC,即BO2=BE⋅BC,由①可知BC=OF,AB=BO,∴AB2=BE⋅OF;(2)∵四边形ABCD是矩形,∴OB=OC=OD,∠BCD=90°,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=OC=OD,∵∠AOB=∠OBC+∠OCB,∴∠OBC=∠OCB=30°,∵AB2=BE⋅BC,∴OB2=BE⋅BC,∴OBBE =BCOB,∵∠EBO=∠OBC,∴△EOB∽△OCB,∴∠EOB=∠OCB=30°,∴∠OCF=60°,∵∠DOF=∠EOB,∠COD=∠AOB,∴∠COF=90°,∴OFOD =OFOC=tan∠OCF=√3.解析:(1)①根据矩形的性质和等边三角形的性质以及全等三角形的判定和性质得出△ABC与△COF 全等,进而证明即可;②利用矩形的性质和相似三角形的判定和性质得出比例式即可;(2)根据矩形的性质和等边三角形的性质,利用比例式解答即可.此题属于四边形的综合题.考查了矩形的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识.根据矩形的性质和等边三角形的性质以及全等三角形的判定和性质得出△ABC与△COF 全等是解此题的关键.。

合肥市2020版中考数学一模试卷B卷

合肥市2020版中考数学一模试卷B卷

合肥市2020版中考数学一模试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2018·新疆) 的相反数是()A . ﹣B . 2C . ﹣2D . 0.52. (2分)如图,8×8方格纸的两条对称轴EF , MN相交于点O ,图a到图b的变换是()A . 绕点O旋转180°B . 先向上平移3格,再向右平移4格C . 先以直线MN为对称轴作轴对称,再向上平移4格D . 先向右平移4格,再以直线EF为对称轴作轴对称3. (2分)如图,在三角形纸片ABC中,AC=6,∠A=30º,∠C=90º,将∠A沿DE折叠,使点A与点B重合,则折痕DE的长为()A . 1B .C .D . 24. (2分) (2020九上·新昌期末) 在平面直角坐标系中,把点P 绕原点旋转90°得到点P1 ,则点P1的坐标是()A .B .C . 或D . 或5. (2分)根据下列表格的对应值:判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是()x 6.17 6.18 6.19 6.20ax2+bx+c﹣0.03﹣0.010.020.04A . 6<x<6.17B . 6.17<x<6.18C . 6.18<x<6.19D . 6.19<x<6.206. (2分)(2020·沙湾模拟) 如图,矩形中,,,以为直径的半圆与相切,连接.则阴影部分的面积为()A .B .C .D .7. (2分) (2016八上·泰山期中) 为响应承办“绿色奥运”的号召,九年级(1)班全体师生义务植树300棵.原计划每小时植树x棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是()A .B .C .D .8. (2分) (2019八下·太原期中) 如图,在△ABC中,DE是AC的垂直平分线,AC=6cm,且△ABD的周长为13cm,则△ABC的周长为()cm.A . 19B . 13C . 10D . 16二、填空题 (共6题;共6分)9. (1分)计算: ________10. (1分) (2017八上·哈尔滨月考) 把0.000 001 06用科学记数法表示为________.11. (1分)某段时间,小明连续7天测得日最高温度如下表所示,那么这7天的最高温度的平均气温是________ ℃.温度(℃)262725天数1 3312. (1分) (2016九上·蓬江期末) 如果将抛物线y=x2+2x﹣1向上平移3个单位,那么所得的新抛物线的表达式是________.13. (1分)如图,Rt△ABC中,∠C=90°,AC=BC=1,将其放人平面直角坐标系,使A点与原点重合,AB在x轴上,△ABC沿x轴顺时针无滑动的滚动,点A再次落在x轴时停止滚动,则点A经过的路线与x轴围成图形的面积为________14. (1分)在一平直公路上依次有A、C、B三地,客车、货车分别从A、B两地同时出发,匀速相向行驶.货车2小时可到达途中C站,14小时到达A地,客车需6小时到达C站.已知客车、货车到C站的距离与它们行驶时间x(小时)之间的函数关系如图所示,客车的速度比货车的速度快________ 千米/小时.三、解答题 (共10题;共95分)15. (10分) (2019八下·泉港期末) 在正方形ABCD中,BE平分∠CBD交边CD于E点.(1)尺规作图:过点E作EF⊥BD于F;(保留作图痕迹,不写作法);(2)在(1)的条件下,连接FC,求∠BCF的度数.16. (5分) (2017八上·高邑期末) 先化简,再求值:,其中x= ﹣1.17. (5分) (2018九上·北京期末) 如图所示是两张形状、大小相同但是画面不同的图片,把两张图片从中间剪断,再把四张形状相同的小图片(标注a、b、c、d)混合在一起,从四张图片中随机摸取一张,接着再随机摸取一张,则这两张小图片恰好合成一张完整图片的概率是多少?18. (5分)(2018·寮步模拟) 如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C 的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上)。

