spc培训资料-SPC-统计过程控制(ppt 88页)合集

合集下载

统计过程控制SPC培训资料

统计过程控制SPC培训资料
常用的控制图
分布
控制图代号
控制图名称
备注
正态分布(计量值)
均值—极差控制图
最常用,判断工序是否正常的效果好,计算量大,适用于产品批量大、且稳定、正常的工序;S的计算比R复杂,但其精度高适用与检验时间远比加工时间段的场合计算简便,但效果差使用与产品批量较大、且稳定、正常的工序;简便省事,并能够及时判断工序是否处于稳定状态,但不宜发现工序分布中心的变化。
控制图的益处
合理使用控制图能:供正在进行过程控制的操作者使用;有助于过程在质量上和成本上能持续地、可预测地保持下去;使过程达到:——更高的质量; ——更低的单件成本; —— 更高的有效能力。
控制图的益处
为讨论过程的性能提高共同语言;区分变差的特殊原因和普通原因,作为采取局部对系统采取措施的指南。控制图为两班、三班操作过程的人员之间、和支持活动(维修、材料控制、过程工程、质量控制)的人员之间就有关过程性能的信息交流提供了通用的语言。
Β=
规范界限与控制界限的区别
规范界限:区分合格品与不合格品控制界限:区分偶波与异波
3σ方式确定控制界限
●UCL=μ+3 σ ●CL=μ●LCL=μ-3 σ●虚发警报α=0.27% 漏发警报β=
分析用控制图
分析用控制图 应用控制图时,首先将非稳态的过程调整到稳态,用分析控制图判断是否达到稳态。确定过程参数 特点: 1、分析过程是否为统计控制状态 2、过程能力指数是否满足要求?
2.连续6点递增或递减
判异准则
LCL
UCL
CL
A
B
C
C
B
A
3.连续14中相邻点上下交替
判异准则
判异准则
4.连续3点中有2点落在中心线同一侧的B区以外

SPC培训课件(PPT 90页)

SPC培训课件(PPT 90页)
种情况; 计点型数据——如铸件的沙眼数,电路板上的焊
接不良数等。 计件型数据和计点型数据合称为计数型数据。它们
可被计数,从而用来记录和分析。
12.01.2020
11
科华咨询
统计方法应用基础----基本的统计量
n 子组大小。单个子组中子组观测值的个数 k 子组数 X 质量特性的观测值(可用X1,X2,X3…表示单个 观测值) X 子组平均值的平均值
经分析发现,该工序最重要的是需要模具的相关方面被保证,如模具的安 装需到位,冲压过程需防止模具松动和磨损等。产品特性最重要的是冲压整 形的高度和宽度两个尺寸,如果这两个尺寸不能保证将导致产品报废。
12.01.2020
计量型 正态分布
数据的”分布”
二项分布(计数)
计数型 泊松分布(计件)
6
科华咨询
质量具有变差
“世界上没有两片完全相同的树叶”——“不同” 是绝对的,相同是相对的。
即使是机器生产,但产品质量仍具有变异 ——过程的单个输出之间不避免的差别。
公差制度的建立,就是承认“变差”的标志。
概率1.35% 概率可能为1.35%的几十、几百倍
根据小概率事件原理:出界就判异。
12.01.2020
27
科华咨询
控制图的两种错误
第一种错误
质量特性 x
α
虚发警报的错误 概率为α
12.01.2020
第二种错误
UCL
β
CL LCL
漏发警报的错误 概率为β 28
科华咨询
控制图的两种错误
间距增大(增加上下控制限的距离) α 减少,β 增加
p 子组不合格品率 p=子组中的不合格品数/子组大小
P 平均不合格品率

