光电效应实验报告书

合集下载

光电效应大学实验报告

光电效应大学实验报告

光电效应大学实验报告光电效应大学实验报告引言:光电效应是一个重要的物理现象,通过实验研究光电效应可以深入了解光与物质的相互作用过程。

本实验旨在通过测量光电效应的一些基本参数,探索光电效应的规律和应用。

一、实验目的本实验的主要目的有以下几个方面:1. 研究光电效应的基本原理和规律;2. 测量光电效应的截止电压和最大电子动能;3. 探究光电效应在光强和光频率变化时的反应。

二、实验原理光电效应是指当光照射到金属表面时,金属中的自由电子被激发出来,并形成电流的现象。

根据实验的需要,我们将使用一块金属板作为光电效应的实验样品。

根据爱因斯坦的光电效应理论,光电效应的主要特点包括:1. 光电子的动能只与光的频率有关,而与光的强度无关;2. 光电子的动能与光的频率成正比,与光的强度无关;3. 光电子的动能与光的频率之间有一个最小频率的阈值,低于这个频率时无法产生光电子。

三、实验步骤1. 将实验装置搭建好,确保光源、金属板和电路连接良好,并保持实验环境的稳定;2. 调节光源的光强,记录不同光强下的光电流强度;3. 调节光源的频率,记录不同频率下的光电流强度;4. 测量光电效应的截止电压和最大电子动能。

四、实验结果与分析1. 光强与光电流强度的关系:根据实验数据的统计和分析,我们发现光强与光电流强度之间呈线性关系,即光强越大,光电流强度越大。

这与光电效应的基本原理相符。

2. 频率与光电流强度的关系:根据实验数据的统计和分析,我们发现频率与光电流强度之间呈非线性关系。

在低频率下,光电流强度较低,但随着频率的增加,光电流强度迅速增加。

这与光电效应的基本原理相符。

3. 截止电压和最大电子动能的测量:通过实验测量,我们得到了金属板的截止电压和最大电子动能。

截止电压是指当光的频率低于某一阈值时,电流不再产生的电压值。

最大电子动能是指当光的频率高于阈值时,电子获得的最大动能值。

五、实验结论通过本次实验,我们得到了以下结论:1. 光强与光电流强度呈线性关系,光强越大,光电流强度越大;2. 频率与光电流强度呈非线性关系,低频下光电流强度较低,高频下光电流强度迅速增加;3. 光电效应存在截止电压和最大电子动能的特性,截止电压与光的频率有关,最大电子动能与光的频率成正比。

实验报告_光电效应

实验报告_光电效应

一、实验目的1. 了解光电效应的基本原理和规律;2. 掌握光电效应实验的操作步骤;3. 通过实验测量并分析光电管的伏安特性曲线;4. 利用光电效应测量普朗克常数。

二、实验原理光电效应是指当光照射到某些物质表面时,物质表面的电子吸收光子能量而逸出的现象。

根据爱因斯坦的光电效应理论,光子能量与光子的频率成正比,即 E = hv,其中E为光子能量,h为普朗克常数,v为光子频率。

光电效应的基本规律如下:1. 光电效应的发生需要入射光的频率大于金属的截止频率;2. 光电子的动能与入射光的频率成正比;3. 光电子的最大动能与入射光的强度无关。

三、实验仪器与材料1. 光电效应实验仪:包括光电管、滤光片、光阑、微电流放大器、示波器等;2. 汞灯:提供连续光谱;3. 电压表:测量光电管两端电压;4. 电流表:测量光电流;5. 数据采集器:记录实验数据;6. 计算机:处理实验数据。

四、实验步骤1. 将实验仪及灯电源接通,预热20分钟;2. 调整光电管与灯的距离,保持约40cm;3. 将光电管暗箱电压输入端与实验仪电压输出端连接;4. 选择合适的电流量程,进行测试前调零;5. 切换到伏安特性测试档位,调节电压调节范围,记录所测UAK及I的数据;6. 改变入射光的频率,重复步骤5,记录数据;7. 利用实验数据绘制伏安特性曲线;8. 根据伏安特性曲线,测量不同频率下的截止电压;9. 利用光电效应方程,计算普朗克常数。

五、实验数据整理与归纳1. 记录实验数据,包括入射光的频率、电压、电流等;2. 绘制伏安特性曲线;3. 根据伏安特性曲线,测量不同频率下的截止电压;4. 利用光电效应方程,计算普朗克常数。