安徽省2020年九年级数学中考一模试卷

安徽省2020年九年级数学中考一模试卷

2020中考数学一模考试时间120分钟 试卷满分:150分第Ⅰ卷一.选择题(共10小题,满分40分,每小题4分)1.下列图形中,既是轴对称图形又是中心对称图形的是( )A B C D2.a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,﹣a ,b ,﹣b 按照从小到大的顺序排列( )A .﹣b <﹣a <a <bB .﹣a <﹣b <a <bC .﹣b <a <﹣a <bD .﹣b <b <﹣a <a 3.2020年新冠状病毒全球感染人数越33万,科学计数法如何表示( ) A .33×105B .3.3×104C .0.33×105D .3×1054.若x=2是关于x 的一元一次方程ax -2=b 的解,则3b -6a+2的值 A .-8 B .-4 C .8D .45.如图,DE ∥GF ,A 在DE 上,C 在GF 上△ABC 为等边三角形,其中∠EAC =80°,则∠BCG 度数为( )A .10°B .20°C .25D .30°6.二次函数2(0)y a x bx c a =++≠的图像如图所示,现有以下结论: ①0a <;②0abc >;③0a b c -+<;④240b ac -<; 其中正确的结论有A.1个B.2个C.3个D.4个7.某地区2007年投入教育经费2500万元,预计2009年投入3600万元.则这两年投入教育经费的年平均增长率为( )1 Oxy(第6题图)2 3-1A. 10%B. 20%C. 25%D. 40%8.如图,△ABC中,BD是∠ABC的平分线,DE∥AB交BC于E,EC=6,BE=4,则AB长为()A.6 B.8 C. D.9.如图,在锐角△ABC中,AB=4,BC=5,∠ACB=45,将△ABC绕点B按逆时针方向旋转,得到△A1B1C1.点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,线段EP1长度的最小值是___.10.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以√3 cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A. B.第Ⅱ卷二.填空题(共4小题,满分20分,每小题5分)11.把多项式3mx﹣6my分解因式的结果是.12.不等式组的所有整数解的积为.13.设抛物线l :2(0)y a x bx c a =++≠的顶点为D ,与y 轴的交点是C ,我们称以C 为顶点,且过点D 的抛物线为抛物线l 的“伴随抛物线”,请写出抛物线241y x x =-+的伴随抛物线的解析式 .14.如图,在等腰△ABC 中,AB = AC = 4,BC = 6,点D 在底边BC 上,且∠DAC =∠ACD ,将△ACD 沿着AD 所在直线翻折,使得点C 落到点E 处,联结BE ,那么BE 的长为 .三.解答题(共2小题,满分16分,每小题8分)15.计算:101tan 45222( 3.14)2π---+-16.《九章算术》是我国古代第一部数学专著,此专著中有这样一道题:今有共买鹅,人出九,盈十一;人出六,不足十六,问人数、鹅价几何?这道题的意思是:今有若干人共买一只鹅,若每人出9文钱,则多出11文钱;若每人出6文钱,则相差16文钱,求买鹅的人数和这只鹅的价格.四.解答题(共2小题,满分16分,每小题8分)17.如下图,已知平面直角坐标内有三点,分别为A(-1,1),B(-2,4),C(-3,2). (1)请画出△ABC 关于原点O 对称的△A 1B 1C 1;(2)直接写出把△ABC 绕点O 顺时针旋转90°后, 点C 旋转后对应点C 2的坐标.18.用同样大小的两种不同颜色的正方形纸片,按下图方式拼正方形.A C D B…第(1)个图形中有1个正方形;第(2)个图形有1+3=4个小正方形;第(3)个图形有1+3+5=9个小正方形;第(4)个图形有1+3+5+7=25小正方形;……(1)根据上面的发现我们可以猜想:1+3+5+7+…+(2n–1)=__________(用含n的代数式表示);(2)请根据你的发现计算:①1+3+5+7+...+99;②101+103+105+ (199)五.解答题(共3小题,满分30分,每小题10分)19.如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB 段与高速公路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离(结果保留根号).20.如图,AC是⊙O的直径,AB与⊙O相切于点A.四边形ABCD是平行四边形,BC交⊙O 于点E.(1)求证:直线CD是⊙O的切线;(2)若⊙O 的半径为5cm ,弦CE 的长为8cm ,求AB 的长.21.如图,在△ABC 中,BD 是AC 边上的高,点E 在边AB 上,联结CE 交BD 于点O ,且AD OC AB OD ⋅=⋅,AF 是∠BAC 的平分线,交BC 于点F ,交DE 于点G . 求证:(1)CE ⊥AB ; (2)AF DE AG BC ⋅=⋅.六.解答题(共1小题,满分14分,每小题14分)22.受西南地区旱情影响,某山区学校学生缺少饮用水.我市中小学生决定捐出自己的零花钱,购买300吨矿泉水送往灾区学校.运输公司听说此事后,决定免费将这批矿泉水送往灾区学校.公司现有大、中、小三种型号货车.各种型号货车载重量和运费如下表所示.大 中 小 载重(吨/台) 20 15 12 运费(元/辆)150012001000司机及领队往返途中的生活费y (单位:元)与货车台数x (单位:台)的关系如上面右图ABDCEFG O所示.为此,公司支付领队和司机的生活费共8200元. (1)求出y 与x 之间的函数关系式及公司派出货车的台数.(2)设大型货车m 台,中型货车n 台,小型货车p 台,且三种货车总载重量恰好为300吨.设总运费为W (元),求W 与小型货车台数P 之间的函数关系式.(不写自变量取值范围) (3)若本次派出的货车每种型号不少于3台且各车均满载. ①求出大、中、小型货车各多少台时总运费最少及最少运费?②由于油价上涨,大、中、小三种型号货车的运费分别增加500元/辆、300元/辆、a 元/辆,公司又将如何安排,才能使总运费七.解答题(共1小题,满分14分,每小题14分)23.如图1,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接AG 、BG 、CG 、DG ,且∠AGD =∠BGC . (1)求证:AD =BC ; (2)求证:△AGD ∽△EGF ;(3)如图2,若AD 、BC 所在直线互相垂直,求EFAD的值.参考答案19.解:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,BE=AB•sin30°=10km,在Rt△BCF中,BF=BC÷cos30°=3320km,CF=BF•sin30°=3310km ,DF=CD﹣CF=(30﹣3310)km,在Rt△DFG中,FG=DF•sin30°=(30﹣3310)×=(15﹣335)km,∴EG=BE+BF+FG=(25+53)km.故两高速公路间的距离为(25+53)km18.21.(1)∵AD OC AB OD ⋅=⋅,∴AD ABOD OC=. ∵BD 是AC 边上的高,∴∠BDC = 90°,△ADB 和△ODC 是直角三角形. ∴Rt △ADB ∽Rt △ODC . ∴∠ABD =∠OCD .又∵∠EOB =∠DOC ,∠DOC +∠OCD +∠ODC =180°,∠EOB +∠ABD+∠OEB =180°. ∴∠OEB = 90°. ∴CE ⊥AB .(2)在△ADB 和△AEC 中, ∵∠BAD =∠CAE ,∠ABD =∠OCD , ∴△ADB ∽△AEC .∴AD AB AE AC =, 即AD AEAB AC= 在△DAE 和△BAC 中20. 20.∵∠DAE =∠BAC ,AD AEAB AC=. ∴△DAE ∽△BAC . ∵AF 是∠BAC 的平分线,∴AG DEAF BC=, 即AF DE AG BC ⋅=⋅.23.(1)证明:∵GE 是AB 的垂直平分线,∴GA =GB ,同理:GD =GC , ∴△AGD ≌△BGC (SAS ),∴AD =BC ;(2)证明:∵∠AGD =∠BGC ,∴∠AGB =∠DGC , 在△AGB 和△DGC 中,,∴△AGB ∽△DGC ,又∵∠AGE =∠DGF ,∴∠AGD =∠EGF ,∴△AGD ∽△EGF ;(3)解:延长AD 交GB 于点M ,交BC 的延长线于点H ,如图所示:则AH ⊥BH , ∵△AGD ≌△BGC ,∴∠GAD =∠GBC ,在△GAM 和△HBM 中,∠GAD =∠GBC ,∠GMA =∠HMB ,∴∠AGB =∠AHB =90°,∴∠AGE =21∠AGB =45°, ∴2=EG AG ,又∵△AGD ∽△EGF ,.2==EGAGEF AD。

包河中考一模数学试卷答案

包河中考一模数学试卷答案

一、选择题(本大题共12小题,每小题3分,共36分)1. 若实数a、b满足a+b=0,则ab的值为()A. 1B. -1C. 0D. 无法确定答案:C解析:由a+b=0,得a=-b,代入ab得ab=(-b)b=b^2,因为b是实数,所以b^2=0,故选C。

2. 在直角坐标系中,点A(2,3)关于y轴的对称点坐标为()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)答案:A解析:关于y轴对称,横坐标取相反数,纵坐标不变,故选A。

3. 下列函数中,是反比例函数的是()A. y=x^2B. y=2x+1C. y=1/xD. y=3x^2-1答案:C解析:反比例函数的定义是y=k/x(k≠0),故选C。

4. 若x^2-4x+4=0,则x的值为()A. 2B. -2C. 1D. -1答案:A解析:将方程变形为(x-2)^2=0,得x-2=0,解得x=2,故选A。

5. 在△ABC中,∠A=30°,∠B=45°,则∠C的度数为()A. 105°B. 120°C. 135°D. 150°答案:C解析:三角形内角和为180°,∠A+∠B+∠C=180°,代入已知角度得30°+45°+∠C=180°,解得∠C=105°,故选C。

6. 已知函数y=2x-1,若x=3,则y的值为()A. 5B. 4C. 3D. 2答案:A解析:将x=3代入函数y=2x-1得y=23-1=6-1=5,故选A。

7. 若a、b、c是等差数列的连续三项,且a+b+c=12,则b的值为()A. 3B. 4C. 5D. 6答案:C解析:等差数列的性质是相邻两项之差相等,设公差为d,则a=b-d,c=b+d,代入a+b+c=12得b+b=12,解得b=6,故选C。

8. 下列各数中,有最小正整数解的是()A. x^2-5x+6B. x^2-6x+8C. x^2-7x+12D. x^2-8x+12答案:B解析:将每个选项因式分解,得A=(x-2)(x-3),B=(x-4)(x-2),C=(x-4)(x-3),D=(x-6)(x-2),因为要求最小正整数解,故选B。

