人教A版高中数学必修四(1.2.1-1任意角的三角函数)

合集下载

2014年人教A版必修四课件 1.2 任意角的三角函数

2014年人教A版必修四课件 1.2 任意角的三角函数

r= x + y , a | MP | y sina = = , o M x | OP | r | OM | x cosa = = , | OP | r | MP | y tana = = . 于是得 | OM | x
【终边上一点的坐标定义三角函数】 点P(x, y)是角 a 终边上任一点(除原点), r 是点P y 到原点的距离, 即 r = |OP| = x 2 + y 2 , 1 P(x, y) y 正弦: sina = , r 余弦: cosa = x , -1 o x r y 正切: tana = , x 当点P(x, y)取角 a 终边与单位圆的交点时, r =1, 则a 的三角函数为: y 正弦: sina = = y, 余弦: cosa = x = x. r r
【终边在坐标轴上的角的三角函数】 终边在 x 轴非负半轴上时, (如图)
y 0 =0, sina = = r r cosa = x = r =1, r r y 0 =0. tana = = x x
终边与其它半轴重合时同理.
y
a的终边
o
P

x
练习: (课本15页) 3. 填表: 角a 角 a 的弧度数 sin a cos a 0º 0 90º 180º 270º 360º 3 2 2 2 -1 0 0 1 0
问题1. 在直角三角形中, 锐角的三角函数是怎 样定义的? 在直角坐标系中, 如果知道锐角 a 终边 上一点的坐标, 你能求出 a 的三角函数吗?
对边 sina = 斜边 邻边 cosa = 斜边
对边 tana = 邻边
作PM⊥x 轴于M, 设 |OP| = r, 则
2 2
y (x, y) P ·
本章内容

高一数学人教A版必修4第一章(三角函数)本章小结课件

高一数学人教A版必修4第一章(三角函数)本章小结课件

1-(-
5 5
)2
=
-
2
5 5
.
6. 用 cosa 表示 sin4a-sin2a+cos2a.
解: sin4a-sin2a+cos2a = sin2a(sin2a-1)+cos2a = sin2a(-cos2a)+cos2a = cos2a(1-sin2a) = cos4a.
7. 求证:
(1) 2(1-sina)(1+cosa) = (1-sina+cosa)2; (2) sin2a+sin2b-sin2a·sin2b+cos2a·cos2b =1.
6. 终边位置确定三角函数值的正负
y
y
y
++ -o - x
-+
ox
-+
-+
ox
+-
sina
cosa
tana
正弦上正下负, 余弦右正左负, 正切一三正二四负.
7. 同角三角函数的关系
sin2a+cos2a=1,
sina cosa
=
tana
.
常用的变形:
sin2a=1-cos2a. cos2a=1-sin2a.
解: 由已知得 sin2x=4cos2x, 1-cos2x=4cos2x,
解得 cos x =
5 5
.
又由已知得 tanx =2,
则 x 是第一、第三象限角.
当 x 是第一象限角时,
cos x =
5 5
,
sin x =
1-(
5 5
)2=
2
5 5
;
当 x 是第三象限角时,

【高中数学必修四】1.2.1任意角的三角函数(第三课时)

【高中数学必修四】1.2.1任意角的三角函数(第三课时)

练习.说出有向线段OM, MO, AT,
TA ,MP, AO, OA表示的数.
y T M(-1,0) y=x
O
P
A(1,0) x
三角函数线: ⑴ 图中的圆均为单位圆,作出表示sin 的有向线段.
y 的终边
P(x , y)

的终边 y
P(x , y)

O
M
x
M
O
x
从P作x轴垂线,M为垂足,MP为所求.
的终边 的终边 y y
P(x , y) P(x , y)


O
M
x
M
O
x
从P作x轴垂线,M为垂足,OM为所求.
⑵图中的圆均为单位圆,作出表示cos的 有向线段.
y M

y
O
x
M
O
x P(x , y)
P(x , y)
从P作x轴垂线,M为垂足,OM为所求.
三角函数线:
y
P P
y M O y x
画三角函数线的步骤: ⑴ 找出角的终边与单位圆的交点P. ⑵ 从P点向x轴作垂线,垂足为M. ⑶ 过A(1, 0)作x轴垂线与终边(或反向延长线)交于T.
例1. 作出下列各角的正弦线、余弦线、 正切线. 5 (1) ; ( 2) ; 3 6
2 ( 3) ; 3
13 ( 4) . 6
M
O M y
M O P
x
x
O
P
x
因为cos =x=OM,所以OM叫的余弦线
想一想: y 由于tan = ,能否找到使x = 1的点? 过点A(1,0)的切线上的点.
能否找到有向线段使
x
y 其能表示 ? x y AT =

(完整)《任意角的三角函数》教学设计

(完整)《任意角的三角函数》教学设计

《任意角的三角函数(第一课时)》教学设计任意角的三角函数(1)一、教学内容分析:高一年《普通高中课程标准教科书·数学(必修4)》(人教版A版)1。

2.1任意角的三角函数第一课时。

本节课是三角函数这一章里最重要的一节课,它是本章的基础,主要是从通过问题引导学生自主探究任意角的三角函数的生成过程,从而很好理解任意角的三角函数的定义。

在《课程标准》中:三角函数是基本初等函数,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。

《课程标准》还要求我们借助单位圆去理解任意角的三角函数(正弦、余弦、正切)的定义.在本模块中,学生将通过实例学习三角函数及其基本性质,体会三角函数在解决具有变化规律的问题中的作用。

二、学生学习情况分析我们的课堂教学常用“高起点、大容量、快推进”的做法,忽略了知识的发生发展过程,以腾出更多的时间对学生加以反复的训练,无形增加了学生的负担,泯灭了学生学习的兴趣.我们虽然刻意地去改变教学的方式,但仍太多旧时的痕迹,若为了新课程而新课程又会使得美景变成了幻影,失去新课程自然与清纯之味。

所以如何进行《普通高中数学课程标准(实验)》(以下简称课程标准)的教学设计就很值得思考探索。

如何让学生把对初中锐角三角函数的定义及解直角三角形的知识迁移到学习任意角的三角函数的定义中?《普通高中数学课程标准(实验)解读》中在三角函数的教学中,教师应该关注以下两点:第一、根据学生的生活经验,创设丰富的情境,例如单调弹簧振子,圆上一点的运动,以及音乐、波浪、潮汐、四季变化等实例,使学生感受周期现象的广泛存在,认识周期现象的变化规律,体会三角函数是刻画周期现象的重要模型以及三角函数模型的意义。

第二、注重三角函数模型的运用即运用三角函数模型刻画和描述周期变化的现象(周期振荡现象),解决一些实际问题,这也是《课程标准》在三角函内容处理上的一个突出特点。

根据《课程标准》的指导思想,任意角的三角函数的教学应该帮助学生解决好两个问题:其一:能从实际问题中识别并建立起三角函数的模型;其二:借助单位圆理解任意角三角函数的定义并认识其定义域、函数值的符号。

