光电效应实验报告
光电效应研究实验报告
光电效应研究实验报告光电效应是指材料受到光线照射后,其表面电子受激发而发生电子发射的现象。
光电效应在物理学中具有重要的意义,通过实验研究可以深入了解光电作用的原理和规律。
本实验旨在通过实际操作,探索光电效应在不同条件下的变化规律,并对实验结果进行分析。
实验材料和仪器本实验所需材料包括:光电效应实验装置、汞灯、光电管、电压源、电流表、光栅、测微眼镜等。
实验仪器如下:光电效应实验装置主要由镀铬阴极、透明阳极、汞灯和光栅组成。
实验步骤1. 检查实验装置是否正常连接,保证各部件完好无损。
2. 将汞灯放置在适当位置,点亮,调节光强。
3. 将光栅放置在适当位置,使光线通过光栅射到光电管上。
4. 调节电压源,测量不同电压下的电流值。
5. 记录实验数据,并绘制电压与电流的关系曲线。
实验结果分析通过实验数据分析可得出以下结论:1. 光电效应与光强成正比,光强越大,产生的电子数量越多。
2. 光电效应与光频成正比,光频越大,电子运动速度越快。
3. 光电效应与反向电压成反比,反向电压增大时,电子发射速度减缓。
实验结论本实验通过研究光电效应的实验数据,验证了光电效应的基本规律性,光强、光频和反向电压是影响光电效应的重要因素。
同时,通过实验操作,提高了实验操作能力和数据处理技能,对光电效应的认识有了更深入的了解。
总结光电效应作为一项重要的物理现象,具有广泛的应用价值,如光电池、光电管等领域。
通过本实验的探究,不仅加深了对光电效应的理解,也提高了实验技能和科学素养。
希望通过这次实验,能够更好地认识和研究光电效应的原理和应用。
以上为光电效应研究实验报告,谢谢阅读。
光电效应大学实验报告
光电效应大学实验报告光电效应大学实验报告引言:光电效应是一个重要的物理现象,通过实验研究光电效应可以深入了解光与物质的相互作用过程。
本实验旨在通过测量光电效应的一些基本参数,探索光电效应的规律和应用。
一、实验目的本实验的主要目的有以下几个方面:1. 研究光电效应的基本原理和规律;2. 测量光电效应的截止电压和最大电子动能;3. 探究光电效应在光强和光频率变化时的反应。
二、实验原理光电效应是指当光照射到金属表面时,金属中的自由电子被激发出来,并形成电流的现象。
根据实验的需要,我们将使用一块金属板作为光电效应的实验样品。
根据爱因斯坦的光电效应理论,光电效应的主要特点包括:1. 光电子的动能只与光的频率有关,而与光的强度无关;2. 光电子的动能与光的频率成正比,与光的强度无关;3. 光电子的动能与光的频率之间有一个最小频率的阈值,低于这个频率时无法产生光电子。
三、实验步骤1. 将实验装置搭建好,确保光源、金属板和电路连接良好,并保持实验环境的稳定;2. 调节光源的光强,记录不同光强下的光电流强度;3. 调节光源的频率,记录不同频率下的光电流强度;4. 测量光电效应的截止电压和最大电子动能。
四、实验结果与分析1. 光强与光电流强度的关系:根据实验数据的统计和分析,我们发现光强与光电流强度之间呈线性关系,即光强越大,光电流强度越大。
这与光电效应的基本原理相符。
2. 频率与光电流强度的关系:根据实验数据的统计和分析,我们发现频率与光电流强度之间呈非线性关系。
在低频率下,光电流强度较低,但随着频率的增加,光电流强度迅速增加。
这与光电效应的基本原理相符。
3. 截止电压和最大电子动能的测量:通过实验测量,我们得到了金属板的截止电压和最大电子动能。
截止电压是指当光的频率低于某一阈值时,电流不再产生的电压值。
最大电子动能是指当光的频率高于阈值时,电子获得的最大动能值。
五、实验结论通过本次实验,我们得到了以下结论:1. 光强与光电流强度呈线性关系,光强越大,光电流强度越大;2. 频率与光电流强度呈非线性关系,低频下光电流强度较低,高频下光电流强度迅速增加;3. 光电效应存在截止电压和最大电子动能的特性,截止电压与光的频率有关,最大电子动能与光的频率成正比。
实验报告_光电效应
一、实验目的1. 了解光电效应的基本原理和规律;2. 掌握光电效应实验的操作步骤;3. 通过实验测量并分析光电管的伏安特性曲线;4. 利用光电效应测量普朗克常数。
二、实验原理光电效应是指当光照射到某些物质表面时,物质表面的电子吸收光子能量而逸出的现象。
根据爱因斯坦的光电效应理论,光子能量与光子的频率成正比,即 E = hv,其中E为光子能量,h为普朗克常数,v为光子频率。
光电效应的基本规律如下:1. 光电效应的发生需要入射光的频率大于金属的截止频率;2. 光电子的动能与入射光的频率成正比;3. 光电子的最大动能与入射光的强度无关。
三、实验仪器与材料1. 光电效应实验仪:包括光电管、滤光片、光阑、微电流放大器、示波器等;2. 汞灯:提供连续光谱;3. 电压表:测量光电管两端电压;4. 电流表:测量光电流;5. 数据采集器:记录实验数据;6. 计算机:处理实验数据。
四、实验步骤1. 将实验仪及灯电源接通,预热20分钟;2. 调整光电管与灯的距离,保持约40cm;3. 将光电管暗箱电压输入端与实验仪电压输出端连接;4. 选择合适的电流量程,进行测试前调零;5. 切换到伏安特性测试档位,调节电压调节范围,记录所测UAK及I的数据;6. 改变入射光的频率,重复步骤5,记录数据;7. 利用实验数据绘制伏安特性曲线;8. 根据伏安特性曲线,测量不同频率下的截止电压;9. 利用光电效应方程,计算普朗克常数。
五、实验数据整理与归纳1. 记录实验数据,包括入射光的频率、电压、电流等;2. 绘制伏安特性曲线;3. 根据伏安特性曲线,测量不同频率下的截止电压;4. 利用光电效应方程,计算普朗克常数。
六、实验结果与分析1. 通过实验,验证了光电效应的基本规律;2. 通过测量伏安特性曲线,得到了不同频率下的截止电压;3. 利用光电效应方程,计算出了普朗克常数的值。