安徽省合肥市2020届中考一模考试数学试卷

安徽省合肥市2020届中考一模考试数学试卷

安徽省合肥市2020届中考一模考试数学试卷学校:___________注意事项: 2、请将答案正确填写在答题卡上一、单选题( )A.2B.3- C.0 D.π1.答案:B解析:先根据实数的大小比较法则比较数的大小,再得出选项即可.解:∵302π﹣,<<<∴最小的数是3-,故选:B.2.如图是由四个相同的小正方形组成的立体图形,它的俯视图为( )A. B. C. D.2.答案:B解析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解:从上面看易得第一层有1个正方形,第二层有2个正方形,如图所示:故选:B.139400km,139400用科学记数法可表示为( )3.安徽省的陆地面积为2A.2⨯ D.413.9410⨯1394101.39410⨯ B.41.39410⨯ C.53.答案:C解析:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数.将139400用科学记数法表示为:51.39410⨯. 故选:C .4.下列运算正确的是( ) A.223a a a += B.325a a a ⋅=C.()246a a =D.623623a a a =-÷4.答案:B解析:A 、23a a a +=,错误; B 、325a a a ⋅=,正确; C 、()248a a =,错误;D 、624623a a a -÷=-,错误; 故选:B .5.若分式2402x x -=-,则x 的值是( )A.2±B.2C.2-D.05.答案:C解析:依题意得:240x -=且20x -≠, 解得2x =-. 故选:C .6.如图是某市2016年四月份每日的最低气温的统计图,则四月份每日的最低气温(单位:℃)众数分别是( )A.14B.30C.12D.186.答案:A解析:由条形统计图中出现频数最大条形最高的数据是在第三组,14℃,故众数是14℃;故选:A . 7.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足( )A.()161225x +=B.()251216x -=C.()216125x =+D.()225116x =-7.答案:D解析:第一次降价后的价格为:()251x ⨯-; 第二次降价后的价格为:()2251x ⨯-; ∵两次降价后的价格为16元, ∴()225116x =-. 故选:D .8.如图,在ABC △中,点D 为BC 边上的一点,且2,AD AB AD AB ==⊥.过点D 作DE AD ⊥,DE 交AC 于点E .若1DE =,则ABC △的面积为( )A. B.4 C. D.88.答案:B解析:∵,AB AD AD DE ⊥⊥, ∴90BAD ADE ∠=∠=︒, ∴DE AB , ∴CED CAB ∠=∠, ∵C C ∠=∠, ∴CED CAB △∽△,∵1,2DE AB ==,即:1:2DE AB =, ∴:1:4DEC ACB S S =△△, ∴:3:4ACB ABDE S S =△四边形,∵11222121322ABD ADE ABDE S S S ==⨯⨯+⨯++⨯==△△四边形,∴4ACB S =△, 故选:B .9.如图,是二次函数2y ax bx c =++图象的一部分,下列结论中:①0abc >; ②0a b c -+<; ③210ax bx c +++=有两个相等的实数根; ④930a b c ++>.其中正确的结论的序号为( )A.①②B.①③C.②③D.①④9.答案:D解析:①由抛物线的开口方向向上可推出0a >, 与y 轴的交点为在y 轴的负半轴上可推出10c =-<, 对称轴为102bx a=->>,0a >,得0b <, 故0abc >,故①正确; ①由对称轴为直线12bx a=->,抛物线与x 轴的一个交点交于()2,0,()3,0之间,则另一个交点在()0,0,()1,0-之间, 所以当1x =-时,0y >, 所以0a b c -+>,故①错误;①抛物线与y 轴的交点为()0,1-,由图象知二次函数2y ax bx c =++图象与直线1y =-有两个交点, 故210ax bx c +++=有两个不相等的实数根,故①错误; ①3x =时,2930y ax bx c a b c =++=++>,故①正确; 故选:D .10.如图,在ABC △中,10,8,6AB AC BC ===,以边AB 的中点O 为圆心,作半圆与AC 相切,点,P Q 分别是边BC 和半圆上的动点,连接PQ ,则PQ 长的最大值与最小值的和是( )A.6B.1C.9D.22310.答案:C解析:如图,设O 与AC 相切于点E ,连接OE ,作1OP BC ⊥垂足为1P 交O 于1Q , 此时垂线段1OP 最短,11PQ 最小值为11OP OQ -, ∵10,8,6AB AC BC ===, ∴222AB AC BC +=,∴90C ∠=︒, ∵190OPB ∠=︒, ∴1OP AC ∵AO OB =, ∴11PC PB =, ∴1124OP AC ==, ∴11PQ 最小值为111OPOQ -=, 如图,当2Q 在AB 边上时,2P 与B 重合时,22P Q 经过圆心,经过圆心的弦最长, 22P Q 最大值538=+=,∴PQ 长的最大值与最小值的和是9. 故选:C .二、解答题11.解方程:4x x =. 11.答案:解:240x x -=,()40x x -=, 0x =或40x =-,所以120,4x x ==. 解析:12.如图,已知ABC △三个顶点的坐标分别为()()()2,4,0,4,1,1A B C ----(1)请在网格中,画出线段BC 关于原点对称的线段11B C ;(2)请在网格中,过点C 画一条直线CD ,将ABC △分成面积相等的两部分,与线段AB 相交于点D ,写出点D 的坐标;(3)若另有一点()3,3P --,连接PC ,则tan BCP ∠=__________. 12.答案:(1)作出线段11B C 、连接即可; (2)画出直线CD ,点D 坐标为()1,4--, (3)连接PB ,∵22221310PB BC +===,2222420PC +==, ∴222PB BC PC =+, ∴PBC △为等腰直角三角形, ∴45PCB ∠=︒, ∴tan 1BCP ∠=, 故答案为1.解析:13.光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其它天气平均每天可发电5度,已知某月(按30天计)共发电550度.(1)求这个月晴天的天数.(2)已知该家庭每月平均用电量为150度,若按每月发电550度计,至少需要几年才能收回成本(不计其它费用,结果取整数).13.答案:(1)设这个月有x 天晴天,由题意得()30530550x x +-=, 解得16x =,故这个月有16个晴天.(2)需要y 年才可以收回成本,由题意得()()5501500.520.451240000y -⋅+⋅≥,解得8.6y ≥, ∵y 是整数,∴至少需要9年才能收回成本. 解析:14.观察一组数据:2,4,7,11,16,22,29,…,它们有一定的规律,若记第一个数为1a ,第二个数记为2a ,…,第n 个数记为n a . (1)请写出29后面的第一个数;(2)通过计算213243,,a a a a a a ---,…由此推算10099a a -的值; (3)根据你发现的规律求100a 的值. 14.答案:(1)29后面的第一位数是37;(2)由题意:2132432,3,4a a a a a a -=-=-=…由此推算10099100a a -=; (3)10011002234100110050512a +++++⋯+=+⨯== 解析:15.图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB 长92cm ,车杆与脚踏板所成的角70ABC ∠=︒,前后轮子的半径均为6cm ,求把手A 离地面的高度(结果保留小数点后一位;参考数据:700.94,700.34,70 2.75sin cos tan ︒≈︒≈︒≈).15.答案:过点A 作AD BC ⊥于点D ,延长AD 交地面于点E , ∵sin ADABD AB∠=, ∴920.9486.48AD =⨯≈, ∵6DE =,∴92.5AE AD DE =+=,∴把手A 离地面的高度为92.5cm .解析:16.如图,已知在ABC △中,,,D E F 分别是,,AB BC AC 的中点,连结,,DF EF BF . (1)求证:四边形BEFD 是平行四边形;(2)若90AFB ∠=︒,6AB =,求四边形BEFD 的周长.16.答案:(1)证明:∵,,D E F 分别是,,AB BC AC 的中点, ∴,DF BC EF AB , ∴,DF BE EF BD ,∴四边形BEFD 是平行四边形;(2)解:∵90AFB ∠=︒,D 是AB 的中点,6AB =, ∴132DF DB DA AB ====, ∵四边形BEFD 是平行四边形, ∴四边形BEFD 是菱形, ∵3DB =,∴四边形BEFD 的周长为12. 解析:17.为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m 的值,并补全条形统计图;(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理? 17.答案:(1)总人数1525%60=÷=(人). A 类人数602415912=---=(人).∵12600.220%÷==, ∴20m =. 条形统计图如图;(2)抽到选“体育特长类”或“艺术特长类”的学生的概率249116020+==; (3)∵80025%200,2002010⨯=÷=,∴开设10个“实验活动类”课程的班级数比较合理. 解析:18.如图,在平面直角坐标系xOy 中,已知抛物线22y ax x c =+﹣与直线y kx b =+都经过()()0,33,0A B -、两点,该抛物线的顶点为C .(1)求此抛物线和直线AB 的解析式;(2)设直线AB 与该抛物线的对称轴交于点E ,在射线EB 上是否存在一点M ,过M 作x 轴的垂线交抛物线于点N ,使点M N C E 、、、是平行四边形的四个顶点?若存在,求点M 的坐标;若不存在,请说明理由;(3)设点P 是直线AB 下方抛物线上的一动点,当PAB △面积最大时,求点P 的坐标,并求PAB △面积的最大值.18.答案:(1)∵抛物线22y ax x c -=+经过()()0,33,0A B -、两点, ∴9603a c c +-=⎧⎨=-⎩,∴13a c =⎧⎨=-⎩,∴抛物线的解析式为223y x x -=-, ∵直线y kx b =+经过()()0,33,0A B -、两点, ∴303k b b +=⎧⎨=-⎩,解得:13k b =⎧⎨=-⎩,∴直线AB 的解析式为3y x =-, (2)∵()222314y x x x -==---, ∴抛物线的顶点C 的坐标为()1,4-, ∵CE y 轴, ∴()1,2E -, ∴2CE =,①如图,若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE MN =, 设(),3M a a -,则()2,23N a a a --, ∴()223233MN a a a a a =---=-+-,∴232a a -+=,解得:2,1a a ==(舍去),∴()2,1M -,②如图,若点M 在x 轴上方,四边形CENM 为平行四边形,则CE MN =设(),3M a a -,则()2,23N a a a --,∴()222333MN a a a a a =------,∴232a a -=,解得:a a ==(舍去),∴M ⎝⎭,综合可得M 点的坐标为()2,1-或⎝⎭. (3)如图,作PG y 轴交直线AB 于点G ,设()2,23P m m m --,则(),3G m m -,∴()223233PG m m m m m =----+=-, ∴()221139332222PAB PGA PGB PG O S S S B m m m m ==⋅=-+⨯=-++△△△2239332722228m m m ⎛⎫=-+=--+ ⎪⎝⎭, ∴当32m =时,PAB △面积的最大值是278,此时P 点坐标为315,24⎛⎫- ⎪⎝⎭. 解析: 19.数学活动课上,某学习小组对有一内角为120°的平行四边形()120ABCD BAD ∠=︒进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD 所在平面内旋转,且60°角的顶点始终与点C 重合,较短的直角边和斜边所在的两直线分别交线段,AB AD 于点,E F (不包括线段的端点).(1)初步尝试:如图1,若AD AB =,求证:①BCE ACF △≌△,②AE AF AC +=;(2)类比发现:如图2,若2AD AB =,过点C 作CH AD ⊥于点H ,求证:2AE FH =;(3)深入探究:如图3,若3AD AB =,探究得:3AE AF AC+的值为常数t ,则t =_________________. 19.答案:(1)①∵四边形ABCD 是平行四边形,120BAD ∠=︒, ∴60D B ∠=∠=︒,∵AD AB =,∴ABC △,ACD △都是等边三角形,∴60B CAD ∠=∠=︒,60ACB ∠=︒,BC AC =, ∵60ECF ∠=︒,∴60BCE ACE ACF ACE ∠+∠=∠+∠=︒, ∴BCE ACF ∠=∠,在BCE △和ACF △中,B CAF BC ACBCE ACF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BCE ACF △≌△.②∵BCE ACF △≌△,∴BE AF =,∴AE AF AE BE AB AC +=+==.(2)设DH x =,由题意,2,CD x CH =, ∴24AD AB x ==,∴3AH AD DH x =-=,∵CH AD ⊥,∴AC ==,∴222AC CD AD =+,∴90ACD ∠=︒,∴90BAC ACD ∠=∠=︒,∴30CAD ∠=︒,∴60ACH ∠=︒,∵60ECF ∠=︒,∴HCF ACE ∠=∠,∴ACE HCF △∽△, ∴2AE AC FH CH==, ∴2AE FH =.解析:20.=21.命题:“若0ab =,则a b 、中至少有一个为0”的逆命题是______________________.21.答案:若a b 、至少有一个为0,则=0ab . 解析:命题:“若=0ab ,则a b 、中至少有一个为0”的逆命题是若a b 、至少有一个为0,则=0ab .22.如图,已知A 为反比例函数()0k y x x=<的图象上一点,过点A 作AB y ⊥轴,垂足为B ,若OAB △的面积为2,则k 的值为______________.22.答案:4-解析:∵AB y ⊥轴,∴2OAB S k ==△, 而0k <,∴4k =-.故答案为4-.23.如图,在平面直角坐标系中,已知D 经过原点O ,与x 轴、y 轴分别交于A B 、两点,B点坐标为(,OC 与D 交于点C ,30OCA ∠=︒,则图中阴影部分面积为______________.(结果保留根号和π)23.答案:2π-解析:解:连接AB ,∵90AOB ∠=︒,∴AB 是直径,根据同弧对的圆周角相等得30OBA C ∠=∠=︒,∵OB =,∴tan tan30OA OB ABO OB =∠=︒=,304AB AO sin =÷︒=,即圆的半径为2,∴2π2122π22ABO S S S ⨯-=-⨯⨯=-△阴影半圆= .故答案为:2π-.。