高一数学必修4课件:1-2-0-1任意角的三角函数的定义

高一数学必修4课件:1-2-0-1任意角的三角函数的定义

2π 3 2π 1 2π 所以sin = ,cos =- ,tan =- 3. 3 2 3 2 3
第一章
1.2
第1课时
成才之路 ·数学 ·人教A版 · 必修4
已知角α的终边经过点P(3,4),求sinα,cosα,tanα. [分析] 分别写出x,y,r的值,应用定义求得.
第一章
1.2
第1课时
成才之路 ·数学 ·人教A版 · 必修4
第一章
1.2
第1课时
成才之路 ·数学 ·人教A版 · 必修4
α 的三角函数 正弦
定义
b AB sinα=OB= r
a OA cosα= = r OB b AB tanα= = a OA
余弦
正切
第一章
1.2
第1课时
成才之路 ·数学 ·人教A版 · 必修4
(3)任意角的正弦、余弦、正切:如图所示,α是任意角, 以α的顶点O坐标原点,以α的始边为x轴的非负半轴,建立平 面直角坐标系. 设P(x,y)是α的终边与单位圆的交点,则有:
第一章
1.2
第1课时
成才之路 ·数学 ·人教A版 · 必修4
α的三角函数 正弦 余弦
定义
y x
y x (x≠0)
记法 sinα cosα
形式 sinα=y cosα=x y tanα=x(x≠0)
正切
tanα
第一章
1.2
第1课时
成才之路 ·数学 ·人教A版 · 必修4
[知识拓展] 利用角α终边上任意一点的坐标定义三角函 数如下: 设α是一个任意角,α的终边上任意一点P(除原点外)的坐 标是(x,y)它与原点的距离是r(r= x2+y2),那么: y y ①比值r 叫做α的正弦,记作sinα,即sinα=r . x x ②比值r 叫做α的余弦,记作cosα,即cosα= r . y y ③比值 叫做α的正切,记作tanα,即tanα= .(x≠0) x x

《红对勾》2015-2016学年人教A版高中数学必修4课件1-2-1任意角的三角函数-2

《红对勾》2015-2016学年人教A版高中数学必修4课件1-2-1任意角的三角函数-2

(1)sinβ________sinα. (2)cosα________cosβ. (3)tanβ________tanα. 答:(1)> (2)> (3)>
(1)三角函数线的特征:①三角函数线的位置:正弦线 为角α的终边与单位圆的交点到x轴的垂直线段,余弦线在x 轴上,正切线在过单位圆与x轴正方向的交点的切线上,三 条有向线段中有两条在单位圆内,一条在单位圆外.②三 角函数线的方向:正弦线由垂足指向角α的终边与单位圆的 交点,余弦线由原点指向垂足,正切线由切点指向切线与 角α的终边或其反向延长线的交点.③三角函数线的正负: 三条有向线段凡与x轴或y轴同向的,为正值,与x轴或y轴 反向的,为负值.
在单位圆中画出适合下列条件的角α终边的范围,并由 此写出角α的集合.
(1)sinα≥ 23;(2)cosα≤-12.
解:直线y=
3 2
交单位圆于A,B两点,连接OA与OB,则
OA与OB围成的区域(图(1)的阴影部分)即为角α的终边范围.
故满足条件的角的集合为{α|
π 3
+2kπ≤α≤
2π 3
+2kπ,k∈
解析:因为π4<1<2π,如图所示:
由三角函数线可得sin1> 22>cos1,故sin1-cos1>0. 答案:>
(2)下列关系式中正确的是( ) A.sin10°<cos10°<sin160° B.sin160°<sin10°<cos10° C.sin10°<sin160°<cos10° D.sin160°<cos10°<sin10°
【解】 如图(1). ∵2cosx-1≥0,∴cosx≥12. ∴函数定义域为2kπ-π3,2kπ+3π(k∈Z).

人教A版高中数学必修四课件1.2.1任意角的三角函数.ppt

人教A版高中数学必修四课件1.2.1任意角的三角函数.ppt

cos
2
3 2
6, 4
tan
3
15 3
.
(3) 当 y 5 时,P( 3 , 5),r 2 2 ,
cos 6 ,tan 15 .
4
3
综上所述:
(1) 当 y 0 时,cP(os 3,1, 0)ta,nr 03.
(2) 当 y 5 时 ,coP(s 3 ,6 ,5 )tan,r2 125,.
sin 5 3 ,
3
2
cos 5 1 ,
32
tan 5 3.
3
例1.求下列角的正弦、余弦和正切值:
(1) 5 ; (2) ; (3) 3 .
3
2
解:(2)∵ 当 时,在直角坐标系中, y 角 的终边与单位圆的交点坐标为 P(1, 0).
sin 0, cos 1, tan 0.
y
(1)正弦:sinα=y ;
P(x,y)
α
(2)余弦:cosα=x ;
0
A(1,0) x (3)正切:tanα= (yx≠0).
x
三角函数 sinα cosα tanα
定义域
正弦、余弦、正切都是以角(弧度)为自变量,以单位圆 上的点的坐标或坐标的比值为函数值的函数,我们将它们 统称为三角函数。
三角函数的定义域、值域
|
OP0
|5
P0(-3,-4)
x cos 3
三角函数的坐标定义 :(见教材13页)
一般地,设角α终边上任意一点(异于原点)P(x,y),它到原
点(顶点)的距离为r>0,则
sinα=y ;cosα= x ;tanα= .y
r
r
x
例2.已知角α终边上经过点P0(-3,-4), 求角的正弦、余弦和正切值.

