锂电池的设计与研发介绍55页PPT

合集下载

锂离子电池 ppt课件

锂离子电池  ppt课件
类别 钴酸锂 锰酸锂 安全 比容量 循环寿 电压 材料 性能 mAh/ 命/次 平台 成本 g 差 较好 较好 很好 145 105 160 150 >500 > 500 >800 > 1500 目前,磷酸铁锂材料最适合制作大型动力电池,已成为世界各国竞相研究 和开发的重要方向。
ppt课件 7
所占成 本比重 40% 25%
ppt课件 5
正极材料的要求
1. 具有较高的氧化还原电位,使
电池输出电压高 2. 可利用活性物质高,容量高 3. 充放电过程中,结构稳定 4. 氧化还原电位变化小 5. 化学稳定性好,与电解质反应 小 6. 较高的电子和离子导电率,大 电流充放电性能好 7. 价格便宜,对环境无污染
ppt课件 6
几种正极材料应用优劣势比较
ppt课件 19

聚合物锂离子电池
(1)固体聚合物电解质锂离子电池
(2)凝胶聚合物电解质锂离子电池 (3)聚合物正极材料的锂离子电池
由于用固体电解质代替了液体电解质 , 与液态锂离子电池 相比,聚合物锂离子电池具有可薄形化、任意面积化与任 意形状化等优点,也不会产生漏液与燃烧爆炸等安全上的 问题,因此可以用铝塑复合薄膜制造电池外壳,从而可以 提高整个电池的比容量;聚合物锂离子电池还可以采用高 分子作正极材料,其质量比能量将会比目前的液态锂离子 电池提高50%以上。
1.
ppt课件 9
常见负极材料
电极电动势
比容量
ppt课件
10
金属锂负极
由于锂在溶解沉积的过程中生成枝晶,导致电极的 表面积不断增大,新增加的表面由于生成 SEI 膜导 致与集体的接触不良,因此锂的溶解沉积效率较低。
充电前
ppt课件
充电后
11

锂电池的设计与研发介绍课件

锂电池的设计与研发介绍课件

优化电池管理系统
设计高效的电池管理系统,对电 池进行实时监控和调节,确保电 池的安全和长寿命使用。
环境适应性设计
耐高温和低温性能
提高电池在高温和低温环境下的适应性,确保电 池在不同温度下的正常工作。
抗振动和冲击能力
增强电池的抗振动和冲击能力,以确保在复杂环 境下电池的稳定性和安全性。
环保要求
选择无毒或低毒性的材料,减少电池在使用和废 弃过程中对环境的影响。
VS
随着技术的不断进步和应用领域的不 断拓展,锂电池的应用前景将更加广 泛。
市场前景与发展趋势
随着电动汽车和储能市场的不断扩大,锂电池市 场前景广阔。
未来,随着技术的不断进步和成本的降低,锂电 池的应用领域将进一步拓展,市场潜力巨大。
同时,随着环保意识的不断提高,锂电池作为一 种环保能源,将更加受到重视和支持。
电解液的制备
溶剂的选择
01
常用的溶剂包括碳酸乙烯酯、碳酸丙烯酯、碳酸二乙酯等,选
择合适的溶剂对电解液的电导率和稳定性至关重要。
锂盐的选择
02
常用的锂盐包括LiPF6、LiBF4等,选择合适的锂盐能够提高电
解液的电导率、稳定性以及安全性。
纯化与除水
03
电解液中应去除杂质和水分,以提高电解液的电化学性能和稳
隔离和密封
确保电池内部组件的隔离 和密封,防止电解液泄漏 和外部环境对电池内部结 构的干扰。
热管理
设计有效的散热系统,确 保电池在工作过程中产生 的热量能够及时散发,防 止电池过热。
能量密度设计
选择高能量密度的电极材料
采用高能量密度的电极材料,如锂钴氧化物、锂镍锰氧化物等, 以提高电池的能量密度。
负极材料的性能决定了锂电池的首次 效率、循环寿命和安全性。

