半导体二极管和三极管PPT课件
合集下载
模拟电子技术基础(第4版)ppt课件
多子浓度高
多子浓度很 低,且很薄
面积大
晶体管有三个极、三个区、两个PN结。
华成英 hchya@
二、晶体管的放大原理
(发射结正偏) uBE U on 放大的条件 (集电结反偏) uCB 0,即 uCE uBE
少数载流 子的运动 因集电区面积大,在外电场作用下大 部分扩散到基区的电子漂移到集电区 因基区薄且多子浓度低,使极少 数扩散到基区的电子与空穴复合 因发射区多子浓度高使大量 电子从发射区扩散到基区 基区空穴 的扩散
华成英 hchya@
§1.3
晶体三极管
一、晶体管的结构和符号 二、晶体管的放大原理 三、晶体管的共射输入特性和输出特性 四、温度对晶体管特性的影响
五、主要参数
华成英 hchya@
一、晶体管的结构和符号
为什么有孔?
小功率管
中功率管
大功率管
华成英 hchya@
2、本征半导体的结构
共价键
由于热运动,具有足够能量 的价电子挣脱共价键的束缚 而成为自由电子 自由电子的产生使共价键中 留有一个空位置,称为空穴 自由电子与空穴相碰同时消失,称为复合。 动态平衡 一定温度下,自由电子与空穴对的浓度一定;温度升高, 热运动加剧,挣脱共价键的电子增多,自由电子与空穴对 的浓度加大。
指数曲线
若正向电压 UT,则i ISe u
u UT
若反向电压u UT,则i IS
2. 伏安特性受温度影响
反向特性为横轴的平行线
T(℃)↑→在电流不变情况下管压降u↓ →反向饱和电流IS↑,U(BR) ↓ 增大1倍/10℃
T(℃)↑→正向特性左移,反向特性下移
华成英 hchya@
华成英 hchya@
课件:二极管、三极管、晶闸管知识讲解
vi
+
D
+
0
t
vi
RL
vo
6
vo
-
-
0
t
(a)
(b)
稳压
稳压二极管的特点就是反向通电尚 未击穿前,其两端的电压基本保持不变。 这样,当把稳压管接入电路以后,若由 于电源电压发生波动,或其它原因造成
6
电路中各点电压变动时,负载两端的电 压将基本保持不变。 稳压二极管在电路中常用“ZD”加数字 表示
管加反向电压时,不管控制极加
怎样的电压,它都不会导通,而
处于截止状态,这种状态称为晶
闸管的反向阻断。
主回路加反向电压
c 触发导通 d 反向阻断
可控硅只有导通和关断两种工作状态,它具有 开关特性,这种特性需要一定的条件才能转化, 此条件见下表
状态
条件
说明
从关断到导通
1、阳极电位高于是阴极电位
2、控制极有足够的正向电压和电流
图a
开关断开
b 正向阻断
(2)触发导通 在图(c)所示
电路中,晶闸管加正向电压,在
控制极上加正向触发电压,此时
指示灯亮,表明晶闸管导通,这
种状态称为晶闸管的触发导通。
(3)反向阻断 在图(d)所示
电路中,晶闸管加反向电压,即
a极接电源负极,k极接电源正极,
此时不论开关s闭合与否,指示
灯始终不亮。这说明当单向晶闸
单向可控硅的结构
不管可控硅的外形如何,它们的管芯都是由P型 硅和N型硅组成的四层P1N1P2N2结构。它有三 个PN结(J1、J2、J3),从J1结构的P1层引 出阳极A,从N2层引出阴级K,从P2层引出控制 极G,所以它是一种四6 层三端的半导体器件。
第四单元半导体二极管和三极管优秀课件
扩散和漂移这一对 相反的运动最终达到 动态平衡,空间电荷 区的厚度固定不变。
形成空间电荷区浓度差
多子的扩散运动,在中间位置进行复合
扩散的结果使空间 电荷区变宽
空间电荷区也 称 PN 结
2、扩散运动和漂移运动的动态平衡
扩散强
内电场增强
漂移运动增强
两者平衡
PN结宽度基本稳定
3、PN结的单向导电性
加正向电压(正向偏置)
P接正、N接负
P 区 空间电荷区变窄
N区
---- -- + + + + + +
内电场
---- -- + + + + + +
---- -- + + + + + +
内电场
IF
外电场
+–
R
多子扩散加强 大的扩散电流
PN 结加正向电压时,正向电流较大,正向电阻 较小,称PN结处于导通状态。
加反向电压(反向偏置)
+ 44
共价健
S
S
i
i
最外层轨道上的四个电子称为价电子。
单晶硅中的共价健结构
所有的价电子都被共价键束缚,不会成为自由电子
自由电子浓度决定导电能力
价电子结合成共价键,他们既不像导体那样容易挣脱 原子核的束缚,也不像绝缘体那样束缚很紧
因此本征半导体的导电能力很弱,接近绝缘体。
3、本征激发和空穴自导由电电子
第四单元半导体二 极管和三极管
下面图片中各是什么?它们可以导电么?