2024版SPC培训教材全课件

2024版SPC培训教材全课件

假设检验的基本概念
明确假设检验的定义、原假设与备择假设的设立原则及两类错误 的含义。
参数假设检验
掌握正态总体均值、方差的假设检验方法及步骤,理解t检验和F 检验的原理及应用场景。
非参数假设检验
了解非参数假设检验的适用条件及常用方法,如秩和检验、符号 检验等。
16
方差分析、回归分析应用举例
方差分析
掌握方差分析的基本原理、计算步骤及结果解释,理解其在多因素实验设计中的应用。
化。
大数据在SPC中的应用
大数据技术的不断发展将为SPC提供更丰富的数据来源和分析手段,有助于提高SPC的 应用效果。
2024/1/30
SPC在服务业的拓展
随着服务业的不断发展,SPC的应用领域将逐渐拓展到服务业领域,为服务业的质量管 理提供新的思路和方法。
36
下一讲预告及预备知识
2024/1/30
01
02
03
04
明确数据收集目标
根据业务需求,明确所需数据 的类型、范围和质量要求。
2024/1/30
制定数据收集计划
设计合理的数据收集流程,包 括数据源选择、采集频率、存
储方式等。
执行数据收集
运用合适的数据收集工具和技 术,按照计划进行数据采集。
数据质量监控
建立数据质量评估机制,确保 数据的准确性、完整性和一致
下一讲内容
下一讲将介绍SPC在企业中的实际应 用案例,包括不同行业和不同场景下 的SPC应用实践。
预备知识
为了更好地理解下一讲内容,建议学 员提前了解相关行业的生产流程和质 量管理要求,以及SPC在实际应用中 的挑战和解决方案。
37
THANKS
感谢观看
2024/1/30

SPC统计过程控制培训课程(PPT 87页)

SPC统计过程控制培训课程(PPT 87页)

製程能力指標Ca
Ca
X
(T / 2)
(雙邊規格)
ˆ R
d2
製程能力指標C p
Cp
USL LSL

(雙邊規格)
Cp
USL

X
(單邊規格上規格界限)
Cp
X
LSL (單邊規格下規格界限)

ˆ R
d2 只考慮到固定變差或組內變差
製程能力指標C pk
C pk min(C pu , C pl )
C1分析极差图上的数据点
超出控制限的 点
C2识別并标注特殊原因(极差图链)
明显的非随机
C3重新计算控制界限(极差图)超图出形控制限的点

C4分析均值图上的数据点 链
明显的非随机图形 C5识別并标注特殊原因(均值图)
C6重新计算控制界限(均值图)
C7为了继续进行控制延长控制限
控制图的判读
超出控制界限的点:出现一个或多个点超出任何 一个控制界限是该点处于失控状态的主要证据
作控制图的目的是为了使生产过程或工作过程 处于“控制状态”. 控制状态即稳定状态, 指 生产过程或工作过程仅受偶然因素的影响, 产 产品质量特性的分布基本上不随时间而变化的 状态. 反之, 则为非控制状态或异常状态.
控制状态的标准可归纳为二條:
第一條, 控制图上点不超过控制界限; 第二條, 控制图上点的排列分布沒有缺陷.
产品的质量特性有时不止一个, 则应同时采 取几个特性作为控制項目.
使用控制图的注意事項
分组问题
主要是使在大致相同的条件下所收集的质量 特性值分在一组, 组中不应有不同本质的数 据, 以保证组内仅有偶然因素的影响.
我们所使用的控制图是以影响过程的许多变 动因素中的偶然因素所造成的波动为基准来 找出异常因素的, 因此, 必须先找出过程中 偶然因素波动这个基准.

SPC统计过程控制培训资料

SPC统计过程控制培训资料
20%
过程处于统计
上的稳定状态
40%
各测量值服从
正态分布
60%
技术规范准确的
代表顾客要求
说明:
1、抽样存在偏差。
2、不存在完全受统计控制的过程。
3、制造过程不是一个完美的正态分布。
80%
设计目标值位于
规范的中心
100%
测量变差相对
较小
CPK—过程能力指数
CPK=CP•│1-Ca│
=
正态分布
CL
◎ 控制图的制作步骤
◎ 异常的判定原则
计量型控制图的优点
1、大部分测量数据都可以用
计量型数据表示
2、量化的值比简单的是或否
包含的信息更丰富
3、通过少量的数据检查可
以获得较多的过程信息
4、缩短采取措施的时间,提
高响应速度
前提条件:
1.选择特性作为计算对象。
2.测量方法准确,精密,误差小到忽略不计。
5、分析一个过程量化的值,
围,并确定其控制范围的异常和正常规律,达成一种事先预测并实施改进措
施的方法。
SPC研究的对象-特性
研究过程中的
可区分的特征
某一个特性
称为特性
特性
特性值的表达方
产品的特性有
式:定量、定性
哪些?
特性的分类
产品特性
关键特性
关键特性
与法律、安全有关
与功能、性能有关
普通特性
关键特性以外
产品特性
最终产品所具有的特性
83.74
86.81
85.12
84.39
84.15
84.84
19
85.43
85.49
86.50