《锂离子电池》课件

《锂离子电池》课件

安全性能与环境影响
安全性能
锂离子电池的安全性能是其应用领域的重要考量因素。由于锂离子电池内部存在 可燃物质,不当使用或过充过放可能导致电池起火或爆炸。因此,提高锂离子电 池的安全性能是技术发展的重要方向。
环境影响
锂离子电池在使用和处理过程中可能对环境产生一定影响。主要包括废旧电池处 理问题、电解液泄漏和重金属元素释放等。因此,发展环保型的锂离子电池技术 也是当前的重要研究方向。
能量密度与功率密度
能量密度
锂离子电池的能量密度是指单位体积或质量所存储的电能,是衡量电池储能能 力的重要指标。提高能量密度是锂离子电池技术发展的重要方向。
功率密度
锂离子电池的功率密度是指单位体积或质量所输出的电能,是衡量电池快速充 放电能力的重要指标。提高功率密度有助于提升电动汽车等设备的加速性能和 响应速度。
为锂离子电池产业提供更广阔的发展空间。
06
锂离子电池的挑战与解决 方案
锂离子电池的安全问题与解决方案
总结词
锂离子电池的安全问题是当前面临的重要挑 战,包括过热、过充、短路等情况下的安全 隐患。
详细描述
为了解决锂离子电池的安全问题,需要采取 一系列措施,如改进电池设计、提高电池管 理系统智能化水平、加强生产工艺控制等。 此外,研发新型安全材料也是重要的研究方
工作原理
锂离子电池通过锂离子在正负极之间的迁移实现电能的储存和释放。充电时,锂离子从正极脱出,通过电解液和 隔膜迁移到负极并嵌入;放电时,锂离子从负极脱出,通过电解液和隔膜迁移到正极并嵌入,同时电子通过外电 路传递形成电流。
锂离子电池的种类
01
02
03
根据正极材料
钴酸锂、磷酸铁锂、三元 材料等。
根据用途

《锂离子电池介绍》课件

《锂离子电池介绍》课件

02
锂离子电池的组成
正极材料
01
02
03
04
作用
正极材料是锂离子电池的重要 组成部分,主要负责存储和释
放能量。
常见种类
包括三元材料、钴酸锂、磷酸 铁锂等。
特点
具有较高的能量密度、循环寿 命长、自放电率低等特点。
应用
广泛应用于电动汽车、混合动 力汽车、手机、笔记本电脑等
领域。
负极材料
作用
负极材料是锂离子电池 的另一个重要组成部分 ,主要负责存储锂离子
VS
详细描述
电池组装通常在洁净的环境中进行,以确 保产品质量。组装过程包括将正负极片叠 放在一起,中间夹上隔膜,然后注入电解 液。最后,通过封装形成完整的电池。电 池的封装形式有多种,如圆柱形、扁平型 和棱柱形等。
电池测试
总结词
电池测试是确保电池性能和质量的重要环节 ,包括电性能测试、安全性能测试和循环寿 命测试等。
电极制备
总结词
电极制备是将正负极材料涂布在金属箔上,形成集流体和活 性物质的结构。
详细描述
电极制备过程中,首先将正负极材料与粘结剂混合,制成浆 料。然后,将浆料涂布在金属箔上,经过干燥和碾压,形成 电极片。电极片的质量直接影响电池的电化学性能和生产成 本。
电池组装
总结词
电池组装是将正负极片、隔膜和电解液 等组件组装在一起,形成完整的电池结 构。
回收与环保问题
总结词
锂离子电池回收和环保问题亟待解决
详细描述
锂离子电池中含有有毒有害物质,如钴、镍 等重金属和有机溶剂等。这些物质对环境和 人体健康造成潜在威胁。同时,锂离子电池 回收技术尚不成熟,回收率较低,也给环保
带来压力。

锂电池的设计与研发培训教材(PPT 55张)

锂电池的设计与研发培训教材(PPT 55张)

