大铁路货车制动装置
铁路货车车辆制动技术
铁路货车车辆制动技术摘要:随着社会的不断的发展,铁路行业的货物运输任务也越来越重。
铁路货车制动装置的技术状态直接影响着铁路货物运输的安全和运输秩序。
针对铁路货车普遍的闸瓦磨耗不均匀及不易缓解等现象,运用解析法和多体动力学仿真分析法,预测了集成制动系统的制动和缓解性能。
首先,根据其结构组成和工作原理,计算各闸瓦压力和缓解阻力;然后,在RecurDyn软件中建立虚拟样机,针对制动、缓解两种工况分别进行仿真试验,分析各闸瓦的压力分布、缓解时间、缓解阻力、缓解位移,从而预测制动系统的制动和缓解性能。
研究发现集成制动装置制动时,L1位制动力比L2位大8.47%,L1位比R1位大5.51%,可能导致踏面磨耗不均匀;缓解时,各闸瓦缓解时间基本相同,当摩擦系数设为0.15时,可保证缓解时各闸瓦的缓解位移均匀及各轮瓦的间隙相同。
预测结果为铁路货车集成制动系统的运用改善及国产化提供理论参考依据。
本文简单的介绍了铁路货车车辆的基本结构,并对仿真实验方案设计和试验结果进行了研究分析。
关键词:集成制动系统;制动和缓解性能预测;多体动力学分析;RecurDyn引言通过多年研究与发展,我国货车转向架已基本定型,所以改善制动装置成为铁路货车发展的关键。
我国传统的制动装置受结构位置的限制,甚至需要多级杠杆进行传动,制动装置的布局较为复杂,不但降低了传动效率,也降低了制动与缓解的可靠性,不能满足我国货车发展的需求。
集成制动系统是指制动缸集成在转向架上,每个转向架可作为独立的制动单元控制车辆制动与缓解的制动系统,由于省去了大量的杠杆结构,具有结构紧凑、传动效率高、安装方便、质量轻等优点。
1结构与工作原理分析1.1组成结构集成制动装置主要由主制动梁、副制动梁、主制动杠杆、副制动杠杆、制动缸、推杆、闸瓦间隙调节器(闸调器)、闸瓦等部件组成。
制动缸固装在制动梁上,主、副制动杠杆通过制动梁支柱水平安装,缸内推出的制动力通过主制动杠杆、闸调器、副制动杠杆和推杆在同一水平面内传递。
空气制动装置
第一节铁路货车三通阀种类及其特点
三通阀是自动空气制动机的核心部件。它能根据司机操控的制动管的压力变化,控制它所在货车的制动缸的制动与缓解,以及副风缸充气。从而实现司机对全列车制动机的操纵。它出现于自动空气制动机发展的早期。由于它和制动管、制动缸、副风缸三方面相通,故称之为“三通阀”。
表6-2-3简易三通阀与K型三通阀的性能比较
名称
列车编组(辆)
常用制动波速(m/s)
缓解波速(m/s)
简易三通阀
30
43
K型三通阀
50-80
80-96
40-70
K1型三通阀和K2型三通阀的性能基本一致;K型三通阀滑阀上的紧急制动孔s较大,故在紧急制动时制动缸压力只需1-1.5s的时间内就能上升到最高压力400kPa。因此列车纵向冲动较大。图6-2-1为K1型和K2型三通阀紧急制动性能曲线。
(六)紧急制动作用
列车管以紧急制动的速度(49~78.5kPa/s)大量减压时,主活塞两侧发生很大的压力差,主活塞带动节制阀和滑阀迅速向外侧移动,接触递动杆后压缩递动弹簧,到达紧急位置。由于GK型制动机有空重车调整装置,当货车在重车位时,制动缸压力分三阶段上升,实现制动缸变速充气,用以减少列车中货车间的冲击。其作用如下:
一、GK型三通阀的构造
GK型三通阀由作用部(I)、紧急部(II)、递动部(III)、减速部(IV)四个部分组成。作用部由阀体、主活塞、滑阀、节制阀等组成;递动部由递动杆、弹簧、风筒盖等组成;紧急部由阀下体、止回阀、紧急活塞、紧急阀、弹簧等组成;减速部由减速杆、弹簧等组成。除了减速部是用螺纹拧在作用部上外,其余各部分都分别用螺栓及胶垫紧固在一起。见图6-2-3。
铁路货车制动系统技术结构及常见故障判别方法
2.制动抱闸故障表象及判断方法 2.1车辆制动机处于缓解位时,制动缸活塞杆仍处于 伸出状态,即制动缸未缓解,导致车辆所有闸瓦均紧 贴车轮踏面,造成车轮踏面擦伤产生熔渣、辗堆,并 伴有高温。 2.2 车辆制动机处于缓解位时,制动缸活塞杆缩回, 但手制动装置仍处于制动位,即手制动机闸链未松开, 仍然拉紧前制动杠杆,致使基础制动装置仍处于制动 状态,导致车辆所有闸瓦均紧贴车轮踏面,造成车轮 踏面擦伤产生熔渣、辗堆,并伴有高温。
.