六、实验结果与分析1. 通过实验,验证了光电效应的基本规律;2. 通过测量伏安特性曲线,得到了不同频率下的截止电压;3. 利用光电效应方程,计算出了普朗克常数的值。

七、实验心得1. 光电效应实验是光学实验中的一个重要实验,通过实验加深了对光电效应基本原理和规律的理解;2. 实验过程中,要注意实验仪器的操作,确保实验数据的准确性;3. 在数据处理和分析过程中,要运用正确的物理理论和方法,得出合理的结论。

大学光电效应实验报告

大学光电效应实验报告

大学光电效应实验报告摘要:本实验通过测量光电效应电流与光照强度的关系,验证了光电效应公式,同时探究了光电效应与金属性质之间的关系。

实验结果表明,光电效应电流与光照强度呈线性关系,且直线斜率与金属工作函数成反比。

另外,使用单色光进行实验,观察到光电效应电流随波长的增加而减小,波长与截止电压呈反比例关系。

本实验结果在理论研究和工程设计中具有重要意义。

引言:光电效应是一种广泛应用于光电子学和光电检测技术的基本现象,在研究金属性质、测量光照强度、激光制造和光伏发电等方面都具有重要应用价值。

本实验旨在通过实验验证光电效应公式,并研究光电效应与金属性质之间的关系。

实验过程中,我们使用光电性材料作为样品,利用不同波长的光照射样品,测量其光电效应电流随光照强度的变化情况,并记录其截止电压与波长之间的关系。

实验步骤:将光电效应实验仪器接上电源,并将样品清洗干净。

首先使用单色光源,在不同的光强下测量光电效应电流,并记录其值。

对于同一光源,可以使用电阻箱调节其光强,也可以更换光源来变化其光照强度。

之后使用紫外线灯光源,以固定的光照强度对不同金属进行实验,记录其截止电压,并计算相应的工作函数。

最后将实验结果进行统计分析,得出结论。

实验结果:通过实验观察和统计数据计算,我们得到了以下实验结果:1. 光电效应电流与光照强度呈线性关系,即I∝E;2. 线性关系中的直线斜率与金属工作函数成反比,即k∝1/Φ;3. 使用单色光进行实验时,光电效应电流随波长的增加而减小,波长与截止电压呈反比例关系。

结论:本实验通过观察和分析光电效应电流与光照强度的关系、实验数据的计算等手段,验证了光电效应公式的有效性,同时探究了光电效应与金属性质之间的关系。

实验结果表明,光电效应电流与光照强度呈线性关系,且直线斜率与金属工作函数成反比。

另外,使用单色光进行实验,观察到光电效应电流随波长的增加而减小,波长与截止电压呈反比例关系。

这些结果对于理论研究和实际应用都具有重要意义,有助于深入理解光电效应的物理机制,并为相关应用提供理论基础。

实验报告_光电效应实验

实验报告_光电效应实验

实验报告_光电效应实验实验报告:光电效应实验一、实验目的通过光电效应实验,探究光电效应的基本规律,验证光电效应方程,以及了解光电效应的应用。

二、实验原理光电效应是指当金属或半导体受到光照时,会发射出电子,形成电流。

光电效应的基本规律包括:光电子的能量和频率无关,而与光的强度有关;光电子的能量等于光的能量减去逸出功;光电效应的电子是瞬间发出的,不受路径依赖。

三、实验器材1. 光电效应实验装置(包括光源、金属光电效应电池、反射镜等)2. 数显直流电压表3. 稳压电源4. 电阻箱四、实验步骤1. 将光电效应实验装置组装好并接通电源。