持续改进及SPC统计过程控制概述(ppt 88页)

持续改进及SPC统计过程控制概述(ppt 88页)
上控制限
中心限
下控制限
1、收集 收集数据并画在图上 2、控制 根据过程数据计算实验控制限 识别变差的特殊原因并采取措施 3、分析及改进 确定普通原因变差的大小并采取减小它的措施
重复这三个阶段从而不断改进过程
管制图类型
X-R 均值和极差图
P chart 不良率管

计 制图
量 X-δ均值和标准差图 数 nP chart 不良数管
过程的单个输出之间不可避免的差别;变差的原因 变差(Variation) 可分为两类:普通原因和特殊原因。
特殊原因 (Special Cause)
一种间断性的,不可预计的,不稳定的变差根源。 有时被称为可查明原因,它存在的信号是:存在超 过控制限的点或存在在控制限之内的链或其它非随 机性的图形。
名称
准确
•••••
• ••••
精密
•••••• •••••
使用控制图的准备
1、建立适合于实施的环境 a 排除阻碍人员公正的因素 b 提供相应的资源 c 管理者支持
2、定义过程 根据加工过程和上下使用者之间的关系,分析每个阶段的影响 因素。
3、确定待控制的特性 应考虑到: 顾客的需求 当前及潜在的问题区域 特性间的相互关系

型 制图
数 X -R 中位值极差图 数 C chart 缺点数管

据 制图
X-MR 单值移动极差 图
U chart 单位缺点 数管制图
控制图的选择方法
确定要制定控 制图的特性
是计量 型数据 吗?


关心的是

不合格品
率?
关心的是 不合格数 吗?


样本容量是 否 否恒定?

SPC培训课件PPT(共 69张)

SPC培训课件PPT(共 69张)

19C 40年代 统计的品质管理 品质是制造出来的 品质控制(QC)
品质保证
品质是设计出来的 品质确保(QA)
19C 60年代 全面质量管理
品质是管理出来的 全面品质(TQC)
19C 80年代 全面质量责任
品质是习惯出来的 全面品质(TQM)
每天进步一点点
过程控制的需要
华邦机械
探测---容忍浪费
通过质量控制来检查最终产品并剔除不符合规范的产品, 在管理部门则经常靠检查或重新检查工作来找出错误,在这 两种情况下都是使用检测的方法,这种方法是浪费的
3. 消除后可以使过程分布结果可预测;
4. 特殊原因是有害的或者也可能是有益的;
每天进步一点点
SPC统计过程控制基本知识
如果仅存在变差的普通原因, 随着时间的推移,过程的输 出形成一个稳定的分布并可 预测。
华邦机械
目标值线 预测
范围
如果存在变差的特殊 原因,随着时间的推 移,过程的输出不 稳定。
范围
每天进步一点点
华邦机械
五大核心工具之间的关系:
APQP 是方法; FMEA、MSA、SPC 是工具; PPAP 是结果,是输出!
每天进步一点点
华邦机械
概论
质量观念的发展
时间
品管历史
品管观念
品管制度
18C前 19C 初
作业人员品质管理 品质是检查出来的 品质检查(QI) 领班品质管理
19C 20年代 检验员品质管理
输出
A B C DE
能控制的因子 - 改善对象 - 能调整 - 特别情况
L MN OP
不能控制的因子 - 共同事项 - Noise - 持续的事项
每天进步一点点