图2 转向架基础制动装置
.
图3 转向架安装基础制动装置三维图
.
二、铁路货车基础制动装置传动原理 1.制动缸输出力传递过程 如图1所示,制动缸的输出力通过推杆4作用
在前制动杠杆3上,前制动杠杆3拉动闸调器5, 在此将制动力转变为两部分,即一位端部分和二 位端部分。以闸调器5为支点,一位端部分制动 力传递到一位拉杆1上,二位端制动力来源是闸 调器的拉力,闸调器拉力拉动后制动杠杆6,后 制动杠杆以支点座为支点,将制动力传递至二位 端拉杆上。两个拉杆再分别拉动1位和2位转向架, 即图2上的F力,将制动力传递到转向架基础制 动装置上,最终作用在制动梁闸瓦上。
.
列车运行途中如果出现冒火花的现象,应注意观
察冒火花的部位,如果车辆的4个车轮同时出现冒火花
现象,则可能为抱闸,如果只有个别车轮出现冒火花
现象,是闸瓦在缓解后未离开踏面,在运行途中随着
振动会逐渐离开踏面,不是车辆抱闸造成的。
.
铁路货车制动系统技术结构 及常见故障判别方法
.
一、铁路货车基础制动装置技术结构 铁路货车基础制动装置主要包括制动缸前、后制动杠杆、 拉杆、闸调器、转向架固定杠杆、移动杠杆、制动梁及推 杆等。具体结构见下图:
关于铁路货车制动系统介绍及发展的思考
关于铁路货车制动系统介绍及发展的思考【摘要】对国内外铁路货车的制动系统技术的发展现状进行了阐述,对比分析了电控空气制动系统(ECP)和机车无线同步操纵技术(LOCOTROL)在铁路重载货车中的应用,并对铁路重载货车制动技术发展进行了一些思考。
【关键词】铁路货车;制动技术;电控空气制动系统(ECP)铁路货车是完成铁路货物运输任务的运载工具,而制动装置是铁路货车的重要组成部分之一,是机车车辆实施减速和停车作用的执行机构,是确保列车运行安全的必备装置。
铁路货车随经济发展而不断向高速、重载发展,列车制动的重要性也不仅仅是安全问题,制动已经成为制约列车速度和牵引质量进一步提高的重要因素。
1 国内外铁路货车制动系统发展1.1北美铁路货车制动系统的发展美国在1933年为了满足铁路货运的需求,开发了AB型制动机取代了K型阀。
1968年将AB型空气控制阀改进为ABD型空气控制。
1975年,为了适应长大货车进一步发展的需要,在ABD型空气控制阀基础上增添了常用制动加速阀(简称“W”阀,也称连续局减阀)而改称ABDW型货车空气控制阀,以改善常用制动距离,并于1977年正式定型,代替ABD型空气控制阀装于新造货车上。
后又在ABDW型空气控制阀基础上做局部改进后定型为ABDX型空气控制阀。
ABDX控制阀属于二压力控制阀,通过列车管与副风缸间压差实现制动、缓解和保压等功能。
该控制阀具有多种适应长大列车的性能,主要有局部减压、紧急放风、紧急增压、常用制动加速和加速缓解等作用,促进了列车的制动、缓解性能,增大了列车的制动、缓解波速,减少列车的纵向冲动。
1.2我国铁路货车制动系统的发展我国货车制动技术经历了从仿制、改造到自主研制的发展历程。
建国初期,由于我国铁路机车车辆来自世界许多国家,制动装置以K型制动机为主。
随着载重50t以上新造货车的投入运用,1956年研制在K型制动机的基础上可以提高重车制动率的GK型制动机。
由于铁路运输的不断发展,车辆的载重和速度都相应提高,于1961年开始研制103型空气制动机,1989年在103型空气制动机基础上进行改进,将其间接作用原理改为直接作用原理,同时增加加速缓解作用,保留103型空气制动机原有优点,借鉴国外制动机的先进经验,全面调整了原有参数。
铁路货车脱轨自动制动装置的机械拆解
01脱轨自动制动装置(以下简称“脱轨阀”)是铁路货车上的重要部件,在车辆运行中脱轨时,能够自动、及时引起列车发生紧急制动作用,使脱轨列车尽快停下来,避免损失进一步扩大。
绝大多数70t级铁路货车均装有脱轨阀,随着70t级铁路货车厂修占比的不断提高,脱轨阀检修节拍影响货车厂修效率的问题日渐突出。
