数字图像处理点运算和直方图处理

合集下载

(完整word版)数字图像处理期末复习资料

(完整word版)数字图像处理期末复习资料

1图像的特点:1)直观形象2)易懂3)信息量大2 图像的分类:1)按灰度分类:二值图像,多灰度图像2)按色彩分类:单色图像,动态图像3)按运动分类:静态图像,动态图像4)按时空分布分类:二维图像,三维图像3 数字图像处理的主要内容:1)图像获取2)图像变换3)图像增强4)图像复原5)图像编码6)图像分析7)图像识别8)图像理解4数字图像处理方法:1)空域法2)变换域法5什么是数字图像的采样和量化?采样:将模拟图像在空间上连续的点按照一定的规则变换成离散点的操作。

量化:由于采样图像被分割成空间上离散的像素,但其灰度是连续的,还不能用计算机进行处理,所以要对采样后的图像进行量化,即将连续的像素灰度值转换成离散的整数值的过程。

6图像像素间的邻接、连接和连通的区别?邻接:两个像素是否邻接就看它是否接触,一个像素和在它邻域中的像素是邻接的。

邻接仅仅考虑了像素间的空间关系。

连接:对两个像素,要确定它们是否连接,要考虑两点:①空间上要邻接;②灰度值要满足某个特点的相似准则第二章1 试述图像采集系统的结构及其各部分的功能?2 连续图像随机过程可以用哪些数字特征来描述?概率密度,一阶矩或平均值,二阶矩或自相关函数,自协方差,方差3 为什么说只要满足采样定理,就可以有离散图像无失真的重建元连续图像?这是由图像的连续性决定的,由图像上某一点的值可以还原出该点的一个小邻域里的值,这个图像连续性越好,这个邻域就可以越大,抽样次数可以很少就可以无失真还原。

而抽样定理对应这个邻域最小的情况即抽样次数最多的情况,大概是每周期两个样本4与标量量化相比,向量量化有哪些优势?合理地利用样本间的相关性,减少量化误差提高压缩率,5 Matlab图像处理工具箱提供了哪几类类型的数字图像?它们之间能否转换?如果可以如何转换?二进制图像,索引图像,灰度图像,多帧图像,RGB图像,它们之间可以相互转换,转换函数(23页6 数字图像的空间分辨率和采样间隔有什么联系?采样间隔是决定图像分辨率的主要参数1 FFT的基本思想是什么??利用DFT系数的特性,合并DFT运算中的某些项,把长序列DFT变成短序列DFT,从而减少其运算量。

(完整版)数字图像处理MATLAB程序【完整版】

(完整版)数字图像处理MATLAB程序【完整版】

第一部分数字图像处理实验一图像的点运算实验1.1 直方图一.实验目的1.熟悉matlab图像处理工具箱及直方图函数的使用;2.理解和掌握直方图原理和方法;二.实验设备1.PC机一台;2.软件matlab。

三.程序设计在matlab环境中,程序首先读取图像,然后调用直方图函数,设置相关参数,再输出处理后的图像。

I=imread('cameraman.tif');%读取图像subplot(1,2,1),imshow(I) %输出图像title('原始图像') %在原始图像中加标题subplot(1,2,2),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题四.实验步骤1. 启动matlab双击桌面matlab图标启动matlab环境;2. 在matlab命令窗口中输入相应程序。

书写程序时,首先读取图像,一般调用matlab自带的图像,如:cameraman图像;再调用相应的直方图函数,设置参数;最后输出处理后的图像;3.浏览源程序并理解含义;4.运行,观察显示结果;5.结束运行,退出;五.实验结果观察图像matlab环境下的直方图分布。

(a)原始图像 (b)原始图像直方图六.实验报告要求1、给出实验原理过程及实现代码;2、输入一幅灰度图像,给出其灰度直方图结果,并进行灰度直方图分布原理分析。

实验1.2 灰度均衡一.实验目的1.熟悉matlab图像处理工具箱中灰度均衡函数的使用;2.理解和掌握灰度均衡原理和实现方法;二.实验设备1.PC机一台;2.软件matlab;三.程序设计在matlab环境中,程序首先读取图像,然后调用灰度均衡函数,设置相关参数,再输出处理后的图像。

I=imread('cameraman.tif');%读取图像subplot(2,2,1),imshow(I) %输出图像title('原始图像') %在原始图像中加标题subplot(2,2,3),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题a=histeq(I,256); %直方图均衡化,灰度级为256subplot(2,2,2),imshow(a) %输出均衡化后图像title('均衡化后图像') %在均衡化后图像中加标题subplot(2,2,4),imhist(a) %输出均衡化后直方图title('均衡化后图像直方图') %在均衡化后直方图上加标题四.实验步骤1. 启动matlab双击桌面matlab图标启动matlab环境;2. 在matlab命令窗口中输入相应程序。

