北科大模式识别基础实验报告
2021年模式识别实验报告
实验报告试验课程名称: 模式识别姓名: 王宇班级: 0813 学号: 081325注: 1、每个试验中各项成绩根据5分制评定, 试验成绩为各项总和2、平均成绩取各项试验平均成绩3、折合成绩根据教学纲领要求百分比进行折合6月试验一、 图像贝叶斯分类一、 试验目将模式识别方法与图像处理技术相结合, 掌握利用最小错分概率贝叶斯分类器进行图像分类基础方法, 经过试验加深对基础概念了解。
二、 试验仪器设备及软件 HP D538、 MATLAB 三、 试验原理 概念:阈值化分割算法是计算机视觉中常见算法, 对灰度图象阈值分割就是先确定一个处于图像灰度取值范围内灰度阈值, 然后将图像中每个像素灰度值与这个阈值相比较。
并依据比较结果将对应像素划分为两类, 灰度值大于阈值像素划分为一类, 小于阈值划分为另一类, 等于阈值可任意划分到两类中任何一类。
最常见模型可描述以下: 假设图像由含有单峰灰度分布目标和背景组成, 处于目标和背景内部相邻像素间灰度值是高度相关, 但处于目标和背景交界处两边像素灰度值有较大差异, 此时, 图像灰度直方图基础上可看作是由分别对应于目标和背景两个单峰直方图混合组成。
而且这两个分布应大小靠近, 且均值足够远, 方差足够小, 这种情况下直方图展现较显著双峰。
类似地, 假如图像中包含多个单峰灰度目标, 则直方图可能展现较显著多峰。
上述图像模型只是理想情况, 有时图像中目标和背景灰度值有部分交错。
这时如用全局阈值进行分割肯定会产生一定误差。
分割误差包含将目标分为背景和将背景分为目标两大类。
实际应用中应尽可能减小错误分割概率, 常见一个方法为选择最优阈值。
这里所谓最优阈值, 就是指能使误分割概率最小分割阈值。
图像直方图能够看成是对灰度值概率分布密度函数一个近似。
如一幅图像中只包含目标和背景两类灰度区域, 那么直方图所代表灰度值概率密度函数能够表示为目标和背景两类灰度值概率密度函数加权和。
假如概率密度函数形式已知, 就有可能计算出使目标和背景两类误分割概率最小最优阈值。
模式识别第一次作业报告
模式识别第一次作业报告姓名:刘昌元学号:099064370 班级:自动化092班题目:用身高和/或体重数据进行性别分类的实验基本要求:用famale.txt和male.txt的数据作为训练样本集,建立Bayes分类器,用测试样本数据test1.txt和test2.txt该分类器进行测试。
调整特征、分类器等方面的一些因素,考察它们对分类器性能的影响,从而加深对所学内容的理解和感性认识。
一、实验思路1:利用Matlab7.1导入训练样本数据,然后将样本数据的身高和体重数据赋值给临时矩阵,构成m行2列的临时数据矩阵给后面调用。
2:查阅二维正态分布的概率密度的公式及需要的参数及各个参数的意义,新建m函数文件,编程计算二维正态分布的相关参数:期望、方差、标准差、协方差和相关系数。
3.利用二维正态分布的相关参数和训练样本构成的临时数据矩阵编程获得类条件概率密度,先验概率。
4.编程得到后验概率,并利用后验概率判断归为哪一类。
5.利用分类器训练样本并修正参数,最后可以用循环程序调用数据文件,统计分类的男女人数,再与正确的人数比较得到错误率。
6.自己给出决策表获得最小风险决策分类器。
7.问题的关键就在于利用样本数据获得二维正态分布的相关参数。
8.二维正态分布的概率密度公式如下:试验中编程计算出期望,方差,标准差和相关系数。
其中:二、实验程序设计流程图:1:二维正态分布的参数计算%功能:调用导入的男生和女生的身高和体重的数据文件得到二维正态分布的期望,方差,标准差,相关系数等参数%%使用方法:在Matlab的命令窗口输入cansu(male) 或者cansu(famale) 其中 male 和 famale%是导入的男生和女生的数据文件名,运用结果返回的是一个行1行7列的矩阵,其中参数的顺序依次为如下:%%身高期望、身高方差、身高标准差、体重期望、体重方差、体重标准差、身高和体重的相关系数%%开发者:安徽工业大学电气信息学院自动化 092班刘昌元学号:099064370 %function result=cansu(file)[m,n]=size(file); %求出导入的数据的行数和列数即 m 行n 列%for i=1:1:m %把身高和体重构成 m 行 2 列的矩阵%people(i,1)=file(i,1);people(i,2)=file(i,2);endu=sum(people)/m; %求得身高和体重的数学期望即平均值%for i=1:1:mpeople2(i,1)=people(i,1)^2;people2(i,2)=people(i,2)^2;endu2=sum(people2)/m; %求得身高和体重的方差、%x=u2(1,1)-u(1,1)^2;y=u2(1,2)-u(1,2)^2;for i=1:1:mtem(i,1)=people(i,1)*people(i,2);ends=0;for i=1:1:ms=s+tem(i,1);endcov=s/m-u(1,1)*u(1,2); %求得身高和体重的协方差 cov (x,y)%x1=sqrt(x); %求身高标准差 x1 %y1=sqrt(y); %求身高标准差 y1 %ralation=cov/(x1*y1); %求得身高和体重的相关系数 ralation %result(1,1)=u(1,1); %返回结果 :身高的期望 %result(1,2)=x; %返回结果 : 身高的方差 %result(1,3)=x1; %返回结果 : 身高的标准差 %result(1,4)=u(1,2); %返回结果 :体重的期望 %result(1,5)=y; %返回结果 : 体重的方差 %result(1,6)=y1; %返回结果 : 体重的标准差 %result(1,7)=ralation; %返回结果:相关系数 %2:贝叶斯分类器%功能:身高和体重相关情况下的贝叶斯分类器(最小错误率贝叶斯决策)输入身高和体重数据,输出男女的判断%%使用方法:在Matlab命令窗口输入 bayes(a,b) 其中a为身高数据,b为体重数据。
模式识别专业实践报告(2篇)
第1篇一、实践背景与目的随着信息技术的飞速发展,模式识别技术在各个领域得到了广泛应用。
作为人工智能领域的一个重要分支,模式识别技术对于图像处理、语音识别、生物识别等领域的发展具有重要意义。
为了更好地理解和掌握模式识别技术,提高实际应用能力,我们组织了一次为期一个月的模式识别专业实践。
本次实践旨在通过实际操作,加深对模式识别理论知识的理解,提高解决实际问题的能力。
二、实践内容与过程1. 实践内容本次实践主要包括以下几个方面:(1)图像识别:利用深度学习算法进行图像分类、目标检测等。
(2)语音识别:实现语音信号处理、特征提取和识别。
(3)生物识别:研究指纹识别、人脸识别等生物特征识别技术。
(4)模式分类:运用机器学习算法进行数据分类和聚类。
2. 实践过程(1)理论学习:在实践开始前,我们首先对模式识别的基本理论进行了系统学习,包括图像处理、信号处理、机器学习等相关知识。
(2)项目准备:根据实践内容,我们选取了具有代表性的项目进行实践,如基于深度学习的图像识别、基于HMM的语音识别等。
(3)实验设计与实施:在导师的指导下,我们设计了实验方案,包括数据预处理、模型选择、参数调整等。
随后,我们使用Python、C++等编程语言进行实验编程,并对实验结果进行分析。
(4)问题分析与解决:在实验过程中,我们遇到了许多问题,如数据不足、模型效果不佳等。
通过查阅文献、请教导师和团队成员,我们逐步解决了这些问题。
三、实践成果与分析1. 图像识别我们使用卷积神经网络(CNN)对CIFAR-10数据集进行了图像分类实验。
实验结果表明,经过多次迭代优化,模型在测试集上的准确率达到89.5%,优于传统机器学习方法。
2. 语音识别我们采用HMM(隐马尔可夫模型)对TIMIT语音数据集进行了语音识别实验。
实验结果表明,经过特征提取和模型训练,模型在测试集上的词错误率(WER)为16.3%,达到了较好的识别效果。
3. 生物识别我们研究了指纹识别和人脸识别技术。
模式识别实习报告
一、实习背景随着科技的飞速发展,人工智能、机器学习等技术在各个领域得到了广泛应用。
模式识别作为人工智能的一个重要分支,具有广泛的应用前景。