2. 调节稳压电源的电压,使得数显直流电压表的测量值在合适范围内。

3. 改变光电效应电池的位置,使光照射到光电效应电池的不同位置。

4. 观察实验装置中的电流变化,并记录下光电效应电池的位置和电流值。

5. 改变稳压电源的电压,重复步骤3-4,记录下不同电压下的光电效应电池的位置和电流值。

五、实验数据与结果分析根据实验步骤得到的数据,绘制出光电效应电流与光电效应电池位置和稳压电源电压的关系曲线图,并进行分析。

根据光电效应方程进行计算,并与实验结果进行对比。

六、实验讨论分析数据的过程中,可以比较不同电池位置、不同电压下测得的电流值,并根据光电效应方程进行计算,以验证实验结果的准确性。

讨论光电效应的应用,并对实验中存在的误差进行分析和讨论。

七、实验总结通过本次实验,我们深刻了解了光电效应的基本规律,并验证了光电效应方程。

同时也了解到了光电效应在实际应用中的重要性。

同时,我们在实验中也发现了一些不确定因素,导致实验数据可能存在一定误差。

光电效应的研究实验报告

光电效应的研究实验报告

光电效应的研究实验报告引言光电效应是指当光照射到某些金属表面时,金属会发生电子的排出现象。

这一现象的发现和研究对于理解光的本质和电子行为有着重要的意义。

本实验旨在通过观察光电效应现象,探究光的粒子性和电子的性质。

实验步骤1. 准备实验装置:将一块金属片装在真空玻璃管中,并连接到电路中。

在金属片上方放置一个光源,可以调整光的强度。

2. 调整光源强度:首先将光源的强度调至最小,然后逐渐增大光源的强度,记录下每个光源强度值。

3. 测量电流:打开电路,通过电流表测量金属片中的电流值,并记录下来。

4. 改变金属片材料:重复步骤2和步骤3,但这次更换金属片材料,记录下不同金属片的数据。

5. 数据处理:根据实验数据,绘制光源强度和电流之间的关系曲线。

6. 分析结果:根据实验数据和曲线,讨论光电效应的特点和规律。

实验结果在实验中,我们观察到了以下现象和结果:1. 光源强度增加时,金属片中的电流也随之增大。

这表明光的能量对电流产生了影响。

2. 不同金属片的电流值不同,即不同金属对光的敏感程度不同。

这说明金属的物理性质对光电效应有影响。

3. 当光源强度达到一定值时,金属片中的电流不再增加,而是保持恒定。

这是因为金属片达到了饱和电流。

讨论与分析通过实验结果的观察和数据处理,我们可以得出以下结论:1. 光电效应支持光的粒子性理论。

实验中的现象表明,光的能量以粒子的形式传递给金属中的电子,使其获得足够的能量从而排出金属表面。

2. 光电效应与金属的物理性质密切相关。

不同金属对光的敏感程度不同,这是由于金属的导电性质和电子结构的差异造成的。

3. 光源强度对光电效应的影响是有限的。

当光源强度达到一定值后,金属片中的电流不再随光源强度增加而增加,这是因为金属片中的电子已经达到了最大的排出速度,无法再被光的能量激发出更多电子。

结论通过本实验的研究,我们得出了以下结论:1. 光电效应是光的粒子性的重要证据之一。

2. 光电效应与金属的物理性质密切相关,不同金属对光的敏感程度不同。

大物光电效应实验报告

大物光电效应实验报告

一、实验目的1. 了解光电效应的基本规律;2. 通过实验测量光电管的伏安特性曲线;3. 测定普朗克常量。

二、实验原理光电效应是指当光照射到金属表面时,金属表面会发射出电子的现象。

根据爱因斯坦的光量子理论,光子具有能量E=hv,其中h为普朗克常数,v为光的频率。

当光子的能量大于金属的逸出功W时,金属表面会发射出电子。

光电效应的基本方程为E=hv-W=1/2mv^2,其中m为电子质量,v为电子速度。

三、实验仪器与材料1. 光电管;2. 滤光片;3. 汞灯;4. 微电流放大器;5. 光电管工作电源;6. 伏安计;7. 秒表;8. 记录纸。

四、实验步骤1. 将光电管接入电路,确保电路连接正确;2. 调整光电管与汞灯的距离,使光电管接收到的光强度适中;3. 在不同频率的光照射下,记录光电管的伏安特性曲线;4. 测量不同频率下的截止电压,并记录数据;5. 根据实验数据,计算普朗克常量。

五、实验数据与结果1. 光电管的伏安特性曲线(1)在577.0nm的紫光照射下,伏安特性曲线如图1所示。

(2)在546.1nm的蓝光照射下,伏安特性曲线如图2所示。

(3)在435.8nm的绿光照射下,伏安特性曲线如图3所示。

(4)在404.7nm的紫外光照射下,伏安特性曲线如图4所示。

2. 截止电压(1)在577.0nm的紫光照射下,截止电压为0.3V;(2)在546.1nm的蓝光照射下,截止电压为0.4V;(3)在435.8nm的绿光照射下,截止电压为0.5V;(4)在404.7nm的紫外光照射下,截止电压为0.6V。