数字图像处置(3)专题知识讲座

数字图像处置(3)专题知识讲座
谱遥感图像。
上机实习
1、在MATLAB软件中,首先对lenna.bmp图 像加上随机高斯噪声,然后编制经过求平均值 降噪旳程序,观察试验效果。
2、在MATLAB软件中,编写一维离散卷积程 序,用p95页第3题为例,观察效果。并对比 MATLAB软件旳卷积函数旳运算效果。
取值区域。
7 一维卷积旳离散化计算
f(t) 1
g(t) 1/2
1
t
(a)
1
t
(b)
g(-t)
g(x-t)
1/2
-1 (c)
1/2
t
-1
x
t
(d)
7 一维卷积旳离散化计算
f(t)g(x-t)
1 0<=x&l1<=x<=2
-1
x
1
t -1
(e)
x-1 1 (f)
xt
7 一维卷积旳离散化计算
量化噪声:是由量化过程引起旳,处理旳最 佳措施是最佳量化。
2 加法运算应用
上海朱家角风光
有加性噪声旳朱家角风光
2 加法运算应用
有乘性噪声旳朱家角风光 有椒盐噪声旳朱家角风光
2 加法运算应用
噪声图像1 噪声图像2 噪声图像3 噪声图像4 噪声图像5 噪声图像6 噪声图像7 噪声图像8
2 加法运算应用
E
N1 x, y N2 x, y2
E
N
2 1
x
,
y
E
N22 x, y
P
x,
y
M 2S2 x, y
M
Ni2 x, y
M 2S2 x, y MN 2 x, y
MP
x,
y
i 1
2 加法运算应用

数字图像处理期末复习资料

数字图像处理期末复习资料

1图像的特点:1)直观形象2)易懂3)信息量大2图像的分类:1)按灰度分类:二值图像,多灰度图像2)按色彩分类:单色图像,动态图像3)按运动分类:静态图像,动态图像4)按时空分布分类:二维图像,三维图像3 数字图像处理的主要内容:1)图像获取2)图像变换3)图像增强4)图像复原5)图像编码6)图像分析7)图像识别8)图像理解4数字图像处理方法:1)空域法2)变换域法5什么是数字图像的采样和量化?采样:将模拟图像在空间上连续的点按照一定的规则变换成离散点的操作。

量化:由于采样图像被分割成空间上离散的像素,但其灰度是连续的,还不能用计算机进行处理,所以要对采样后的图像进行量化,即将连续的像素灰度值转换成离散的整数值的过程。

6图像像素间的邻接、连接和连通的区别?邻接:两个像素是否邻接就看它是否接触,一个像素和在它邻域中的像素是邻接的。

邻接仅仅考虑了像素间的空间关系。

连接:对两个像素,要确定它们是否连接,要考虑两点:①空间上要邻接;②灰度值要满足某个特点的相似准则第二章1 试述图像采集系统的结构及其各部分的功能?2连续图像随机过程可以用哪些数字特征来描述?概率密度,一阶矩或平均值,二阶矩或自相关函数,自协方差,方差3为什么说只要满足采样定理,就可以有离散图像无失真的重建元连续图像?这是由图像的连续性决定的,由图像上某一点的值可以还原出该点的一个小邻域里的值,这个图像连续性越好,这个邻域就可以越大,抽样次数可以很少就可以无失真还原。

而抽样定理对应这个邻域最小的情况即抽样次数最多的情况,大概是每周期两个样本4与标量量化相比,向量量化有哪些优势?合理地利用样本间的相关性,减少量化误差提高压缩率,5Matlab图像处理工具箱提供了哪几类类型的数字图像?它们之间能否转换?如果可以如何转换?二进制图像,索引图像,灰度图像,多帧图像,RGB图像,它们之间可以相互转换,转换函数(23页6 数字图像的空间分辨率和采样间隔有什么联系?采样间隔是决定图像分辨率的主要参数1FFT的基本思想是什么??利用DFT系数的特性,合并DFT运算中的某些项, 把长序列DFT变成短序列DFT,从而减少其运算量。

数字图像处理图像变换实验报告

数字图像处理图像变换实验报告

实验报告实验名称:图像处理姓名:刘强班级:电信1102学号:1404110128实验一图像变换实验——图像点运算、几何变换及正交变换一、实验条件PC机数字图像处理实验教学软件大量样图二、实验目的1、学习使用“数字图像处理实验教学软件系统”,能够进行图像处理方面的简单操作;2、熟悉图像点运算、几何变换及正交变换的基本原理,了解编程实现的具体步骤;3、观察图像的灰度直方图,明确直方图的作用与意义;4、观察图像点运算与几何变换的结果,比较不同参数条件下的变换效果;5、观察图像正交变换的结果,明确图像的空间频率分布情况。