为了更好地了解模式识别技术,提高自己的实践能力,我在2023年暑假期间参加了某科技有限公司的模式识别实习。
二、实习单位简介某科技有限公司是一家专注于人工智能、大数据、云计算等领域的科技创新型企业。
公司致力于为客户提供智能化的解决方案,业务涵盖智能识别、智能监控、智能分析等多个领域。
此次实习,我将在该公司模式识别部门进行实践学习。
三、实习内容1. 实习前期(1)了解模式识别的基本概念、原理和应用领域;(2)熟悉模式识别的相关算法,如神经网络、支持向量机、决策树等;(3)掌握Python编程语言,学会使用TensorFlow、Keras等深度学习框架。
2. 实习中期(1)参与实际项目,负责模式识别算法的设计与实现;(2)与团队成员协作,完成项目需求分析、算法优化和系统测试;(3)撰写项目报告,总结实习过程中的收获与不足。
3. 实习后期(1)总结实习期间的学习成果,撰写实习报告;(2)针对实习过程中遇到的问题,查找资料、请教同事,提高自己的解决问题的能力;(3)为后续实习工作做好充分准备。
四、实习收获与体会1. 理论与实践相结合通过实习,我深刻体会到理论与实践相结合的重要性。
在实习过程中,我将所学的模式识别理论知识运用到实际项目中,提高了自己的动手能力。
同时,通过解决实际问题,我更加深入地理解了模式识别算法的原理和应用。
2. 团队协作能力实习期间,我学会了与团队成员有效沟通、协作。
在项目中,我们共同面对挑战,分工合作,共同完成项目任务。
这使我认识到团队协作的重要性,为今后的工作打下了基础。
3. 解决问题的能力在实习过程中,我遇到了许多问题。
通过查阅资料、请教同事、独立思考等方式,我逐渐学会了如何分析问题、解决问题。
这种能力对我今后的学习和工作具有重要意义。
4. 深度学习框架的使用实习期间,我学会了使用TensorFlow、Keras等深度学习框架。
模式识别实习报告
实习报告一、实习背景及目的随着科技的飞速发展,模式识别技术在众多领域发挥着越来越重要的作用。
模式识别是指对数据进行分类、识别和解释的过程,其应用范围广泛,包括图像处理、语音识别、机器学习等。
为了更好地了解模式识别技术的原理及其在实际应用中的重要性,我参加了本次模式识别实习。
本次实习的主要目的是:1. 学习模式识别的基本原理和方法;2. 掌握模式识别技术在实际应用中的技巧;3. 提高自己的动手实践能力和团队协作能力。
二、实习内容及过程实习期间,我们团队共完成了四个模式识别项目,分别为:手写数字识别、图像分类、语音识别和机器学习。
下面我将分别介绍这四个项目的具体内容和过程。
1. 手写数字识别:手写数字识别是模式识别领域的一个经典项目。
我们使用了MNIST数据集,这是一个包含大量手写数字图片的数据集。
首先,我们对数据集进行预处理,包括归一化、数据清洗等。
然后,我们采用卷积神经网络(CNN)作为模型进行训练,并使用交叉验证法对模型进行评估。
最终,我们得到了一个识别准确率较高的模型。
2. 图像分类:图像分类是模式识别领域的另一个重要应用。
我们选择了CIFAR-10数据集,这是一个包含大量彩色图像的数据集。
与手写数字识别项目类似,我们先对数据集进行预处理,然后采用CNN进行训练。
在模型训练过程中,我们尝试了不同的优化算法和网络结构,以提高模型的性能。
最终,我们得到了一个识别准确率较高的模型。
3. 语音识别:语音识别是模式识别领域的又一项挑战。
我们使用了TIMIT数据集,这是一个包含大量语音样本的数据集。
首先,我们对语音样本进行预处理,包括特征提取、去噪等。
然后,我们采用循环神经网络(RNN)作为模型进行训练。
在模型训练过程中,我们尝试了不同的优化算法和网络结构。
最后,我们通过对模型进行评估,得到了一个较为可靠的语音识别系统。
4. 机器学习:机器学习是模式识别领域的基础。
我们使用了UCI数据集,这是一个包含多个数据集的数据集。
《模式识别》实验报告K-L变换特征提取
《模式识别》实验报告K-L变换特征提取基于K-L 变换的iris 数据分类⼀、实验原理K-L 变换是⼀种基于⽬标统计特性的最佳正交变换。
它具有⼀些优良的性质:即变换后产⽣的新的分量正交或者不相关;以部分新的分量表⽰原⽮量均⽅误差最⼩;变换后的⽮量更趋确定,能量更集中。
这⼀⽅法的⽬的是寻找任意统计分布的数据集合之主要分量的⼦集。
设n 维⽮量12,,,Tn x x x =x ,其均值⽮量E=µx ,协⽅差阵()T x E=--C x u)(x u ,此协⽅差阵为对称正定阵,则经过正交分解克表⽰为x =TC U ΛU ,其中12,,,[]n diag λλλ=Λ,12,,,n u u u =U 为对应特征值的特征向量组成的变换阵,且满⾜1T-=UU。
变换阵TU 为旋转矩阵,再此变换阵下x 变换为()T -=x u y U ,在新的正交基空间中,相应的协⽅差阵12[,,,]xn diag λλλ==x U C U C。
通过略去对应于若⼲较⼩特征值的特征向量来给y 降维然后进⾏处理。
通常情况下特征值幅度差别很⼤,忽略⼀些较⼩的值并不会引起⼤的误差。
对经过K-L 变换后的特征向量按最⼩错误率bayes 决策和BP 神经⽹络⽅法进⾏分类。
⼆、实验步骤(1)计算样本向量的均值E =µx 和协⽅差阵()T xE ??=--C x u)(x u5.8433 3.0573 3.7580 1.1993??=µ,0.68570.0424 1.27430.51630.04240.189980.32970.12161.27430.3297 3.1163 1.29560.51630.12161.29560.5810x----=--C (2)计算协⽅差阵xC 的特征值和特征向量,则4.2282 , 0.24267 , 0.07821 , 0.023835[]diag =Λ-0.3614 -0.6566 0.5820 0.3155 0.0845 -0.7302 -0.5979 -0.3197 -0.8567 0.1734 -0.0762 -0.4798 -0.3583 0.0755 -0.5458 0.7537??=U从上⾯的计算可以看到协⽅差阵特征值0.023835和0.07821相对于0.24267和4.2282很⼩,并经计算个特征值对误差影响所占⽐重分别为92.462%、5.3066%、1.7103%和0.52122%,因此可以去掉k=1~2个最⼩的特征值,得到新的变换阵12,,,newn k u u u -=U。
《模式识别》实验报告-贝叶斯分类
《模式识别》实验报告-贝叶斯分类一、实验目的通过使用贝叶斯分类算法,实现对数据集中的样本进行分类的准确率评估,熟悉并掌握贝叶斯分类算法的实现过程,以及对结果的解释。
二、实验原理1.先验概率先验概率指在不考虑其他变量的情况下,某个事件的概率分布。
在贝叶斯分类中,需要先知道每个类别的先验概率,例如:A类占总样本的40%,B类占总样本的60%。
2.条件概率后验概率指在已知先验概率和条件概率下,某个事件发生的概率分布。
在贝叶斯分类中,需要计算每个样本在各特征值下的后验概率,即属于某个类别的概率。
4.贝叶斯公式贝叶斯公式就是计算后验概率的公式,它是由条件概率和先验概率推导而来的。
5.贝叶斯分类器贝叶斯分类器是一种基于贝叶斯定理实现的分类器,可以用于在多个类别的情况下分类,是一种常用的分类方法。
具体实现过程为:首先,使用训练数据计算各个类别的先验概率和各特征值下的条件概率。
然后,将测试数据的各特征值代入条件概率公式中,计算出各个类别的后验概率。
最后,取后验概率最大的类别作为测试数据的分类结果。
三、实验步骤1.数据集准备本次实验使用的是Iris数据集,数据包含150个Iris鸢尾花的样本,分为三个类别:Setosa、Versicolour和Virginica,每个样本有四个特征值:花萼长度、花萼宽度、花瓣长度、花瓣宽度。
2.数据集划分将数据集按7:3的比例分为训练集和测试集,其中训练集共105个样本,测试集共45个样本。
计算三个类别的先验概率,即Setosa、Versicolour和Virginica类别在训练集中出现的频率。
对于每个特征值,根据训练集中每个类别所占的样本数量,计算每个类别在该特征值下出现的频率,作为条件概率。
5.测试数据分类将测试集中的每个样本的四个特征值代入条件概率公式中,计算出各个类别的后验概率,最后将后验概率最大的类别作为该测试样本的分类结果。
6.分类结果评估将测试集分类结果与实际类别进行比较,计算分类准确率和混淆矩阵。