人教版高中数学全套教案导学案高中数学 (1.2.1 任意角的三角函数)教案 新人教A版必修4

人教版高中数学全套教案导学案高中数学 (1.2.1 任意角的三角函数)教案 新人教A版必修4

任意角的三角函数1.2.1 任意角的三角函数整体设计教学分析学生已经学过锐角三角函数,它是用直角三角形边长的比来刻画的.锐角三角函数的引入与“解三角形”有直接关系.任意角的三角函数是刻画周期变化现象的数学模型,它与“解三角形”已经没有什么关系了.因此,与学习其他基本初等函数一样,学习任意角的三角函数,关键是要使学生理解三角函数的概念、图象和性质,并能用三角函数描述一些简单的周期变化规律,解决简单的实际问题.本节以锐角三角函数为引子,利用单位圆上点的坐标定义三角函数.由于三角函数与单位圆之间的这种紧密的内部联系,使得我们在讨论三角函数的问题时,对于研究哪些问题以及用什么方法研究这些问题等,都可以从圆的性质(特别是对称性)中得到启发.三角函数的研究中,数形结合思想起着非常重要的作用.利用信息技术,可以很容易地建立角的终边和单位圆的交点坐标、单位圆中的三角函数线之间的联系,并在角的变化过程中,将这种联系直观地体现出来.所以,信息技术可以帮助学生更好地理解三角函数的本质.激发学生对数学研究的热情,培养学生勇于发现、勇于探索、勇于创新的精神;通过学生之间、师生之间的交流合作,实现共同探究、教学相长的教学情境.三维目标1.通过借助单位圆理解并掌握任意角的三角函数定义,理解三角函数是以实数为自变量的函数,并从任意角的三角函数定义认识正弦、余弦、正切函数的定义域,理解并掌握正弦、余弦、正切函数在各象限内的符.2.通过对任意角的三角函数定义的理解,掌握终边相同角的同一三角函数值相等.3.正确利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值表示出来,即用正弦线、余弦线、正切线表示出来.4.能初步应用定义分析和解决与三角函数值有关的一些简单问题.重点难点教学重点:任意角的正弦、余弦、正切的定义,终边相同的角的同一三角函数值相等.教学难点:用角的终边上的点的坐标来刻画三角函数;三角函数符;利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值用几何形式表示.课时安排2课时教学过程第1课时导入新课思路 1.我们把角的范围推广了,锐角三角函数的定义还能适用吗?譬如三角形内角和为180°,那么sin200°的值还是三角形中200°的对边与斜边的比值吗?类比角的概念的推广,怎样修正三角函数定义?由此展开新课.另外用“单位圆定义法”单刀直入给出定义,然后再在适当时机联系锐角三角函数,这也是一种不错的选择.思路 2.教师先让学生看教科书上的“思考”,通过这个“思考”提出用直角坐标系中角的终边上点的坐标表示锐角三角函数的问题,以引导学生回忆锐角三角函数概念,体会引进象限角概念后,用角的终边上点的坐标比表示锐角三角函数的意义,从而为定义任意角的三角函数奠定基础.教科书在定义任意角的三角函数之前,作了如下铺垫:直角三角形为载体的锐角三角函数→象限角为载体的锐角三角函数→单位圆上点的坐标表示的锐角三角函数. 推进新课新知探究提出问题问题①:在初中时我们学了锐角三角函数,你能回忆一下锐角三角函数的定义吗? 问题②:你能用直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗?活动:教师提出问题,学生口头回答,突出它是以锐角为自变量,边的比值为函数值的三角函数,教师并对回答正确的学生进行表扬,对回答不出来的同学给予提示和鼓励.然后教师在黑板上画出直角三角形.教师提示:前面我们对角的概念已经进行了扩充,并且学习了弧度制,知道了角的集合与实数集是一一对应的,在此基础上,我们来研究任意角的三角函数.教师在直角三角形所在的平面上建立适当的坐标系,画出角α的终边;学生给出相应点的坐标,并用坐标表示锐角三角函数.图1如图1,设锐角α的顶点与原点O 重合,始边与x 轴的正半轴重合,那么它的终边在第一象限.在α的终边上任取一点P(a,b),它与原点的距离22b a >0.过P 作x 轴的垂线,垂足为M,则线段OM 的长度为a,线段MP 的长度为b.根据初中学过的三角函数定义,我们有sin α=OP MP =r b ,cos α=OP OM =r a ,tan α=OP MP =ab . 讨论结果:①锐角三角函数是以锐角为自变量,边的比值为函数值的三角函数.②sin α=OP MP =rb ,cos α=OP OM =r a ,tan α=OM MP =a b . 提出问题问题①:如果改变终边上的点的位置,这三个比值会改变吗?为什么?问题②:你利用已学知识能否通过取适当点而将上述三角函数的表达式简化?活动:教师先让学生们相互讨论,并让他们动手画画图形,看看从图形中是否能找出某种关系来.然后提问学生,由学生回答教师的问题,教师再引导学生选几个点,计算一下对应的比值,获得具体认识,并由相似三角形的性质来证明.最后可以发现,由相似三角形的知识,对于确定的角α,这三个比值不会随点P 在α的终边上的位置的改变而改变.过图形教师引导学生进行对比,学生通过对比发现取到原点的距离为1的点可以使表达式简化.此时sin α=OPMP =b,cos α=OP OM =a,tan α=OM MP =a b . 在引进弧度制时我们看到,在半径为单位长度的圆中,角α的弧度数的绝对值等于圆心角α所对的弧长(符由角α的终边的旋转方向决定).在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆为单位圆.这样,上述P 点就是α的终边与单位圆的交点.锐角三角函数可以用单位圆上点的坐标表示.同样地,我们可以利用单位圆定义任意角的三角函数.图2如图2所示,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:(1)y 叫做α的正弦,记作sin α,即sin α=y;(2)x 叫做α的余弦,记作cos α,即cos α=x; (3)x y 叫做α的正切,记作tan α,即tan α=xy (x≠0). 所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.教师出示定义后,可让学生解释一下定义中的对应关系.教师应指出任意角的正弦、余弦、正切的定义是本节教学的重点.用单位圆上点的坐标表示任意角的三角函数,与学生在锐角三角函数学习中建立的已有经验有一定的距离,与学生在数学必修一的学习中建立起来的经验也有一定的距离.学生熟悉的函数y=f(x)是实数到实数的一一对应,而这里给出的三角函数首先是实数(弧度数)到点的坐标的对应,然后才是实数(弧度数)到实数(横坐标或纵坐标)的对应,这就给学生的理解造成一定的困难.教师在教学中可以在学生对锐角三角函数已有的几何直观认识的基础上,先建立直角三角形的锐角与第一象限角的联系,在直角坐标系中考查锐角三角函数,得出用角的终边上点的坐标(比值)表示锐角三角函数的结论,然后再“特殊化”引出用单位圆上点的坐标表示锐角三角函数的结论.在此基础上,再定义任意角的三角函数.在导学过程中教师应点拨学生注意,尽管我们从锐角三角函数出发来引导学生学习任意角的三角函数,但任意角的三角函数与锐角三角函数之间并没有一般与特殊的关系.教师在教学中应当使学生体会到,用单位圆上点的坐标表示锐角三角函数,不仅简单、方便,而且反映本质.教师可以引导学生通过分析三角函数定义中的自变量是什么,对应关系有什么特点,函数值是什么.特别注意α既表示一个角,又是一个实数(弧度数).“它的终边与单位圆交于点P(x,y)”包含两个对应关系.从而可以把三角函数看成是自变量为实数的函数.值得注意的是:(1)正弦、余弦、正切、余切、正割、余割都是以角为自变量,以比值为函数值的函数.(2)sin α不是sin 与α的乘积,而是一个比值;三角函数的记是一个整体,离开自变量的“sin”“tan”等是没有意义的.讨论结果:①这三个比值与终边上的点的位置无关,根据初中学过的三角函数定义,有sin α=OP MP =rb ,cos α=OP OM =r a , tan α=OP MP =a b . 由相似三角形的知识,对于确定的角α,这三个比值不会随点P 在α的终边上的位置的改变而改变.②能.提出问题问题①:学习了任意角,并利用单位圆表示了任意角的三角函数,引入一个新的函数,我们可以对哪些问题进行讨论?问题②:根据三角函数的定义,正弦、余弦、正切的定义域、值域是怎样的?活动:教师引导学生结合在数学必修一中的有关函数的问题,让学生回顾所学知识,并总结回答老师的问题,教师对学生总结的东西进行提问,并对回答正确的学生进行表扬,回答不正确或者不全面的学生给予提示和补充.教师让学生完成教科书上的“探究”,教师提问或让学生上黑板板书.按照这样的思路,我们一起来探究如下问题:请根据任意角的三角函数定义,先将正弦、余弦、正切函数在弧度制下的定义域填入下表,再将这三种函数的值在各象限的符填入图3中的括内. 