较长时间以来,脱轨阀检修时一直采用人力手工拆解,需要的操作人员数量多,效率低,对生产节拍还经常产生不利的影响,针对这些问题,有必要研制铁路货车脱轨自动制动装置拆解机(以下简称“脱轨阀拆解机”)。
以下以脱轨阀拆解机研制为例,探索检修脱轨阀拆解的相关情况。
脱轨阀简介02脱轨阀是由制动阀杆、作用杆、弹片、顶梁、锁紧螺母、阀体、阀盖及拉环等主要配件组成,如图1所示[1]。
脱轨阀检修时,需要拆解的螺纹联接部位有顶梁护套与锁紧螺母的螺纹联接、锁紧螺母与作用杆的外螺纹联接以及顶梁调节杆与作用杆的内螺纹联接。
图1脱轨阀组成护套是顶梁组成的一个配件,可活动但不可分离,组装状态下顶梁护套外露部分较少,使用工具不容易卡固,锁紧螺母同时与两个配件螺纹联接,不容易按步骤解体,使用常规工具进行操作不易达到分步骤完全解体的目的,设计制造脱轨阀拆解专用工装势在必行。
脱轨阀拆解机结构及原理03(1)脱轨阀拆解机构造包括机座、旋卸组件、套筒、支架、挂钩、第一扳手及第二扳手等,如图2所示。
图2脱轨阀拆解机1、7—旋卸组件2—底座3—挂钩4—长条形开口5—机座6—第一扳手8—卡盘9—套筒10—支架11—连接杆12—第二扳手(2)脱轨阀拆解机各部位作用脱轨阀拆解机的机座为整个装置提供了一个稳定的工作平台;旋卸组件设置于机座上,在电动机带动下能够稳定地旋转。
套筒联接旋卸组件,二者同轴,套筒用于固定脱轨阀阀体,套筒带动脱轨阀阀体一起旋转;套筒上开槽,方便脱轨阀的卡固与装卸。
支架设置于机座上,且位于套筒的径向两侧,用于支撑脱轨阀顶梁,支撑第二扳手。
挂钩是一个安全装置,挂住顶梁,防止工作中顶梁窜动或意外滑动。
铁路货车制动技术发展
铁路货车制动技术发展摘要:从货车空气制动装置的基本组成部分,制动机、空中车调整装置、闸瓦间隙制动调整装置等方面,阐述货车制动系统的发展情况及运用现状。
国民经济的发展对铁路运输的需求压力下,铁路货车运输必然朝着快速、重载趋势发展。
阐述快速和重载趋势下铁路货车制动装置所需克服的问题及发展模式,展望了铁路货车高速、重载制动技术的发展前景。
关键词:铁路货车;制动系统;快速;重载1列车制动基础常识1.1常见的制动概念。
人为的使列车减速或使之在规定的距离内停产即为制动,反之对已经行驶的列车解除或减弱其制动作用即为缓解。
为使列车能施行制动和缓解而安装在列车上的一整套零部件组成的装置,称为列车制动装置。
产生制动原动力并进行操纵和控制的部分叫做制动机,传送制动原动力并产生制动力的部分称为基础制动装置。
1.2制动装置的主要指标。
从司机施行制动(将制动阀手柄移至制动位)的瞬间起到列车停止所驶过的距离称为制动距离。
正常情况下为调节或控制列车速度,包括进站停车所施行的制动称常用制动,作用比较缓和且制动力可调节,多数情况下只用50%左右。
紧急情况下为使列车尽快停止而施行的制动称紧急制动,作用迅猛且要把列车制动力全部实施。
制动缸达到最大平衡压力瞬间所对应的列车管减压量为列车管最大有效减压量。
1.3列车制动装置的分类。
常见的按动力来源及操作方式划分类别。
电空制动机是重载列车的发展方向,采用电气控制压力空气为动力,缩短长大货物列车制动空走时间和制动距离,极大提高制动、环节波速,减少冲撞。
空气制动以压力空气为动力源及操纵方式,增压环节、减压制动,含直通式、二压力机构、三压力机构及二、三压力混合等。
人力制动用人力转动手轮或用杠杆波动的方式使闸瓦压紧车轮踏面而实现制动。
真空制动利用大气压力为动力,制动时由真空泵抽真空实现制动,较为落后,目前已基本不采用。
2国铁货车制动装置主要部分发展概况2.1制动阀发展过程。
由于我国铁路机车车辆来自世界许多国家,制动装置品种繁多,解放前以K1型三通阀为主与其他阀型并存,且含有未安装空气制动装置车辆存在。
铁路货车制动技术PPT幻灯片课件
1956年~1978年 GK三通阀→载重50T以上
1978年~1993年 103分配阀→载重60T以上
1993年~
120/120-1阀→载重70T以上
11
直通式制动
1865年
制动时,压力空气从机车的总风缸通过列 车管直接进入制动缸。