统计过程控制SPC培训讲义PPT课件

统计过程控制SPC培训讲义PPT课件
——记件数据一般服从二项式分布,记点数据一般服从泊松分布。
——当数据以百分率表示时,要判断它是计量数据还是计数数据, 应取决于给出数据的计算公式的分子。
12
第二讲:控制图
13
统计过程控制的实施过程
经由制程中去收集资料,而加以统计分 析,并从分析中发觉制程的变异,并经 由问题分析以找出异常原因,立即采取 改善措施,使制程恢复正常。再借由制 程能力分析与标准化,以不断提高制程 能力。
P(x)
0
1
2
3
4
5
6
μ μ+σ
9
关于正态分布
固定标准差σ时,不同的均值,如μ1 <μ2,对应的正态曲线的形状完 全相同,仅位置不同。
N(μ1,σ2)
N(μ2,σ2)
固定均值μ时,不同的标准差,如σ1< σ2,对应的正态曲线的位置相同, 但形状(高低与胖瘦)不同。
N(μ1,σ2)
N(μ2,σ2)
0
不合格品率 (PPM) 317300
45500 2700 63 0.57 0.002
11
二、计数数据
——凡是不能连续取值的,或者说即使使用测量工具也得不到小数 点以下数值,而只能得到0或1,2,3•••等自然数的这类数据。
——计数数据还可细分为记件数据和记点数据。记件数据是指按件 计数的数据,如不合格品数、彩色电视机台数、质量检测项目数等;记点 数据是指按缺项点(项)计数的数据,如疵点数、砂眼数、气泡数、单位 (产品)缺陷数等。
很多质量特性X随机取值的统计规律性。 • 如:一个班级中学生的身高、体重、成绩;加工一批轴的外
径尺寸等。 • 正态分布的图形是对称的钟形曲线,称为正态曲线。 • 正态分布含有两个参数μ和σ,其中μ为正态分布的均值,它

统计过程控制SPC培训教材ppt课件

统计过程控制SPC培训教材ppt课件
方 法
材 料
人 员
机 器
中要因
中要因
中要因
中要因
小要因
如何做
小要因
*
6. 直方图(Histogram;亦称柱状图):将所收集的测定特性值或结果 值,分为几个相等的区间作为横轴,并将各区间内所测定的特性值或 结果值依所出现的次数累积而成的面积,用柱子排起来的图形,称为 直方图。亦即指用来对特征数据进行分级整理,将杂乱无章的资料, 解析出其规律性,以得出其分布特征的统计分析的方法。
与要求相比偏高
与要求相比偏低
正常
SL=130
Sμ=160
20 15 10 5
*
7. 控制图(Control Chart):用来表示一个过程特性的图象,图上标 有根据那个特性收集到的一些统计数据,如一条中心线、一条或两条 控制限,它能减少I类错误和Ⅱ类错误的净经济损失。它有两个基本 的用途:一是用来判定一个过程是否一直受统计控制;二是用来帮助 过程保持受控状态。亦即指附有控制界限的图表,用以描述样本数据 与界限比较。若数据超出界限或出现“链”及非随机图形,表示过程 存在特殊原因变差,则应采用适当的措施加以消除。 7.1 Ⅰ类错误:拒绝一个真实的假设。例如:采取了一个适用于特 殊原因的措施而实际上过程还没有发生变化;即过度控制。 7.2 Ⅱ类错误:没有拒绝一个错误的假设。例如:对实际上受特殊 原因影响的过程没有采取适当的措施;即控制不足。 7.3 计数值控制图与计量值控制图的应用比较:
*
铸造车间产品生产废品统计表
*
5. 特性要因分析图(Characteristic Diagram ;亦称石川图或鱼骨图/鱼刺图 或因果图):指将造成某项结果的众多原因,以有系统的方式来表达结果 (特性)与原因之间的关系图表。 5.1 因果图(Cause-and-Effect Diagram):一种用于解决单个问题的简 单工具,它对各种过程要素采用图形描述来分析过程可能的变差源, 也被称作鱼刺图(以其形状命名)或石川图(以其发明命名)。 A)、某项结果的形成,必定有其原因,应设法利用图解法找出其原 因来,这个概念是由日本品管大师石川馨博士提出的。 B)、特性要因图是利用5M+1E:人员(Man)、机器(Machine)、材 料(Material)、方法(Method)、测量(Measurement)、环 境(Environment)等五大类加以分析及应用的。