三角函数定义域 sin αcos αtan α图3教师要注意引导学生从定义出发,利用坐标平面内点的坐标的特征得定义域、函数值的符等结论.对于正弦函数sin α=y,因为y 恒有意义,即α取任意实数,y 恒有意义,也就是说sin α恒有意义,所以正弦函数的定义域是R;类似地可写出余弦函数的定义域;对于正切函数tan α=x y ,因为x=0时,xy 无意义,即tan α无意义,又当且仅当角α的终边落在纵轴上时,才有x=0,所以当α的终边不在纵轴上时,xy 恒有意义,即tan α恒有意义,所以正切函数的定义域是α≠2π +k π(k∈Z ).(由学生填写下表) 三角函数定义域 sin αR cos αR tan α {α|α≠2π+k π,k∈Z } 三角函数的定义告诉我们,各三角函数在各象限内的符,取决于x,y 的符,当点P 在第一、二象限时,纵坐标y>0,点P 在第三、四象限时,纵坐标y<0,所以正弦函数值对于第一、二象限角是正的,对于第三、四象限角是负的(可制作课件展示);同样地,余弦函数在第一、四象限是正的,在第二、三象限是负的;正切函数在第一、三象限是正的,在第二、四象限是负的.从而完成上面探究问题.即“一全正,二正弦,三正切,四余弦”.讨论结果:①定义域、值域、单调性等.②y=sin α与y=cos α的定义域都是全体实数R ,值域都是[-1,1].y=tan α的定义域是{α|α≠2π +k π(k∈Z )},值域是R . 应用示例思路1例1 已知角α的终边经过点P 0(-3,-4),求角α的正弦、余弦和正切值.活动:教师留给学生一定的时间,学生独立思考并回答.明确可以用角α终边上任意一点的坐标来定义任意角的三角函数,但用单位圆上点的坐标来定义,既不失一般性,又简单,更容易看清对应关系.教师要点拨引导学生习惯画图,充分利用数形结合,但要提醒学生注意α角的任意性.如图4,设α是一个任意角,P(x,y)是α终边上任意一点,点P 与原点的距离r=22y x +>0,那么:图4①r y 叫做α的正弦,即sin α=ry ; ②r x 叫做α的余弦,即cos α=rx ; ③x y 叫做α的正切,即tan α=x y (x≠0). 这样定义三角函数,突出了点P 的任意性,说明任意角α的三角函数值只与α有关,而与点P 在角的终边上的位置无关,教师要让学生充分思考讨论后深刻理解这一点. 解:由已知,可得OP 0=22)4()3(-+-=5.图5如图5,设角α的终边与单位圆交于点P(x,y).分别过点P 、P 0作x 轴的垂线MP 、M 0P 0,则|M 0P 0|=4,|MP|=-y,|OM 0|=3,|OM|=-x,△OMP∽△OM 0P 0,于是sin α=y=1y =||||OP MP -=||||000OP P M -=54-; cos α=x=1x =||||OP OM -=||||00OP OM -=53-;tan α=x y =a cos sin =34. 点评:本例是已知角α终边上一点的坐标,求角α的三角函数值问题.可以先根据三角形相似将这一问题化归到单位圆上,再由定义得解.变式训练求35π的正弦、余弦和正切值.图6解:在平面直角坐标系中,作∠AOB=35π,如图6. 易知∠AOB 的终边与单位圆的交点坐标为(21,23-), 所以sin 35π=23-,cos 35π=21,tan 35π=3-. 例2 求证:当且仅当下列不等式组成立时,角θ为第三象限角.⎩⎨⎧><.0tan ,0sin θθ 活动:教师引导学生讨论验证在不同的象限内各个三角函数值的符有什么样的关系,提示学生从三角函数的定义出发来探究其内在的关系.可以知道:三角函数的定义告诉我们,各三角函数在各象限内的符,取决于x,y 的符,当点P 在第一、二象限时,纵坐标y>0,点P 在第三、四象限时,纵坐标y<0,所以正弦函数值对于第一、二象限角是正的,对于第三、四象限角是负的;同样地,余弦函数在第一、四象限是正的,在第二、三象限是负的;正切函数在第一、三象限是正的,在第二、四象限是负的.证明:我们证明如果①②式都成立,那么θ为第三象限角.因为①sin θ<0成立,所以θ角的终边可能位于第三或第四象限,也可能位于y 轴的非正半轴上;又因为②式tan θ>0成立,所以θ角的终边可能位于第一或第三象限.因为①②式都成立,所以θ角的终边只能位于第三象限.于是角θ为第三象限角.反过来请同学们自己证明.点评:本例的目的是认识不同位置的角对应的三角函数值的符,其条件以一个不等式出现,在教学时要让学生把问题的条件、结论弄清楚,然后再给出证明.这一问题的解决可以训练学生的数学语言表达能力.变式训练(2007北京高考)已知cos θ·tan θ<0,那么角θ是( )A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角答案:C例3 求下列三角函数值: (1)sin390°;(2)cos 619π;(3)tan(-330°). 活动:引导学生总结终边相同角的表示法有什么特点,终边相同的角相差2π的整数倍,那么这些角的同一三角函数值有何关系?为什么?引导学生从角的终边的关系到角之间的关系再到函数值之间的关系进行讨论,然后再用三角函数的定义证明.由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等.由此得到一组公式(公式一):sin(α+k·2π)=sin α,cos(α+k·2π)=cos α,tan(α+k·2π)=tan α,其中k∈Z .利用公式一,可以把求任意角的三角函数值,转化为求0到2π(或0°到360°)角的三角函数值.这个公式称为三角函数的“诱导公式一”. 解:(1)sin390°=sin(360°+30°)=sin30°=21; (2)cos 619π=cos(2π+67π)=cos 67π=23-; (3)tan(-330°)=tan(-360°+30°)=tan30°=33. 点评:本题主要是对诱导公式一的考查,利用公式一将任意角都转化到0—2π范围内求三角函数的值.思路2例1 已知角α的终边在直线y=-3x 上,则10sin α+3sec α=.活动:要让学生独立思考这一题目,本题虽然是个填空题,看似简单但内含分类讨论思想,可以找两个学生来板演这个例题.对解答思路正确的学生给以鼓励,对思路受阻的学生要引导其思路的正确性.并适时地点拨学生:假如是个大的计算题应该怎样组织步骤.解:设角α终边上任一点为P(k,-3k)(k≠0),则 x=k,y=-3k,r=22(-3k)k +=10|k |.(1)当k>0时,r=10k ,α是第四象限角,sin α=r y =kk 103-=10103-,sec α=x r =k k 10=10,∴10sin α+3sec α=10×10103-+310=-310+310=0. (2)当k<0时,r=k 10-,α为第二象限角,sin α=r y =kk 103--=10103,sec α=x r =k k 10-=10-, ∴10sin α+3sec α=10×10103+3×(10-)=310-310=0. 综合以上两种情况均有10sin α+3sec α=0.点评:本题的解题关键是要清楚当k>0时,P(k,-3k)是第四象限内的点,角α的终边在第四象限;当k<0时,P(k,-3k)是第二象限内的点,角α的终边在第二象限内,这与角α的终边在y=-3x 上是一致的.变式训练设f(x)=sin 3πx,求f(1)+f(2)+f(3)+…+f(72)的值. 解:∵f(1)=sin3π=23,f(2)=sin 32π=23,f(3)=sin π=0, f(4)=sin 44π=23-,f(5)=sin 35π=23-,f(6)=sin2π=0, ∴f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=0.而f(7)=sin 37π=sin 3π,f(8)=sin 38π=sin 32π,…,f(12)=sin 312π=sin2π, ∴f(7)+f(8)+f(9)+f(10)+f(11)+f(12)=0.同理f(13)+f(14)+f(15)+f(16)+f(17)+f(18)=0,…,f(67)+f(68)+…+f(72)=0, ∴f(1)+f(2)+f(3)+…+f(72)=0.求函数y=a sin +tan α的定义域.活动:让学生先回顾求函数的定义域需要注意哪些特点,并让学生归纳出一些常见函数有意义的要求,根据函数有意义的特征来求自变量的范围.对于三角函数这种特殊的函数在解三角不等式时要结合三角函数的定义进行.求含正切函数的组合型三角函数的定义域时,正切函数本身的定义域往往被忽略,教师提醒学生应引起注意这种情况.同时,函数的定义域是一个集合,所以结论要用集合形式表示.解:要使函数y=a sin +tan α有意义,则sin α≥0且α≠k π+2π(k∈Z ). 由正弦函数的定义知道,sin α≥0就是角α的终边与单位圆的交点的纵坐标非负. ∴角α的终边在第一、二象限或在x 轴上或在y 轴非负半轴上,即2k π≤α≤π+2k π(k∈Z ).