缺点: 制动波速、缓解波速极低,列车冲动大 列车分离后制动失效
1915年
的主要技术指标。我国铁路技术管理规程的规定制动距离一般为
800米,个别区段可延长到1100米。
常用 制动
• 正常情况下为调节或控制列车速度,包括进站停车所施行的制动。 其特点是作用比较缓和且制动力可以调节,多数情况下只用50% 左右。
紧急 制动
• 紧急情况下为使列车尽快停住而施行的制动,其特点是作用比较 迅猛,而且要把列车制动力全部用上。
部增压
以提高缓解波速,促使后部车辆迅速缓解的现象。
制动/缓解 •即列车管以一定的减压/增压速度达到一定的减压/增压量,
灵敏度
制动机必须制动/缓解。
6
列车制动装置的分类
空气制动
以压力空气为动力源及操纵方式:增压缓解、减压制动。
按动 力来 源及 操作 方式
人力制动 电空制动 真空制动 轨道电磁制动
用人力转动手轮或用杠杆拨动的方法使闸瓦压紧车轮踏面 而实现制动。
8
空气制动机的分类
直通式
空气制 动机
二压力机构
直接作用式:120、120-1. 间接作用式:103、104、120AK
三压力机构
二、三压力混合
9
基础制动装置的分类
踏面闸瓦制动
杠杆式 集成制动
基础制动装 置
盘型制动
双制动盘 三制动盘
新型货车制动系统简介
第八章新型货车制动系统简介第一节120K型货车制动系统根据《铁路主要技术政策》关于快运货车最高速度120 km/h,列车重量W1500 J制动距离W1100m 的要求,对货车制动机提出了新的要求。
120K型快运货车制动系统能适应快运货车的需要还能与现有的货车制动机混编,适应牵引重量为5000 t的重载货物列车,时速90 km/h,制动距离W800m的要求。
一、结构特点1、120K控制阀是以120阀为基础采用模块化设计的多功能控制阀,在保留120阀加速缓解及能适应压力保持式操纵等众多优点的同时增加了若干新的功能,能很好的适应速度120 km/ h及其以上的快运货物列车的制动需要。
2、具有“客货”转换功能,因而既可与旅客列车附挂,亦可与普通货物列车任意混编运行,编组运营十分方便。
3、配有完善的真正的自动随重调整装置,不介称重精确能自动消除车辆振动及偏载、弯道的影响,而且输入输出调整范围大,适应性强。
4、能适应直径152.4〜406.4 mm的制动缸或容积与之相当的多缸系统,而其输出压力、制动、缓解及充气时间保持不变,不但能适应现今各种速度及载重的车辆而且能配用单元路面制动或盘形制动等多缸系统,因而具有足够的潜力适应下一步向加大轴重或进一步提高速度的需要。
5、非重车位时制动缸少消耗的压力空气均节约留存在副风缸内,因而无需降压气室之类的无效容积,节约压力空气。
6、利用副风缸叙谈加速缓解风源,与120阀相比可省去加速缓解风缸。
7、采用模块设计形成成系列产品,可根据不同需要很容易地增添或改变某些功能,用途广泛,发展潜力大。
8、其作用原理与120阀相似,大部分零件均与120阀通用互换,而且试验台及检修工具等亦都通用,便于备件、检修、推广和运用。
9、制动系统中各阀均经48h低温(-50℃)环境试验及20多万次的耐久试验,结果良好,证明其性能稳定而可靠,检修寿命长。
二、120K型快运货车制动系统构成120K型快运货车制动系统由控制阀、随重阀及荷重式传感阀三大部分组成。
铁道机车车辆 第六章 制动装置[知识荟萃]
1.中间体
中间体
2.主阀
主阀分解
3.紧急阀
4.半自动缓解阀
1一中间体;2一主阀;3一半自动缓
(1)缓解作用 (2)排风作用
充气缓解
解阀;4一半自动缓解阀的活塞部; 5一半自动缓解阀手柄;6一紧急阀。
减压制动 行业重点
21
三、120型控制阀的作用原理
充风缓解形成过程
120型控制阀采用两种压力控制机构直接作用式,满足自 动制动机的要求,并能与三通阀、分配阀混编使用,且在混 编时对旧型制动机能有促进作用。
若列车在运行中,发生了列车脱钩分离事故,由于制动 软管被拉断,制动管的风压急剧降低,通过控制阀(分配阀) 的作用,使分离后的全部车辆(包括机车),能迅速地、自 动地产生制动而停车,从而保证了安全行车。