SPC统计过程控制培训课件(PPT 80张)

SPC统计过程控制培训课件(PPT 80张)

宇宙万物及工业产品大都呈常态分配 变异的原因可分为偶因及异因
偶因属管理系统的范围
例如:身高.体重.智力.考试成绩.所得分配


预防与检测
人 机 法 环 測量 測量
原料
PROCESS
Y=f(x1,x2,….)



Y可视为顾客所要求的产品特性。 但是如果在y进行相应的统计控制 品已经制造出来,只是相当于检验 得好不好,时效已晚。 所以要去探究哪些因素会影响y,
X X X

UCL LCL 全距控制图
建立X-R图的步骤C
C1分析极差图上的数据点 C2识別并标注特殊原因(极差图) C 过 程 控 制 解 释
C3重新計算控制界限(极差图)
超出 链 明显 形
C4分析均值图上的数据点
C5识別并标注特殊原因(均值图)
超出 链 明显
控制图的判读

超出控制界限的点:连续25点出现一个或 任何一个控制界限是该点处于失控状态的

对系统采取措施
局部措施、系统措施示意
UCL
组内变异和组间差异说明

不同槽之间的谓组间变异,我们在于了解在
组间变异大的解决方法


此时的异常将在Xbar图中显示出来 一般的责任是在现场人员,可能是 料,没有依照标准作业方法等。 此种问题比较容易解决,85%应由 员就可以处理。
组内变异大的解决方法
层别的说明
复合
使用控制图的注意事项

控制界限的重新计算

为使控制线适应今后的生产过程, 在 最初的控制线CL、UCL、LCL时, 常 复计算, 以求得切实可行的控制图. 但 经过使用一定时期后, 生产过程有了 加工工艺改变、刀具改变、设备改变

SPC统计过程控制培训教材(共 87张PPT)

SPC统计过程控制培训教材(共 87张PPT)
常用概率分布简介
连续型分布:
正态分布:当质量特性(随机变量)由为数众多的因素影响,而又
没有一个因素起主导作用的情况下,该质量特性的值的变异分布,一般 都服从或近似服从正态分布。
离散型分布:
二项分布:一个事物只有两种可能的结果,其值的分布一般服从
二项分布;
泊松分布:稀有事件的概率分布一般服从柏松分布。
上海NQA认证有限公司
22
SPC控制图
SPC控制图对两种错误的预防
错判是虚发警报的错误:由于偶然原因造成数据点超出 控制限的情况,从而造成将一个正常的总体错判为不正 常,在控制限为正负3情况下,这样的概率小于3‰;
漏判是漏发警报的错误,也就是判断当数据点在控制限 内的异常,所以,SPC增加了对界内数据点趋势的判断 准则。
漏判是漏发警报的错误:也称为第II类错误,在过程存 在异常变异时,如被监控的总体的均值或标准偏差发生改 变,仍会有一部分数据在上下控制限之内,从而发生漏 报的错误,这种错误用β表示。
上海NQA认证有限公司
21
SPC控制图
SPC控制图对两种风险预防
漏报
错 报
解决 方案
错报:3σ控制限 漏报:判断准则
上海NQA认证有限公司
SPC的统计理论基础
中心极限定理
设X1,X2,…..,Xn是n个独立分布的随机量,分布的均 值为μ,方差为σ2,则在n较大时,有
(1 )X
1
+X
2
+...+X
n
=