∴函数的定义域是{α|2k π≤α<2π+2k π或2π+2k π<α≤(2k+1)π,k∈Z }.点评:本题的关键是弄清楚要使函数式有意义,必须sin α≥0,且tan α有意义,由此推导出α的取值范围就是函数的定义域.变式训练求下列函数的定义域:(1)y=sinx+cosx;(2)y=sinx+tanx; (3)y=xx x tan cos sin +;(4)y=x sin +tanx. 解:(1)∵使sinx,cosx 有意义的x∈R ,∴y=sinx+cosx 的定义域为R .(2)要使函数有意义,必须使sinx 与tanx 有意义.∴有⎪⎩⎪⎨⎧+≠∈2ππk x R x ∴函数y=sinx+tanx 的定义域为{x |x≠k π+2π,k∈Z }. (3)要使函数有意义,必须使tanx 有意义,且tanx≠0. ∴有⎪⎩⎪⎨⎧≠+≠πππk x ,k x 2(k∈Z ),∴函数y=xx x tan cos sin +的定义域为{x |x≠2πk ,k∈Z }. (4)当sinx≥0且tanx 有意义时,函数有意义, ∴有⎪⎩⎪⎨⎧+≠+≤≤2x ,1)(2k 2k ππππk x (k∈Z ). ∴函数y=sinx +tanx 的定义域为[2k π,2k π+2π)∪(2k π+2π,(2k+1)π](k∈Z ). 知能训练课本本节练习.解答: 1.sin 67π=21-;cos 67π=23-;tan 67π=33 点评:根据定义求某个特殊角的三角函数值.2.sin θ=135;cos θ=1312-;tan θ=125-. 点评:已知角α终边上一点的坐标,由定义求角α的三角函数值.3. 角α0° 90° 180° 270° 360° 角α的弧度数 0 2π Π 23π 2πsinα0 1 0 -1 0cosα 1 0 -1 0 1tanα0 不存在0 不存在0点评:熟悉特殊角的三角函数值,并进一步地理解公式一.4.当α为钝角时,cosα和tanα取负值.点评:认识与三角形内角有关的三角函数值的符.5.(1)正;(2)负;(3)零;(4)负;(5)正;(6)正.点评:认识不同位置的角对应的三角函数值的符.6.(1)①③或①⑤或③⑤;(2)①④或①⑥或④⑥;(3)②④或②⑤或④⑤;(4)②③或②⑥或③⑥.点评:认识不同象限的角对应的三角函数值的符.7.(1)0.874 6;(2)3;(3)0.5;(4)1.点评:求三角函数值,并进一步地认识三角函数的定义及公式一.课堂小结本节课我们给出了任意角三角函数的定义,并且讨论了正弦、余弦、正切函数的定义域,任意角的三角函数实质上是锐角三角函数的扩展,是将锐角三角函数中边的比变为坐标与距离、坐标与坐标的比,记忆方法可用锐角三角函数类比记忆,至于三角函数的定义域可由三角函数的定义分析得到.本节课我们重点讨论了两个内容,一是三角函数在各象限内的符,二是一组公式,两者的作用分别是:前者确定函数值的符,后者将任意角的三角函数化为0°到360°角的三角函数,这两个内容是我们日后学习的基础,经常要用,请同学们熟记.作业课本习题1.2A组题1—9.设计感想关于三角函数定义法,总的说来就两种:“单位圆定义法”与“终边定义法”.这两种方法本质上是一致的.正因为此,各种数学出版物中,两种定义方法都有采用.在学习本节的过程中可以与初中学习的三角函数定义进行类比、学习.理解任意角三角函数的定义不但是学好本节内容的关键,也是学好本章内容的关键.在教学中,教师应该充分调动学生独立思考和总结的能力,以巩固对知识的理解和掌握.教师在教学中,始终引导学生紧扣三角函数的定义,善于利用数形结合.在利用三角函数定义进行求值时,应特别强调要注意横向联系,即不仅仅能求出该值,还要善于观察该值与其他三角函数值之间的联系,找出规律来求解.(设计者:房增凤)第2课时导入新课思路 1.(情境导入)同学们都在一些旅游景地或者在公园中见过大观览车,大家是否想过大观览车在转动过程中,座椅离地面的高度随着转动角度的变化而变化,二者之间有怎样的相依关系呢?思路 2.(复习导入)我们研究了三角函数在各象限内的符,学习了将任意角的三角函数化成0°—360°角的三角函数的一组公式,前面还分析讨论了三角函数的定义域,这些内容的研究,都是建立在任意角的三角函数定义之上的,这些知识在以后我们继续学习“三角”内容时,是经常、反复运用的,请同学们务必在理解的基础上要加强记忆.由三角函数的定义我们知道,对于角α的各种三角函数我们都是用比值来表示的,或者说是用数来表示的,今天我们再来学习正弦、余弦、正切函数的另一种表示方法——几何表示法.我们知道,直角坐标系内点的坐标与坐标轴的方向有关.因此自然产生一个想法是以坐标轴的方向来规定有向线段的方向,以使它们的取值与点的坐标联系起来.推进新课新知探究提出问题问题①:回忆上节课学习的三角函数定义并思考:三角函数的定义能否用几何中的方法来表示,应怎样表示呢?问题②:回忆初中学过的线段,若加上方向会怎样呢?什么是有向线段?活动:指导学生在平面直角坐标系内作出单位圆,设任意角α的顶点在原点,始边与x 轴的非负半轴重合,终边与单位圆相交于点P(x,y),x 轴的正半轴与单位圆相交于A(1,0),过P 作x 轴的垂线,垂足为M;过A 作单位圆的切线,这条切线必平行于y 轴(垂直于同一条直线的两直线平行),设它与角α的终边或其反向延长线交于点T.教师点拨学生观察线段的方向与点P 的坐标.显然,线段OM 的长度为|x|,线段MP 的长度为|y|,它们都只能取非负值. 当角α的终边不在坐标轴上时,我们可以把OM 、MP 都看作带有方向的线段:如果x>0,OM 与x 轴同向,规定此时OM 具有正值x;如果x<0,OM 与x 轴正向相反(即反向),规定此时OM 具有负值x,所以不论哪一种情况,都有OM=x.如果y>0,把MP 看作与y 轴同向,规定此时MP 具有正值y;如果y<0,把MP 看作与y 轴反向,规定此时MP 具有负值y,所以不论哪一种情况,都有MP=y.引导学生观察OM 、MP 都是带有方向的线段,这种被看作带有方向的线段叫做有向线段. 于是,根据正弦、余弦函数的定义,就有sin α=r y =1y =y=MP, cos α=r x =1x =x=OM. 这两条与单位圆有关的有向线段MP 、OM 分别叫做角α的正弦线、余弦线.类似地,我们把OA 、AT 也看作有向线段,那么根据正切函数的定义和相似三角形的知识,就有tan α=x y =OAAT =AT. 这条与单位圆有关的有向线段AT,叫做角α的正切线.讨论结果:①能.②被看作带有方向的线段叫做有向线段.提出问题问题①:怎样把三角函数线与有向线段联系在一起?问题②:正弦线、余弦线、正切线在平面直角坐标系中是怎样规定的?当角α的终边变化时,它们有什么变化?活动:师生共同讨论,最后一致得出以下几点:(1)当角α的终边在y 轴上时,余弦线变成一个点,正切线不存在.(2)当角α的终边在x 轴上时,正弦线、正切线都变成点.(3)正弦线、余弦线、正切线都是与单位圆有关的有向线段,所以作某角的三角函数线时,一定要先作单位圆.(4)线段有两个端点,在用字母表示正弦线、余弦线、正切线时,要先写起点字母,再写终点字母,不能颠倒;或者说,含原点的线段,以原点为起点,不含原点的线段,以此线段与x 轴的公共点为起点.(5)三种有向线段的正负与坐标轴正反方向一致,三种有向线段的数量与三种三角函数值相同.正弦线、余弦线、正切线统称为三角函数线.讨论结果:①略.②略.示例应用思路1例1 如图7,α,β的终边分别与单位圆交于点P,Q,过A(1,0)作切线AT,交图7射线OP 于点T,交射线OQ 的反向延长线于T′,点P 、Q 在x 轴上的射影分别为点M 、N,则sin α=______________,cos α=______________,tan α=______________,sin β=______________,cos β=______________,tan β=______________.活动:根据三角函数线的定义可知,sin α=MP,cos α=OM,tan α=AT,sin β=NQ,cos β =ON,tan β=AT′.答案:MP OM AT NQ ON AT′点评:掌握三角函数线的作法,注意用有向线段表示三角函数线时,字母的书写顺序不能随意颠倒.变式训练利用三角函数线证明|sin α|+|cos α|≥1.解:当α的终边落在坐标轴上时,正弦(或余弦)线变成一个点,而余弦(或正弦)线的长等于r,所以|sin α|+|cos α|=1.当角α终边落在四个象限时,利用三角形两边之和大于第三边有|sin α|+|cos α|=|OM |+|MP |>1,∴|sin α|+|cos α|≥1.例2 在单位圆中画出适合下列条件的角α的终边或终边所在的范围,并由此写出角α的集合:(1)sin α=21;(2)sin α≥21. 活动:引导学生画出单位圆,对于(1),可设角α的终边与单位圆交于A(x,y),则sin α=y,所以要作出满足sin α=21的终边,只要在单位圆上找出纵坐标为21的点A,则OA 即为角α的终边;对于(2),可先作出满足sin α=21的角的终边,然后根据已知条件确定角α的范围.图8。