行业重点
14
第三节 货车空气制动机 一、120型空气制动机
120型空气制 动机的主要部件如 下: 1.制动管 2.制动软管
12行业重点二排风制动作用司机将大闸手柄置于制动位时大闸等部件遮断总风缸与制动管的空气通路连通制动管与大气的通路则制动管的风经排气口排向大气使制动管呈减压状态通过控制阀分配阀的作用使副风缸的风经控制阀分配阀进入制动缸推动制动缸活塞压缩缓解弹簧伸出活塞杆经基础制动装置的联动使闸瓦压紧车轮踏面而起制动作用
(一)充风缓解作用
1一空气压缩机;2--总风缸;3--自动制动机;4一制动软管;5一折角塞门;6一制动主管;7一制动
支管;8一控制阀;9一副风缸;10一制动缸;11一基础制动装置;12-闸瓦;13一车轮。
行业重点
11
在总风缸向副风缸充风的同时,若制动机原处于制动状态,即制动缸有 风,则通过控制阀(分配阀)的作用,使制动缸内的气体经控制阀(分配阀)的 排气口排向大气,制动缸活塞在缓解弹簧的作用下被推回原位,再经基础制 动的联动作用使闸瓦离开车轮而缓解,此过程称为缓解作用。
铁路货车制动故障分析与处理
铁路货车制动故障分析与处理摘要:随着社会的不断的发展,铁路行业的货物运输任务也越来越重。
铁路货车制动装置的技术状态直接影响着铁路货物运输的安全和运输秩序。
本文简单的介绍了铁路货车车辆的基本结构,并对空气制动机和人力制动机常见故障的原因与处理方法进行了研究分析。
关键词:铁路货车;制动技术;故障根据中国货物列车提速和货车目前的发展状况,本文简单阐述了铁路货车制动装置常见故障的原因与处理方法。
一、铁路货车车辆的基本结构铁路货车制动机主要分为四类:空气制动机、人力制动机、电控制动机和真空制动机。
目前铁路货车主要使用的是空气制动机和人力制动机。
我们此次研究的主要就是这两套制动机的故障分析与处理。
空气制动机的定义:空气制动机,就是利用压缩空气为原动力,并用压力空气的变化来操纵对车辆施行制动的装置。
人力制动机的定义:人力制动机,就是利用人力为原动力,并用机械杠杆的变化来操纵对车辆施行制动的装置。
二、空气制动机常见故障与处理(一)空气制动机抱闸故障与处理1、空气制动机抱闸故障的表征抱闸分为两种现象即:缓解不良和自然制动。
缓解不良是指车辆制动后,施行充风缓解时,个别车辆不发生缓解作用而造成的抱闸现象。
缓解不良说的通俗一点就是现场作业中,车辆充风缓解后,制动缸鞲鞴不复位的一种现象。
自然制动是指车辆未施行制动,个别车辆却发生了制动作用而引起的车辆抱闸现象。
2、空气制动机抱闸故障产生的主要原因空气制动机抱闸主要是由于自然制动和缓解不良造成。
自然制动产生的原因主要是120阀本身故障或由于车辆制动管系漏风超过规定而造成。
缓解不良的原因是由于120阀缓解感度不良;制动缸缺油、生锈;制动缸缓解弹簧衰弱或折损;皮碗膨胀过紧;基础制动杠杆卡住或手制动机在紧固状态而造成。
3、空气制动机抱闸故障的检查与处理(1)自然制动的检查方法。
①认真检查车辆制动管系是否漏风。
若发现有主管、支管及软管等处漏风时,就要彻底进行处理,以最大限度地消除车辆制动管系漏风。
货车脱轨自动制动装置
第八章 货车脱轨自动制动装置
制动阀杆 阀体 阀体上承台
第八章 货车脱轨自动制动装置
螺栓及弹性垫 阀体凸台
第八章 货车脱轨自动制动装置
第八章 货车脱轨自动制动装置
第八章 货车脱轨自动制动装置
第二节 货车脱轨自动制动装置作用原理
脱轨制动装置利用脱轨时车体与轮对的相对位移, 在空车脱轨时,脱轨轮对处的车轴拉断制动阀杆; 在重 车脱轨时,脱轨转向架中未脱轨轮对的车轴顶断制动阀 杆。制动阀杆折断后,沟通主风管与大气的通路,引起列 车发生紧急制动作用。
第八章 货车脱轨自动制动装置
第八章 货车脱轨自动制动装置
该装置采用机械作用方式,在车辆脱轨时能及时使主风管连 通大气,致使列车产生紧急制动,从而避免脱事故的扩大。