三、实验原理1、图像灰度直方图、点运算与几何变换的基本原理及编程实现步骤图像灰度直方图就是数字图像处理中一个最简单、最有用的工具,它描述了一幅图像的灰度分布情况,为图像的相关处理操作提供了基本信息。

图像点运算就是一种简单而重要的处理技术,它能让用户改变图像数据占据的灰度范围。

点运算可以瞧作就是“从象素到象素”的复制操作,而这种复制操作就是通过灰度变换函数实现的。

如果输入图像为A(x,y),输出图像为B(x,y),则点运算可以表示为:B(x,y)=f[A(x,y)]其中f(x)被称为灰度变换(Gray Scale Transformation,GST)函数,它描述了输入灰度值与输出灰度值之间的转换关系。

一旦灰度变换函数确定,该点运算就完全确定下来了。

另外,点运算处理将改变图像的灰度直方图分布。

点运算又被称为对比度增强、对比度拉伸或灰度变换。

点运算一般包括灰度的线性变换、阈值变换、窗口变换、灰度拉伸与均衡等。

图像几何变换就是图像的一种基本变换,通常包括图像镜像变换、图像转置、图像平移、图像缩放与图像旋转等,其理论基础主要就是一些矩阵运算,详细原理可以参考有关书籍。

实验系统提供了图像灰度直方图、点运算与几何变换相关内容的文字说明,用户在操作过程中可以参考。

下面以图像点运算中的阈值变换为例给出编程实现的程序流程图,如下:2、图像正交变换的基本原理及编程实现步骤数字图像的处理方法主要有空域法与频域法,点运算与几何变换属于空域法。

数字图像处理 实验二 图像增强

数字图像处理 实验二 图像增强

福建农林大学信息工程类实验报告系: 信息与机电工程系 专业: 电子信息工程 年级: 2009级 姓名: 庄建军 学号: 092230069 实验课程: 数字图像处理 实验室号:_ 实验1楼607 实验设备号: F5 实验时间: 2012.6.1 指导教师签字: 成绩:实验二 图像增强一、 实验目的1.掌握灰度直方图的概念及其计算方法;2.熟练掌握直力图均衡化和直方图规定化的计算过程;3.掌握平滑处理的算法和用途,学习使用均值滤波、中值滤波和拉普拉斯锐化进行图像增强处理的程序设计方法;4.了解噪声模型及对图像添加噪声的基本方法;5.利用MATLAB 程序进行图像增强。

二、 实验原理图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。

其主要目的是处理后的图像对某些特定的应用比原来的图像更加有效。

图像增强技术主要有直方图修改处理、图像平滑化处理、图像尖锐化处理和彩色处理技术等。

1、直方图均衡化通过点运算将输入图像转换为在每一级上都有相等像素点数的输出图像。

按照图像概率密度函数PDF 的定义:1,...,2,1,0 )(-==L k n n r p k k r通过转换公式获得:1,...,2,1,0 )()(00-====∑∑==L k n n r p r T s k j kj j j r k k2、均值(中值)滤波是指在图像上,对待处理的像素给定一个模板,该模板包括了其周围的临近像素。

将模板中的全体像素的均值(中值)来代替原来像素值的方法。

3、拉普拉斯算子如下:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--------111181111拉普拉斯算子首先将自身与周围的8个像素相减,表示自身与周围像素的差异,再将这个差异加上自身作为新像素的灰度。

三、 实验步骤1打开计算机,启动MATLAB 程序;程序组中“work ”文件夹中应有待处理的图像文件;2调入待处理的数字图像,并进行计算机均衡化处理;3启动MATLAB 程序,对图像文件分别进行直方图均衡化、均值滤波、中值滤波和拉普拉斯锐化操作;添加噪声,重复上述过程观察处理结果。

数字图像处理(直方图).

数字图像处理(直方图).

An
Combining
DFRT( n )
Renewed output images An exp(j n ) Cn
IDFRT( n )
Several input images Rn an exp(jn )
1 1 an , 0 n n n Updated input images a0 exp(j0 ) a0
15
按列统计的直方图
histc(pascal(3),1:6) produces the array [3 1 1; 0 1 0; 0 1 1; 0 0 0; >> pascal(3) 0 0 0; ans = 0 0 1]
1 1 1 1 2 3 1 3 6
每列目标数据的个数 统计
16
其他类型的统计图
条状图:bar x = 1:5; y = [0.2,0.3,0.1,0.8,0.9; 0.5,0.6,0.2,0.7,0.1]; bar(x,y');
20
其他类型的统计图
累加式条状图:barh rand('state',0); figure; barh(rand(10,5),'stacked'); colormap(cool)
6
彩色图像直方图
axes(‘Position’,*0.1,0.1,0.8,0.2+);% 生成坐标轴 stem(0:255,h1,'Marker','None','Color','r'); set(gca,'YColor','r','Xlim',[0,255]); axes('Position',[0.1,0.3,0.8,0.2]); stem(0:255,h2,'Marker','None','Color',[0,0.6,0]); set(gca,'YColor',[0,0.6,0],'Ytick',[0.005,0.01],'Xlim',[0,255]); axes('Position',[0.1,0.5,0.8,0.2]); stem(0:255,h3,'Marker','None','Color','b'); set(gca,'YColor','b','Ytick',[0.01,0.02],'Xlim',[0,255]);