高一数学人教A版必修4练习1.2.1 任意角的三角函数的定义及其应用(一) Word版含解析

高一数学人教A版必修4练习1.2.1 任意角的三角函数的定义及其应用(一) Word版含解析

第一章三角函数三角函数
.任意角的三角函数
任意角的三角函数的定义及其应用(一)
.理解并掌握任意角的三角函数的定义及其表示,能熟练求三角函数的值.
.理解并掌握三角函数线的几何表示,能利用三角函数线确定三角函数值的取值范围或角的取值范围.
一、任意角的三角函数
.单位圆:在直角坐标系中,以原点为圆心,以单位长度为半径的圆称为单位圆.
.三角函数的定义:设角α的顶点与原点重合,始边与轴非负半轴重合.在直角坐标系中,角α终边与单位圆交于一点(,),则==.那么:
()叫做α的正弦,记作α,即=α;
()叫做α的余弦,记作α,即=α;
()叫做α的正切,记作α,即=α(≠).
正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们把它们统称为三角函数.
练习:已知角的终边与单位圆的交点为,求角α的正弦、余弦和正切值.
解析:由三角函数定义知,
α==,α==-,α==-.
.三角函数的值与点在终边上的位置有关系吗?
解析:利用三角形的相似性可知任意角α的三角函数值只与α有关,而与点的位置无关.对于α角的终边上任意一点,设其坐标为(,),点到原点的距离=>.
()比值叫做α的正弦,记作α,即α=;()比值叫做α的余弦,记作α,即α=;
()比值叫做α的正切,记作α,即α=.点在单位圆上是一种特殊情形.。

必修四第一章 三角函数1.2.1第一课时

必修四第一章 三角函数1.2.1第一课时

(2)若 cosθ<0 且 sinθ>0,则2θ是第
象限角.
A.一

学 必
C.一或三


·


A

B.三 D.任意象限角
( C)
返回导航
第一章 三角函数
[解析] (1)①π2<3<π,π<4<32π,32π<5<2π,
∴sin3>0,cos4<0,tan5<0,∴sin3·cos4·tan5>0.
②注意到角的终边为射线,所以应分两种情况处理,取射线上任意一点坐标
(a,b),则对应角的正弦值 sinα= a2b+b2,余弦值 cosα= a2a+b2,正切值 tanα数 学Fra bibliotek必=ab.
修 ④
(2)当角 α 的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参
·
人 教
数进行分类讨论.
A

返回导航
数 学 必 修 ④ · 人 教 A 版
返回导航
第一章 三角函数
3.已知α是第三象限角,设sinαcosα=m,则有
A.m>0
B.m=0
C.m<0
D.m的符号不确定
(A)
4.(2018·江西高安中学期末)已知角α的终边经过P(1,2),则tanα·cosα等于 25 _____5_.
数 学 必
[解析] 由三角函数的定义,tanα=yx=2,cosα=xr= 55,∴tanα·cosα=255.
人 教
函数值的函数,我们将它们统称为三角函数(trigonometric function).
A

高中数学(新课标人教A版)必修4 第一章三角函数精品课件 1.2任意角的三角函数(3课时)

高中数学(新课标人教A版)必修4 第一章三角函数精品课件 1.2任意角的三角函数(3课时)


tan 3
例5.求下列三角函数值
sin1480 10

'
9 s 4
11 tan( ) 6
小结:
1.任意角的三角函数是由角的终边与单 位圆交点的坐标来定义的. 2.三角函数值的符号是利用三角函数的 定义来推导的.要正确记忆三个三角函数 在各个象限内的符号; 3.诱导公式一的作用可以把大角的三角 函数化为小角的三角函数.
应用 1.利用同角三角函数的基 本关系求某个角的三角函数 值 例1.已知sinα=-3/5,且 α在第三象限,求cosα和 tanα的值.
例2.已知 cos m (m 0, m 1), 求的其他三角函数值
4 sin 2 cos 例3.已知 tanα=3,求值(1) 5 cos 3 sin

y
a的终边 P(x,y)
1
P(x,y)
a
O
M
A(1,.0)
x
(1)y叫做 的正弦,记作sin ,即 sin y (2)x叫做 的余弦,记作cos,即 cos x y y (3) 叫做 的正切,记作tan ,即 tan x x
阅读课本P12:三角函数的定义
例题:
5 1 求 的正弦、余弦和正切值. 3
作业:
课本P20习题1.2A组
1,2,6,7,9
1.2.1任意角的三角函数(2)
复习回顾
1、三角函数的定义; 2、三角函数在各象限角的符号; 3、三角函数在轴上角的值; 4、诱导公式(一):终边相同的角的 同一三角函数的值相等; 5、三角函数的定义域.
角是一个图形概念,也是一个数量概 念(弧度数). 作为角的函数——三角函数是一个 数量概念(比值),但它是否也是一个 图形概念呢?