安徽省合肥包河区实验学校2020-2021学年九年级上段考(12月份)数学试卷(含答案)

安徽省合肥包河区实验学校2020-2021学年九年级上段考(12月份)数学试卷(含答案)

1合肥包河实验学校2020-2021九上段考(12月份)数学试卷(含答案)一、 选择题(本大题共10小题,每小题4分,满分40分) 1.若sin (75°-θ)的值是21,则θ=( )A. 15°B. 30°C. 45°D. 60° 2.如图,在Rt △ABC 中,BC=4,AC=3,∠C=90º,则cosB 的值为( ) A.43 B. 53 C. 54 D. 34第2题 第4题 第5题 第8题 第9题 3.若∠A 是锐角,且sinA=41,则( ) A.0º<∠A<30º B. 30º<∠A<45º C. 45º<∠A<60º D. 60º<∠A<90º 4.如图,已知△ABC ∽△DAC ,∠B=36º,∠D=117º,则∠BAD 的度数为( )A.36ºB.117ºC.143ºD.153º 5.如图,网格中的两个三角形是位似图形,它们的位似中心是( )A.点AB.点BC.点CD.点D 6.在双曲线y=7k x的每一支上,y 都随x 的增大而减小,则k 的取值范围是( )A.k>0B.k>7C.k<7D.k<07.已知抛物线与二次函数y=-5x 2的图象相同,开口方向相同,且顶点坐标为(-1,2020),它对应的函数表达式为( )A.y=-5(x-1) 2+2020B. y=5(x-1) 2+2020C. y=5(x+1) 2+2020D. y=-5(x+1)2+2020 8.如图,小明在一条东西走向公路的O 处,测得图书馆A 在他的北偏东60º方向,且与他相距300m ,则图书馆A 到公路的距离AB 为( )m B. 1503m C.150m D. 1003m 9.如图,河坝横断面迎水坡AB 的坡比为1,坝高BC=4m ,则AB 的长度为( )m C. 43m D.6m 10.已知正方形ABCD 的边长为2,P 是直线CD 上一点,若DP=1,则sin ∠BPC 的值是( ) A. 552m B 55223二、填空题(本大题共4小题,每小题5分,满分20分) 11、已知sina=513(a 为锐角),则tana=212、如图,△ABC 的顶点都是正方形网格中的格点,则cos ∠ACB 等于第12题 第13题 第14题 13、如图,在平而直角坐标系中,□ OABC 的顶点A 在反比例函数k y x =的图象上,顶点B 在反比例函數5y x=的图象上,点C 在x 轴的正半轴上,则□OABC 的面积是14、如图1所示的是合肥市包河公园运动广场的一个漫步机,其侧面示意图如图2所示,其中AB=AC=120cm ,BC=80cm , AD=30cm ,∠DAC=90°。