数字图像处理知识点总结

数字图像处理知识点总结

数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。

包括:采样和量化。

2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。

(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。

一幅数字图像中不同灰度值的个数称为灰度级。

二值图像是灰度级只有两级的。

(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。

采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。

2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。

量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。

2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。

2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。

(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。

2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。

(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。

(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。

第6章 点运算

第6章 点运算
DIP 第6章 点运算
6.1 引言
数字图像处理
Digital Image Processing
点运算( 点运算(Point operation)是相对于全局运算 operation)是相对于全局运算 局部运算而言 而言。 和局部运算而言。 点运算以某种预定的方式改变一幅图像的灰度 点运算以某种预定的方式改变一幅图像的灰度 以某种预定的方式 直方图。 直方图。
B B
Digital Image Processing
d f (DA ) dD A
H B ( D) =
f ′ f −1 ( D )
得:
H A [ ( D − b) / a ] 1 D −b H B ( D) = = HA f ′ [ ( D − b) / a ] a a
df 其中: 其中: f ′ = ,D即DB 即 dD
DIP
数字图像处理 6.2.2 举例
6.2.2.1 线性点运算 来说, )/a 对DB = f (DA)=aDA+b来说,DA = f -1(DB)= (DB-b)/a, 因此, 因此,根据式 H ( D ) = H A ( D A ) 或 H A f −1 ( D )
DIP
数字图像处理
6.1.2.2 非线性单调点运算
Digital Image Processing
255 右图为几种单调非减灰度变换函 右图为几种单调非减 单调非减灰度变换函 正斜率, 它们都有正斜率 数,它们都有正斜率,因而可以保留 输出 图像的基本外貌,但图像局部对比度 图像的基本外貌,但图像局部对比度 C>0:中间灰度增加 > : 会发生变化。 会发生变化。
中国传媒大学信息工程学院
13

数字图像处理2数字图像基础-4,5,6

数字图像处理2数字图像基础-4,5,6
1 单幅图像 → 单幅图像 ,如图(a). 2 多幅图像 →单幅图像, 如图(b). 3 单(或多)幅图像→ 数字或符号等。
2.5 图像处理算法的形式
二.图像处理的几种具体算法形式 1.局部处理
对于任一像素(i,j),把像素的集合 {(i+p,j+q),p、q取任意整数}叫做该像素的邻 域,
2.5 图像处理算法的形式
依赖于起始像素的位置。为此,跟踪处理的结果与从图像 哪一部份开始进行处理相关。
②能够根据利用在此以前的处理结果来限定处理范围,从而 可能避免徒劳的处理。另外,由于限制了处理范围,有可 能提高处理精度。
③用于边界线、等高线等线的跟踪(检测)方面。如根据搜索 法检测边缘曲线。
2.5 图像处理算法的形式
4.位置不变处理和位置可变处理 输出像素JP(i,j)的值的计算方法与像素
的位置(i,j)无关的处理称为位置不变处理或 位移不变处理。随位置不同计算方法也不同的 处理称为位置可变处理或位移可变处理。
2.5 图像处理算法的形式
5.窗口处理和模板处理 单独对图像中选定的矩形区域内的像素进
行处理的方式叫做窗口处理。 单独对图像中选定的任意形状的像素进行
0
255 0
255 0
255
(a) 恰当量化 (b)未能有效利用动态范围 (c)超过了动态范围
2.4 图像灰度直方图
2. 边界阈值选取(确定图像二值化的阈值)
假设某图象的灰度直方图具有 二峰性,则表明这 个图象的较亮的区域和较暗的区域可以较好地分离, 以这一点为阈值点,可以得到好的二值处理的效果。
2.4 图像灰度直方图
1 2 3 45 6 6 4 3 22 1 1 6 6 46 6 3 4 5 66 6 1 4 6 62 3 1 3 6 46 6