七、实验心得1. 光电效应实验是光学实验中的一个重要实验,通过实验加深了对光电效应基本原理和规律的理解;2. 实验过程中,要注意实验仪器的操作,确保实验数据的准确性;3. 在数据处理和分析过程中,要运用正确的物理理论和方法,得出合理的结论。
大学光电效应实验报告
大学光电效应实验报告摘要:本实验通过测量光电效应电流与光照强度的关系,验证了光电效应公式,同时探究了光电效应与金属性质之间的关系。
实验结果表明,光电效应电流与光照强度呈线性关系,且直线斜率与金属工作函数成反比。
另外,使用单色光进行实验,观察到光电效应电流随波长的增加而减小,波长与截止电压呈反比例关系。
本实验结果在理论研究和工程设计中具有重要意义。
引言:光电效应是一种广泛应用于光电子学和光电检测技术的基本现象,在研究金属性质、测量光照强度、激光制造和光伏发电等方面都具有重要应用价值。
本实验旨在通过实验验证光电效应公式,并研究光电效应与金属性质之间的关系。
实验过程中,我们使用光电性材料作为样品,利用不同波长的光照射样品,测量其光电效应电流随光照强度的变化情况,并记录其截止电压与波长之间的关系。
实验步骤:将光电效应实验仪器接上电源,并将样品清洗干净。
首先使用单色光源,在不同的光强下测量光电效应电流,并记录其值。
对于同一光源,可以使用电阻箱调节其光强,也可以更换光源来变化其光照强度。
之后使用紫外线灯光源,以固定的光照强度对不同金属进行实验,记录其截止电压,并计算相应的工作函数。
最后将实验结果进行统计分析,得出结论。
实验结果:通过实验观察和统计数据计算,我们得到了以下实验结果:1. 光电效应电流与光照强度呈线性关系,即I∝E;2. 线性关系中的直线斜率与金属工作函数成反比,即k∝1/Φ;3. 使用单色光进行实验时,光电效应电流随波长的增加而减小,波长与截止电压呈反比例关系。
结论:本实验通过观察和分析光电效应电流与光照强度的关系、实验数据的计算等手段,验证了光电效应公式的有效性,同时探究了光电效应与金属性质之间的关系。
实验结果表明,光电效应电流与光照强度呈线性关系,且直线斜率与金属工作函数成反比。
另外,使用单色光进行实验,观察到光电效应电流随波长的增加而减小,波长与截止电压呈反比例关系。
这些结果对于理论研究和实际应用都具有重要意义,有助于深入理解光电效应的物理机制,并为相关应用提供理论基础。
大物光电效应实验报告
一、实验目的1. 了解光电效应的基本规律;2. 通过实验测量光电管的伏安特性曲线;3. 测定普朗克常量。
二、实验原理光电效应是指当光照射到金属表面时,金属表面会发射出电子的现象。
根据爱因斯坦的光量子理论,光子具有能量E=hv,其中h为普朗克常数,v为光的频率。
当光子的能量大于金属的逸出功W时,金属表面会发射出电子。
光电效应的基本方程为E=hv-W=1/2mv^2,其中m为电子质量,v为电子速度。
三、实验仪器与材料1. 光电管;2. 滤光片;3. 汞灯;4. 微电流放大器;5. 光电管工作电源;6. 伏安计;7. 秒表;8. 记录纸。
四、实验步骤1. 将光电管接入电路,确保电路连接正确;2. 调整光电管与汞灯的距离,使光电管接收到的光强度适中;3. 在不同频率的光照射下,记录光电管的伏安特性曲线;4. 测量不同频率下的截止电压,并记录数据;5. 根据实验数据,计算普朗克常量。
五、实验数据与结果1. 光电管的伏安特性曲线(1)在577.0nm的紫光照射下,伏安特性曲线如图1所示。
(2)在546.1nm的蓝光照射下,伏安特性曲线如图2所示。
(3)在435.8nm的绿光照射下,伏安特性曲线如图3所示。
(4)在404.7nm的紫外光照射下,伏安特性曲线如图4所示。
2. 截止电压(1)在577.0nm的紫光照射下,截止电压为0.3V;(2)在546.1nm的蓝光照射下,截止电压为0.4V;(3)在435.8nm的绿光照射下,截止电压为0.5V;(4)在404.7nm的紫外光照射下,截止电压为0.6V。
3. 普朗克常量根据实验数据,计算普朗克常量为6.58×10^-34 J·s。
六、实验结果分析1. 从伏安特性曲线可以看出,光电效应遵循爱因斯坦的光量子理论,即光子能量与电子速度之间的关系符合E=hv-W=1/2mv^2;2. 截止电压与光频率成正比,符合爱因斯坦的光量子理论;3. 通过实验测得的普朗克常量与理论值较为接近,说明实验结果较为准确。
光电效应实验报告
一、 引言当光束照射到金属表面时,会有电子从金属表面逸出,这种现象被称之为“光电效应”。
对于光电效应的研究,使人们进一步认识到光的波粒二象性的本质,促进了光的量子理论的建立和近代物理学的发展。
现在观点效应以及基于其理论所制成的各种光学器件已经广泛用于我们的生产生活、科研、国防军事等领域。
所以在本实验中,我们利用光电效应测试仪对爱因斯坦的方程进行验证,并且测出普朗克常量,了解并用实验证实光电效应的各种实验规律,加深对光的粒子性的认识。
二、 实验原理1. 光电效应就是在光的照射下,某些物质内部的电子背光激发出来形成电流的现象;量子性则是源于电磁波的发射和吸收不连续而是一份一份地进行,每一份能量称之为一个能量子,等于普朗克常数乘以辐射电磁波的频率,即E=h*f (f表示光子的频率)。
2. 本实验的实验原理图如右图所示,用光强度为P 的单色光照射光电管阴极K,阴极释放出的电子在电源产生的电场的作用下加速向A 移动,在回路中形成光电流,光电效应有以下实验规律;1) 在光强P 一定时,随着U 的增大,光电流逐渐增大到饱和,饱和电流与入射光强成正比。
2) 在光电管两端加反向电压是,光电流变小,在理想状态下,光电流减小到零时说明电子无法打到A,此时eUo=1/2mv^2。
3) 改变入射光频率f 时,截止电压Uo 也随之改变,Uo 与f 成线性关系,并且存在一个截止频率fo,只有当f>fo 时,光电效应才可能发生,对应波长称之为截止波长(红限),截止频率还与fo 有关。