2020-2021学年安徽省合肥市中考数学一模试题及答案解析

2020-2021学年安徽省合肥市中考数学一模试题及答案解析

2020-2021学年安徽省合肥市中考数学⼀模试题及答案解析安徽省合肥市中考数学⼀模试卷⼀、选择题(本⼤题共10⼩题,每⼩题4分,满分40分)1.下列运算正确的是()A.6a﹣5a=1 B.(a2)3=a5 C.3a2+2a3=5a5D.2a2?3a3=6a52.不等式组的解集在数轴上表⽰正确的是()A.B.C.D.3.南海是我们固有领⼟,南海资源丰富,其⾯积约为350万平⽅千⽶,相当于我国的渤海、黄海和东海总⾯积的3倍,其中350万⽤科学记数法表⽰为()A.3.5×106B.3.5×107C.0.35×108D.3.5×1094.七(1)班学雷锋⼩组整理校实验室,已知6个⼈共要做4⼩时完成,则每⼈每⼩时的⼯作效率是()A.B.C.D.5.与最接近的整数是()A.1 B.2 C.3 D.46.定义:⼀个⾃然数,右边的数字总⽐左边的数字⼩,我们称它为“下滑数”(如:32,641,8531等).现从两位数中任取⼀个,恰好是“下滑数”的概率为()A.B.C.D.7.图(1)表⽰⼀个正五棱柱形状的⾼⼤建筑物,图(2)是它的俯视图.⼩健站在地⾯观察该建筑物,当他在图(2)中的阴影部分所表⽰的区域活动时,能同时看到建筑物的三个侧⾯,图中∠MPN的度数为()A.30°B.36°C.45°D.72°8.如图,在平⾯直⾓坐标系中,正⽅形ABCO的顶点A、C分别在y轴、x轴上,以AB为弦的⊙M与x轴相切.若点A的坐标为(0,8),则圆⼼M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(5,﹣4)D.(4,﹣5)9.某公司为增加员⼯收⼊,提⾼效益.今年提出如下⽬标,和去年相⽐,在产品的出⼚价增加10%的前提下,将产品成本降低20%,使产品的利润率(利润率=×100%)较去年翻⼀番,则今年该公司产品的利润率为()A.40% B.80% C.120% D.160%10.已知:如图,点P是正⽅形ABCD的对⾓线AC上的⼀个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正⽅形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,⼤致表⽰y与x之间的函数关系的是()A.B.C.D.⼆、填空题(本⼤题共4⼩题,每⼩题5分,满分20分)11.把代数式2x4﹣2y2分解因式.12.如图,锐⾓△ABC内接于圆O,连接OA,设∠OBA=α,∠C=β,则α+β的度数为.13.⼀次函数y=ax+5a(a≠0)与⼆次函数y=x2+2x﹣b(b≠0)交于x轴上⼀点,则当﹣2≤x≤3时⼆次函数y=x2+2x﹣b(b≠0)的最⼩值为.14.如图,在△ABC中,∠BAC=90°,AB=AC=10.现将⼀个⾜够⼤的透明的三⾓板的直⾓顶点放在BC的中点D处,将三⾓板绕点D旋转,三⾓板的两边与△ABC的边AB、AC分别交于点E、F,下列结论:①旋转过程中,DE可能与EF相等;②旋转过程中,△DEF是等腰三⾓形;③旋转过程中,四边形AEDF的⾯积是⼀定值,且⾯积为25;④E、F分别在AB、CA延长线上时,且BE=2,四边形AFED的⾯积为40.其中,正确的有:(直接填序号)三、(本⼤题共2⼩题,每⼩题8分,满分16分)15.﹣12015+(3﹣π)0﹣|2sin45°﹣1|+(﹣)﹣1.16.如图,⼀次函数y1的图象与反⽐例函数y2的图象交于A(﹣5,2)、B(m,﹣5)两点.(1)求的函数y1、y2表达式;(2)观察图象,当时﹣4<x<2,⽐较y1、y2的⼤⼩?四、(本⼤题共2⼩题,每⼩题10分,满分20分)17.观察下⾯图形我们可以发现:第1个图中有1个正⽅形,第2个图中有5个正⽅形,按照这种规律变化下去…(1)第3个图中有个正⽅形;(2)第4个图形⽐第3个图形多个正⽅形;(3)第n个图形⽐前⼀个图形多个正⽅形(⽤含有n的式⼦表⽰);(4)按照规律,是否存在某个图形,它⽐前⼀个图形增加2015个正⽅形?为什么?18.如图是规格为10×10的正⽅形⽹格,请在所给⽹格中按下列要求操作:(1)请在⽹格中建⽴平⾯直⾓坐标系,使点A、B的坐标分别为(1,﹣2)、(2,﹣1);(2)以坐标原点O为位似中⼼,在第⼆象限内将线段AB放⼤到原来的2倍得到线段A1B1;(3)在第⼆象限内的格点(横、纵坐标均为整数的点叫做格点)上画⼀点C1,使点C1与线段A1B1组成⼀个以A1B1为底边的等腰三⾓形,且腰长是⽆理数.此时,点C1的坐标是,△A1B1C1的周长是(写出⼀种符合要求的情况即可,结果保留根号).五、(本⼤题共2⼩题,每⼩题10分,满分20分)19.在△ABC中,BC=3,中线CD⊥BC,若BD﹣CD=1,求AB的长及sinB的值.20.⼩芳每次骑车从家到学校都要经过⼀段坡度相同的上坡路和下坡路,假设她骑车坡度相等的上坡路与下坡路平均速度基本相同,且上坡路骑⾏50⽶与下坡路骑⾏80⽶所⽤的时间相等.当她从家到学校时,下坡路的长为400⽶,下坡路⽐上坡路多花⼀分钟,设她骑⾏下坡路的速度为x⽶/分钟.(1)⽤含x的代数式表⽰她从家到学校时上坡路段的路程.(2)当她从学校回家时,在这两个坡道所花的时间为10分30秒,请求出她回家时在下坡路段所花的时间.六、(本题满分12分)21.A市为制定居民⽤⽔价格调整⽅案,就每⽉的⽤⽔量、可承受的⽔价调整幅度等进⾏民意调查,调查采⽤随机抽样的⽅式.图1、图2为某⼀⼩区的调查数据统计图.已知被调查居民每户每⽉的⽤⽔量在5m3~35m3之间,被调查的居民中对居民⽤⽔价格调价幅度抱“⽆所谓”态度的有8户,试回答下列问题:(1)请补全图1的统计图;(2)被调查居民⽤⽔量的中位数落在什么范围内:(直接填写范围即可,如5m3~35m3等);(3)若采⽤阶梯式累进制调价⽅案(如下表所⽰),试估计该⼩区有百分之⼏的居民⽤⽔费⽤的增长幅度不超过50%?阶梯式累进制⾃来⽔调价⽅案级数⽤⽔量范围现⾏价格(元/m3)调整后价格(元/m3)第⼀级0~15m3(含15m3) 1.80 2.50第⼆级15m3以上 1.80 3.30七、(本题满分12分)22.如图,⽤篱笆围成⼀个两⾯靠墙(两墙垂直,墙AB的最⼤利⽤长度为26⽶,墙BC⾜够长)中间隔有⼀道篱笆的矩形菜园,已知篱笆的长度为60m,设菜园的宽度为xm,总占地⾯积为ym2.(1)求y关于x的函数表达式;(2)求⾃变量x的取值范围;(3)菜园的宽x为多少时围成的菜园⾯积最⼤,最⼤⾯积是多少?⼋、(本题满分14分)23.对于两个相似三⾓形,如果沿周界按对应点顺序环绕的⽅向相同,那么称这两个三⾓形互为顺相似;如果沿周界按对应点顺序环绕的⽅向相反,那么称这两个三⾓形互为逆相似.例如,如图①,△ABC∽△A′B′C′且沿周界ABCA与A′、B′、C′、A′环绕的⽅向相同,因此△ABC 与△A′B′C′互为顺相似;如图②,△ABC∽△A′B′C′,且沿周界ABCA与A′、B′、C′、A′环绕的⽅向相反,因此△ABC 与△A′B′C′互为逆相似.(1)根据图I、图Ⅱ和图Ⅲ满⾜的条件,可得下列三对相似三⾓形:①△ADE与△ABC;②△GHO 与△KFO;③△NQP与△NMQ.其中,互为顺相似的是;互为逆相似的是.(填写所有符合要求的序号)(2)如图③,在锐⾓△ABC中,∠A<∠B<∠C,点P在△ABC的边上(不与点A、B、C重合).过点P画直线截△ABC,使截得的⼀个三⾓形与△ABC互为逆相似.请根据点P的不同位置,探索过点P的截线的情形,画出图形并说明截线满⾜的条件,不必说明理由.安徽省合肥市中考数学⼀模试卷参考答案与试题解析⼀、选择题(本⼤题共10⼩题,每⼩题4分,满分40分)1.下列运算正确的是()A.6a﹣5a=1 B.(a2)3=a5 C.3a2+2a3=5a5D.2a2?3a3=6a5【考点】幂的乘⽅与积的乘⽅;合并同类项;同底数幂的乘法;单项式乘单项式.【分析】根据合并同类项法则、幂的乘⽅、单项式乘法的运算⽅法,利⽤排除法求解.【解答】解:A、应为6a﹣5a=a,故本选项错误;B、应为(a2)3=a2×3=a6,故本选项错误;C、3a2与2a3不是同类项,不能合并,故本选项错误;D、2a2?3a3=2×3a2?a3=6a5,正确.故选D.【点评】本题主要考查了合并同类项的法则,幂的乘⽅的性质,单项式的乘法法则,熟练掌握运算法则是解题的关键.2.不等式组的解集在数轴上表⽰正确的是()A.B.C.D.【考点】在数轴上表⽰不等式的解集;解⼀元⼀次不等式组.【专题】计算题.【分析】先解不等组得到﹣1≤x<1,根据数轴表⽰数的⽅法解集在﹣1的右边(含﹣1)并且在1的左边.【解答】解:,解不等式①得x<1,解不等式②得x≥﹣1,∴﹣1≤x<1.故选D.【点评】本题考查了在数轴上表⽰不等式的解集:先求出不等式组的解集,然后根据数轴表⽰数的⽅法把对应的未知数的取值范围通过画区间的⽅法表⽰出来,等号时⽤实⼼,不等时⽤空⼼.3.南海是我们固有领⼟,南海资源丰富,其⾯积约为350万平⽅千⽶,相当于我国的渤海、黄海和东海总⾯积的3倍,其中350万⽤科学记数法表⽰为()A.3.5×106B.3.5×107C.0.35×108D.3.5×109【考点】科学记数法—表⽰较⼤的数.【分析】科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将350万⽤科学记数法表⽰为3.5×106.故选A.【点评】此题考查科学记数法的表⽰⽅法.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数,表⽰时关键要正确确定a的值以及n的值.4.七(1)班学雷锋⼩组整理校实验室,已知6个⼈共要做4⼩时完成,则每⼈每⼩时的⼯作效率是()A.B.C.D.【考点】有理数的混合运算.【分析】根据除法的意义先求出1个⼈4⼩时的⼯作效率,再求出每⼈每⼩时的⼯作效率.【解答】解:1÷6÷4=.故每⼈每⼩时的⼯作效率是.故选:D.【点评】考查了有理数的混合运算,本题也可以先求出6个⼈1⼩时的⼯作效率,再求出每⼈每⼩时的⼯作效率.5.与最接近的整数是()A.1 B.2 C.3 D.4【考点】估算⽆理数的⼤⼩.【分析】按要求找到2到2.5之间的⽆理数,须使被开⽅数⼤于4⼩于6.25即可求解.【解答】解:∵4<6<6,25,∴2<<2.5,∴最接近的整数是2,故选B.【点评】本题主要考查了⽆理数的估算,解题关键是确定⽆理数的整数部分即可解决问题.6.定义:⼀个⾃然数,右边的数字总⽐左边的数字⼩,我们称它为“下滑数”(如:32,641,8531等).现从两位数中任取⼀个,恰好是“下滑数”的概率为()A.B.C.D.【考点】概率公式.【专题】压轴题;新定义.【分析】根据概率的求法,找准两点:①全部情况的总数:根据题意得知这样的两位数共有90个;②符合条件的情况数⽬:从总数中找出符合条件的数共有45个;⼆者的⽐值就是其发⽣的概率.【解答】解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45个,概率为=.故选A.【点评】此题考查概率的求法:如果⼀个事件有n种可能,⽽且这些事件的可能性相同,其中事件A出现m种结果,那么事件A 的概率P(A)=.7.图(1)表⽰⼀个正五棱柱形状的⾼⼤建筑物,图(2)是它的俯视图.⼩健站在地⾯观察该建筑物,当他在图(2)中的阴影部分所表⽰的区域活动时,能同时看到建筑物的三个侧⾯,图中∠MPN的度数为()A.30°B.36°C.45°D.72°【考点】视点、视⾓和盲区.【专题】压轴题.【分析】根据正五边形的内⾓为108°,观察图形,利⽤三⾓形内⾓和为180°,和对顶⾓相等,可求出∠MPN的度数.【解答】解:由题意我们可以得出,正五棱柱的俯视图中,正五边形的内⾓为=108°,那么∠MPN=180°﹣(180°﹣108°)×2=36°.故选B.【点评】利⽤数学知识解决实际问题是中学数学的重要内容.本题的关键是弄清所求⾓与正五棱柱的俯视图的关系.8.如图,在平⾯直⾓坐标系中,正⽅形ABCO的顶点A、C分别在y轴、x轴上,以AB为弦的⊙M与x轴相切.若点A的坐标为(0,8),则圆⼼M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(5,﹣4)D.(4,﹣5)【考点】垂径定理;坐标与图形性质;勾股定理;正⽅形的性质.【专题】证明题.【分析】过点M作MD⊥AB于D,连接AM.设⊙M的半径为R,因为四边形OABC为正⽅形,顶点A,C在坐标轴上,以边AB为弦的⊙M与x轴相切,若点A的坐标为(0,8),所以DA= AB=4,DM=8﹣R,AM=R,⼜因△ADM是直⾓三⾓形,利⽤勾股定理即可得到关于R的⽅程,解之即可.【解答】解:过点M作MD⊥AB于D,交OC于点E.连接AM,设⊙M的半径为R.∵以边AB为弦的⊙M与x轴相切,AB∥OC,∴DE⊥CO,∴DE是⊙M直径的⼀部分;∵四边形OABC为正⽅形,顶点A,C在坐标轴上,点A的坐标为(0,8),∴OA=AB=CB=OC=8,DM=8﹣R;∴AD=BD=4(垂径定理);在Rt△ADM中,根据勾股定理可得AM2=DM2+AD2,∴R2=(8﹣R)2+42,∴R=5.∴M(﹣4,5).故选A.【点评】本题考查了垂径定理、坐标与图形性质、勾股定理及正⽅形的性质.解题时,需仔细分析题意及图形,利⽤勾股定理来解决问题.9.某公司为增加员⼯收⼊,提⾼效益.今年提出如下⽬标,和去年相⽐,在产品的出⼚价增加10%的前提下,将产品成本降低20%,使产品的利润率(利润率=×100%)较去年翻⼀番,则今年该公司产品的利润率为()A.40% B.80% C.120% D.160%【考点】分式⽅程的应⽤.【分析】设去年产品出⼚价为a,去年产品成本为b,根据利润率=×100%列出⽅程,求出a和b的数量关系,进⽽求出产品的利润率.【解答】解:设去年产品出⼚价为a,去年产品成本为b,根据题意,100%=×2×100%,即整理得:=2a﹣2b,解得:a=b,所以把a=b,代⼊×2中得×2=×2=120%.故选:C.【点评】本题主要考查了分式⽅程的应⽤,解答本题的关键是正确设出产品的出⼚价和成本价,求出出⼚价和成本价之间的数量关系,此题难度不⼤.10.已知:如图,点P是正⽅形ABCD的对⾓线AC上的⼀个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正⽅形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,⼤致表⽰y与x之间的函数关系的是()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题;动点型.【分析】根据函数解析式求函数图象.【解答】解:由题意可得:△APE和△PCF都是等腰直⾓三⾓形.∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正⽅形的边长.则y=2x,为正⽐例函数.故选:A.【点评】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.⼆、填空题(本⼤题共4⼩题,每⼩题5分,满分20分)11.把代数式2x4﹣2y2分解因式2(x2+y)(x2﹣y).【考点】提公因式法与公式法的综合运⽤.【专题】计算题.【分析】原式提取2,再利⽤平⽅差公式分解即可.【解答】解:原式=2(x4﹣y2)=2(x2+y)(x2﹣y).故答案为:2(x2+y)(x2﹣y)【点评】此题考查了提公因式法与公式法的综合运⽤,熟练掌握因式分解的⽅法是解本题的关键.12.如图,锐⾓△ABC内接于圆O,连接OA,设∠OBA=α,∠C=β,则α+β的度数为90°.【考点】圆周⾓定理.【分析】延长AO交圆O于D,连接BD,根据直径所对的圆周⾓是直⾓得到∠ABD=90°,根据同弧所对的圆周⾓相等得到∠D=β,等量代换得到答案.【解答】解:延长AO交圆O于D,连接BD,∵AD为直径,∴∠ABD=90°,∴α+∠D=90°,∵∠ACB=∠D,∴α+β=90°,故答案为:90°.【点评】本题考查度数圆周⾓定理,掌握同弧所对的圆周⾓相等和直径所对的圆周⾓是直⾓是解题的关键.13.⼀次函数y=ax+5a(a≠0)与⼆次函数y=x2+2x﹣b(b≠0)交于x轴上⼀点,则当﹣2≤x≤3时⼆次函数y=x2+2x﹣b(b≠0)的最⼩值为﹣16 .【考点】⼆次函数的最值.【分析】根据⼀次函数求得交点坐标,代⼊⼆次函数y=x2+2x﹣b求得b的值,求得⼆次函数的对称轴,根据对称轴在﹣2≤x≤3内,即可求得⼆次函数的最⼩值.【解答】解:∵⼀次函数y=ax+5a(a≠0)与⼆次函数y=x2+2x﹣b(b≠0)交于x轴上⼀点,∴把y=0,代⼊得,0=ax+5a,解得x=﹣5,∴交点为(﹣5,0),代⼊y=x2+2x﹣b得,0=25﹣10﹣b,解得b=15,∴⼆次函数为y=x2+2x﹣15,∵⼆次函数y=x2+2x﹣15对称轴为y=﹣=﹣1,∴当﹣2≤x≤3时,x=﹣1,⼆次函数有最⼩值为1﹣2﹣15=﹣16.故答案为﹣16.【点评】本题考查了待定系数法求⼆函数的解析式以及⼆次函数对称轴的求解,考查了⼆次函数的最值问题,本题中求得⼆次函数的对称轴是解题的关键.14.如图,在△ABC中,∠BAC=90°,AB=AC=10.现将⼀个⾜够⼤的透明的三⾓板的直⾓顶点放在BC的中点D处,将三⾓板绕点D旋转,三⾓板的两边与△ABC的边AB、AC分别交于点E、F,下列结论:①旋转过程中,DE可能与EF相等;②旋转过程中,△DEF是等腰三⾓形;③旋转过程中,四边形AEDF的⾯积是⼀定值,且⾯积为25;④E、F分别在AB、CA延长线上时,且BE=2,四边形AFED的⾯积为40.其中,正确的有:②③(直接填序号)【考点】旋转的性质;全等三⾓形的判定与性质;等腰直⾓三⾓形.【分析】如图1,根据等腰直⾓三⾓形的性质得∠ABC=∠C=45°,AD=BD=CD,AD⊥BC,∠1=45°,再利⽤等⾓的余⾓相等得∠2=∠4,则可证明△ADE≌△CFD,得到DE=DF,于是可判断△DEF为等腰直⾓三⾓形,则对②进⾏判断,根据等腰直⾓三⾓形EF=DE,则可对①进⾏判断;由于△ADE≌△CFD,则S△ADE=S△CFD,所以四边形AEDF的⾯积=S△ADC=S△ABC=25,则可对③进⾏判断;如图2,作DH⊥AC于H,根据等腰直⾓三⾓形的性质得DH=AH=CH=5,同理可证得△ADE≌△CFD,则AE=CF,所以AF=BE=2,DE=DF,同样得到△DEF为等腰直⾓三⾓形,在Rt△DHF中利⽤勾股定理计算出DF2=74,则S△DEF=DF2=37,⽽S△ADF=5,所以四边形AFED的⾯积=42,则可对④进⾏判断.【解答】解:如图1,∵∠BAC=90°,AB=AC=10,∴∠ABC=∠C=45°,∵点D为BC的中点,∴AD=BD=CD,AD⊥BC,∠1=45°,∵∠EDF=90°,即∠2+∠3=90°,⽽∠4+∠3=90°,。