1.2.1.1任意角三角函数

1.2.1.1任意角三角函数

第1课时 任意角的三角函数(一)任意角的三角函数的定义sin α,即sin α=y cos α,即cos α=x ,即tan α=yx(x ≠0) 正弦、余弦、正切都是以角为自变量,以单位圆上的点的坐标或坐标的比值为函数值的函数,将它们统称为三角函数到一个比值的集合的函数.三角函数值实质是一个比值,因此分母不能为零,所以正切函数的定义域就是使分母不为零的角的集合.Z }三角函数值在各象限的符号口诀:一全正,二正弦,三正切,四余弦状元随笔 对三角函数值符号的理解三角函数值的符号是根据三角函数定义和各象限内坐标符号导出的.从原点到角的终边上任意一点的距离总是正值.根据三角函数定义知:正弦值符号取决于纵坐标y 的符号;.sin 750°=________.类型一三角函数的定义及应用1(1)若角α的终边经过点P(5,-12),则sin α=________,cos α=________,tan α=________ 2x”其他条件不变,结果又如何?的值为;(1)将本例中条件“x>0”改为“x<0”,结果如何?(2)将本例中条件“x>0”改为“x≠0”,结果又怎样?(3)将本例中“P(x,3)”改为“P(x,3x)”,且把“cos θ=10x10”去掉,结果又怎样?A.第一象限B.第二象限C.第三象限D.第四象限(2)判断下列各式的符号:①sin 145°cos(-210°);②sin 3·cos 4·tan 5.方法归纳判断三角函数值正负的两个步骤(1)定象限:确定角α所在的象限.(2)定符号:利用三角函数值的符号规律,即“一全正,二正弦,三正切,四余弦”来判断.注意:若sin α>0,则α的终边不一定落在第一象限或第二象限内,有可能终边落在y 轴的非负半轴上. 跟踪训练1 判断下列各式的符号:(1)sin 145°cos(-210°);(2)sin 3·cos 4·tan 5.2.已知角α的终边过点(3a -9,a +2)且cos α≤0,sin α>0,则实数a 的取值范围是 . 3.设角α是第三象限角,且⎪⎪⎪⎪sin α2=-sin α2,则角α2是第 象限角.(2)sin ⎝⎛⎭⎫-11π6+cos 125π·tan 4π.7.当α为第二象限角时,|sin α|sin α-cos α|cos α|的值是________.8.已知角α的终边经过点P (3,4t ),且sin(2k π+α)=-35(k ∈Z ),则t =________.三、解答题(每小题10分,共20分)9.已知角α的终边为射线y =-34x (x ≥0),求角α的正弦、余弦和正切值.10.判断下列各式的符号:(1)sin 105°·cos 230°;(2)cos 3·tan ⎝⎛⎭⎫-2π3.11.若α是第一象限角,则-α2是( )A .第一象限角B .第四象限角C .第二或第三象限角D .第二或第四象限角 12.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n =________. 13.计算:(1)sin 390°+cos(-660°)+3tan 405°-cos 540°;(2)sin ⎝⎛⎭⎫-7π2+tan π-2cos 0+tan 9π4-sin 7π3.14.已知角α的终边过点(a,2a )(a ≠0),求角α的正弦、余弦和正切值.第2课时 任意角的三角函数(二)1.相关概念(1)单位圆:以原点O 为圆心,以单位长度为半径的圆. (2)有向线段:带有方向(规定了起点和终点)的线段.规定:方向与x 轴或y 轴的正方向一致的为正值,反之为负值. 2.三角函数线状元随笔 (1)三角函数线的方向.正弦线由垂足指向角α的终边与单位圆的交点,余弦线由原点指向垂足,正切线由切点指向切线与角α的终边或其反向延长线的交点.(2)三角函数线的正负:三条有向线段凡与x 轴或y 轴同向的,为正值,与x 轴或y 轴反向的,为负值. (1)角的三角函数线是直线.( )(2)角的三角函数值等于三角函数线的长度.( )(3)第二象限的角没有正切线.( )2.有下列四个说法:①α一定时,单位圆中的正弦线一定;②单位圆中,有相同正弦线的角相等; ③α和α+π有相同的正切线;④具有相同正切线的两个角终边相同. 不正确说法的个数是( ) A .0个 B .1个 C .2个 D .3个 3.如图所示,在单位圆中角α的正弦线、正切线完全正确的是( )A .正弦线PM ,正切线A ′T ′B .正弦线MP ,正切线A ′T ′C .正弦线MP ,正切线ATD .正弦线PM ,正切线AT 4.已知sin α>0,tan α<0,则α的( )A .余弦线方向向右,正切线方向向下B .余弦线方向向右,正切线方向向上C .余弦线方向向左,正切线方向向下D .余弦线方向向上,正切线方向向左类型一 三角函数线的作法【例1】 作出下列各角的正弦线、余弦线、正切线.(1)-π4;(2)17π6;(3)10π3.类型二 利用三角函数线比较大小【例2】 (1)已知A .若α、β是第一象限角,则sin α>sin β B .若α、β是第二象限角,则tan α>tan β C .若α、β是第三象限角,则sin α>sin β D .若α、β是第四象限角,则tan α>tan β (2)利用三角函数线比较sin2π3和sin 4π5,cos 2π3和cos 4π5,tan 2π3和tan 4π5的大小.方法归纳利用三角函数线比较大小的步骤利用三角函数线比较三角函数值的大小时,一般分三步:①角的位置要“对号入座”;②比较三角函数线的长度;③确定有向线段的正负.跟踪训练1.已知a =sin 2π7,b =cos 2π7,c =tan 2π7,则( )A .a <b <cB .a <c <bC .b <c <aD .b <a <c2 设π4<α<π2,试比较角α的正弦线、余弦线和正切线的长度.如果π2<α<3π4,上述长度关系又如何?类型三 利用三角函数线解不等式(1)cos α>-22;(2)tan α≤33;(3)|sin α|≤12.1.将本例(1)的不等式改为“cos α<22”,求α的取值范围 2.将本例(3)的不等式改为“-12≤sin θ<32”,求α的取值范围3.利用本例的方法,求函数y =2sin x -1的定义域.方法归纳利用三角函数线解三角不等式的方法利用三角函数线求解不等式,通常采用数形结合的方法,求解关键是恰当地寻求点.一般来说,对于sin x ≥b ,cos x ≥a (或sin x ≤b ,cos x ≤a ),只需作直线y =b ,x =a 与单位圆相交,连接原点和交点即得角的终边所在的位置,此时再根据方向即可确定相应的x 的范围;对于tan x ≥c (或tan x ≤c ),则取点(1,c ),连接该点和原点即得角的终边所在的位置,并反向延长,结合图象可得.跟踪训练3 在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合.(1) sin α≥32;(2)cos α≤-12.一、选择题(每小题5分,共25分)1.对三角函数线,下列说法正确的是( ) A .对任意角都能作出正弦线、余弦线和正切线 B .有的角的正弦线、余弦线和正切线都不存在C .任意角的正弦线、正切线总是存在的,但余弦线不一定存在D .任意角的正弦线、余弦线总是存在的,但正切线不一定存在2.如果MP 和OM 分别是角α=7π8的正弦线和余弦线,那么下列结论正确的是( )A .MP <OM <0B .OM >0>MPC .OM <MP <0D .MP >0>OM3.有三个命题:①π6和5π6的正弦线长度相等;②π3和4π3的正切线相同;③π4和5π4的余弦线长度相等.其中正确说法的个数为( ) A .1 B .2 C .3 D .04.使sin x ≤cos x 成立的x 的一个区间是( ) A.⎣⎡⎦⎤-3π4,π4 B.⎣⎡⎦⎤-π2,π2 C.⎣⎡⎦⎤-π4,3π4 D.[]0,π5.如果π4<θ<π2,那么下列各式中正确的是( )A .cos θ<tan θ<sin θB .sin θ<cos θ<tan θC .tan θ<sin θ<cos θD .cos θ<sin θ<tan θ二、填空题(每小题5分,共15分)6.比较大小:sin 1________sin π3(填“>”或“<”).7.不等式tan α+33>0的解集是________________________.8.用三角函数线比较sin 1与cos 1的大小,结果是________.三、解答题(每小题10分,共20分)9.做出下列各角的正弦线、余弦线、正切线.(1)5π6;(2)-2π3.10.利用三角函数线,求满足下列条件的角α的集合:(1)tan α=-1;(2)sin α≤-22.11.已知角α的正弦线和余弦线的方向相反、长度相等,则α的终边在( )A .第一象限的角平分线上B .第四象限的角平分线上C .第二、第四象限的角平分线上D .第一、第三象限的角平分线上12.若cos θ>sin 7π3,利用三角函数线得角θ的取值范围是________.13.若α∈⎝⎛⎭⎫0,π2,试利用三角函数线证明sin α+cos α>1.。

人教版数学必修四:1.2.1任意角的三角函数(1)(教师版)

人教版数学必修四:1.2.1任意角的三角函数(1)(教师版)

课题:§1.2.1任意角的三角函数(1)总第____课时班级_______________【学习目标】1.掌握任意角的正弦,余弦,正切的定义;2【重点难点】学习重点:任意角的正弦,余弦,正切的定义.学习难点:理解三角函数的定义,掌握三角函数的定义域和值域【学习过程】一、自主学习与交流反馈问题1:初中课本中是如何定义锐角三角函数的?问题2:如右图,点P是半径为R的圆O上一点,点P在圆O上运动,当点P从点A位置运动到点P位置时,∠AOP =α. 如果我们以O为坐标原点,OA为x轴正方向建立平面直角坐标系。

我们是不是可以用(r,α)来准确地表示点P的位置?点P的位置可以用它的坐标(x,y)来表示,你能找出(r,α)与(x,y)的关系吗?问题3:填表(课前先完成30°,45°,60°填空):二、知识建构与应用:1.给出任意角三角函数的定义:如图: 在平面直角坐标系中, 设角α的终边上除原点外任意一点P 的坐标是),(y x , 它与原点的距离是)0(22>+=y x r r 。