4) 爱因斯坦的光电效应方程:hf=1/2m(Vm)^2+W,其中W 为电子脱离金属所需要的功,即逸出功,与2)中方程联立得:Uo=hf/e – W/e 。
光电效应原理图3.光阑:光具组件中光学元件的边缘、框架或特别设置的带孔屏障称为光阑,光学系统中能够限制成像大小或成像空间范围的元件。
简单地说光阑就是控制光束通过多少的设备。
主要用于调节通过的光束的强弱和照明范围。
光电效应实验报告
光电效应实验报告光电效应实验报告引言:光电效应是物理学中的一项重要实验,通过研究光电效应现象可以深入了解光与物质的相互作用过程。
本实验旨在通过测量光电效应中的关键参数,如光电流和逸出功,来验证爱因斯坦光电效应理论,并探究光电效应的一些基本特性。
实验装置:实验所需的装置主要包括光源、光电池、电路连接线和电流计等。
光源可以选择具有一定波长和强度可调节的光源,如氢气放电灯。
光电池则是用于测量光电效应中的光电流的关键仪器。
实验步骤:1. 将光源与光电池适当距离放置,保持光线垂直照射到光电池的光敏表面。
2. 通过调节光源的强度和波长,使得光电池中的光电流达到稳定值。
3. 使用电流计测量光电池中的光电流,并记录下来。
4. 重复以上步骤,改变光源的强度和波长,测量不同条件下的光电流。
实验结果与讨论:通过实验测量得到的光电流数据可以用来验证光电效应的一些基本特性。
首先,我们可以观察到当光源的波长增加时,光电流的强度也会增加。
这与光电效应理论中的波粒二象性相吻合,即光既具有波动性又具有粒子性。
其次,我们还可以发现当光源的强度增加时,光电流的强度也会增加。
这可以解释为当光子的数量增加时,光电池中光电子的数量也会增加,从而导致光电流的增加。
另外,通过实验测量得到的光电流数据还可以用来计算光电效应中的逸出功。
逸出功是指光电子从光电池中逸出所需的最小能量。
根据光电效应理论,逸出功与光电流之间存在着一定的关系。
通过测量不同条件下的光电流,并利用相关公式进行计算,我们可以得到逸出功的近似值。
实验结果的分析和讨论不仅可以验证光电效应理论的正确性,还可以深入探究光电效应的一些基本特性。
例如,我们可以研究光电效应中的饱和现象,即当光源的强度达到一定阈值时,光电流不再随光源强度的增加而增加。
这可以用来解释光电效应中的光电子释放过程,以及光电池的饱和电流。
结论:通过本次光电效应实验,我们验证了爱因斯坦光电效应理论,并深入了解了光电效应的一些基本特性。
光电效应实验报告
光电效应实验报告
光电效应是指当光线照射到金属表面时,金属会发射电子的现象。
这一现象的发现对于量子物理学的发展产生了深远的影响。
在本次实验中,我们将对光电效应进行实验研究,以进一步了解光电效应的原理和特性。
实验一,光电效应基本原理。
首先,我们使用一台紫外光源照射金属表面,观察其对光的反应。
实验结果显示,金属表面会发射出电子,这表明光子的能量被转化为了电子的动能。
此外,我们还改变了光源的波长和强度,发现不同波长和强度的光对光电效应产生了不同的影响。
这进一步验证了光电效应与光子能量的关系。
实验二,光电效应与金属种类的关系。
接着,我们选取了不同种类的金属进行实验。
结果显示,不同金属对光电效应的响应也存在差异。
一些金属表面对光的反应更为敏感,可以更快地释放出电子,而另一些金属则需要更高能量的光子才能产生光电效应。
这表明金属的物理特性对光电效应有着重要影响。
实验三,光电效应的应用。
最后,我们讨论了光电效应在实际应用中的意义。
光电效应被广泛应用于光电器件、太阳能电池和光电传感器等领域。
通过对光电效应的深入研究,人们能够更好地利用光能资源,推动科技的发展和应用。
总结:
通过本次实验,我们深入了解了光电效应的基本原理和特性,以及其在实际应用中的重要意义。
光电效应作为一种重要的光电转换现象,对于现代科学技术的发展具有重要意义。
我们相信,通过对光电效应的进一步研究和应用,将会为人类社会带来更多的科技创新和发展机遇。
光电效应实验报告
光电效应实验报告摘要:光电效应是一种困扰科学家长时间的现象,它揭示了光的粒子性质。
本实验通过观察在不同条件下,光对金属表面产生的电流变化,来研究光电效应的特性。
实验结果表明,光电效应不仅与光的频率有关,还与光的强度有关。
实验对于光电效应的研究具有一定的指导意义。
1.引言光电效应是指当光照射到金属表面时,金属表面会产生电流的现象。
光电效应的研究对于理解光的本质、验证量子理论以及发展光电子技术等领域具有重要意义。
本实验旨在通过观察光照射对金属表面产生的电流变化来研究光电效应的特性。
2.实验原理光电效应的理论基础是爱因斯坦提出的光量子假设。
根据该假设,光的能量是以光子的形式传播的,一个光子的能量与其频率成正比。
当光照射到金属表面时,光子与金属表面的束缚电子发生相互作用,如果光子的能量大于金属表面的束缚电子的最小能量(逸出功),束缚电子被激发并从金属表面逸出,形成电流。
3.实验装置和方法实验装置主要包括单色光源、金属样品、电离室、电压源和电流计。
实验方法是将金属样品安装在电离室的荧光参与槽中,利用单色光源照射金属样品,调节电压源的电压,测量电离室内的电流。
4.实验结果和分析根据实验结果,我们得到了光照射下不同电压下的电流数据。
(1)光电效应的电流与光源的频率有关。
在固定光源强度的情况下,电流随光源频率的增加而增加。
这是因为光子的能量与其频率成正比,当光源频率增加时,光子的能量增加,有足够的能量逸出金属表面的束缚电子也就增加。
(2)光电效应的电流与光源的强度有关。
在固定光源频率的情况下,电流随光源强度的增加而增加。
这是因为光的强度决定了光子的数量,光子的数量增加,与金属表面相互作用的概率也就增加了。
(3)光电效应的电流与电压有关。
在固定光源频率和强度的情况下,电流随电压的增加而增加,但达到一个饱和值后趋于稳定。
这是因为随着电压的增加,电子获得的能量也增加,逸出金属表面的电子数量增多,但金属中自由电子数量是有限的,当电子数量达到饱和时,电流不再增加。
光电效应实验报告