【附5套中考模拟试卷】安徽省合肥市2019-2020学年中考数学一模考试卷含解析

【附5套中考模拟试卷】安徽省合肥市2019-2020学年中考数学一模考试卷含解析
45≤x≤49
50≤x≤54
55≤x≤59
人数
(说明:每分钟仰卧起坐个数达到49个及以上时在中考体育测试中可以得到满分)
(2)分析数据:样本数据的平均数、中位满分率
46.8
47.5
45%
得出结论:①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为;
(2)甲、乙分别投放了一袋垃圾,求恰好是同一类型垃圾的概率.
收集数据:抽取20名女生的1分钟仰卧起坐测试成绩(个)如下:
38 46 42 52 55 43 59 46 25 38
35 45 51 48 57 49 47 53 58 49
(1)整理、描述数据:请你按如下分组整理、描述样本数据,把下列表格补充完整:
范围
25≤x≤29
30≤x≤34
35≤x≤39
40≤x≤44
A. B. C. D.
8.函数y=ax2与y=﹣ax+b的图象可能是( )
A. B.
C. D.
9.平面直角坐标系中的点P(2﹣m, m)在第一象限,则m的取值范围在数轴上可表示为()
A. B.
C. D.
10.3的倒数是()
A. B. C. D.
11.在同一直角坐标系中,二次函数y=x2与反比例函数y= (x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为( )
②该中心所在区县的九年级女生的1分钟“仰卧起坐”总体测试成绩如下:
平均数
中位数
满分率
45.3
49
51.2%
请你结合该校样本测试成绩和该区县总体测试成绩,为该校九年级女生的1分钟“仰卧起坐”达标情况做一下评估,并提出相应建议.