模式识别实验报告
模式识别实验报告关键信息项:1、实验目的2、实验方法3、实验数据4、实验结果5、结果分析6、误差分析7、改进措施8、结论1、实验目的11 阐述进行模式识别实验的总体目标和期望达成的结果。
111 明确实验旨在解决的具体问题或挑战。
112 说明实验对于相关领域研究或实际应用的意义。
2、实验方法21 描述所采用的模式识别算法和技术。
211 解释选择这些方法的原因和依据。
212 详细说明实验的设计和流程,包括数据采集、预处理、特征提取、模型训练和测试等环节。
3、实验数据31 介绍实验所使用的数据来源和类型。
311 说明数据的规模和特征。
312 阐述对数据进行的预处理操作,如清洗、归一化等。
4、实验结果41 呈现实验得到的主要结果,包括准确率、召回率、F1 值等性能指标。
411 展示模型在不同数据集或测试条件下的表现。
412 提供可视化的结果,如图表、图像等,以便更直观地理解实验效果。
5、结果分析51 对实验结果进行深入分析和讨论。
511 比较不同实验条件下的结果差异,并解释其原因。
512 分析模型的优点和局限性,探讨可能的改进方向。
6、误差分析61 研究实验中出现的误差和错误分类情况。
611 分析误差产生的原因,如数据噪声、特征不充分、模型复杂度不足等。
612 提出减少误差的方法和建议。
7、改进措施71 根据实验结果和分析,提出针对模型和实验方法的改进措施。
711 描述如何优化特征提取、调整模型参数、增加训练数据等。
712 预测改进后的可能效果和潜在影响。
8、结论81 总结实验的主要发现和成果。
811 强调实验对于模式识别领域的贡献和价值。
812 对未来的研究方向和进一步工作提出展望。
在整个实验报告协议中,应确保各项内容的准确性、完整性和逻辑性,以便为模式识别研究提供有价值的参考和借鉴。
模式识别实验【范本模板】
《模式识别》实验报告班级:电子信息科学与技术13级02 班姓名:学号:指导老师:成绩:通信与信息工程学院二〇一六年实验一 最大最小距离算法一、实验内容1. 熟悉最大最小距离算法,并能够用程序写出。
2. 利用最大最小距离算法寻找到聚类中心,并将模式样本划分到各聚类中心对应的类别中.二、实验原理N 个待分类的模式样本{}N X X X , 21,,分别分类到聚类中心{}N Z Z Z , 21,对应的类别之中.最大最小距离算法描述:(1)任选一个模式样本作为第一聚类中心1Z 。
(2)选择离1Z 距离最远的模式样本作为第二聚类中心2Z 。
(3)逐个计算每个模式样本与已确定的所有聚类中心之间的距离,并选出其中的最小距离.(4)在所有最小距离中选出一个最大的距离,如果该最大值达到了21Z Z -的一定分数比值以上,则将产生最大距离的那个模式样本定义为新增的聚类中心,并返回上一步.否则,聚类中心的计算步骤结束。
这里的21Z Z -的一定分数比值就是阈值T ,即有:1021<<-=θθZ Z T(5)重复步骤(3)和步骤(4),直到没有新的聚类中心出现为止。
在这个过程中,当有k 个聚类中心{}N Z Z Z , 21,时,分别计算每个模式样本与所有聚类中心距离中的最小距离值,寻找到N 个最小距离中的最大距离并进行判别,结果大于阈值T 是,1+k Z 存在,并取为产生最大值的相应模式向量;否则,停止寻找聚类中心。
(6)寻找聚类中心的运算结束后,将模式样本{}N i X i ,2,1, =按最近距离划分到相应的聚类中心所代表的类别之中。
三、实验结果及分析该实验的问题是书上课后习题2。
1,以下利用的matlab 中的元胞存储10个二维模式样本X {1}=[0;0];X{2}=[1;1];X {3}=[2;2];X{4}=[3;7];X{5}=[3;6]; X{6}=[4;6];X{7}=[5;7];X{8}=[6;3];X{9}=[7;3];X{10}=[7;4];利用最大最小距离算法,matlab 运行可以求得从matlab 运行结果可以看出,聚类中心为971,,X X X ,以1X 为聚类中心的点有321,,X X X ,以7X 为聚类中心的点有7654,,,X X X X ,以9X 为聚类中心的有1098,,X X X 。
模式识别的报告(1)
模式识别实验报告(2)姓名:某某某班号:075113学号:2011100xxxx指导老师:马丽基于kNN算法的遥感图像分类一、目标:1. 掌握KNN算法原理2. 用MATLAB实现kNN算法,并进行结果分析二、算法分析:所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用她最接近的k个邻居来代表。
kNN算法的核心思想是如果一个样本在特征空间中的k 个最相似的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。
该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。
kNN方法在类别决策时,只与极少量的相邻样本有关。
由于kNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,kNN方法较其他方法更为适合。
三、实验内容:1.利用所有带标记的数据作为train数据,调用KNN分类函数KNN_Cla()对整个图像进行分类,得到整个图像的分类结果图。
2.随机在所有带标记的数据中选择train和test数据(50%train数据,50%test 数据)然后进行kNN分类。
随机选择10次,计算总体分类精度OA,然后求平均结果,作为最终对算法的评价。
K值依次选择1,3,5,7,9,11,分别用这6种K的取值进行kNN算法,得到每种K值下的总体分类精度OA,然后进行比较。
分类结果:四、数据介绍:zy3sample1:资源三号卫星遥感图,Img为读入遥感图生成的400*400*4矩阵。
xy3roi:ROI数据,GT为读入ROI生成的400*400矩阵。
INP_200:INP高光谱数据145*145*200。
92A V3GT_cls:ROI数据45*145。
五、实验程序:function [result,OA]=knn_classifier(X_train,Y_train,X_test,Y_test,options)%% 实现KNN分类% 输入参数% X_train : N*D% Y_train : 1*N% X_test : N*D% 输出参数% result :N*1% OA :精确度for k=1:len%一次处理1个点len=length(X_test);d=Euclidian_distance(X_train,X_test(k,:);%计算所有待分类点到所有训练点的距离[D,n]=sort(d);ind=n(1:option.K);%找到所有距离中最小的K个距离for k=1:len%一次处理1个点C(k)=length(find(Y_train(ind)==k);endindc=find(max(C));result(k)=indc(1);end;error=length(find(result'~=Y_test));%求出差错率OA=1-error/len;六、实验结果:zy3sample数据KNN分类结果(K=1):不同k值下的OA变化曲线图:七、心得体会:这次的程序主要是弄懂KNN 算法的思想就可以画出流程图其实最主要的就是搞清楚中间迭代部分的写法。
模式识别学习报告(团队)
模式识别学习报告(团队)
简介
本报告是我们团队就模式识别研究所做的总结和讨论。
模式识别是一门关于如何从已知数据中提取信息并作出决策的学科。
在研究过程中,我们通过研究各种算法和技术,了解到模式识别在人工智能、机器研究等领域中的重要性并进行实践操作。
研究过程
在研究过程中,我们首先了解了模式识别的基本概念和算法,如KNN算法、朴素贝叶斯算法、决策树等。
然后我们深入研究了SVM算法和神经网络算法,掌握了它们的实现和应用场景。
在实践中,我们使用了Python编程语言和机器研究相关的第三方库,比如Scikit-learn等。
研究收获
通过研究,我们深刻认识到模式识别在人工智能、机器研究领域中的重要性,了解到各种算法和技术的应用场景和优缺点。
同时我们也发现,在实践中,数据的质量决定了模型的好坏,因此我们需要花费更多的时间来处理数据方面的问题。
团队讨论
在研究中,我们也进行了很多的团队讨论和交流。