光电效应【实验目的】(1)了解光电效应的规律,加深对光的量子性的认识。
(2)测量普朗克常量h。
【实验仪器】ZKY-GD-4光电效应实验仪,其组成为:微电流放大器,光电管工作电源,光电管,滤色片,汞灯。
如下图所示。
【实验原理】光电效应的实验原理如图1所示。
入射光照射到光电管阴极K上,产生的光电子在电场的作用下向阳极A迁移构成光电流,改变外加电压,测量出光电流I的大小,即可得出光电管的伏安特性曲线。
光电效应的基本实验事实如下:(1)对应于某一频率,光电效应的I-关系如图2所示。
从图中可见,对一定的频率,有一电压U0,当≦时,电流为零,这个相对于阴极的负值的阳极电压U0,被称为截止电压。
(2)当≧后,I迅速增加,然后趋于饱和,饱和光电流IM的大小与入射光的强度P 成正比。
(3)对于不同频率的光,其截止电压的值不同,如图3所示。
(4)截止电压U0与频率的关系如图4所示,与成正比。
当入射光频率低于某极限值(随不同金属而异)时,不论光的强度如何,照射时间多长,都没有光电流产生。
(5)光电效应是瞬时效应。
即使入射光的强度非常微弱,只要频率大于,在开始照射后立即有光电子产生,所经过的时间至多为秒的数量级。
按照爱因斯坦的光量子理论,光能并不像电磁波理论所想象的那样,分布在波阵面上,而是集中在被称之为光子的微粒上,但这种微粒仍然保持着频率(或波长)的概念,频率为的光子具有能量E = h,h为普朗克常数。
当光子照射到金属表面上时,一次被金属中的电子全部吸收,而无需积累能量的时间。
电子把这能量的一部分用来克服金属表面对它的吸引力,余下的就变为电子离开金属表面后的动能,按照能量守恒原理,爱因斯坦提出了著名的光电效应方程:(1)式中,A为金属的逸出功,为光电子获得的初始动能。
由该式可见,入射到金属表面的光频率越高,逸出的电子动能越大,所以即使阳极电位比阴极电位低时也会有电子落入阳极形成光电流,直至阳极电位低于截止电压,光电流才为零,此时有关系:(2)阳极电位高于截止电压后,随着阳极电位的升高,阳极对阴极发射的电子的收集作用越强,光电流随之上升;当阳极电压高到一定程度,已把阴极发射的光电子几乎全收集到阳极,再增加时I不再变化,光电流出现饱和,饱和光电流的大小与入射光的强度P成正比。
光电效应实验的实验报告(3篇)
第1篇一、实验目的1. 了解光电效应的基本规律。
2. 验证爱因斯坦光电效应方程。
3. 掌握用光电效应法测定普朗克常量的方法。
4. 学会用作图法处理实验数据。
二、实验原理光电效应是指当光照射在金属表面时,金属表面会发射出电子的现象。
这一现象揭示了光的粒子性,即光子具有能量和动量。
爱因斯坦在1905年提出了光量子假说,认为光是由光子组成的,每个光子的能量与其频率成正比。
光电效应方程为:\(E = h\nu - W_0\),其中 \(E\) 为光电子的最大动能,\(h\) 为普朗克常量,\(\nu\) 为入射光的频率,\(W_0\) 为金属的逸出功。
三、实验仪器与材料1. 光电效应实验仪2. 汞灯3. 干涉滤光片4. 光阑5. 高压灯6. 微电流计7. 电压表8. 滑线变阻器9. 专用连接线10. 坐标纸四、实验步骤1. 将实验仪及灯电源接通,预热20分钟。
2. 调整光电管与灯的距离为约40cm,并保持不变。
3. 用专用连接线将光电管暗箱电压输入端与实验仪电压输出端连接起来。
4. 将电流量程选择开关置于所选档位(-2V-30V),进行测试前调零。
5. 调节好后,用专用电缆将电流输入连接起来,系统进入测试状态。
6. 将伏安特性测试/遏止电压测试状态键切换到伏安特性测试档位。
7. 调节电压调节的范围为-2~30V,步长自定。
8. 记录所测UAK及I的数据,在坐标纸上绘制UAK-I曲线。
9. 重复以上步骤,改变入射光的频率,记录不同频率下的UAK-I曲线。
10. 根据UAK-I曲线,计算不同频率下的饱和电流和截止电压。
11. 利用爱因斯坦光电效应方程,计算普朗克常量。
五、实验数据整理与归纳1. 不同频率下的UAK-I曲线(附图)2. 不同频率下的饱和电流和截止电压3. 计算得到的普朗克常量六、实验结果与分析1. 根据实验数据,绘制不同频率下的UAK-I曲线,可以看出随着入射光频率的增加,饱和电流逐渐增大,但增速逐渐减小。
大学物理实验光电效应实验报告
大学物理实验光电效应实验报告实验报告
大学物理实验光电效应实验报告
实验目的:
1.了解光电效应的基本原理
2.通过实验可视化效应的产生与电子动能的关系
实验原理:
在实验过程中,我们使用光电效应来分析实验。
光电效应回答
了以下问题:当金属表面照射一个光子时,会发生什么?光电效
应证明了,光子的能量可以传递到金属中的原子或分子中,并损
失自己的能量,使原子或分子中的电子从能级跃迁到另一个能级。
如果电子具有足够的能量,它将被释放出来,并参与金属导电过程,以产生电流。
实验材料:
1. 物理实验室
2. 光电效应实验箱
3. 光源
4. 电压电流模拟器
5. 物理仪器计时器
实验步骤:
1. 连接电路,插上光源并调节电流设定
2. 选择不同的光强度和波长进行照射
3. 通过计时器测量电子飞离金属表面的时间
4. 记录相应的电压和电流成像
实验结果:
1. 随着光的增强,电子飞离金属的时间减少
2. 随着波长缩短,电子飞离金属的时间减少
3. 如果升压器电压过高,会导致光电效应两边的电流变得相等
总结:
本次实验在亲眼观察光学效应的同时,也充分展示了电子运动过程产生的电流。
本次实验彰显了这个过程与量子物理学之间的紧密联系,并展示了光电效应的应用与可能的未来发展。
大物实验报告光电效应
大物实验报告光电效应实验报告:光电效应一、实验目的1.了解光电效应的现象和基本原理。
2.学习使用光电效应实验设备并掌握相关的实验技术。
3.通过实验数据分析,理解光电效应中光电子的能量与光频率的关系。
4.学习使用作图软件处理实验数据。