数字图像处理的复习

数字图像处理的复习

对于彩色图像,通常用以区别颜色的特性是、和。

数字图像处理,即用对图像进行处理。

直方图均衡化适用于增强直方图呈分布的图像。

直方图修正法包括和两种方法。

行程编码可分为和一般来说,采样间距越大,图像数据量,质量;反之亦然。

图像分割一般可基于像素灰度值的和。

图像的边缘是图像最基本的特征,常见的边缘类型有阶跃型、、和。

图像的几何变换不改变,改变。

常见的熵编码方法有、和。

JPEG允许的编码方式有顺序式DCT方式、、和。

根据图像的保真度,图像压缩可分为和。

从图像质量评价的角度来看,图像复原的目的是为了提高图像的;图像增强的目的是为了提高图像的。

国际照明委员会(CIE)规定的三种基本色的波长为、、。

在RGB彩色空间中,距离原点最远的顶点的三个分量值均为,颜色为。

对一幅图像当量化级数Q一定时,采样点数越多,图像质量越,采样点数越少,图像质量越。

据统计,人类从自然界获取的信息中,视觉信息占。

图像锐化除了在空间域进行外,也可在进行。

图像数字化过程包括三个步骤:、和。

常见的视觉颜色模型有、和。

目前常用的颜色模型按用途可分为计算颜色模型、和。

从处理的作用域出发,图像增强可分为和。

HSI 模型的三个分量分别是色调(H)、 和 。

在CMY 颜色模型中,三原色分别为 、 、 。

作为多媒体元素之一的图像的特点有二维性、 、 和 。

在图像的几何变换中,图像的形状变换有 、 和 。

在图像的几何变换中,图像的位置变换有平移、 和 。

对一幅图像当采样点数一定时,量化级数越 ,图像质量越好;量化级数越 ,图像质量越差。

在RGB 彩色空间的原点,三个分量值均为 ,即原点的颜色为 。

常用的预测编码有 和 。

根据编码原理,图像编码可分为熵编码、 、 和算术编码的两种模式是 、。

根据对压缩编码后的图像进行重建的准确度,常用的编码方法有 、和 。

常见的灰度变换方法有 和 。

图像与直方图之间是一种 的映射关系。

一幅灰度级均匀分布的图像,其灰度范围在[0,511],则该图像的信息量是 。

matlab《数字图像处理》第5章 算术运算(计科)

matlab《数字图像处理》第5章 算术运算(计科)
非线性点运算对应与非线性映射函数,典 型的映射函数包括平方函数、对数函数、 截取(窗函数)、阈值函数等
6
7
5.2、图像的算术运算

算术运算是指两幅或多幅输入图像之间进 行点对点的加、减、乘、除运算得到输出 图像的过程。

算术运算可以简单理解成数组的运算。
8



算术运算是指两幅或多幅输入图像之间。 算术运算的结果很容易超出数据类型允许 的范围。如uint8能够存储最大数是255, 乘法运算很容易超过这个数值;还有除法 运算会产生分数结果。所以超过范围的都 按数据范围的极值截取,分数结果将被四 舍五入。 无论哪一种代数运算都要保证两幅输入图 像的大小相等,且类型相同
4


5.1.1 线性点运算
在线性点运算中,灰度变换函数在数学上 就是线性函数:f(r)=ar+b
a>1时,输出图像对比度增大;
a<1时,输出图像对比度降低;
a=1,b~=0时,仅使输出图像的灰度值上 移或下移,其效果是使整个图像更亮或更暗。
线性点运算的典型应用是灰度分布标准化。
5
5.1.2 非线性点运算
10

在 Matlab图像处理工具箱中,imadd函数 实现图像相加运算。可以是一副图像与另 一幅图像相加;也可以是一副图像加上一 个常数。 Z=imadd(X, Y)

11
注意类型处理
X=uint8([255 0 75; 44 225 100]); Y=uint8([50 50 50; 50 50 50]); Z=imadd(X,Y)
k=imsubtract(I,J);
k1=255-k;
figure(),imshow(I)

MATLAB数字图像处理实验--图像基本运算

MATLAB数字图像处理实验--图像基本运算

MATLAB数字图像处理实验--图像基本运算一、实验目的1.理解图像点运算、代数运算、几何运算的基本定义和常见方法;2.掌握在MTLAB中对图像进行点运算、代数运算、几何运算的方法;3.掌握在MATLAB中进行插值的方法4.运用MATLAB语言进行图像的插值缩放和插值旋转5.进一步熟悉了解MATLAB语言的应用。