原制动系统
新增脱轨制动装置
新增脱轨制动装置
货车脱轨自动制动装置安装示意图
第八章 货车脱轨自动制动装置
货车脱轨自动制动装置配置图 货车脱轨制动装置组成:脱轨自动制动装置(脱轨制动 阀)、主管三通、球阀、支管三通、支管。
6.检验△X、△Y1及△Y2都符合规定值后,将开口销(1)双 向劈开不小于60°,并将圆销锁的锁头插入簧座,同时将脱轨制 动阀安装螺栓点固。
第八章 货车脱轨自动制动装置
第四节 货车脱轨自动制动装置安装及维修
(二)安装注意事项 1.调整拉环、顶梁与车轴的间隙值需在平道上进行。 2.重新调整旁承间隙或车钩高后必须重新检查并调整拉环、 顶梁与车轴的位置尺寸。 3. 单 车 试 验 时 , 须 将 球 阀 手 把 置 于 开 放 位 ( 手 把 与 支 管 平 行),然后按TB/T1492-2002《铁道车辆制动机单车试验方法》 进行。单车缓解感度试验的操作方法仅决定于主风管长度,与是 否安装脱轨制动阀无关。
铁道机车车辆 制动装置
若列车在运行中,发生了列车脱钩分离事故,由于制动 软管被拉断,制动管的风压急剧降低,通过控制阀(分配阀) 的作用,使分离后的全部车辆(包括机车),能迅速地、自 动地产生制动而停车,从而保证了安全行车。
2020/3/9
14
第三节 货车空气制动机 一、120型空气制动机
120型空气制 动机的主要部件如 下: 1.制动管 2.制动软管
2020/3/9
17
8.制动缸
制动缸吊挂在车底架 下部。目前主要使用密封 式制动缸。
制动时,活塞杆被推
出,活塞杆再推动推杆,
带动基础制动装置起制动
作用;缓解时,活塞杆缩 回制动缸内,推杆便失去 推力,车辆缓解。
9.加速缓解风缸
1一制动缸后杠杆托;2一缸体;3一活塞; 4一Y形自封式皮碗;5一润滑套;6一毡托; 7一缓解弹簧;
1一制动缸后杠杆托;2一缸体;3一活塞;4一Y 形自封式皮碗;5一润滑套;6一毡托;7一缓解弹 簧;8一活塞杆;9一前盖垫;10一前盖;11一滤 尘器;12一弹簧座;13一滤尘套。
6.120型控制阀其结构和工作原理在后面章节中专门叙述
7.副风缸
副风缸吊挂在车底架下部,为圆筒形,是储存压缩空气的容器。
2.总风缸。机车贮存压缩空气的容器,总风缸内空气
压力为750~900 kPa。 2020/3/9
8
3.制动阀 1)单独制动阀(简称单阀,俗称 小闸) 用于单独控制机车制动、 缓解
2)自动制动阀(简称自阀,俗称 大闸) 用于全列车制动、缓解
3、司机控制器
2020/3/9
9
(二)装设在车辆上的部件
1.副风缸。每辆车辆储存压缩空气的容器。缓 解时,总风缸经调压后的压缩空气通过控制阀(或 分配阀)进入副风缸贮存;制动时副风缸内的压缩 空气又经控制阀(或分配阀)直接进入制动缸。
铁路货车制动技术
转至眉山 厂生产, 开始进行 局部改进
正式 定型
103阀的结构形式来源于美国ABD阀, 特点有:
二压力间接作用式
采用橡胶膜板代替涨圈结构 自带手动空重车调整功能 具有单独的紧急阀 两段局减,制动波速快
以103阀为核心的空气制动系统
折角塞门
工作风缸 组合式 集尘器
缓解阀
副风缸
14”制动缸
K1、K2三通阀
车辆编组20~30辆,总重量500~1000吨
操纵阀
1915年
副风缸
1949年
引进日本的KC、KD型三通阀, 即我公司前身30年代生产的K1、K2阀
特点: 司机一人操纵(制动、缓解、保压) 二压力直接作用式,有6个作用位置 具有局部减压作用 具有紧急制动作用
K1阀+6”/8”制动缸→单车载重30t以下
部级 鉴定
转让
生产
列车管定压500KPa、600KPa
采用直接作用式,配10”或14”制动缸
大秦运煤专线 设计任务书
设半自动缓解阀 适应环境-50~50°C,110°C解冻库 与现有列车(GK阀)无条件8年混编 在无风源净化条件下8年一检修
10000t级长大
重载列车C61
120型控制阀