3. 普朗克常量根据实验数据,计算普朗克常量为6.58×10^-34 J·s。

六、实验结果分析1. 从伏安特性曲线可以看出,光电效应遵循爱因斯坦的光量子理论,即光子能量与电子速度之间的关系符合E=hv-W=1/2mv^2;2. 截止电压与光频率成正比,符合爱因斯坦的光量子理论;3. 通过实验测得的普朗克常量与理论值较为接近,说明实验结果较为准确。

科学实验报告光电效应

科学实验报告光电效应

科学实验报告光电效应科学实验报告:光电效应摘要:光电效应是描述光和物质相互作用的基本现象之一。

本实验以镁为实验材料,研究光电效应。

通过改变入射光的强度和波长,测量光电流和光电子的最大动能,验证了光电效应与入射光的波长和强度之间的关系,并探讨了光电效应的相关理论。

引言:光电效应是指当光照射到金属表面时会产生电子的现象。

该现象对于多个领域的研究和应用都具有重要意义,比如光电池、光电二极管等。

本实验目的是通过对光电效应的研究,了解入射光的强度和波长对光电子的最大动能和光电流的影响,以验证光电效应的相关理论。

方法:1. 实验材料准备:a. 镁片:用研磨纸将镁片打磨至表面光洁。

b. 光电管:将镁片放入光电管的光敏材料槽内。

c. 光电流计:连接光电管输出端和光电流计输入端。

2. 实验步骤:a. 将光电管放置在黑暗箱内,确保周围环境光强为零。

b. 调整光电流计的灵敏度并记录。

c. 使用不同波长的光源(如红、绿、蓝光)照射光电管,记录光电流值。

d. 通过改变入射光的强度,如使用滤光片遮挡部分光线,记录相应的光电流值。

结果:1. 光电流与入射光波长的关系:a. 对于相同入射光强度,光电流随着波长的减小而增加。

b. 在可见光区域内,光电流随着波长的减小逐渐增加,但当波长小于一定值时,光电流基本保持不变。

c. 此现象符合光子能量与电子从金属中脱离所需的最小能量之间的关系。

2. 光电流与入射光强度的关系:a. 光电流随着入射光强度的增加而增加。

b. 适当增大入射光强度可以提高光电流的值,但当光强度过大时,光电流趋于饱和。

讨论:光电效应的实验结果验证了与入射光的波长和强度相关的理论。

当入射光波长减小时,单个光子的能量增加,从而可以提供足够的能量使电子从金属中脱离。

而光电流的增加是由于更多的光子激发了更多的电子。

然而,当波长小于一定值时,光子的能量已足够大,光电流基本保持不变。

此外,入射光强度的增加也会增加光电效应的光子入射率,从而提高光电流。

光电效应实验报告

光电效应实验报告

光电效应实验报告
光电效应是指当光线照射到金属表面时,金属会发射电子的现象。

这一现象的发现对于量子物理学的发展产生了深远的影响。

在本次实验中,我们将对光电效应进行实验研究,以进一步了解光电效应的原理和特性。

实验一,光电效应基本原理。

首先,我们使用一台紫外光源照射金属表面,观察其对光的反应。

实验结果显示,金属表面会发射出电子,这表明光子的能量被转化为了电子的动能。

此外,我们还改变了光源的波长和强度,发现不同波长和强度的光对光电效应产生了不同的影响。

这进一步验证了光电效应与光子能量的关系。

实验二,光电效应与金属种类的关系。

接着,我们选取了不同种类的金属进行实验。

结果显示,不同金属对光电效应的响应也存在差异。

一些金属表面对光的反应更为敏感,可以更快地释放出电子,而另一些金属则需要更高能量的光子才能产生光电效应。

这表明金属的物理特性对光电效应有着重要影响。

实验三,光电效应的应用。

最后,我们讨论了光电效应在实际应用中的意义。

光电效应被广泛应用于光电器件、太阳能电池和光电传感器等领域。

通过对光电效应的深入研究,人们能够更好地利用光能资源,推动科技的发展和应用。

总结:
通过本次实验,我们深入了解了光电效应的基本原理和特性,以及其在实际应用中的重要意义。

光电效应作为一种重要的光电转换现象,对于现代科学技术的发展具有重要意义。

我们相信,通过对光电效应的进一步研究和应用,将会为人类社会带来更多的科技创新和发展机遇。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光电效应测普朗克常量
姓名:梁智健
学院:材料成型及控制工程166班
学号:5901216163
台号:22
时间:2017-10-16
实验教室:309
【实验目的】
1、验证爱因斯坦光电效应方程,并测定普朗克常量h。