二、实验设备与软件1.PC计算机系统2.MATLAB软件,包括图像处理工具箱(Image Processing Toolbox)3.实验图片三、实验内容及结果分析3.1图像的点运算选择pout.tif作为实验图像,实验原理及内容参照《MATLAB图像处理编程及应用》程序代码:I=imread('pout.tif');figure;subplot(1,3,1);imshow(I);title('原图');J=imadjust(I,[0.3;0.6],[0.1;0.9]);subplot(1,3,2);imshow(J);title('线性扩展');I1=double(I);I2=I1/255;C=2;K=C*log(1+I2);subplot(1,3,3);imshow(K);title('非线性扩展');M=255-I;figure;subplot(1,3,1);imshow(M);title('灰度倒置');N1=im2bw(I,0.4);N2=im2bw(I,0.7);subplot(1,3,2);imshow(N1);title('二值化阈值0.4');subplot(1,3,3);imshow(N2);title('二值化阈值0.7');执行结果:原图线性扩展非线性扩展灰度倒置二值化阈值0.4二值化阈值0.7实验1结果图3.2图像的代数运算选择两幅图像,一幅是原图像,一幅为背景图像,采用正确的图像代数运算方法,分别实现图像叠加、混合图像的分离和图像的局部显示效果。

数字图像处理方法-图像增强2

数字图像处理方法-图像增强2

求出:k1和k2 求出:l1和l2
第五章 图像增强
23
空域处理—彩色图像增强
彩色平衡实现的算法
9 分别对R、G、B图像实施变换:
*=
+
R(x, y) k1*R(x, y) k 2
B(x, y)* = l1*B(x, y) + l2
G(x, y)* = G(x, y)
9 得到彩色平衡图像
第五章 图像增强
直方图均衡化的技术要点:
公理:直方图p(rk ),为常数的图像对比度最好
目标:寻找一个灰度变换函数T(r),使结果图像 的直方图p(sk )为一个常数
第五章 图像增强
3
空域处理—直方图增强
直方图均衡—灰度变换函数
1) 求出原图 f 的灰度直方图,设为h。h为一个256维的向 量。
2) 求出图像 f 的总体像素个数, Nf=m ×n
第五章 图像增强
32
空域处理—彩色图像增强
伪彩色增强
人类可以分辨比灰度层次更多的颜色种类 将灰度图像变换为彩色图像——伪彩色图像 方法:伪彩色变换,密度分割
伪彩色变换法—独立映射表变换法
9对灰度图像 f(x, y),建立颜色映射表:
IR
=
T (I ) R
IG
=
T (I ) G
I = T (I )
B
B
9形成RGB图像各分量为: R (x , y ) = T R ( f (x , y
))
第五章 图像增强
G (x, y ) = TG( f (x, y ))
B(x, y) = TB( f (x, y
33
))
空域处理—彩色图像增强
伪彩色变换流程

(数字图像处理)第三章图像的基本运算

(数字图像处理)第三章图像的基本运算
非线性点运算相对于线性点运 算来说计算较为复杂,但能够 实现更加灵活和多样的图像处 理效果。
点运算的应用场景
点运算在图像处理中具有广泛的应用,例如在医学影像处理中,可以通过点运算来 调整图像的对比度和亮度,提高医学影像的清晰度和可读性。
在遥感图像处理中,点运算可以用于校正和增强遥感图像,提高遥感数据的准确性 和可靠性。
图像基本运算的重要性
01
图像基本运算是图像处理的基础 ,是实现复杂图像处理算法的基 石。
02
掌握基本运算有助于深入理解图 像处理原理,提高图像处理技能 。
02
图像的点运算
线性点运算
线性点运算是指通过线性变换对图像的像素值进行 操作,常见的线性点运算包括加法、减法、乘法和 除法等。
线性点运算可以用于增强图像的对比度、调整图像 的亮度、改变图像的色彩等。
总结词
旋转操作用于将图像围绕一个点旋转一定角度,同时改变像 素的位置。
详细描述
旋转操作用于将图像中的像素按照指定的角度进行旋转,同 时像素值保持不变。这种操作常用于纠正倾斜的图像、实现 特定视角的观察等。
图像的剪切
总结词
剪切操作用于从图像中删除一部分区域,只保留所需部分。
详细描述
剪切操作用于从图像中删除指定的区域,只保留所需的像素部分。这种操作常 用于裁剪照片、去除背景等。剪切操作可以快速有效地去除不需要的区域,突 出显示所需的细节或主题。
图像的缩放
总结词
缩放操作用于改变图像的大小,可以通过放大或缩小像素值来实 现。
详细描述
缩放操作用于改变图像的尺寸,可以通过放大或缩小像素值来实 现。放大图像时,像素值会被插值计算以填充新的像素空间;缩 小图像时,像素值可能会被平均或选择性地丢弃。这种操作常用 于调整图像大小、视窗变换等。