一方面,我们优化了研究方式和效率,让研究更加有效率;另一方面我们还就机器研究的基本概念和算法的前沿发展进行了讨论,并提出了一些有趣的问题和方向。
总结
通过学习和团队讨论,我们深刻认识到了模式识别在人工智能和机器学习领域中的核心地位,并获得了实践经验和丰富的团队协作经验。
我们相信这些学习收获和经验会在今后的学习和工作中得到很好的应用。
模式识别实验报告
二、实验步骤 前提条件: 只考虑第三种情况:如果 di(x) >dj(x) 任意 j≠ i ,则判 x∈ωi 。
○1 、赋初值,分别给 c 个权矢量 wi(1)(i=1,2,…c)赋任意的初
值,选择正常数ρ ,置步数 k=1;
○2 、输入符号未规范化的增广训练模式 xk, xk∈{x1, x2… xN} ,
二、实验步骤
○1 、给出 n 个混合样本,令 I=1,表示迭代运算次数,选取 c
个初始聚合中心 ,j=1,2,…,c;
○2 、 计 算 每 个 样 本 与 聚 合 中 心 的 距 离
,
。
若
, ,则
。
○3 、 计 算 c 个 新 的 聚 合 中 心 :
,
。
○4 、判断:若
,
,则 I=I+1,返回
第二步 b 处,否则结束。 三、程序设计
聚类没有影响。但当 C=2 时,该类别属于正确分类。 而类别数目大于 2 时,初始聚合中心对聚类的影响非常大,仿真
结果多样化,不能作为分类标准。 2、考虑类别数目对聚类的影响: 当类别数目变化时,结果也随之出现变化。 3、总结 综上可知,只有预先分析过样本,确定合适的类别数目,才能对
样本进行正确分类,而初始聚合中心对其没有影响。
8
7
6
5
4
3
2
1
0
0
1
2
3
4
5
6
7
8
9
初始聚合中心为(0,0),(2,2),(5,5),(7,7),(9,9)
K-均 值 聚 类 算 法 : 类 别 数 目 c=5 9
8
7
6
5
4
模式识别课程实验报告
模式识别课程实验报告学院专业班级姓名学号指导教师提交日期1 Data PreprocessingThe provide dataset includes a training set with 3605 positive samples and 10055 negative samples, and a test set with 2043 positive samples and 4832 negative samples. A 2330-dimensional Haar-like feature was extracted for each sample. For high dimensional data, we keep the computation manageable by sampling , feature selection, and dimension reduction.1.1 SamplingIn order to make the samples evenly distributed, we calculate the ratio of negative samples and positive samples int test set. And then randomly select the same ratio of negative samples in training set. After that We use different ratios of negative and positive samples to train the classifier for better training speed.1.2 Feature SelectionUnivariate feature selection can test each feature, measure the relationship between the feature and the response variable so as to remove unimportant feature variables. In the experiment, we use the method sklearn.feature_selection.SelectKBest to implement feature selection. We use chi2 which is chi-squared stats of non-negative features for classification tasks to rank features, and finally we choose 100 features ranked in the top 100.2 Logistic regressionIn the experiment, we choose the logistic regression model, which is widely used in real-world scenarios. The main consideration in our work is based on the binary classification logic regression model.2.1 IntroductionA logistic regression is a discriminant-based approach that assumes that instances of a class are linearly separable. It can obtain the final prediction model by directly estimating the parameters of the discriminant. The logistic regression model does not model class conditional density, but rather models the class condition ratio.2.2 processThe next step is how to obtain the best evaluation parameters, making the training of the LR model can get the best classification effect. This process can also be seen as a search process, that is, in an LR model of the solution space, how to find a design with our LR model most match the solution. In order to achieve the best available LR model, we need to design a search strategy.The intuitive idea is to evaluate the predictive model by judging the degree of matching between the results of the model and the true value. In the field of machine learning, the use of loss function or cost function to calculate the forecast. For the classification, logistic regression uses the Sigmoid curve to greatly reduce the weight of the points that are far from the classification plane through the nonlinear mapping, which relatively increases the weight of the data points which is most relevant to the classification.2.3 Sigmoid functionWe should find a function which can separate two in the two classes binary classification problem. The ideal function is called step function. In this we use the sigmoid function.