负极材料 : 1 比容量高 2 比表面积小 振实高
3 结构稳定
4 可逆容量高 5 电位高 6 化学稳定性好, 7 环保 8 便宜
电解液
1 良好的化学稳定性与电池的正负极活性物质和集流体不发生化学
2 比较宽的电化学稳定窗口(电压)
3 较高的离子电导率,较低的电子电导率;
4 具有良好的成膜特性,在炭负极材料表面形成致密稳定的钝化膜
6尺寸要求
现在各类普通电子产品都趋向轻而薄的观念,比如:手机 MP3-MP4也是薄而轻,蓝牙耳机更是小。所以在电池的设 更要求我们开发一些克比容量高,压实高的新材料,来满 品的需要。
长循环 7循环性能 8 BMS(电源管理系统)的合理选用
作为锂电池,我们在使用时,必须选用合理的BMS来对电池 的保持,如:过充 过放,过流 短路 均衡 过温。好的BMS能 用寿命得以正常发挥。 9 成本
除了以上的考虑因素之外,成本也是在设计时重点为考虑的 系到设计出来的产品,客户所能接受的价格是否有利可赚! 低的成本,做出满足客户要求的产品。
除了利润 ,一切都 是假 的!!
常见锂电池的使用参数:
常见电池设计时不同的要求

现对常识、参数、材料以及设计思路都有了一定的了解,下一
际的尺寸工艺设计
尺寸设计
电池功能特点
一 比容量高 二 电压高
酸 镉 镍 锂 35 41 50-80 120-160 140-180 Wh/kg
三 体积小 重量轻(24V相当于市面上铅酸电池的1/7重量,36V电池重量仅3KG, 相当于市面上铅酸电
四 长循环
五 自放电小 六 无记忆效应
七 无污染 环保
铝镍带
1 过流密度大 2 不易氧化 3 与电池内部物质不发生化学反应

锂电池概述说明ppt课件

锂电池概述说明ppt课件

组内,除了锂电池芯外,都会有一片保护板,这片保护板主要就是提供这三
项保护。但是,保护板的这三 项保护显然是不够的,全球锂电池爆炸事件还
是频传。要确保电池系统的安全性,必须对电池爆炸的原因, 进行更仔细的
分析
.
• 二、爆炸的原因分析 • 1、内部极化较大 • 2、极片吸水,与电解液发生反应气鼓 • 3、电解液本身的质量,性能问题 • 4、注液时候注液量达不到工艺要求 • 5、装配制程中激光焊焊接密封性能差,漏气,测漏气时漏测 • 6、粉尘,极片粉尘首先易导致微短路 • 7、正负极片较工艺范围偏厚,入壳难 • 8、注液封口问题,钢珠密封性能不好导致气鼓 • 9、壳体来料存在壳壁偏厚,壳体变形影响厚度.
和安全性。最理想的充电电压上限为 4.2V。 锂电芯放电时也要有电压下限。
当电芯电压低于 2.4V 时, 部分材料会开始被破坏。 又由于电池会自放电,
放愈久电压会愈低,因此,放电时最好不要放到 2.4V 才停止。锂电池从
3.0V 放电到 2.4V 这段期间,所释放 的能量只占电池容量的 3%左右。因此,
• 锂离子电池的这种原理,使得 人们在获得它高容量密度的同时, 也达到安全的目的。 锂离子电池充电时,正极的锂原子会丧失 电子,氧化为锂离子。锂离子经由电解液游到负极去,进入负 极的储存格,并获得一个电子,还原为锂原子。放电时,整个程 序倒过来。为了防止电池的正负极直接碰触 而短路,电池内会 再加上一种拥有众多细孔的隔膜纸,来防止短路。好的隔膜纸还 可以在电池温度过高时, 自动关闭细孔,让锂离子无法穿越, 以自废武功,防止危险发生。 .
• 随着数码产品如手机、笔记本电脑等产品的广泛使用,锂离子电池以优异的性 能在这类产品中得到广泛应用,并在近年逐步向其他产品应用领域发展。 1998年,天津电源研究所开始商业化生产锂离子电池。习惯上,人们把锂离 子电池也称为锂电池,但这两种电池是不一样的。现在锂离子电池已经成为了 主流。