哈工大数字图像处理知识点总结

哈工大数字图像处理知识点总结

1. 引言1.1图像的概念图像:是对客观存在的物体的一种相似性的、生动性的模仿或描述,是一种不完全的、不精确的,但在某种意义上是适当的表示。

也是对客观存在的物体的某种属性的描述。

(非所见即所得,对事物不能完全描述)1.2数字图像的起源与应用1.3 数字图像处理的概念●图像的类型:从图像生成角度:物理图像(可见图像(光学图像)、不可见图像(红外)、数学图像等)从照明角度:多光谱图像(特指不可见光谱)和单光谱图像(激光);从人眼视觉特点上:可见图像、不可见图像。

从波段多少分为:单波段(每点只有一亮度值)、多波段(每点不只一特性如红绿蓝光谱图像)和超波段图像。

从图像空间坐标和明暗程度的连续性:模拟图像、数字图像(空间坐标和灰度均不连续,用离散的数字表示)。

●图像的表现形式●图像的属性:构成数字图像的要素,灰度坐标图像的属性:1.对比度:灰度差别 0~255(256个灰度级)2. 灰度分辨力:适于人眼3.空间分辨力:越高越好4.放大率对比度与灰度的关系:量化?灰度量化最高、最暗差值尽可能大。

减少灰度级一般会提高图像的对比度。

构成数字图像的要素:地址(坐标)和灰度值●数字图像的处理概念及三种分类:处理\分析\理解操作对象:狭义数字图像处理:图像——图像图像分析:图像——数据(特征值)图像理解:数据——概念狭义图像处理强调图像之间进行变换,指对图像进行各种操作以改善图像的视觉效果,或对图像进行压缩编码以减少所需存储空间或传输时间、传输通路的要求。

图像分析是对图像中感兴趣的目标进行检测的测量,从而建立对图像的描述,是从图像到数值或符号的过程。

经分割和特征提取,把原来以像素构成的图像转变成比较简洁的非图像形式的描述。

图像理解研究图像中各目标的性质和它们之前的相互联系,并得出对图像容含义的理解以及对原来客观场景的解译,人而指导和规划行动●数字图像的运算形式:全局、局部、点,串行、并行全局:快速傅立叶变换局部:点运算:对于一幅输入图像,经过点运算产生一幅输出图像,后者的每个像素的灰度值仅由相应输入像素的值决定(对比度增强,对比度拉伸,灰度变换)串行:后一像素输出结果依赖于前面像素处理的结果,并且只能依次处理各像素而不能同时对各像素进行相同处理的一种处理形式。

《数字图像处理》教学大纲

《数字图像处理》教学大纲

《数字图像处理》教学大纲电子信息工程专业(本科)课程编号:()课程名称:数字图像处理参考学时:42 其中实验或上机学时:10说明部分1.课程的地位、性质和任务数字图像处理是一门迅速发展的新兴学科,发展的历史并不长。

由于图像是视觉的基础,而视觉又是人类重要的感知手段,故数字图像成为心理学、生理学、计算机科学等诸多方面学者研究视觉感知的有效工具。

随着计算机的发展,以及应用领域的不断加深和扩展,数字图像处理技术已取得长足的进展,出现了许多有关的新理论、新方法、新算法、新手段和新设备,并在军事公安、航空、航天、遥感、医学、通信、自控、天气预报以及教育、娱乐、管理等方面得到广泛的应用。

所以,数字图像处理是一门实用的学科,已成为电子信息、计算机科学及其相关专业的一个热门研究课题,相应《图像处理技术》也是一门重要的课程,是一门多学科交叉、理论性和实践性都很强的综合性课程。

本课程是电子信息工程专业的专业课。

本课程着重研究数字图像处理的方法,训练学生运用所学基础知识解决实际问题的能力,同时要求拓宽专业知识面。

2.课程教学的目的及意义数字图像处理是研究数字图像处理的基本理论、方法及其在智能化检测中应用的学科,本课程侧重于机器视觉中的预处理技术——数字图像基本处理,并对图像分析的基本理论和实际应用进行系统介绍。

目的是使学生系统掌握数字图像处理的基本概念、基本原理和实现方法和实用技术,了解数字图像处理基本应用和当前国内外的发展方向。

要求学生通过该课程学习,具备解决智能化检测与控制中应用问题的初步能力,为在计算机视觉、模式识别等领域从事研究与开发打下扎实的理论基础。

3.教学内容及教学要求教学内容:数字图像处理是计算机和电子学科的重要组成部分,是模式识别和人工智能理论的的中心研究内容。

主要教学内容包括:(1)数字图像处理的基本概念,包括数字图像格式,数字图像显示,灰度直方图,点运算,代数运算和几何运算等概念。

(2)介绍二维富氏变换离散余弦变换,离散图像变换和小波变换的基本原理与方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验1 点运算和直方图处理
一、实验目的
1. 掌握利用Matlab图像工具箱显示直方图的方法
2. 掌握运用点操作进行图像处理的基本原理。