我们规定:αsin = ;αcos = ,αtan = .问题:点P 的位置不同,会不会改变三角函数值?2.三角函数的定义域3.由定义指出每个象限内的角对应的三角函数值的符号,总结规律.三、例题例1 已知α的终边经过点P(2,-3),分别求α的正弦、余弦、正切值.变式⑴: 已知角α的终边经过P(4,-3),求2sin α+cos α的值.变式⑵: 已知角α的终边经过P(4a,-3a),(a ≠0) 求2sin α+cos α的值.例2 确定下列三角函数值的符号:(1)cos 7π12 ; (2)sin(-465°) ; (3) tan 11π3例3 (1)若0sin <α且0tan <α,试确定α为第几象限角. (2)使0cos sin <⋅αα成立的角α的集合.例4 确定下列三角函数的符号:(1)sin2 (2)cos(-3) (3) )108tan(310cos 0-四、巩固练习1.已知角α的终边经过点P ,求α的正弦、余弦、正切值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

sin
tan y x
cos
y x2 y2
x x2 y2
y
O
x
tan y
x
P(x,y)
知识探究(二):三角函数符号与公式
思考1:当角α在某个象限时,设其终 边与单位圆交于点P(x,y),根据三 角函数定义,sinα,cosα,tanα的 函数值符号是否确定?为什么?
sin y
y
α的终边
sin y α的终边 y
cos x
P(x,y)
Ox
tan y (x 0)
x
思考6:对于一个任意给定的角α,按 照上述定义,对应的sinα,cosα, tanα的值是否存在?是否惟一?
sin y α的终边
cos x P(x,y)
tan y (x 0)
x
y
Ox
思考7:对应关系 sin y ,cos x ,
4.一个任意角的三角函数只与这个角的 终边位置有关,与点P(x,y)在终边 上的位置无关.公式一揭示了三角函数值 呈周期性变化,即角的终边绕原点每旋 转一周,函数值重复出现.
作业: P15 练习:1,2,5,7.
3,4,6 做在书上
►If I had not been born Napoleon, I would have liked to have been born Alexander. 如果今天我不是拿破仑的话,我想成为亚历山大。
cos x
P(x,y)
tan y (x 0)
Ox
x
思考2:设α是一个任意的象限角,那么 当α在第一、二、三、四象限时,sinα 的取值符号分别如何?cosα,tanα的 取值符号分别如何?
sin y
cos x
tan y (x 0)
x
思考3:综上分析,各三角函数在各个象限 的取值符号如下表:
tan y (x 0) 都是以角为自变量,以单位圆
x
上的点的坐标或坐标的比值为函数值的函数,
分别称为正弦函数、余弦函数和正切函数,
并统称为三角函数,在弧度制中,这三个三
角函数的定义域分别是什么?
正、余弦函数的定义域为R, 正切函数的定义域是 { R |
k ,k Z} 2
思考8:若点P(x,y)为角α终边上任 意一点,那么sinα,cosα,tanα对应 的函数值分别等于什么?
弦和正切,它们的值分别等于什么?
sin
BC AB
cos
AC AB
B
tan
BC AC
α
C
A
5.当角α不是锐角时,我们必须对 sinα,cosα,tanα的值进行推广, 以适应任意角的需要.
知识探究(一):任意角的三角函数
思考1:为了研究方便,我们把锐角α 放到直角坐标系中,并使角α的顶点与 原点O重合,始边与x轴的非负半轴重合. 在角α的终边上取一点P(a,b),设点 P与原点的距离为r,那么,sinα, cosα,tanα的值分别如何表示?
cos( 2k ) cos
tan( 2k ) tan( k Z)
2
思考6:若sinα=sinβ,则角α与β的 终边一定相同吗?
思考7:在求任意角的三角函数值时,上 述公式有何功能作用?
2
可将求任意角的三角函数值,转化为求0~2 (或0°~360°)范围内的三角函数值.
思考8:函数的对应形式有一对一和多对一两 种,三角函数是哪一种对应形式?
►Never underestimate your power to change yourself! 永远不要低估你改变自我的能力!
►Living without an aim is like sailing without a compass. 生活没有目标,犹如航海没有罗盘。
►A man is not old as long as he is seeking something. A man is not old until regrets take the place of dreams. 只要一个人还有追求,他就没有老。直到后悔取代了梦想,一个人才算老。
理论迁移
例1 求 5 的正弦、余弦和正切值.
3
y
y
5
3
x
O
P(21 ,
3 2
)
x O
P(-3,-4)
例2 已知角的终边过点P(-3,-4), 求角的正弦、余弦和正切值.
例3 求证:当且仅当不等式组
sin tan
0 0
成立时,角θ为第三象限角.
例4 确定下列三角函数值的符号. (1)cos 250 ;(2)sin( ) ;(3)tan(672) ;
三角函数 第一象限 第二象限 第三象限 第四象限 cos
sin +
scions
cos +
+ -- - -+
tan Байду номын сангаас - + -
你有什么办法记住这些信息?
思考4:如果角α与β的终边相同,那么 sinα与sinβ有什么关系?cosα与cosβ有 什么关系?tanα与tanβ有什么关系?
思考5:上述结论表明,终边相同的角的同 k名Z 三角函数值相等,如何将这个性质用一组 数学公式表达? 公式一: sin( 2k ) sin
sin b cos a
tan b
a
y
P(a,b)
1
α
o
x
思考4:在直角坐标系中,以原点O为圆 心,以单位长度为半径的圆称为单位圆. 对于角α的终边上一点P,要使|OP|=1, 点P的位置如何确定?
y
α的终边
P
Ox
思考5:设α是一个任意角,它的终边 与单位圆交于点P(x,y),为了不与 当α为锐角时的三角函数值发生矛盾, 你认为sinα,cosα,tanα对应的值 应分别如何定义?
4
(4)tan 3
; (5)cos 9
4
;(6)tan(11 ) .
6
小结作业
1.三角函数都是以角为自变量,在弧度 制中,三角函数的自变量与函数值都是 在实数范围内取值.
2.三角函数的定义是三角函数的理论基 础,三角函数的定义域、函数值符号、 公式一等,都是在此基础上推导出来的.
3.若已知角α的一个三角函数符号,则 角α所在的象限有两种可能;若已知角 α的两个三角函数符号,则角α所在的 象限就惟一确定.
(3)角的大小是任意的.
2k (k Z)
2.什么叫做1弧度的角?度与弧度是怎 样换算的?
(1)等于半径长的圆弧所对的圆心角叫做1 弧度的角.
(2)180°= rad.
3. 与角α终边相同的角的一般表达式 是什么?
β=α+k·360°(k∈Z)或
2k (k Z)
4.如图,在直角三角形ABC中,sinα, cosα,tanα分别叫做角α的正弦、余
sin b
r
cos a
r
y
A
P(a,b)
r
α
sctaions ba rar
tan b
a
o
Bx
思考2:对于确定的角α,上述三个比值
是否随点P在角α的终边上的位置的改变
而改变呢?为什么?
思考3:为了使sinα,cosα的表示式更 简单,你认为点P的位置选在何处最好? 此时,sinα,cosα分别等于什么?
1.2 任意角的三角函数 1.2.1 任意角的三角函数
第一课时
问题提出
1.角的概念是由几个要素构成的,具体 怎样理解?
(1)角是由平面内一条射线绕其端点从一 个位置旋转到另一个位置所组成的图形. (2)按逆时针方向旋转形成的角为正角, 按顺时针方向旋转形成的角为负角,没有 作任何旋转形成的角为零角.
相关文档
最新文档