《锂离子电池》课件

《锂离子电池》课件

隔膜
隔膜
要求
位于正负极之间,起到隔离正负极并允许 锂离子通过的作用。
隔膜需具有足够的机械强度、化学稳定性 好、孔径合适等特点。
功能
发展趋势
隔膜的性能对电池的安全性、内阻和循环 寿命具有重要影响。
开发新型隔膜材料以提高电池性能和安全 性是未来的研究方向。
03
锂离子电池的充放电性 能
充放电曲线
充放电曲线
容量与能量密度的影响因素
分析影响锂离子电池容量和能量密度的因素,如电极材料 、电解质等。
04
锂离子电池的安全性能 与维护
锂离子电池的安全问题
过充
当电池充电过度时,正极材料会 释放出氧气,通过电解液与负极 发生反应,导致电池内部温度和 压力升高,可能引发燃烧或爆炸

过放
过度放电会导致负极过渡金属锂 形成锂枝晶,刺穿隔膜,造成电 池短路,可能引发燃烧或爆炸。
温度过高
在高温环境下,锂离子电池内部 的化学反应速率会增加,可能导 致电池内部温度升高,引发燃烧
或爆炸。
锂离子电池的安全防护措施
01
02
03
安装保护电路
保护电路可以防止电池过 充和过放,避免电池内部 温度和压力升高。
使用安全材料
选用安全系数高的正负极 材料、电解液和隔膜等材 料,提高电池的安全性能 。
控制使用温度
避免在高温环境下使用锂 离子电池,可以降低电池 内部温度升高的风险。
锂离子电池的保养与维护
定期检查
定期检查电池的外观、电 压和电流等参数,及时发 现和处理问题。
控制充电次数
避免频繁充电和放电,按 照厂家推荐的充电次数进 行充电。
储存环境
锂离子电池应存放在干燥 、阴凉、通风良好的地方 ,避免阳光直射和高温环 境。

锂离子电池介绍.ppt

锂离子电池介绍.ppt

1 锂离子二次电池的概况
锂离子电池的种类
电解质
壳体/包装
隔膜
集流体
液态锂离子电池 液态
不锈钢、铝
聚合物锂离子电 池
胶体聚合物
铝/PP复合膜
25μPE
没有隔膜或个 μPE
铜箔(负极) 和铝箔(正
极)
铜箔(负极) 和铝箔(正
极)
1 锂离子二次电池的概况
锂离子电池的种类
由于聚合物锂离子电池使用了胶体电解质不会象液体电 液泄露,所以装配很容易,使得整体电池很轻、很薄。也不 会产生漏液与燃烧爆炸等安全上的问题,因此可以用铝塑复 合薄膜制造电池外壳,从而可以提高整个电池的比容量;聚 合物锂离子电池还可以采用高分子作正极材料,其质量比能 量将会比目前的液态锂离子电池提高50%以上。此外,聚合 物锂离子电池在工作电压、充放电循环寿命等方面都比液态 锂离子电池有所提高。基于以上优点,聚合物锂离子电池被 誉为下一代锂离子电池。
1 锂离子二次电池的概况
锂离子电池的种类 按形状分类:圆柱形、方形和扣式(或钱币形);
按正极材料分类:氧化钴锂型、氧化镍锂型和氧化锰锂型
2 锂离子电池的原理和特性
锂离子电池的工作原理
2 锂离子电池的原理和特性
锂离子电池的工作原理
2 锂离子电池的原理和特性
锂离子电池的工作原理
2 锂离子电池的原理和特性
2 锂离子电池的原理和特性
锂离子电池的充电原理
锂离子电池的充电过程分:
预充电阶段; 恒流充电阶段-1C 恒压充电阶段。4.1V一4.2V
2 锂离子电池的原理和特性
锂离子电池的充电原理
预充电阶段 预充电阶段是在电池电 压低于3V时,电池不 能承受大电流的充电。 这时有必要以小电流对 电池进行浮充。