直通式制动→载重30T以下 K1、K2三通阀→载重30~50T GK三通阀→载重50T以上 103分配阀→载重60T以上 120/120-1阀→载重70T以上
直通式制动
1865年
1915年
制动时,压力空气从机车的总风缸通过列 车管直接进入制动缸。
缺点: 制动波速、缓解波速极低,列车冲动大
列车分离后制动失效
• 主阀、缓解阀
• 主阀(包括缓解阀)控制着充气、缓解、制动、保压等作用,是控
2013铁路货车段修规程-7.制动装置
7制动装置7.1 综合要求7.1.1 基本作业条件7.1.1.1制动阀、空重车阀等主要零部件的分解、清洗、检修、组装和试验须在独立、封闭的制动室内进行。
7.1.1.2制动梁应在检修流水线上检修,应能满足组合式制动梁检修要求。
7.1.1.3应配置以下主要工艺装备:7.1.1.3.1基础制动装置主要工艺装备:制动梁自动检测装置,闸瓦托弧面铣(磨)床,L型制动梁磨耗套铆钉机,制动梁滚子轴、滑块机械除锈设备,制动梁滚子轴挡圈分解机具,制动梁滚子轴、滑块湿法探伤机,制动梁滚子轴固定焊机具,可移式镶套机,L型制动梁支柱组装工装,L型制动梁闸瓦托压装机,L型制动梁闸瓦托铆接装置,铆钉加热炉,制动梁拉力试验器。
7.1.1.3.2空气制动主要工艺装备:制动阀外体清洗机,单阀零部件盛放盒,电(风)扳手及工作台,制动阀零件及腔体清洗机,制动阀零件及腔体烘干机,滑阀及滑阀座自动研磨机,涨圈、活塞筒自动研磨机,校正平台,微机控制701试验台,微机控制705试验台,微机控制120阀试验台(满足120-1制动阀试验),微机控制空重车调整装置阀类试验台,微机控制弹簧自动检测机,微机控制制动软管风、水压试验装置,塞门研磨及微机控制漏泄试验装置,微机控制安全阀、缓解阀等综合试验装置,压缩空气净化、干燥装置,制动缸活塞组成分解、清洗、组装装置,制动缸、储风缸风、水压试验装置,微机控制单车试验器。
7.1.2制动阀、空重车阀、缓解阀、安全阀、编织制动软管总成、锥芯折角塞门、脱轨自动制动装置的拉环、转向架上的基础制动零部件等须从现车卸下后集中检修,制动装置其他零部件须进行检查、单车试验或性能试验,良好时可不分解。
7.1.3以下零配件应采用“辆份制”配送:制动阀、空重车阀等空气制动零部件的橡胶件、弹簧;现车制动装置零部件。
7.2 基础制动装置7.2.1 制动梁7.2.1.1 制动梁的闸瓦插销环、闸瓦插销、闸瓦、滚子须全部分解。
闸瓦插销、闸瓦、滚子应集中检测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大铁路货车制动装置
基础制动装置
车辆制动装置包括三个部分,即制动机(空气制动部分)基础制动装置和人力制动机,这三部分有机的组成车辆制动装置的整体。
基础制动装置是指从制动缸活塞推杆到闸瓦之间所使用的一系列杠杆、拉杆、制动梁、吊杆等各种零部件所组成的机械装置。
它的用途是把作用在制动缸活塞上的压缩空气推力增大适当倍数以后,平均的传递给各块闸瓦,使其变为压紧车轮的机械力,阻止车轮转动而产生制动作用。
因此,可以把基础制动装置的用途归结为:
1、制动缸所产生的推力至各个闸瓦;
2、推力增大一定的倍数;
3、各闸瓦有较一致的闸瓦压力。
一、基础制动装置的形式:
基础制动装置的形式:按设置在每个车轮上的闸瓦块数及其作用方式,可分为:单侧闸瓦式、双侧闸瓦式、多闸瓦式和盘形制动装置等。
新型提速车辆按制动梁下拉杆安装的形式,又可分为中拉杆式基础制动装置和下拉杆式基础制动装置。
制动梁下拉杆从摇枕侧壁椭圆孔穿过,将两个制动梁连接在一起的结构,称为中拉杆式基础制动装置;制动梁下拉杆从摇枕下方通过,将两个制动梁连接在一起的结构,称为下拉杆式基础制动装置。
新型提速车辆多数采用中拉杆式基础制动装置。
(一)单侧闸瓦式:
单侧闸瓦式基础制动装置,简称单式闸瓦,也称单侧制动。
即只在车轮一侧设有闸瓦的制动方式,我国目前绝大多数货车都采用这种形式。
单侧闸瓦式基础制动装置的组成:由组合式制动梁、中拉杆、固定杠杆、游动杠杆、新型高摩合成闸瓦、固定支点、移动杠杆组成。