二、实验原理光电效应是指光子通过照射金属表面,使金属表面的电子吸收光子能量并克服金属内部的电场力束缚,从而离开金属表面的现象。
这个过程可以用爱因斯坦的光电效应方程来描述:E = hν - Φ其中E是光电子的最大动能,h是普朗克常数,ν是光频率,Φ是金属的功函数。
三、实验设备和方法1.光电效应实验装置2.光源(如汞灯)及其光学系统3.电子计数器4.数据采集和处理系统四、实验步骤和数据记录1.开启光源并调整其波长至预设值。
2.将光电效应实验装置和电子计数器连接并开启。
3.调整光源与金属板的距离,保证有明显的光电效应产生。
4.使用电子计数器记录不同波长的光源照射下的光电流,并保存数据。
1.根据实验数据,可以计算出光电子的最大动能E。
根据爱因斯坦的光电效应方程,可以得出光电子的最大动能E与光频率ν的关系图。
2.通过分析光电流与波长的关系,可以得出金属的功函数Φ。
当光子能量大于或等于金属功函数时,才会有光电子产生。
因此,通过分析光电流与波长的关系,可以得出金属的功函数Φ。
3.通过分析实验数据,可以验证爱因斯坦光电效应方程的正确性。
将实验数据代入爱因斯坦光电效应方程中,可以得出一条直线,从而验证了爱因斯坦光电效应方程的正确性。
4.使用作图软件(如Microsoft Excel)将实验数据进行图形化处理,可以得出光电子最大动能E与光频率ν的关系图和光电流与波长的关系图。
这些图形可以帮助我们更好地理解和分析实验数据。
六、结论通过本次实验,我们观察到了光电效应的现象并验证了爱因斯坦光电效应方程的正确性。
我们还学会了使用光电效应实验设备并掌握了相关的实验技术,以及使用作图软件处理实验数据的方法。
光电效应实验报告数据
光电效应实验报告数据一、实验目的1、研究光电管的伏安特性及光电特性;验证光电效应第一定律;2、了解光电效应的规律,加深对光的量子性的理解;3、验证爱因斯坦方程,并测定普朗克常量。
二、实验仪器普朗克常量测定仪三、实验原理当一定频率的光照射到某些金属表面上时,有电子从金属表面逸出,这种现象称为光电效应,从金属表面逸出的电子叫光电子。
实验示意图如下图中A,K组成抽成真空的光电管,A为阳极,K为阴极。
当一定频率v的光射到金属材料做成的阴极K上,就有光电子逸出金属。
若在A、K两端加上电压后光电子将由K定向的运动到A,在回路中形成电流I。
当金属中的电子吸收一个频率为v的光子时,便会获得这个光子的全部能量,如果这些能量大于电子摆脱金属表面的溢出功W,电子就会从金属中溢出。
按照能量守恒原理有此式称为爱因斯坦方程,式中h为普朗克常数,v为入射光频。
v存在截止频率,是的吸收的光子的能量恰好用于抵消电子逸出功而没有多余的动能,只有当入射光的频率大于截止频率时,才能产生光电流。
不同金属有不同逸出功,就有不同的截止频率。
1、光电效应的基本实验规律(1)伏安特性曲线当光强一定时,光电流随着极间电压的增大而增大,并趋于一个饱和值。
(2)遏制电压及普朗克常数的测量当极间电压为零时,光电流并不等于零,这是因为电子从阴极溢出时还具有初动能,只有加上适当的反电压时,光电流才等于零。
四、实验步骤1.调整仪器,接好电源,按下光源按钮,调节透镜位置,让光汇聚到单色仪的入射光窗口,用单色仪出光处的挡光片2挡住光电管窗口,调节单色仪的螺旋测微器,即可在挡光片上观察到不同颜色的光。
2、用单色仪入口光窗口处的挡光片1挡住单色仪的入口,移开挡光片2,将单色仪与光电管部分的黑色的链接套筒连接起来形成暗盒,将测量的放大器“倍率”旋钮置于(10^-5),对检流计进行调零。
3、按下 测量按钮借给光电管接上电压,电压表会有读数,此式检流计会有相应的电流读数,此时所读得得即为光电管的暗电流。
光电实验效应实验报告
一、实验目的1. 了解光电效应的基本规律,加深对光的量子性的认识。
2. 通过实验验证爱因斯坦的光电效应方程,并测定普朗克常量。
3. 掌握使用光电管进行光电效应实验的方法。
二、实验原理光电效应是指当光照射到金属表面时,金属表面会发射出电子的现象。
根据爱因斯坦的光电效应方程,光子的能量E与电子的动能K之间存在以下关系:E = K + φ其中,E为光子的能量,K为电子的动能,φ为金属的逸出功。
当光子的能量E大于金属的逸出功φ时,光电效应会发生。
此时,电子的动能K 为:K = E - φ光子的能量E可以表示为:E = hν其中,h为普朗克常量,ν为光的频率。
通过测量光电管的伏安特性曲线,可以得到截止电压U0,即当电子的动能K为0时的电压。
根据截止电压U0和入射光的频率ν,可以计算出普朗克常量h。
三、实验仪器1. ZKY-GD-4光电效应实验仪:包括微电流放大器、光电管工作电源、光电管、滤色片、汞灯等。
2. 滑线变阻器3. 电压表4. 频率计5. 计算器四、实验步骤1. 连接实验仪器的各个部分,确保连接正确。
2. 打开汞灯电源,调整光电管工作电源,使光电管预热。
3. 选择合适的滤色片,调节光电管与滤色片之间的距离,使光束照射到光电管阴极上。
4. 改变滑线变阻器的阻值,调整外加电压,记录不同电压下的光电流值。
5. 在实验过程中,保持入射光的频率不变,记录不同电压下的光电流值。
6. 根据实验数据,绘制光电管的伏安特性曲线。
7. 通过伏安特性曲线,找到截止电压U0。
8. 利用截止电压U0和入射光的频率ν,计算普朗克常量h。
五、实验结果与分析1. 实验数据根据实验数据,绘制光电管的伏安特性曲线如下:(此处插入实验数据绘制的伏安特性曲线图)从图中可以看出,随着外加电压的增加,光电流先增加后趋于饱和。
当外加电压等于截止电压U0时,光电流为0。
2. 结果分析根据实验数据,计算出截止电压U0为V0,入射光的频率为ν0。
利用以下公式计算普朗克常量h:h = φ / (1 - cosθ)其中,φ为金属的逸出功,θ为入射光与金属表面的夹角。
光电效应实验报告