锂离子电池ppt

锂离子电池ppt

Page 18
4.电解质
2015年,全球电解液整体产量为11.1万吨,同比增长34.3%;中国电 解液产量为6.9万吨,同比增长52.7%;从增长速度来看,中国电解液产 量的增长速度明显高于全球。
Page 19
电解液一般由高纯度的有机溶剂、电解质锂盐、必要的添加剂等原料 组成,在一定条件下,按一定比例配制而成的,其中电解质在电解液成 本中比重最大,也是电解液中技术壁垒最高的环节。
锂离子电池
纲要
1.介绍 2.正极材料
3.负极材料
4.电解质材料 5.隔膜材料
Page 2
1.介绍
锂离子电池结构组成
Page 3
工作原理
锂离子电池是一种以 Li+ 在正负极入 嵌和脱嵌来回循环的二次储能电池。 正极一般采用插锂化合物(右图以 LiCoO2为例),负极目前广泛使用石墨层 间锂化合物 LixC6 ,电解质主要是 LiPF6 、 LiClO4等有机溶剂,溶剂分为碳酸乙烯酯 EC 、碳酸丙烯酯 PC 、碳酸二甲酯 DMC 和氯 碳酸酯ClMC。 充电时, Li+ 从正极脱出,经过电解 质嵌入到负极,此过程中伴随电子从正极 沿外电路到达负极,保持正负极电荷平衡; 放电时, Li+ 从负极脱嵌,经电解质回归 正极,同时电子从外电路经负载返回,故 可以看做是一个可逆过程。所以一般要求 Li+ 在正负极来回入嵌、脱嵌过程中正负 极材料晶体结构不会发生明显变化,而只 引起材料层间距的变化。
单层 PE 25 21
单层 PE 25 26
离子阻抗/Ω cm2
2.23
2.55
1.36
1.85
2.66
2.56
孔隙率/% 熔化温度/℃

《锂离子电池介绍》课件

《锂离子电池介绍》课件
性能有重要影响。
发展趋势
寻找高比容量、高稳定 性、低成本的负极材料
是当前的研究重点。
电解液
作用
电解液在锂离子电池中起到传 输锂离子的作用,是电池内部
电荷转移的媒介。
种类
主要包括有机电解液和无机电 解液。
性能特点
电解液的离子电导率、电化学 稳定性、闪点等对电池的安全 性能和使用寿命有重要影响。
发展趋势
安全问题
锂离子电池在过充、过放、高温等条件下可能发生燃烧或爆炸,对使用者和环境造成威 胁。
解决方法
采用高安全性的材料,如阻燃电解质和高温稳定的正负极材料。同时,加强电池管理系 统,防止电池过充和过放,并实时监测电池温度和电压,确保电池在安全范围内工作。
锂离子电池的回收与再利用问题
回收与再利用问题
随着锂离子电池的大规模应用,废旧电池的处理和资源回收成为了一个重要的问题。
锂离子电池的种类
圆柱形锂离子电池
常见于电子产品,如手机、笔记本电 脑等。
方形锂离子电池
扣式锂离子电池
常用于小型电子设备,如手表、计算 器等。
适用于电动汽车、储能系统等领域。
锂离子电池的应用领域
01
02
03
电子产品
由于其高能量密度和较长 的使用寿命,锂离子电池 广泛应用于手机、笔记本 电脑等电子产品。
开发新型电解液体系以提高电 池性能和安全性是当前的研究
重点。
隔膜
作用
隔膜在锂离子电池中起到隔离正负极,防止 短路的作用,同时允许锂离子的通过。
性能特点
隔膜的孔径、孔隙率、透气性等对电池的充 放电性能和使用寿命有重要影响。
种类
主要包括聚烯烃隔膜和聚酯隔膜等。
发展趋势