货车制动机结构示意图
单侧闸瓦式基础制动装置的结构简单,节约材料,便于检查和修理。
但制动时,车轮只受一侧的闸瓦压力作用。
使轴箱或滚动轴承的附属配件承载鞍偏斜,易形成偏磨,引起热轴现象的产生。
此外由于制动力受闸瓦面积和闸瓦承受压力的限制,制动力的提高也受到限制。
若闸瓦单位面积承受的压力过大,轮瓦摩擦系数下降,影响制动效果。
不仅会加剧闸瓦的磨耗,而且还会磨耗闸瓦托,使制动力衰减,影响行车安全。
(二)双侧闸瓦式
双侧闸瓦式基础制动装置,简称双闸瓦式或复式闸瓦,也称双侧制动,即在车轮两侧均有闸瓦的制动方式。
复式闸瓦结构示意图
一般客车和特种货车的基础制动装置大多采用这种形式。
双侧制动装置,在车轮两侧都装有闸瓦,所以闸瓦的摩擦面积比单闸瓦式增加一倍。
闸瓦单位面积承受的压力较小,这不但能提高闸瓦的摩擦系
数,而且散热面积大,可降低闸瓦与车轮踏面的温度,延长车轮的使用寿命,减少闸瓦的磨耗量。
在相同尺寸的制动缸与相同闸瓦压力的情况下可得到较大的制动力。
同时,由于每轴的车轮两侧都有闸瓦,制动时两侧的闸瓦同时压紧车轮,可以克服单侧闸瓦式车轮一侧受力而引起的各种弊病。
一般客车和特种货车(机械保温车、长大货物车)大多采用这种形式的基础制动装置。
其结构比较复杂,一般侧架式货车转向架不易安装双闸瓦式基础制动装置。
(三)盘形制动
盘形制动装置是指制动时用闸片压紧制动盘而产生制动作用的制动方式。
盘形制动的基础制动装置有两种类型:制动盘安装在车轴上的叫轴盘式;制动盘安装在车轮上的叫轮盘式。
盘形制动(轴盘式)基础制动装置基本结构示意图
1—制动缸;2—连接拉杆;3—制动缸活塞杆;4—制动缸杠杆;5—钳形杠杆;6—钳形杠杆拉杆;7—闸片;8—闸片托;9—制动盘;10—固定支点;11—拉杆。
盘形制动基础制动装置的结构比较简单,可以缩小副风缸和制动缸的容积,节约压缩空气,各种拉杆可以小型化,直接安装在转向架上,能减轻车辆自重,不用闸瓦直接磨耗车轮踏面,可以延长车轮使用寿命,制动性能比较稳定,可以减少车辆纵向冲动。
同时制动缸安装在转向架上,制动时动作迅速,可提高制动效率。
采用搞摩擦系数的合成闸片,可增大制动力,缩短制动距离,延长闸片的使用寿命。
为了及时清除踏面上的油污和轻微擦伤,盘形制动装置上增设了踏面清扫装置。
目前我国的快速客车(时速120km/h以上)大都采用这种制动装置。
二、提速转向架基础制动装置主要部件的特征
(一)转K6转向架
转K6转向架基础制动装置为中拉杆式单侧闸瓦制动装置,采用L-A型或L-B型组合式制动梁,高磨合成闸瓦,45号钢圆销,奥-贝球铁耐磨衬套,止退开口销。
(二)转K5转向架
转K5转向架基础制动装置为中拉杆式单侧闸瓦制动装置,采用L-C组合式制动梁,高磨合成闸瓦,45号钢圆销,奥-贝球铁耐磨衬套,止退开口销。
固定杠杆与固定杠杆支点座之间用链蹄环连接,以利于侧架、摇枕的摆动。
(三)转K4转向架
转K4转向架基础制动装置为中拉杆式单侧闸瓦制动装置,采用整体锻造式制动梁,制动杠杆中孔和固定杠杆支点座孔装用球形销
套,以利于侧架、摇枕的摆动。
(四)转K2转向架
转K2转向架基础制动装置为中拉杆式单侧闸瓦制动装置,在制动梁端部焊装带防脱板的专用闸瓦托,45号钢圆销,奥-贝球铁耐磨衬套,止退开口销。
三、练习模块
(一)多项选择题
1、铁路货车基础制动装置采用中拉杆式的转向架是(BCD)
A、转8A;
B、转K2;
C、转K5;
D、转K6
(二)单项选择题
1、制动梁下拉杆由摇枕侧壁穿过,将两个制动梁连接在一起的结构称为(B)式基础制动装置。
A、下拉杆;
B、中拉杆;
C、上拉杆
2、制动杠杆中孔和固定杠杆支点座孔装用球形销套的是(C)转向架。
A、转K6;
B、转K5;
C、转K4
3、盘形制动装置装用在(A)上
A、时速120km/h以上的客车;
B、C80型货车;
C、C100型货车
(三)判断题
1、只在车轮一侧设置闸瓦的制动方式,称为单侧闸瓦式制动装置。
(对)。