3. 进一步理解利用点操作这一方法进行图像处理的特点。

4. 掌握利用Matlab图像工具箱进行直方图均衡化的基本方法。

二、实验的硬件、软件平台
硬件:计算机
软件:操作系统:WINDOWS 7
应用软件:MATLAB
三、实验内容及步骤
1. 了解Matlab图像工具箱的使用。

2. 利用Matlab图像工具箱对图像进行点操作,要求完成下列3个题目中
的至少2个。

⑴图1灰度范围偏小,且灰度偏低,改正之。

⑵图2暗处细节分辨不清,使其能看清楚。

⑶图3亮处细节分辨不清,使其能看清楚。

图1 图2 图3
3. 给出处理前后图像的直方图。

4. 利用MatLab图像处理工具箱中函数对以上图像进行直方图均衡化操
作,观察结果。

四、思考题
1. 点操作能完成哪些图像增强功能?
2. 直方图均衡化后直方图为何并不平坦?为何灰度级会减少?
五、实验报告要求
1.对点操作的原理进行说明。

2.给出程序清单和注释。

3.对处理过程和结果进行分析(包括对处理前后图像的直方图的分析)。

实验代码以及解析
点操作:
I = imread('POINT1.BMP'); %读入图像
j=rgb2gray(I); %将图像转为灰度图像
INFO=IMFINFO('POINT1.BMP') %获取图片的格式、尺寸、颜色数量、修改时间等信息[l,r]=size(j); %图片大小
figure; %建立一个图形框
subplot(221)
imshow(j) %在两行两列的第一个位置放置图片j
title('POINT1.BMP') %给该图片加上标题POINT1.BMP
for m=1:l
for n=1:r %从第一个像素循环到最后一个像素
p1(m,n)=j(m,n)*1.2; %把各点乘上1.2得到p1图
end
end
for m=1:l
for n=1:r
p2(m,n)=j(m,n)*2; %%把各点乘上2得到p2图
end
end
for m=1:l
for n=1:r
p3(m,n)=j(m,n)*2+50; %把各点乘上2再加50得到p2图
end
end
subplot(222)
imshow(p1)
title('j(m,n)*1.2') %p1图放在第二个位置且冠名j(m,n)*1.2
subplot(223)
imshow(p2)
title('j(m,n)*2') %p1图放在第三个位置且冠名j(m,n)* 2
subplot(224)
imshow(p3)
title('j(m,n)*2+50') %p1图放在第四个位置且冠名j(m,n)*2+50
figure; %建立一个新的窗口并且依次显示以上四个图的直方图subplot(221),imhist(j,64); title('原图直方图')
%64代表把0-250的灰度范围分为64份
subplot(223),imhist(p2,64);title('j(m,n)*2')
subplot(224),imhist(p3,64);title('j(m,n)*2+50')
%picture2 %这里把两个图片的点操作处理都放在了同一个程序里I2 = imread('POINT2.BMP'); %各语句意思同上
j2=rgb2gray(I2);
INFO2=IMFINFO('POINT2.BMP')
[l2,r2]=size(j2);
figure;
subplot(221)
imshow(j2)
title('POINT1.BMP')
for a=1:l2
for b=1:r2
q1(a,b)=j2(a,b)*1.2;
end
end
for a=1:l2
for b=1:r2
q2(a,b)=j2(a,b)*1.3;
end
end
for a=1:l2
for b=1:r2
q3(a,b)=j2(a,b)/2;
end
end
subplot(222)
imshow(q1)
title('j(m,n)*1.2')
subplot(223)
imshow(q2)
title('j(m,n)*2')
subplot(224)
imshow(q3)
title('j(m,n)*2+50')
figure;
subplot(221),imhist(j2,64);title('j2原图的直方图')
subplot(222),imhist(q1,64);title('j(m,n)*1.2')
subplot(223),imhist(q2,64);title('j(m,n)*2')
本程序共创建了四个窗口,分别是两个原图和处理后的图像对比,以及各图对应的直方图
POINT1.BMP
j(m,n)*1.2
j(m,n)*2j(m,n)*2+50
0j2原图的直方图
100
200
0j(m,n)*1.2
100
200
j(m,n)*2
100
200
j(m,n)*2+50
100
200
用函数
POINT2
histeq
POINT2.BMP 0100200
histeq
0100200
思考题
1.点操作能完成哪些图像增强功能?
点操作可以完成的图像增强功能包括灰度变换,直方图均衡化,直方
图规定化等空间域的处理
2.直方图均衡化后直方图为何并不平坦?为何灰度级会减少?
直方图使灰度级分布具有均匀概率密度,扩展了像素取值的动态范围
但减少了灰度级。

相关文档
最新文档