()z e z -+=11σWhen we increase the value of x, the sigmoid will approach 1, and when we decrease the value of x, the sigmoid will gradually approaches 0. The sigmoid looks like a step function On a large enough scale.2.4 gradient descenti n i i T i x x y L ∑=+--=∂∂-=1t t1t ))(()(θσαθθθαθθThe parameter α called learning rate, in simple terms is how far each step. this parameter is very critical. parameter σis sigmoid function that we introduce in 2.3.3 Train classifierWe use the gradient descent algorithm to train the classifier. Gradient descent is a method of finding the local optimal solution of a function using the first order gradient information. In optimized gradient rise algorithm, each step along the gradient negative direction. The implementation code is as follows:# calculate the sigmoid functiondef sigmoid(inX):return 1.0 / (1 + exp(-inX))#train a logistic regressiondef trainLogisticRegression(train_x, train_y, opts):numSamples, numFeatures = shape(train_x)alpha = opts['alpha'];maxIter = opts['maxIter']weights = ones((numFeatures, 1))# optimize through gradient descent algorilthmfor k in range(maxIter):if opts['optimizeType'] == 'gradDescent': # gradient descent algorilthm output = sigmoid(train_x * weights)error = train_y - outputweights = weights + alpha * train_x.transpose() * error return weightsIn the above program, we repeat the following steps until the convergence:(1) Calculate the gradient of the entire data set(2) Use alpha x gradient to update the regression coefficientsWhere alpha is the step size, maxIter is the number of iterations.4 evaluate classifier4.1 optimizationTo find out when the classifier performs best, I do many experiments. The three main experiments are listed below.First.I use two matrix types of data to train a logistic regression model using some optional optimize algorithm, then use some optimization operation include alpha and maximum number of iterations. These operations are mainly implemented by this function trainLogisticRegression that requires three parameters train_x, train_y, opts, of which two parameters are the matrix type of training data set, the last parameter is some optimization operations, including the number of steps and the number of iterations. And the correct rate as follows:When we fixed the alpha, change the number of iterations, we can get the results as shown below:Red: alpha = 0.001Yellow: alpha = 0.003Blue: alpha = 0.006Black: alpha = 0.01Green: alpha = 0.03Magenta: alpha = 0.3This line chart shows that if the iterations too small, the classifier will perform bad. As the number of iterations increases, the accuracy will increase. And we can konw iterations of 800 seems to be better. The value of alpha influences the result slightly. If the iterations is larger then 800, the accuracy of the classifier will stabilize and the effect of the step on it can be ignored.Second.When we fixed the iterations, change the alpha, we can get the results as shown below:This line chart shows when the number of iterations is larger 800, the accuracy is relatively stable, with the increase of the alpha, the smaller the change. And when the number of iterations is small, for example, the number of times is 100, the accuracy is rather strange, the accuracy will increase with the increase of alpha. We can know that when the number of iterations is small, even if the alpha is very small, its accuracy is not high. The number of iterations and the