n
X
i
i=1
近似服从均值为nμ,方差为nσ2的正态分布。
( 2 )X
=
X
1
+X
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
范围 不受控
(存在特殊原因)
受控 (消除了特殊原因)
时间
过程能力
范围
受控且有能力符合规范 (普通原因造成的变差已减少) 规范下限
规范上限 时间
受控但没有能力符合规范 (普通原因造成的变差太大)
1、分析过程 本过程应做什么? 会出现什么错误? 本过程正在做什么? 达到统计控制状态? 确定能力
计划
措施
ϵ ÁÐ 1
± à ºÅ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
ÈÕ ÚÆ /ʱ¼ä
9/6 9/6 9/6 9/6 9/6 9/6 9/6 9/7 9/7 9/7 9/7 9/7 9/7 9/8 9/8 9/8 9/8 9/11 9/11 9/11 9/11 9/11 9/12 9/12 9/12 9/12 9/12 13 9/13 8:00- 9:00- 10:- 11:00- 13:30- 14:30- 15:30- 8:00- 9:00- 10:00- 11:00- 13:30- 15:30- 10:30- 13:30- 14:30- 15:30- 8:00- 9:00- 10:00- 11:00- 13:30- 8:00- 13:30- 14:30- 15:30- 16:30- 8:00- 9:009:00 10:00 11:00 12:00 14:30 15:30 16:30 9:00 10:00 11:00 12:00 14:30 16:30 11:30 14:30 15:30 16:30 9:00 10:00 11:00 12:00 14:30 9:00 14:30 15:30 16:30 17:30 9:00 10:00
SPC的作用
• 1、确保过程持续稳定、可预测。 • 2、提高产品质量、生产能力、降低成本。 • 3、为过程分析提供依据。 • 4、区分变差的特殊原因和普通原因,作为采取局部措
施或对系统采取措施的指南。
SPC常用术语解释
名称
平均值(X) 极差(Range) σ(Sigma) 标准差 (Standard Deviation)
2、定义过程 根据加工过程和上下使用者之间的关系,分析每个阶段的影响 因素。
3、确定待控制的特性 应考虑到: 顾客的需求 当前及潜在的问题区域 特性间的相互关系
4、确定测量系统 a 规定检测的人员、环境、方法、数量、频率、设备或量具。 b 确保检测设备或量具本身的准确性和精密性。
接上页
5、使不必要的变差最小 确保过程按预定的方式运行 确保输入的材料符合要求 恒定的控制设定值
• 5 控制图的类型
• 6 控制图的选择方法 • 7 计量型数据控制图
• a 与过程有关的控制图
• b 使用控制图的准备 • c X-R 图 • d X- s 图 • e ˜X- R图 • f X-MR图
• 8 计数型数据控制图 • a p图
b np 图 c c图 d u图
SPC的产生
• 工业革命以后, 随着生产力的进一步发展,大规
¶Á ýÊ 3
174 175 176 175 172 173 169 173 173 174 170 172 170 171 176 173 171 172 175 174 173 175 170 173 171 170 174 171 175
¶Á ýÊ 4
173 174 174 176 174 172 171 170 174 176 171 169 171 170 174 174 172 170 176 173 174 173 171 174 172 169 172 169 174
流等。(注:数据仅代表单一刀具、冲头、模具等 生产出来的零件,即一个单一的生产流。) 1-1-2 子组频率:在适当的时间内收集足够的数据,这样子组才能 反映潜在的变化,这些变化原因可能是换班/操作人 员更换/材料批次不同等原因引起。对正在生产的产 品进行监测的子组频率可以是每班2次,或一小时一 次等。
注:应在过程记录表上记录所有的相关事件,如:刀具更新,新的材料批 次等,有利于下一步的过程分析。
均值和极差图(X-R)
1、收集数据
以样本容量恒定的子组形式报告,子组通常包括2-5件连续的产品, 并周性期的抽取子组。
注:应制定一个收集数据的计划,将其作为收集、记录及描图的依据。
1-1 选择子组大小,频率和数据 1-1-1 子组大小:一般为5件连续的产品,仅代表单一刀具/冲头/过程
一种间断性的,不可预计的,不稳定的变差根源。 有时被称为可查明原因,它存在的信号是:存在超 过控制限的点或存在在控制限之内的链或其它非随 机性的图形。
名称
解释
普通原因
造成变差的一个原因,它影响被研究过程输出
(Common Cause) 的所有单值;在控制图分析中,它表现为随机
过程变差的一部分。
过程能力
确定要制定控 制图的特性
是计量 型数据 吗?