光电效应实验报告光电效应实验报告一、实验目的:1. 理解和掌握光电效应的基本原理和特性;2. 能够用实验证实和验证光电效应的关键参数与光源强度、金属材料、光频等因素之间的关系;3. 探究光电效应与光的性质之间的关联。
二、实验仪器和材料:1. 光电效应实验装置(包括光电池、光电管、电路等);2. 激光器或其他合适的光源。
三、实验原理:光电效应是指当光照射到金属表面时,金属会吸收光能,并将其转化为电能的现象。
其中,光电效应的关键参数为光电子的最大动能Kmax和光电子的停止电压V0,其与光源的光强、金属的功函数以及光频有关。
四、实验步骤:1. 将实验仪器接线好,并确认电路连接是否正确;2. 将光电池或光电管置于黑暗中,并通过电压表测试其电压为零;3. 打开光源,调整其距离光电池或光电管适当的远;4. 缓慢靠近光源,观察光电池或光电管的电压变化,并记录;5. 分别改变光源光强和光频,观察其对光电效应的影响。
五、实验结果与分析:1. 实验记录数据表明,当光源光强逐渐增强时,光电池或光电管的电压呈线性增加,并最终趋于一个定值;2. 实验进一步验证,光电效应与金属材料的功函数和光频有关。
当光源光频变化时,光电池或光电管的电压也会发生变化,并与功函数和光频之间存在一定关系。
六、实验结论:根据本实验的结果与分析,可以得出以下结论:1. 光电效应的关键参数与光源的光强、金属材料的功函数以及光频之间存在一定的关系;2. 光电效应的电压与光源光强呈线性关系,并与光源的光频相关。
七、实验总结:通过本次实验,我深入了解了光电效应的基本原理和特性。
实验结果与预期相符,验证了光电效应的关键参数与光源强度、金属材料、光频之间的关系。
通过实验过程,我也对实验仪器和操作方法有了更深的了解。
在今后的学习和研究中,我将更加深入地探究光电效应与光的性质之间的关联,为相关领域的研究提供一定的基础。
实验报告光电效应实验
实验报告光电效应实验南昌⼤学物理实验报告学⽣姓名:学号:专业班级:材料124班实验时间:10时00分第⼗⼀周星期四座位号:28 ⼀、实验名称:光电效应⼆、实验⽬的:1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律;2、掌握⽤光电管进⾏光电效应研究的⽅法;3、学习对光电管伏安特性曲线的处理⽅法,并⽤以测定普朗克常数。
三、实验仪器:光电效应测试仪、汞灯及电源、滤⾊⽚、光阑、光电管、测试仪四、实验原理:1、光电效应与爱因斯坦⽅程⽤合适频率的光照射在某些⾦属表⾯上时,会有电⼦从⾦属表⾯逸出,这种现象叫做光电效应,从⾦属表⾯逸出的电⼦叫光电⼦。
为了解释光电效应现象,爱因斯坦提出了“光量⼦”的概念,认为对于频率为γ的光波,每个光⼦的能量为E h ν=,其中h =s J ??-3410为普朗克常数。
按照爱因斯坦的理论,光电效应的实质是当光⼦和电⼦相碰撞时,光⼦把全部能量传递给电⼦,电⼦所获得的能量,⼀部分⽤来克服⾦属表⾯对它的约束,其余的能量则成为该光电⼦逸出⾦属表⾯后的动能。
爱因斯坦提出了着名的光电⽅程:212h m W νυ=+ (1)式中,为⼊射光的频率,m 为电⼦的质量,为光电⼦逸出⾦属表⾯的初速度,W 为被光线照射的⾦属材料的逸出功,1/2mv 2为从⾦属逸出的光电⼦的最⼤初动能。
由(1)式可见,⼊射到⾦属表⾯的光频率越⾼,逸出的电⼦动能必然也越⼤,所以即使阴极不加电压也会有光电⼦落⼊阳极⽽形成光电流,甚⾄阳极电位⽐阴极电位低时也会有光电⼦落到阳极,直⾄阳极电位低于某⼀数值时,所有光电⼦都不能到达阳极,光电流才为零。
这个相对于阴极为负值的阳极电位0U 被称为光电效应的截⽌电压。
显然,有 eu 0-1/2mv2=0 (2)代⼊上式即有0h eU W ν=+ (3)由上式可知,若光电⼦能量h+W ,则不能产⽣光电⼦。
产⽣光电效应的最低频率是0=W/h ,通常称为光电效应的截⽌频率。
不同材料有不同的逸出功,因⽽0也不同。
光电技术实验报告
一、实验目的1. 理解光电效应的基本原理和规律。
2. 掌握光电探测器的性能参数测量方法。
3. 学习光电技术在实际应用中的具体应用。
二、实验原理光电效应是指光照射到金属表面时,金属表面会发射出电子的现象。
根据爱因斯坦的光电效应方程,光子的能量与电子的动能之间存在以下关系:E = hν = Ek + W其中,E为光子的能量,h为普朗克常数,ν为光的频率,Ek为电子的动能,W为金属的逸出功。
光电探测器是一种将光信号转换为电信号的装置,常用的光电探测器有光电二极管、光电三极管、光电倍增管等。
本实验主要研究光电二极管的性能参数。
三、实验仪器与设备1. 光电效应实验装置:包括光电管、光源、放大器、示波器等。
2. 光电探测器性能参数测试仪:用于测量光电二极管的暗电流、饱和电流、光电流、响应时间等参数。
3. 电源:提供实验所需的电压。
四、实验步骤1. 光电效应实验:(1)将光电管接入实验装置,调整光源的电压和电流,使光电管正常工作。
(2)打开示波器,观察光电管在不同电压下的伏安特性曲线。
(3)改变光源的频率,观察光电效应的规律。
2. 光电探测器性能参数测试:(1)将光电二极管接入性能参数测试仪,调整测试仪的电压和电流,使光电二极管正常工作。
(2)测量光电二极管的暗电流、饱和电流、光电流、响应时间等参数。
五、实验结果与分析1. 光电效应实验结果:(1)伏安特性曲线:随着电压的增加,光电管的电流逐渐增大,当电压达到一定值时,电流达到饱和。
(2)光电效应规律:光电效应的电流与光强成正比,与光的频率有关,当光的频率低于截止频率时,光电效应不发生。
2. 光电探测器性能参数测试结果:(1)暗电流:在无光照条件下,光电二极管的电流为暗电流,其大小反映了光电二极管的漏电流。
(2)饱和电流:当光强增加时,光电二极管的电流逐渐增大,当电流达到饱和时,光强的增加对电流的影响不再明显。
(3)光电流:光电二极管的光电流与光强成正比,其比例系数称为光电流灵敏度。
光电效应实验报告
引言概述:
光电效应是一种经典的物理现象,其研究对于理解光和电的相互作用、电子动力学、光子学等学科至关重要。
本实验旨在通过对光电效应的研究,探究光电效应的规律和机制。
正文内容:
一、光电效应的背景知识
1.1光电效应的定义和基本原理
1.2光电效应与光子学的关系
1.3光电效应的经典解释和爱因斯坦的贡献
二、光电效应的实验装置和步骤
2.1实验装置的搭建和调试
2.2实验所需仪器的介绍
2.3实验步骤和操作注意事项
三、光电效应的实验结果和数据分析
3.1测量反射光的强度和波长
3.2测量光电流与入射光强度的关系
3.3测量光电流与入射光波长的关系
3.4分析实验数据并绘制曲线图
四、光电效应的规律和机制
4.1光电效应的定性规律
4.2光电效应的定量规律
4.3光电效应的机制和解释
4.4光电效应在光电子器件中的应用
五、光电效应实验的局限和改进
5.1实验中可能存在的误差来源
5.2实验中局限性和改进方法
5.3实验结果的可靠性和重复性分析
总结:
光电效应是光与电的相互作用现象,通过本实验对光电效应进行了研究。
实验结果表明,光电流与光强度和波长有关,符合一定的规律。
光电效应的机制主要包括光子的能量传递和电子的释放等过程。
光电效应在光电子器件中具有广泛的应用前景。
实验中仍存在一些误差和局限,需要进一步改进实验装置和方法,以提高实验结果的可靠性和重复性。
通过本实验的研究,我们对光电效应有了更加深入的认识,同时也对光子学和光电子学等领域的研究有所贡献。
希望本文能够对读者对光电效应的理解和应用有所帮助。
光电效应实验报告数据
一、实验目的1. 了解光电效应的基本规律。
2. 用光电效应的方法测量普朗克常量。
3. 测定光电管的光电特性曲线。
二、实验原理光电效应是指当光照射在物体上时,光的能量只有部分以热的形式被物体所吸收,而另一部分则转换为物体中某些电子的能量,使这些电子逸出物体表面。
在光电效应中,光显示出它的粒子性。
普朗克常数h是普朗克为了解决黑体辐射能量分布时提出的能量子假设中的一个普适常数,是基本作用量子,也是粗略地判断一个物理体系是否需要用量子力学来描述的依据。
爱因斯坦为了解释光电效应现象,提出了光量子假设,即频率为v的光子。
三、实验仪器1. 光电管2. 滤光片3. 汞灯4. 光电效应测定仪5. 暗箱6. 灯箱7. 汞灯电源箱四、实验步骤1. 将光电管、滤波片、汞灯等实验仪器连接好。
2. 调节光电管暗箱,使光电管与汞灯之间保持一定距离。
3. 打开汞灯电源,调节电压,观察光电管的光电特性曲线。
4. 记录不同频率的光照射下,光电管的电流值。
5. 根据实验数据,绘制光电特性曲线,并计算普朗克常量。
五、实验结果与分析1. 通过实验,我们得到了不同频率的光照射下,光电管的电流值。
2. 根据实验数据,绘制了光电特性曲线,并计算出普朗克常量的值。
3. 通过比较实验值与理论值,我们可以发现实验结果与理论值基本吻合,说明实验结果可靠。
六、实验总结光电效应测普朗克常量实验是一项经典的物理实验,通过这个实验,我们不仅了解了光电效应的基本规律,还测量了普朗克常量这一重要物理常数。
实验结果表明,实验结果与理论值基本吻合,说明实验方法可靠。
在实验过程中,我们学会了如何使用光电效应测定仪,并掌握了数据处理的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1,实验目的:
1.了解光电效应的基本规律,并用光电效应方法测量普朗克常量和测定光电管的光电特性曲线。
2.通过对五种不同频率的反向截止电压的测定,由 直线图形,求出“红限”频率。
实验原理图1 光电管的起始I—V特性2
2,实验要求:
1.学习测定普朗克常量的一种实验方法;
2.学习用滤色片获得单色光的方法;
3.学习用实验研究验证理论的方法,加深光电效应对光量子理论的理解
3,实验原理
1.光电效应与爱因斯坦方程
用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸
出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。
为了解释光电效应现象,爱因斯坦提出了“光量子”的概念,认为对于频率为的光波,每个光子的能量为
式中,
为普朗克常数,它的公认值是
=6.626。
按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。
爱因斯坦提出了著名的光电方程:
(1)式中,
为入射光的频率,
为电子的质量,
为光电子逸出金属表面的初速度,
为被光线照射的金属材料的逸出功,
为从金属逸出的光电子的最大初动能。
由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。
这个相对于阴极为负值的阳极电位
被称为光电效应的截止电压。
显然,有
(2)
代入(1)式,即有
(3)由上式可知,若光电子能量
,则不能产生光电子。
产生光电效应的最低频率是
,通常称为光电效应的截止频率。
不同材料有不同的逸出功,因而
也不同。
由于光的强弱决定于光量子的数量,所以光电流与入射光的强度成正比。
又因为一个电子只能吸收一个光子的能量,所以光电子获得的能量与光强无关,只与光子
的频率成正比,,将(3)式改写为
(4)上式表明,截止电压
是入射光频率
的线性函数,如图2,当入射光的频率
时,截止电压
,没有光电子逸出。
图中的直线的斜率
是一个正的常数:
(5)由此可见,只要用实验方法作出不同频率下的
曲线,并求出此曲线的斜率,就可以通过式(5)求出普朗克常数。
其中
是电子的电量。
图2 U—V直线
2.光电效应的伏安特性曲线
图3是利用光电管进行光电效应实验的原理图。
频率为
、强度为
的光线照射到光电管阴极上,即有光电子从阴极逸出。
如在阴极K和阳极A之间加正向电压
,它使K、A之间建立起的电场对从光电管阴极逸出的光电子起加速作用,随着电压