alpha is important for the accuracy of the logical regression model training.Third.The result of the above experiment is to load all the data to train the classifier, but there are 3605 pos training data but 10055 neg training data. So I am curious about whether can I use less neg training data to train the classifier for better training speed.I use the test_differentNeg.py to does this experiment:Red: iterations = 100 Yellow: iterations = 300 Blue: iterations = 800 Black: iterations = 1000The line chart shows that the smaller the negative sample, the lower the accuracy. However, as the number of negative samples increases, the accuracy of the classifier.I found that when the number of negative samples is larger 6000, the accuracy was reduced and then began to increase.4.2 cross-validationWe divided the data set into 10 copies on average,9 copies as a training set and 1 copies as a test set.we can get the results as shown below:Red: alpha = 0.001Yellow: alpha = 0.003Blue: alpha = 0.006Black: alpha = 0.01Green: alpha = 0.03Magenta: alpha = 0.3This figure shows that if the iterations too small, the classifier will perform bad. Asthe number of iterations increases, the accuracy will increase. And we can konw iterations of 1000 seems to be better. The value of alpha influences the result slightly.If the iterations is larger then 1000, the accuracy of the classifier will achieve 84% and stable. And the effect of the step on it can be ignored.5 ConclusionIn this experiment, We notice that no matter before or after algorithm optimization,the test accuracy does not achieve our expectation. At first the accuracy of LR can reach 80%. After optimization, the accuracy of LR can reach 88%. I think there are several possible reasons below:(1) The training set is too small for only about 700 samples for active training sets, while the negative training set has only 800 samples;(2) We did not use a more appropriate method to filter the samples;(3) The method of selecting features is not good enough because it is too simple;(4) Dimension reduction does not be implemented, so that The high dimension of features increases the computation complexity and affects the accuracy;(5) The test sets may come from different kinds of video or images which are taken from different areas.(6) The number of iterations is set too small or the alpha is set too small or too large. These questions above will be improved in future work.In this project, we use Logistic regression to solve the binary classification problem. Before the experiment, we studied and prepared the algorithm of the LR model and reviewed other machine learning models studied in the pattern recognition course. In this process, we use python with a powerful machine learning library to implement, continue to solve the various problems, and optimize the algorithm to make the classifier perform better. At the same time, we also collaborate and learn from each other. Although the project takes us a lot of time, We have consolidated the theoretical knowledge and have fun in practice.。
模式识别技术实验报告
模式识别技术实验报告本实验旨在探讨模式识别技术在计算机视觉领域的应用与效果。
模式识别技术是一种人工智能技术,通过对数据进行分析、学习和推理,识别其中的模式并进行分类、识别或预测。
在本实验中,我们将利用机器学习算法和图像处理技术,对图像数据进行模式识别实验,以验证该技术的准确度和可靠性。
实验一:图像分类首先,我们将使用卷积神经网络(CNN)模型对手写数字数据集进行分类实验。
该数据集包含大量手写数字图片,我们将训练CNN模型来识别并分类这些数字。
通过调整模型的参数和训练次数,我们可以得到不同准确度的模型,并通过混淆矩阵等评估指标来评估模型的性能和效果。
实验二:人脸识别其次,我们将利用人脸数据集进行人脸识别实验。
通过特征提取和比对算法,我们可以识别不同人脸之间的相似性和差异性。
在实验过程中,我们将测试不同算法在人脸识别任务上的表现,比较它们的准确度和速度,探讨模式识别技术在人脸识别领域的应用潜力。
实验三:异常检测最后,我们将进行异常检测实验,使用模式识别技术来识别图像数据中的异常点或异常模式。
通过训练异常检测模型,我们可以发现数据中的异常情况,从而做出相应的处理和调整。