【精选3份合集】安徽省合肥市2020年中考一模数学试卷有答案含解析

【精选3份合集】安徽省合肥市2020年中考一模数学试卷有答案含解析

中考数学模拟试卷(解析版)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题1.如图所示,在平面直角坐标系中,抛物线y=-x2+23x的顶点为A点,且与x轴的正半轴交于点B,P点为该抛物线对称轴上一点,则OP+12AP的最小值为().A.3 B.23C.3221+D.323+解析:A【解析】【分析】连接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+23x=0得到点B,再利用配方法得到点A,得到OA的长度,判断△AOB为等边三角形,然后利用∠OAP=30°得到PH= 12AP,利用抛物线的性质得到PO=PB,再根据两点之间线段最短求解.【详解】连接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如图当y=0时-x2+23x=0,得x1=0,x2=23,所以B (23,0),由于y=-x2+23x=-(x-3)2+3,所以A(3,3),所以AB=AO=23,AO=AB=OB,所以三角形AOB为等边三角形,∠OAP=30°得到PH= 12AP,因为AP垂直平分OB,所以PO=PB,所以OP+1 2AP=PB+PH,所以当H,P,B共线时,PB+PH最短,而BC=32AB=3,所以最小值为3.故选A.【点睛】本题考查的是二次函数的综合运用,熟练掌握二次函数的性质和最短途径的解决方法是解题的关键. 2.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )A.2 B.3 C.5 D.7解析:C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1.故选C.考点:众数;中位数.39()A.±3B.3 C.9 D.81解析:C【解析】939 3故选C.4.如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G,下列结论:①AC 垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE=12S△CEF,其中正确的是()A .①③B .②④C .①③④D .②③④解析:C【解析】【分析】 ①通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF ,由正方形的性质就可以得出EC=FC ,就可以得出AC 垂直平分EF ,②设BC=a ,CE=y ,由勾股定理就可以得出EF 与x 、y 的关系,表示出BE 与EF ,即可判断BE+DF 与EF 关系不确定;③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF 为等边三角形,④当∠EAF=60°时,设EC=x ,BE=y ,由勾股定理就可以得出x 与y 的关系,表示出BE 与EF ,利用三角形的面积公式分别表示出S △CEF 和S △ABE ,再通过比较大小就可以得出结论.【详解】①四边形ABCD 是正方形,∴AB═AD,∠B=∠D=90°.在Rt△ABE 和Rt△ADF 中,AE AF AB AD =⎧⎨=⎩, ∴Rt△ABE≌Rt△ADF(HL ),∴BE=DF∵BC=CD,∴BC -BE=CD-DF ,即CE=CF ,∵AE=AF,∴AC 垂直平分EF .(故①正确).②设BC=a ,CE=y ,∴BE+DF=2(a-y ) 2y ,∴BE+DF 与EF 关系不确定,只有当y=(2−2)a 时成立,(故②错误).③当∠DAF=15°时,∵Rt△ABE≌Rt△ADF,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF为等边三角形.(故③正确).④当∠EAF=60°时,设EC=x,BE=y,由勾股定理就可以得出:(x+y)2+y2=(2x)2∴x2=2y(x+y)∵S△CEF=12x2,S△ABE=12y(x+y),∴S△ABE=12S△CEF.(故④正确).综上所述,正确的有①③④,故选C.【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.5.下列各式中的变形,错误的是(()A.B.C.D.解析:D【解析】【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案.【详解】A、,故A正确;B、分子、分母同时乘以﹣1,分式的值不发生变化,故B正确;C、分子、分母同时乘以3,分式的值不发生变化,故C正确;D、≠,故D错误;故选:D.【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变.6.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A .平均数B .中位数C .众数D .方差解析:D【解析】【详解】 解:A .原来数据的平均数是2,添加数字2后平均数仍为2,故A 与要求不符;B .原来数据的中位数是2,添加数字2后中位数仍为2,故B 与要求不符;C .原来数据的众数是2,添加数字2后众数仍为2,故C 与要求不符;D .原来数据的方差=222(12)2(22)(32)4-+⨯-+-=12,添加数字2后的方差=222(12)3(22)(32)5-+⨯-+-=25,故方差发生了变化.故选D .7.-2的倒数是( )A .-2B .12- C .12D .2 解析:B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-12故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握8.方程x 2﹣3x =0的根是( )A .x =0B .x =3C .10x =,23x =- D .10x =,23x = 解析:D【解析】【分析】先将方程左边提公因式x ,解方程即可得答案.【详解】x 2﹣3x =0,。

2020年安徽省中考数学一模试卷(有答案解析)

2020年安徽省中考数学一模试卷(有答案解析)

2020年安徽省中考数学一模试卷一、选择题(本大题共9小题,共36.0分)1.下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.2.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,,b,按照从小到大的顺序排列A. B.C. D.3.2020年新冠状病毒全球感染人数约33万,科学记数法如何表示A. B. C. D.4.若是关于x的一元一次方程的解,则的值是A. B. C. 8 D. 45.如图,,A在DE上,C在GF上为等边三角形,其中,则度数为A. B. C. D.6.二次函数的图象如图所示,现有以下结论:;;;;其中正确的结论有A. 1个B. 2个C. 3个D. 4个7.某地区2007年投入教育经费2500万元,预计2009年投入3600万元.则这两年投入教育经费的年平均增长率为A. B. C. D.8.如图,中,BD是的平分线,交BC于E,,,则AB长为A. 6B. 8C.D.9.如图,在等腰中,,,点P从点B出发,以的速度沿BC方向运动到点C停止,同时点Q从点B出发,以的速度沿方向运动到点C停止,若的面积为,运动时间为,则下列最能反映y与x之间函数关系的图象是A. B.C. D.二、填空题(本大题共5小题,共24.0分)10.如图,在锐角中,,,,将绕点B按逆时针方向旋转,得到点E为线段AB中点,点P是线段AC上的动点,在绕点B按逆时针方向旋转过程中,点P的对应点是点,线段长度的最小值是______.11.把多项式分解因式的结果是______.12.不等式组的所有整数解的积为______.13.设抛物线l:的顶点为D,与y轴的交点是C,我们称以C为顶点,且过点D的抛物线为抛物线l的“伴随抛物线”,请写出抛物线的伴随抛物线的解析式______.14.如图,在等腰中,,,点D在底边BC 上,且,将沿着AD所在直线翻折,使得点C落到点E处,联结BE,那么BE的长为______.三、解答题(本大题共9小题,共90.0分)15.计算:16.九章算术是我国古代第一部数学专著,此专著中有这样一道题:今有共买鹅,人出九,盈十一;人出六,不足十六,问人数、鹅价几何?这道题的意思是:今有若干人共买一只鹅,若每人出9文钱,则多出11文钱;若每人出6文钱,则相差16文钱,求买鹅的人数和这只鹅的价格.17.如图,已知平面直角坐标内有三点,分别为,,.请画出关于原点O对称的;直接写出把绕点O顺时针旋转后,点C旋转后对应点的坐标.18.用同样大小的两种不同颜色的正方形纸片,按下图方式拼正方形.第个图形中有1个正方形;第个图形有个小正方形;第个图形有个小正方形;第个图形有小正方形;根据上面的发现我们可以猜想:______用含n的代数式表示;请根据你的发现计算:;.19.如图,在同一平面内,两条平行高速公路和间有一条“Z”型道路连通,其中AB段与高速公路成角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离结果保留根号.20.如图,AC是的直径,AB与相切于点A,四边形ABCD是平行四边形,BC交于点E.证明直线CD与相切;若的半径为5cm,弦CE的长为8cm,求AB的长.21.如图,在中,BD是AC边上的高,点E在边AB上,联结CE交BD于点O,且,AF是的平分线,交BC于点F,交DE于点G.求证:;.22.受西南地区旱情影响,某山区学校学生缺少饮用水.我市中小学生决定捐出自己的零花钱,购买300吨矿泉水送往灾区学校.运输公司听说此事后,决定免费将这批矿泉水送往灾区学校.公司现有大、中、小三种型号货车.各种型号货车载重量和运费如表所示.大中小载重吨台201512运费元辆150012001000司机及领队往返途中的生活费单位:元与货车台数单位:台的关系如图所示.为此,公司支付领队和司机的生活费共8200元.求出y与x之间的函数关系式及公司派出货车的台数;设大型货车m台,中型货车n台,小型货车p台,且三种货车总载重量恰好为300吨.设总运费为元,求W与小型货车台数P之间的函数关系式.不写自变量取值范围;若本次派出的货车每种型号不少于3台且各车均满载.求出大、中、小型货车各多少台时总运费最少及最少运费?由于油价上涨,大、中、小三种型号货车的运费分别增加500元辆、300元辆、a元辆,公司又将如何安排,才能使总运费最少?23.如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD 的垂线,两垂线交于点G,连接AG、BG、CG、DG,且.求证:;求证:∽;如图2,若AD、BC所在直线互相垂直,求的值。