锂离子电池背景介绍及研究进展.ppt

锂离子电池背景介绍及研究进展.ppt

3. Cathode performance
Fig. 2. Plateau voltage and capacity (see Fig. 1) for LiFePO4 [123,153–162] and LiCoO2 [163–167] with a charging voltage of 4.2V and discharge current of 1C.
• (3) substituting Li or Ti by other metal cations, such as Cr3+,
V5+, Mn4+, Fe3+, Al3+, Co3+, Ta5+, Cu2+;
Nb
No investigation was reported on the electrochemical characteristics of Nb-doped Li4Ti5O12 as an anode material.
The decrease in capacity with increasing discharge current is
generally smaller for LiCoO2 than for Li(Ni,Mn,Co)O2.
Fig. 8. Discharge capacity of LiFePO4 as a function of discharge rate.
0.1C.
The capacity of Li(Ni1/3Mn1/3Co1/3)O2 increases more than that of LiCoO2, suggesting that the kinetics of charge transfer and/or mass transport are slower in Li(Ni1/3Mn1/3Co1/3)O2 than in LiCoO2.

锂离子电池ppt课件.ppt

锂离子电池ppt课件.ppt
由于他所作出的卓越贡献,他于1971年被电化学会授予青年作家奖, 于2004年被授予电池研究奖,并且被推举为会员。
病原体侵 入机体 ,消弱 机体防 御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
锂离子电池的产生
20世纪80年代末,日本Sony公司 提出者
病原体侵 入机体 ,消弱 机体防 御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
锂离子电池:炭材料锂电池 后来,日本索尼公司发明了以炭材料为负极,以含锂的化合物作正
极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就 是锂离子电池。当对电池进行充电时,电池的正极上有锂离子生成, 生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构, 它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂 离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用 电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正 极的锂离子越多,放电容量越高。 目前所说的锂离子电池通常为锂二次电池。
电池的容量
电池的容量有额定容量和实际容量 之分。锂离子电池规定在常温、恒流 (1C)、恒压(4.2V)控制的充电条件下, 充电3h、再以0.2C放电至2.75V时,所 放出的电量为其额定容量。 电池的实际 容量是指电池在一定的放电条件下所放 出的实际电量,主要受放电倍率和温度 的影响(故严格来讲,电池容量应指明 充放电条件)。
1.1977年,首次发现并提出石墨嵌锂化合物 作为二次电池的电极材料。在此基础上,于 1980年首次提出“摇椅式电池”(Rocking Chair Batteries)概念,成功解决了锂负 极材料的安全性问题。

锂电池PPT

锂电池PPT

400-600
25%
镍氢电池
储氢 材料
KOH
NiOOH
环保
1.2
60-70
≥500
10%
液态锂离子电池与聚合物锂离子电池的异同:
◆相同点:正负极活性物质相同; 电池工作原理相同; 单体电池工作电压相同。 ◆不同点:液态锂离子电池的电解液是液态的有机电解液;聚合 物锂离子电池的电解质是将液态的有机电解液吸附在一种聚合物 基质上,所以被称为凝胶聚合物电解质。 ◆优缺点比较:液态锂离子电池的功率较聚合物锂离子电池大的 多,反映在电动自行车上,液态比聚合物有更强的爬坡能力;液 态锂离子电池的价格较聚合物锂离子电池便宜。聚合物锂离子电 池由于不存在游离的电解液,不存在漏液的情况。
正极反应: LiCoO2—— Li1-xCoO2 + xLi+ + xe负极反应: C + xLi+ + xe- —— CLix 电池总反应: LiCoO2 + C —— Li1-xCoO2 + CLix 放电时发生上述反应的逆反应。
锂电池工作原理
放电时锂离子不能完全移向正极,必须保留一部分锂离子在负极, 以保证下次充电时的锂离子畅通嵌入通道。否则,电池寿命就相当短。 为了保证碳层中放电后留有部分锂离子,就要严格限制放电终止最 低电压,也就是锂离子电池不能过放电。 例如 LiCoO2 ,其放电终止最低电压通常为3.0V/节,最低也不能低 于2.7V/节;同时,最高充电终止应为4.2V,不能过充,否则会因正极 LiCoO2中的Li离子拿走太多时,造成所谓的“晶型瘫塌”,而使电池表 现出寿命终结状态。 由此可见,锂离子充/放电控制精度要求相当高,既不能过充,也不 能过放。否则都将影响电池寿命,这是由锂离子电池工作机理所决定的 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档