本实验将验证模式识别技术在异常检测领域的有效性和实用性。
结论通过以上实验,我们对模式识别技术在计算机视觉领域的应用进行了初步探索和验证。
模式识别技术在图像分类、人脸识别和异常检测等任务中展现出了良好的性能和准确度,具有广泛的应用前景和发展空间。
未来,我们将进一步深入研究和实践,探索模式识别技术在更多领域的应用,推动人工智能技术的发展和创新。
【字数:414】。
模式识别实验报告
模式识别实验报告实验一、线性分类器的设计与实现1. 实验目的:掌握模式识别的基本概念,理解线性分类器的算法原理。
2. 实验要求:(1)学习和掌握线性分类器的算法原理;(2)在MATLAB 环境下编程实现三种线性分类器并能对提供的数据进行分类;(3)对实现的线性分类器性能进行简单的评估(例如算法适用条件,算法效率及复杂度等)。
注:三种线性分类器为,单样本感知器算法、批处理感知器算法、最小均方差算法批处理感知器算法算法原理:感知器准则函数为J p a=(−a t y)y∈Y,这里的Y(a)是被a错分的样本集,如果没有样本被分错,Y就是空的,这时我们定义J p a为0.因为当a t y≤0时,J p a是非负的,只有当a是解向量时才为0,也即a在判决边界上。
从几何上可知,J p a是与错分样本到判决边界距离之和成正比的。
由于J p梯度上的第j个分量为∂J p/ða j,也即∇J p=(−y)y∈Y。
梯度下降的迭代公式为a k+1=a k+η(k)yy∈Y k,这里Y k为被a k错分的样本集。
算法伪代码如下:begin initialize a,η(∙),准则θ,k=0do k=k+1a=a+η(k)yy∈Y k|<θuntil | ηk yy∈Y kreturn aend因此寻找解向量的批处理感知器算法可以简单地叙述为:下一个权向量等于被前一个权向量错分的样本的和乘以一个系数。
每次修正权值向量时都需要计算成批的样本。
算法源代码:unction [solution iter] = BatchPerceptron(Y,tau)%% solution = BatchPerceptron(Y,tau) 固定增量批处理感知器算法实现%% 输入:规范化样本矩阵Y,裕量tau% 输出:解向量solution,迭代次数iter[y_k d] = size(Y);a = zeros(1,d);k_max = 10000; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k=0;y_temp=zeros(d,1);while k<k_maxc=0;for i=1:1:y_kif Y(i,:)*a'<=tauy_temp=y_temp+Y(i,:)';c=c+1;endendif c==0break;enda=a+y_temp';k=k+1;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %k = k_max;solution = a;iter = k-1;运行结果及分析:数据1的分类结果如下由以上运行结果可以知道,迭代17次之后,算法得到收敛,解出的权向量序列将样本很好的划分。
模式识别实验报告_3
模式识别实验报告_3第⼀次实验实验⽬的:1.学习使⽤ENVI2.会⽤MATLAB读⼊遥感数据并进⾏处理实验内容:⼀学习使⽤ENVI1.使⽤ENVI打开遥感图像(任选3个波段合成假彩⾊图像,保存写⼊报告)2.会查看图像的头⽂件(保存或者copy⾄报告)3.会看地物的光谱曲线(保存或者copy⾄报告)4.进⾏数据信息统计(保存或者copy⾄报告)5.设置ROI,对每类地物⾃⼰添加标记数据,并保存为ROI⽂件和图像⽂件(CMap贴到报告中)。
6.使⽤⾃⼰设置的ROI进⾏图像分类(ENVI中的两种有监督分类算法)(分类算法名称和分类结果写⼊报告)⼆MATLAB处理遥感数据(提交代码和结果)7.⽤MATLAB读⼊遥感数据(zy3和DC两个数据)8.⽤MATLAB读⼊遥感图像中ROI中的数据(包括数据和标签)9.把图像数据m*n*L(其中m表⽰⾏数,n表⽰列数,L表⽰波段数),重新排列为N*L的⼆维矩阵(其中N=m*n),其中N表⽰所有的数据点数量m*n。
(提⽰,⽤reshape函数,可以help查看这个函数的⽤法)10.计算每⼀类数据的均值(平均光谱),并把所有类别的平均光谱画出来(plot)(类似下⾯的效果)。
11.画出zy3数据中“农作物类别”的数据点(⾃⼰ROI标记的这个类别的点)在每个波段的直⽅图(matlab函数:nbins=50;hist(Xi,nbins),其中Xi表⽰这类数据在第i波段的数值)。
计算出这个类别数据的协⽅差矩阵,并画出(figure,imagesc(C),colorbar)。
1.打开遥感图像如下:2.查看图像头⽂件过程如下:3.地物的光谱曲线如下:4.数据信息统计如下:(注:由于保存的txt⽂件中的数据信息过长,所以采⽤截图的⽅式只显⽰了出⼀部分数据信息)5.设置ROI,对每类地物⾃⼰添加标记数据,CMap如下:6.使⽤⾃⼰设置的ROI进⾏图像分类(使⽤⽀持向量机算法和最⼩距离算法),⽀持向量机算法分类结果如下:最⼩距离算法分类结果如下:对⽐两种算法的分类结果可以看出⽀持分量机算法分类结果⽐最⼩距离算法分类结果好⼀些。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学院:自动化学院班级:姓名:学号:2014年11月实验一 Bayes 分类器的设计一、 实验目的:1. 对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识;2. 理解二类分类器的设计原理。
二、 实验条件:1. PC 微机一台和MATLAB 软件。
三、 实验原理:最小风险贝叶斯决策可按下列步骤进行:1. 在已知)(i P ω,)|(i X P ω,c i ,,1 =及给出待识别的X 的情况下,根据贝叶斯公式计算出后验概率:∑==c j jj i i i P X P P X P X P 1)()|()()|()|(ωωωωω c j ,,1 =2. 利用计算出的后验概率及决策表,按下式计算出采取i α决策的条件风险: ∑==c j j j i i X P X R 1)|(),()|(ωωαλα a i ,,1 =3. 对2中得到的a 个条件风险值)|(X R i α(a i ,,1 =)进行比较,找出使条件风险最小的决策k α,即:)|(min )|(,,1X R X R k c i k αα ==, 则k α就是最小风险贝叶斯决策。
四、 实验内容:假定某个局部区域细胞识别中正常(1ω)和非正常(2ω)两类先验概率分别为: 正常状态:)(1ωP =0.9;异常状态:)(2ωP =0.1。
现有一系列待观察的细胞,其观察值为x :-3.9847 -3.5549 -1.2401 -0.9780 -0.7932 -2.8531-2.7605 -3.7287 -3.5414 -2.2692 -3.4549 -3.0752-3.9934 2.8792 -0.9780 0.7932 1.1882 3.0682-1.5799 -1.4885 -0.7431 -0.4221 -1.1186 4.2532)|(1ωx P )|(2ωx P 类条件概率分布正态分布分别为(-2,0.25)(2,4)。
决策表为011=λ(11λ表示),(j i ωαλ的简写),12λ=6, 21λ=1,22λ=0。
试对观察的结果进行分类。