的增加,到达阳极的光电子将逐渐增多。
当正向电压
增加到
时,光电流达到最大,不再增加,此时即称为饱和状态,对应的光电流即称为饱和光电流。
观点效应原理图
由于光电子从阴极表面逸出时具有一定的初速度,所以当两极间电位差为零时,仍有光电流I存在,若在两极间施加一反向电压,光电流随之减少;当反向电压
达到截止电压时,光电流为零。
入射频率不同的I—U曲线 入射强度不同的I-U曲线
爱因斯坦方程是在同种金属做阴极和阳极,且阳极很小的理想状态下导出的。
实际上做阴极的金属逸出功比作阳极的金属逸出功小,所以实验中存在着如下问题:
(1)暗电流和本底电流。
当光电管阴极没有受到光线照射时也会产生电子流,称为暗电流。
它是由电子的热运动和光电管管壳漏电等原因造成的。
室内各种漫反射光射入光电管造成的光电流称为本底电流。
暗电流和本底电流随着K、A之间电压大小变化而变化。
(2)阳极电流。
制作光电管阴极时,阳极上也会被溅射有阴极材料,所以光入射到阳极上或由阴极反射到阳极上,阳极上也有光电子发射,就形成阳极电流。
由于它们的存在,使得I~U曲线较理论曲线下移,如图6所示。
伏安特性曲线
三、实验过程(实验步骤、注意事项和数据分析)
一,实验步骤
1.测试前准备
(1)首先了解 GY-ⅢA 型光电效应测试仪中的使用方法和注意事项。
(2)放置好仪器,用光窗盖分别盖住光电暗盒的光窗口和光源光窗口。
接通光源的电源开关,并预热 20—30 分钟。
(3)将微电流测试仪与光电管暗盒之间的导线连接好,调节光源光窗口与光电管暗盒光窗口等高,间距为 30cm 为宜。
2.测试
(1)旋转滤色片转盘,选择透射波长为 365 的滤色片。
用“电压调节”旋钮将电压为-2V 缓慢升高到+20V,记录相应的电流
值。
测量点至少应该有 20 个,尤其在-2V 至 0V 间电流开始变化区间细测一下,多记几个点,并仔细找到电流为 0 时所对应的电压值,将记录数据记入表二。
(2)依次选择 405、436、546 和 577 型滤色片,重复步骤
(1),测出其伏安特性。
(3)改变光阑,重复上述步骤。
3.测量普朗克常量
(1)将电压选择按键开关置于–2~+2V档,将“电流量程”选择开关置于
A档。
将测试仪电流输入电缆断开,调零后重新接上。
(2)将直径为4mm的光阑和365.0nm的滤色片装在光电管电暗箱输入口上。
(3)从高到低调节电压,用“零电流法”测量该波长对应的
,并将数据记录于表2中。
(4)依次换上405nm、436nm、546nm、577nm的滤色片,重复步骤(1)、(2)、(3)。
二,注意事项
1.微电流测量仪和汞灯的预热时间必须长于20分钟。
实验中,汞
灯不可关闭。
如果关闭, 必须经过5分钟后才可重新启动,且须重新预热。
2.微电流测量仪与暗盒之间的距离在整个实验过程中应当一致。
3.注意保护滤光片,防止污染。
4.更换滤光片时,注意遮挡住汞灯光源。
5.微电流测量仪每改变一次量程,必须重新调零。
三,数据分析
1. 在坐标纸上绘制不同频率入射光照射下光电管的伏安特性曲线,准确找出 不同频率对应的截止电压;
365nm U-2.0-1.8-1.7-1.6 1.5-1.45-1.4-1.3-0.5 I-1.4 2.09.525.744.058.071.991.491.6 405nm U12.0-1.5-1.3-1.1-1.05-0.95-0.90-0.85-0.5 I-1.8-0.3 6.431.840.057.466.074.191.6 436nm U-2.0-1.5-1.3-1.1-1.05-1.0-0.9-0.8-0.7 I-3.2-3.1-0.218.426.437.455.474.183.0 546nm U-2.0-1.0-0.8-6.0-0.55-0.5-0.4-0.3-0.2 I-5.9-5.1-0.416.32635.256.878.191.6 577nm U-0.2-1.2-0.8-0.6-0.4-0.3-0.2-0.1-0.05 I-0.8-0.050.00.1 5.07.710.813.815.5
2.作出不同频率下截止电压 和频率v 的关系曲线,求出普朗克常
量h,截止频率和逸出电势 。
波长365 nm405nm436nm546nm577nm
频率v8.227.41 6.88 5.49 5.20
-1.425-0.995-0.935-0.886-0.4
3. 做出五个U-I曲线:
1.波长为365nm(频率为8.22)时:其中所找点为的横坐标为—
1.425
2. 波长为405nm(频率为7.41)时:其中所找点的坐标
为-0.995
3.波长为436nm(频率为6.88)时:其中所找点的坐标为-0.935
4.波长为546nm(频率为
5.49)时:其中所找点的坐标为-0.886
5.波长为577nm(频率为5.20)时:
三、结论
I,实验结果
实验测得的普朗克常量为J·s
由于存在误差等原因,普朗克常量的值基本上与实验原理要求的是符合的,即有效的验证了爱因斯坦方程,测定了普朗克常量,光电管的伏安特性曲线也基本符合要求,由此也对量子有了进一步的了解,达到了该实验的实验要求。
还有,改变入射光频率v时,截止电压U0随之改变,U0与v成线性关系。
光电效应是瞬时效应,一经光线照射,立刻产生光电子。
II,分析讨论
1.保护好滤色片、光电管、光源、保证光源与光电管暗盒之间相距宜取 30~50cm,以减少试验中的误差,使实验结果趋于精确;严禁光源直接照射光电窗口,每次换滤光片时,必定要把出光口盖上。
2.由于暗电流等的存在截止电压不在光电流 I=0 处而较难准确确定,故在电流开始 变化的“始头点”附近细心地多测几个点以保证较准确地确定截止电压;
3.光电管入射窗口不要面对其它强光源,以减少杂散光于扰,避免再强磁场等情况进行实验,同样也是为了减小误差。
四、指导教师评语及成绩:
成绩:
指导教师签名: 批阅日期:。