关心的是

不合格品
率?
关心的是 不合格数 吗?


样本容量是 否 否恒定?
使用p图
样本容量是 否桓定?

使用u图


使用np或p图
性质上是否是均
匀或不能按子组
取样—例如:化 否 学槽液、批量油
子组均值是 否 否能很方便
漆等?
地计算?
使用c或u图
使用中 位数图
12 34 56
计量单位:(mm, kg等)
控制图举例
X图 R图
接上页
测量方法必须保证始终产生准确和精密的结果 不精密
不准确
••••••••
准确
•••••
• ••••
精密
•••••• •••••
使用控制图的准备
1、建立适合于实施的环境 a 排除阻碍人员公正的因素 b 提供相应的资源 c 管理者支持
模生产的形成,如何控制大批量产品质量成为一个突 出问题,单纯依靠事后检验的质量控制方法已不能适 应当时经济发展的要求,必须改进质量管理方式。于 是,英、美等国开始着手研究用统计方法代替事后检 验的质量控制方法。
• 1924年,美国的休哈特博士提出将3Sigma原理运用 于生产过程当中,并发表了著名的“控制图法”,对 过程变量进行控制,为统计质量管理奠定了理论和方 法基础。
¶Á ýÊ 1
174 175 175 173 171 172 173 176 171 172 174 176 173 176 174 172 170 175 172 176 171 175 173 169 170 175 175 175 174
¶Á ýÊ 2
175 176 177 174 170 174 170 175 172 173 173 174 172 174 175 172 169 174 173 175 173 174 172 171 169 173 176 173 175
是指按标准偏差为单位来描述的过程均值和规格界限
(Process Capability) 的距离,用Z来表示。
移动极差
两个或多个连续样本值中最大值和最小值之差。
(Moving Range)
过程控制系统 有反馈的过程控制系统模型
过程的呼声
ห้องสมุดไป่ตู้人 设备
统计方法
材料 方法 环境
我们工作 的方式/资 源的融合
产品或 服务
Average)
值,通常用 X 来表示。
链(Run)
控制图上一系列连续上升或下降,或在中心线之上 或之下的点。它是分析是否存在造成变差的特殊原 因的依据。
过程的单个输出之间不可避免的差别;变差的原因 变差(Variation) 可分为两类:普通原因和特殊原因。
特殊原因 (Special Cause)
过程改进循环
2、维护过程 监控过程性能 查找变差的特殊原因并 采取措施。
实施 研究
计划 措施
实施 研究
计划 措施
实施
研究
3、改进过程 改进过程从而更好地理解 普通原因变差 减少普通原因变差
控制图
上控制限
中心限
下控制限
1、收集 收集数据并画在图上 2、控制 根据过程数据计算实验控制限 识别变差的特殊原因并采取措施 3、分析及改进 确定普通原因变差的大小并采取减小它的措施
ÂË Ö½ ²Ä ÖÊ £º »ú ÓÍ ¸ñ
¹æ · ¶ Π¶È £º 170-175°c
UCL= UC+LA=2RX= +A2 R = LC1L7=5 UCL=D4 R = 9.09
-LAC2RL== X +A2 R = 170 LCL=D3R = 0
X¼Í
»ú Æ÷ûà ³Æ £º ¿¾ ¯
每件产品的尺寸与别的都不同
范围
范围
范围
范围
但它们形成一个模型,若稳定,可以描述为一个分布
范围
范围
分布可以通过以下因素来加以区分
位置
分布宽度
范围 形状
或这些因素的组合
如果仅存在变差的普通原因, 随着时间的推移,过程的输 出形成一个稳定的分布并可 预测。
范围
如果存在变差的特殊 原因,随着时间的推 移,过程的输出不 稳定。
A2=0.577
175 174
173
172
171
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
D3=0.000
8
ϵ ÁÐ 1 Rͼ
ϵ ÁÐ 2
4
D4=2.115
相关文档
最新文档