五、 实验程序及结果:试验程序和曲线如下,分类结果在运行后的主程序中:实验程序:x= [-3.9847 -3.5549 -1.2401 -0.9780 -0.7932 -2.8531-2.7605 -3.7287 -3.5414 -2.2692 -3.4549 -3.0752-3.9934 2.8792 -0.9780 0.7932 1.1882 3.0682-1.5799 -1.4885 -0.7431 -0.4221 -1.1186 4.2532 ]pw1=0.9 ;pw2=0.1e1=-2; a1=0.5e2=2;a2=2m=numel(x) %得到待测细胞个数pw1_x=zeros(1,m) %存放对w1的后验概率矩阵pw2_x=zeros(1,m) %存放对w2的后验概率矩阵results=zeros(1,m) %存放比较结果矩阵for i = 1:m %计算在w1下的后验概率pw1_x(i)=(pw1*normpdf(x(i),e1,a1))/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e2,a2)) %计算在w2下的后验概率pw2_x(i)=(pw2*normpdf(x(i),e2,a2))/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e2,a2)) endfor i = 1:mif pw1_x(i)>pw2_x(i) %比较两类后验概率result(i)=0 %正常细胞elseresult(i)=1 %异常细胞endenda=[-5:0.05:5] %取样本点以画图n=numel(a)pw1_plot=zeros(1,n)pw2_plot=zeros(1,n)for j=1:npw1_plot(j)=(pw1*normpdf(a(j),e1,a1))/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j),e2,a2)) pw2_plot(j)=(pw2*normpdf(a(j),e2,a2))/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j),e2,a2)) endfigure(1)hold onplot(a,pw1_plot,'k-',a,pw2_plot,'r-.')for k=1:mif result(k)==0plot(x(k),-0.1,'b*') %正常细胞用*表示elseplot(x(k),-0.1,'rp') %异常细胞用五角星表示end;end;legend('正常细胞后验概率曲线','异常细胞后验概率曲线','正常细胞','异常细胞')xlabel('样本细胞的观察值')ylabel('后验概率')title('后验概率分布曲线')grid onreturn实验二 基于Fisher 准则的线性分类器设计一、 实验目的:1. 进一步了解分类器的设计概念,能够根据自己的设计对线性分类器有更深刻地认识;2. 理解Fisher 准则方法确定最佳线性分界面方法的原理,以及拉格朗日乘子求解的原理。
二、 实验条件:1. PC 微机一台和MATLAB 软件。
三、 实验原理:设有一个集合包含N 个d 维样本N x x x ,,,21 ,其中1N 个属于1ω类,2N 个属于2ω类。
线性判别函数的一般形式可表示成0)(w x W x g T +=,其中T d w w W ),,(1 =。
根据Fisher 选择投影方向W 的原则,即使原样本向量在该方向上的投影能兼顾类间分布尽可能分开,类内样本投影尽可能密集的要求,用以评价投影方向W 的函数为: WS W W S W W J w T b T F =)( T Wm m S W )(211*-=- 其中:∑==iN j j i i x N m 11 2,1=i j x 为i N 类中的第j 个样本 w S 为类内离散度,定义为:∑∑==--=2111))((i N j T i j j w im x m x Sb S 为类间离散度,定义为:T b m m m m S ))((2121--=上面的公式是使用Fisher 准则求最佳法线向量的解,我们称这种形式的运算为线性变换,其中)(21m m -是一个向量,1-W S 是W S 的逆矩阵,如)(21m m -是d 维,1-W S 和W S 都是d ×d 维,得到的*W 也是一个d 维的向量。
向量*W 就是使Fisher 准则函数)(W J F 达极大值的解,也就是按Fisher 准则将d 维X 空间投影到一维Y 空间的最佳投影方向,该向量*W 的各分量值是对原d 维特征向量求加权和的权值。
以上讨论了线性判别函数加权向量W 的确定方法,并讨论了使Fisher 准则函数极大的d 维向量*W 的计算方法,但是判别函数中的另一项0w 尚未确定,一般可采用以下几种方法确定0w 如2)(21*0m m W w T +-= 或者212211*0)(N N m N m N W w T++-=或当)(1ωP 与)(2ωP 已知时可用*1212012()ln[()/()][]22T W m m P P w N N ωω+=-++-当0w 确定之后,则可按以下规则分类,*010T W X w x ω+>→∈*020T W X w x ω+<→∈四、 实验内容:已知有两类数据1ω和2ω二者的概率已知)(1ωP =0.6,)(2ωP =0.4。
1ω中数据点的坐标对应一一如下:1x =0.2331 1.5207 0.6499 0.7757 1.0524 1.19740.2908 0.2518 0.6682 0.5622 0.9023 0.1333-0.5431 0.9407 -0.2126 0.0507 -0.0810 0.73150.3345 1.0650 -0.0247 0.1043 0.3122 0.66550.5838 1.1653 1.2653 0.8137 -0.3399 0.51520.7226 -0.2015 0.4070 -0.1717 -1.0573 -0.20991y =2.3385 2.1946 1.6730 1.6365 1.7844 2.01552.0681 2.1213 2.4797 1.5118 1.9692 1.83401.87042.2948 1.7714 2.3939 1.5648 1.93292.2027 2.4568 1.7523 1.6991 2.4883 1.72592.0466 2.0226 2.3757 1.7987 2.0828 2.07981.94492.3801 2.2373 2.1614 1.9235 2.26041z =0.5338 0.8514 1.0831 0.4164 1.1176 0.55360.6071 0.4439 0.4928 0.5901 1.0927 1.07561.0072 0.4272 0.4353 0.9869 0.4841 1.09921.0299 0.7127 1.0124 0.4576 0.8544 1.12750.7705 0.4129 1.0085 0.7676 0.8418 0.87840.9751 0.7840 0.4158 1.0315 0.7533 0.9548数据点的对应的三维坐标为:22x =1.4010 1.2301 2.0814 1.1655 1.3740 1.18291.7632 1.97392.4152 2.5890 2.8472 1.95391.2500 1.2864 1.26142.0071 2.1831 1.79091.3322 1.1466 1.7087 1.59202.9353 1.46642.9313 1.8349 1.8340 2.5096 2.7198 2.31482.0353 2.6030 1.2327 2.1465 1.5673 2.94142y =1.0298 0.9611 0.9154 1.4901 0.8200 0.93991.1405 1.0678 0.8050 1.2889 1.4601 1.43340.7091 1.2942 1.3744 0.9387 1.2266 1.18330.8798 0.5592 0.5150 0.9983 0.9120 0.71261.2833 1.1029 1.2680 0.7140 1.2446 1.33921.1808 0.5503 1.4708 1.1435 0.7679 1.12882z =0.6210 1.3656 0.5498 0.6708 0.8932 1.43420.9508 0.7324 0.5784 1.4943 1.0915 0.76441.2159 1.3049 1.1408 0.9398 0.6197 0.66031.3928 1.4084 0.6909 0.8400 0.5381 1.37290.7731 0.7319 1.3439 0.8142 0.9586 0.73790.7548 0.7393 0.6739 0.8651 1.3699 1.1458数据的样本点分布如下图:根据所得结果判断(1,1.5,0.6)(1.2,1.0,0.55),(2.0,0.9,0.68),(1.2,1.5,0.89),(0.23,2.33,1.43),属于哪个类别。