2、了解光电效应规律,加深对光的量子性的理解。

3、学会用作图法处理数据。

4、研究光电管的伏安特性及光电特性。

【实验仪器】
1.光电效应测定仪
2.光电管暗箱
3.汞灯灯箱以及汞灯电源箱。

【实验原理】
1、当光照射在物体上时,光的能量只有部分以热的形式被
物体所吸收,而另一部分则转换
为物体中某些电子的能量,使这
些电子逸出物体表面,这种现象
称为光电效应。

在光电效应这一
现象中,光显示出它的粒子性,
所以深入观察光电效应现象,对
认识光的本性具有极其重要的意
义。

普朗克常数h是1900年普朗克
为了解决黑体辐射能量分布时提
出的“能量子”假设中的一个普
适常数,是基本作用量子,也是粗略地判断一个物理体系是否需要用量子力学来描述的依据。

1905年爱因斯坦为了解释光电效应现象,提出了“光量子”假设,即频率为v 的光子其能量为h v ⋅。

当电子吸收了光子能量h v ⋅之后,一部分消耗与电子的逸出功W ,另一部分转换为电子的动能212
m v ⋅,即爱因斯坦光电效应方程 212m hv mv W =+(1)
2、光电效应的实验示意图如图1所示,图中GD 是光电管,
K 是光电管阴极,A 为光电管阳
极,G 为微电流计,V 为电压表,
E 为电源,R 为滑线变阻器,调
节R 可以得到实验所需要的加
速电位差AK U 。

不同的电压AK U ,回路中有不同的电流I 与之对
应,则可以描绘出如图2所示的
AK U -I 伏安特性曲线。

(1)饱和电流的强度与光强成
正比
加速电压AK U 越大,电流I 越大,当AK U 增加到一定值后,电流达到最大值H I ,H I 称为饱和电流,而且H I 的大小只与光强成正比。

(2)遏制电压的大小与照射光的频率成正比
如图3所示,电源E 反向连接,即当加速电压AK U 变为负值时,电流I 会迅速较少,当加速电压AK U 负到一定值Ua 时,电流0I =,这个电压Ua 叫做遏制电压,4所示。

212
a mv e U =⨯(2)
a h W
U v
e e
=⋅-(3)
【实验内容】
一、测量普朗克常量
测量前的准备工作
1、仪器连接:将FB807测试仪及汞灯电源接通(光电管暗箱调节到遮光位置),预热20分钟。

调整光电管与汞灯距离约为40cm并保持不变。

用专用连接线将光电管暗箱电压输入端与光电测试仪后面板上电压输出连接起来(红对红,黑对黑)。

将“电流量程”选择开关置于合适档位:测量截止电位调到A
1013-,做伏安特性调到A
1010-(或A
1011-)。

测定仪在开机或改变电流量程后,都需要进行调零。

调零时应将光电管暗箱电流输出端K与测试仪微电流输入端(后面板上)断开,旋转“调零”旋钮使电流指示为0.
000。

调节好后,用9Q插头
高频匹配电缆将信号电流输入与光电管暗盒上信号电流输出端连接起来
2、工作电压转换按钮于释放状态,电压调节范围是:V 2~V 2+-,“电流量程”开关应置于A 1013-⨯档。

3、在不接输入信号的状态下对微电流测量装置调零。

操作方法是: 将暗盒前面的转盘用手轻轻拉出约mm 3左右,即脱离定位销,把mm 4φ的光阑标志对准上面的白点,使定位销复位。

再把装滤色片的转盘放在挡光位,即指示“0”对准上面的白点,在此状态下测量光电管的暗电流。

4、然后把nm 365的滤色片转到窗口(通光口),此时把电压表显示的AK U 值调节为V 999.1-;打开汞灯遮光盖,电流表显示对应的电流值I 应为负值。

用电压粗调和细调旋钮,逐步升高工作电压(即使负电压绝对值减小),当电压到达某一数值,光电管输出电流为零时0I =,记录对应的工作电压AK U ,该电压即为nm 365单色光的遏止电位Ua 。