合肥市2020版中考数学一模试卷(II)卷

合肥市2020版中考数学一模试卷(II)卷

合肥市2020版中考数学一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)若反比例函数的图像上有两个点A(-1, ),B()那么大小关系是()A .B .C .D . 无法确定2. (2分) (2016九上·萧山期中) 由二次函数y=2(x﹣3)2+1,可知()A . 其图像的开口向下B . 其图像的对称轴为直线x=﹣3C . 其最小值为1D . 当x<3时,y随x的增大而增大3. (2分)如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OB,OC.若∠BAC与∠BOC互补,则弦BC的长为()A . 4B . 3C . 2D .4. (2分)(2017·吉林模拟) 如图所示的几何体的俯视图是()A .B .C .D .5. (2分)我国古代把一昼夜划分成十二个时段,每一个时段叫一个时辰,古时与今时的对应关系(部分)如下表所示.天文兴趣小组的小明等4位同学从今夜23:00至明晨7:00将进行接力观测,每人两小时,观测的先后顺序随机抽签确定,小明在子时观测的概率为()古时子时丑时寅时卯时今时23:00~1:001:00~3:003:00~5:005:00~7:00A .B .C .D .6. (2分) (2017九上·淅川期中) 在坡度为1:1.5的山坡上植树,要求相邻两树间的水平距离为6m,则斜坡上相邻两树间的坡面距离为()A . 4mB . mC . 3mD . m7. (2分)二次函数y=ax2+bx+c的图象如图所示,则函数值y<0时x的取值范围是()A . x<-1B . x>3C . -1<x<3D . x<-1或x>38. (2分) (2017九下·杭州期中) 如图,在平面直角坐标系中,点A(1,),点B(2,0),P为线段OB上一点,过点P作PQ∥OA,交AB于点Q,连接AP,则△APQ面积最大值为()A .B .C .D .9. (2分)如图,在中,,,以点为中心,把逆时针旋转,得到,则图中阴影部分的面积为()A . 2B .C . 4D .10. (2分)如图,抛物线y=ax2+bx+c(a≠0)经过点(-1,0),对称轴为:直线x=1,则下列结论中正确的是()A . a>0B . 当x>1时,y随x的增大而增大C . c<0D . x=3是一元二次方程ax2+bx+c=0(a≠0)的一个根二、填空题 (共4题;共5分)11. (1分)函数y=(x﹣1)2+3的最小值为________.12. (1分)如图,,,,是上的四个点,,则 ________度.13. (1分)在等腰三角形ABC中,∠C=90°,BC=2cm.如果以AC的中点O为旋转中心,将这个三角形旋转180°,点B落在点B′处,那么点B′与点B的原来位置相距________cm.14. (2分) (2019九上·靖远月考) 若菱形的对角线长分别是6cm、8cm,则其周长是________,面积是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年安徽省合肥市包河区九年级数学一模试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 的相反数是()
A.B.2
C.D.
2. 化简(-a)3·a4的结果是( )
A.a12B.a7C.-a12D.-a7
3. 刚刚过去的一年,我省经济发展良好,GDP总量超过37000亿元,位居全国内地各省排名第10,数据37000亿用科学记数法表示为( )
A.3.7×1012B.3.7×1010C.3.7×108D.3.7×104
4. 如图是一个空心圆柱体,它的主视图是( )
A.B.C.D.
5. 一元二次方程x2+2x=0的解是( )
A.x=0 B.x=-2 C.x1=2 x2=0 D.x1=-2 x2=0
6. 如图,直线AB//CD,直线EF交AB于点E,交CD于点F,EP平分∠AEF,FP 平分∠CFE,∠BEP=α,∠DFP=β,则a+β=( )
A.180°B.225°C.270°D.315°
7. 某班50人一周内在线学习数学的时间如图所示,则以下叙述正确的是( )
A.全班同学在线学习数学的平均时间为2.5h B.全班同学在线学习数学时间的中位数是2h
C.全班同学在线学习数学时间的众数是20h D.全班超过半数学生每周在线学习数学的时间超过3h
8. 如图,△ABC中,∠ACB=90°,AB=12,点D,E分别是边AB,BC的中点,CD与AE交于点O,则OD的长是( )
A.1.5 B.1.8 C.2 D.2.4
9. 已知正比例函数y=2x与反比函数y= (k≠0)的图象交于A、B两点,AB =2,则k的值是( )
A.2 B.1 C.4 D.
10. 在四边形ABCD中,AB//DC,∠A=60°,AD=DC=BC=4,点E沿
A→D→C→B运动,同时点F沿A→B→C运动,运动速度均为每秒1个单位,当两点相遇时,运动停止.则△A EF的面积y与运动时间x秒之间的图象大致为( )
A.B.C.D.
二、填空题
11. 函数中,自变量x的取值范围是_____.
12. 如果y=x2-3,y=-x2+3,那么x4-y2=_____.
13. 如图,等边△ABC中,CD为AB边上的高,⊙E边AC、BC相切,当AB=4,ED=1时,⊙E半径是_____.
14. 已知实数a、b、c满足(a-b)2=ab=c,有下列结论:①当c≠0时,
=3;②当c=5时,a+b=5:③当a、b、c中有两个相等时,c=0;④二次函数y=x2+bx-c与一次函数y=ax+1的图象有2个交点.其中正确的有
_______
三、解答题
15. 计算:×(2-)0-()-1
16. 防控新冠肺炎疫情期问,某药店在市场抗病毒药品紧缺的情况下,将某药品提价后,使价格翻一番(即为原价的2倍),物价部门查处后,其价格降到比原价高10%,己知该商品原价为m元.求该药品降价的百分比是多少?
17. 观察以下等式:
第1个等式:;第2个等式:;
第3个等式:;第4个等式:;…
按照以上规律,解决下列问题:
(1)写出第5个等式:_______________
(2)写出你猜想的第n个等式:________________________(用含n的等式表示),并证明.
18. 如图,在边长为1的小正方形组成的网格中,给出了格点△ABC(顶点为网格线的交点).
(1)将△ABC先向下平移3个单位长度,再向右平移4个单位长度后得到
△A
1B
1
C
1
.画出平移后的图形;
(2)将△ABC绕点A
1顺时针旋转90°后得到△A
2
B
2
C
2
.画出旋转后的图形;
(3)借助网格,利用无刻度直尺画出△A
1B
1
C
1
的中线A
1
D
1
(画图中要体现找关键点
的方法).
19. 如图,无人机在600米高空的P点,测得地面A点和建筑物BC的顶端B的俯角分别为60°和70°,已知A点和建筑物BC的底端C的距离为286米,求建筑物BC的高.(结果保留整数,参考数据:≈1.73,sin70°≈0.94,
cos70°≈0.34,tan70°≈2.75)
20. 如图,四边形ABCD中,AB∥CD,点O在BD上,以O为圆心的圆恰好经过
A、B、C三点,⊙O交BD于E,交AD于F ,且,连接OA、OF.
(1)求证:四边形ABCD是菱形;
(2)若∠AOF=3∠FOE,求∠ABC 的度数.
21. 研究机构对本地区18-20岁的大学生就某个问题做随机调查,要求被调查者从A、B、C、D四个选项中选择自己赞同的一项,并将结果绘制成两幅不完整
大学生就某个问题调查结果统计表大学生就某个问题调查结果扇形统计图选项人数
A a
B b
C 4
D 20
合计m
请结合图中信息解答以下问题:
(1)m=_____,b=_____.
(2)若该地区18~20岁的大学生有1.2万人,请估计这些大学生中选择赞同A选项的人数:
(3)该研究机构决定从选择“C”的人中随机抽取2名进行访谈,而选择“C”的这4人中只有一名男性,求这名男性刚好被抽取到的概率.
22. 经销商购进某种商品,当购进量在20千克~50千克之间(含20千克和50千克)时,每千克进价是5元;当购进量超过50千克时,每千克进价是4元.此种商品的日销售量y(千克)受销售价x(元/千克)的影响较大,该经销商
x(元/千克) 5 5.5 6 6.5 7
y(千克) 90 75 60 45 30
解答下列问题:
(1)求出y关于x的一次函数表达式:
(2)若每天购进的商品能够全部销售完,且当日销售价不变,日销售利润为w 元,那么销售价定为多少时,该经销商销售此种商品的当日利润最大?最大利润为多少元?此时购进量应为多少千克?(注:当日利润=(销售价-进货价)×日销售量).
23. 已知:如图1,△ABC中,AB=AC,BC=6,BE为中线,点D为BC边上一点;BD=2CD,DF⊥BE于点F,EH⊥BC于点H.
(1)CH的长为_____;
(2)求BF·BE的值:
(3)如图2,连接FC,求证:∠EFC=
∠ABC.。

相关文档
最新文档