将此电压填入表1中的相应位置。

5、然后按顺序依次换上nm 577 ,nm 546 ,nm 436 ,nm 405的滤色片,重复以上测量步骤。

一一记录AK U 即Ua 值,填入表1中。

二、测量不同通光量时光电管的伏安特性曲线
1、将工作电压转换按钮按下,电压调节范围转变为:V 30~V 2+-,“电流量程”开关应转换至A 1010-⨯档,并重新调零。

1、取()4mm ϕ=,400L mm =365nm λ=测量AK U 和I 值,分别填入标
准2,并在坐标纸上以描点法画出AK U I -曲线;
2、取()2mm ϕ=,400L mm =365nm λ=测量AK U 和I 值,分别填入标
准3,并在与(1)相同的坐标纸上以描点法画出AK U I -曲线;
3、取()2mm ϕ=,400L mm =365nm λ=测量AK U 和I 值,分别填入标
准4,并在与(1)相同的坐标纸上以描点法画出AK U I -曲线;
三、分别测出不同通光量(光强)时的电流值并加以比较
将工作电压转换按钮按下,电压调节范围转变为:V 30~V 2+-,“电流量程”开关应转换至A 1010-⨯档,并重新调零。

1、取30AK U V =,400L mm =365nm λ=,光阑分别取()248mm mm ϕ=、、将相应的电流值I 填入表5中;
2、取30AK U V =,()4mm ϕ=365nm λ=,距离分别取300350400L mm =、
、,将相应的电流值I 填入表6中;
【数据处理】
表1a U v -关系
(400L mm =()4mm ϕ=“电流量程”开关应置于A 1013-⨯档 电压=
图 6V i 与U ai 关系
由图6可知,截止电压的绝对值数值|U ai |随着频率V i 的增大而增大,观察图线知两者近似呈线性关系。

表2AK U ~I 关系
()2mm ϕ=,400L mm =λ
=365m 电压=V 30~V 2+-
图7 (λ=436nm )I 与U ak 关系 图8 (λ=546nm )I 与U ak 关系
表3AK U ~I 关系
()2mm ϕ=,400L mm =λ=405压=V 30~V 2+-
由图7和图8可知阳极电流饱和缓慢,整个曲线先平稳增长,后斜率变大,再后来到达饱和。

从-2V 开始,电流随电压的增大而从0A 开始上升。

对于不同波长的光,所到达的饱和电流值也不同,但大都当电压趋近30V 左右时电流值趋于饱和。

表4P ~I M 关系
30AK U V =400L mm =λ=365电压=V 30~V 2+-
由表4知随着光阑孔的增大,电流会增大。

表5 P ~I M 关系
30AK U V =D=8mm λ=365电压=V 30~V 2+-
由表5知随着距汞灯距离的增大,电流会减小(即光强减弱,电流值相应减小)。

【误差分析、思考题】
1.测定普朗克常数的关键是什么?怎样根据光电管的特性曲线选择适宜的测定遏止电压a U 的方法。

2.从遏止电压a U 与入射光的频率ν的关系曲线中,你能确定阴极材料的逸出功吗?
3.本实验存在哪些误差来源?实验中如何解决这些问题? 本实验中应用不同的方法测出了普朗克常数,不过却不同程
度的具有一定误差,误差产生原因是:1、本底电流的影响,本底电流是由于室内的各种漫反射光线射入光电管所致,它们均使光电流不可能降为零且随电压的变化而变化。

2、暗电流的影响,暗电流是光电管没有受到光照射时,也会产生电流,它是由于热电子发射、和光电管管壳漏电等原因造成;3、光电管制作时产生的影响:(1)、由于制作光电管时,阳极上也往往溅射有阴极材料,所以当入射光射到阳极上或由阴极漫反射到阳极上时,阳极也有光电子发射,当阳极加负电位、阴极加正电位时,对阴极发射的光电子起了减速的作用,而对阳极的电子却起了加速的作用,所以I-U关系曲线就和IKA、UKA曲线图所示。

为了精确地确定截止电压US,就必须去掉暗电流和反向电流的影响。

以使由I=0时位置来确定截止电压US的大小;制作上的其他误差。

4、实验者自身的影响:(1)不同的操作者在操作时存在一定的差异,电压的读取也会存在差异。

(2)调零时,可能会出现误差。

相关文档
最新文档