半导体:导电能力介乎于导体和绝缘体之间的 物质。
第一节 半导体的基础知识
二极管和三极管原理ppt课件
37
① N沟道结型场效应管
基底:N型半导体
D(drain)
两边是P区
G(grid)
N PP
D G
D G
S
S
S(source)
精导品pp电t 沟道
38
② P沟道结型场效应管
D(drain)
G(grid)
P NN
S(source)
精品ppt
D G
D G
S
S
39
工作原理(以P沟道为例)
① 栅源电压UGS对导电沟道的影响
14
+
Si
Si
B
BSi
Si
Si
Si
空穴
掺硼的半导体中,空穴的数目远大于自由电子的数目。空
穴为多数载流子,自由电子是少数载流子,这种半导体称为空 穴型半导体或P型半导体
一般情况下,掺杂半导体中多数载流子的数量可达到少数
载流子的1010倍或更多精。品ppt
15
二、半导体二极管
精品ppt
16
PN 结的形成
精品ppt
26
由于少数载流子数量很少,因此反向电流不大,即 PN结呈现的反向电阻很高。 (换句话说,在P型半导 体中基本上没有可以自由运动的电子,而在N型半导体 中基本上没有可供电子复合的空穴,因此,产生的反向 电流就非常小。)
值得注意的是:因为少数载流子是由于价电子获 得热能(热激发)挣脱共价键的束缚而产生的,环境温度 愈高,少数载流子的数目愈多。所以温度对反向电流的 影响很大。
在金属导体中只有电子这种载流子,而半导体中存在空
穴和电子两种载流子,在外界电场的作用下能产生空穴流和
电子流,它们的极性相反且运动方向相反,所以,产生的电
半导体二极管和三极管精选PPT课件
硅原子
+4
空穴
+4
硼原子
+4
电子空穴对
空穴
+4 +4
P型半导体
- - --
+3 +4
- - --
- - --
+4 +4
受主离子
多数载流子—— 空穴 少数载流子——自由电子
杂质半导体的示意图
多子—空穴
多子—电子
P型半导体
N型半导体
- - --
++ + +
- - --
++ + +
- - --
++ + +
3. PN结的伏安特性曲线及表达式
根据理论推导,PN结的伏安特性曲线如图
反向饱和电流 反向击穿电压
IF(多子扩散) 正偏
反偏
反向击穿
IR(少子漂移)
电击穿——可逆 热击穿——烧坏PN结
14.3 半导体二极管
结构
二极管 = PN结 + 管壳 + 引线
符号
P
+
阳极
N
-
阴极
二极管按结构分三大类:
(1) 点接触型二极管
束缚电子
+4
+4 +4
+4
空穴
+4 +4
自由电子
+4
+4 +4
当温度升高或受到 光的照射时,束缚 电子能量增高,有 的电子可以挣脱原 子核的束缚,而参 与导电,成为自由 电子。
自由电子产生的 同时,在其原来的共 价键中就出现了一个 空位,称为空穴。
电路课件第4章半导体二极管、三极管和场效应管
备的输出。
Part
04
场效应管
场效应管的结构与工作原理
结构
场效应管主要由源极、栅极和漏极三个电极组成,其中源极和漏极通常由N型或P型半导 体材料制成,而栅极则由绝缘材料制成。
工作原理
场效应管通过在栅极上施加电压来控制源极和漏极之间的电流,从而实现放大或开关功 能。
场效应管的类型与特性
类型
场效应管有多种类型,如NMOS、PMOS、CMOS等,每种类型具有不同的特性 和应用场景。
三极管的类型与特性
类型
根据材料和结构,三极管可分为 NPN、PNP和硅平面管等类型。
温度特性
三极管的工作受温度影响较大, 温度升高会导致三极管的性能下 降。
特性
不同类型三极管具有不同的特性, 如电流放大倍数、频率响应、功 耗等。
参数
三极管的主要参数包括电流放大 倍数、频率响应、功耗等,这些 参数决定了三极管的应用范围。
特性
场效应管具有输入阻抗高、噪声低、动态范围大等特性,使其在模拟电路和数字 电路中都有广泛的应用。
场效应管的应用
01
02
03
放大器
场效应管可作为放大器使 用,用于放大微弱信号。
开关电路
由于场效应管具有开关特 性,因此可用于开关电路 中实现高速切换。
集成电路
在现代集成电路中,场效 应管已成为主要的元件之 一,用于实现各种逻辑功 能和信号处理。
二极管的类型与特性
类型
硅二极管、锗二极管、肖特基二极管、PIN二极管等。
特性
正向导通压降、反向击穿电压、温度系数等。
二极管的应用
整流
将交流电转换为直流电,如家用 电器中的电源整流器。
稳压
通过串联或并联方式稳定电路中 的电压,如稳压二极管。
Part
04
场效应管
场效应管的结构与工作原理
结构
场效应管主要由源极、栅极和漏极三个电极组成,其中源极和漏极通常由N型或P型半导 体材料制成,而栅极则由绝缘材料制成。
工作原理
场效应管通过在栅极上施加电压来控制源极和漏极之间的电流,从而实现放大或开关功 能。
场效应管的类型与特性
类型
场效应管有多种类型,如NMOS、PMOS、CMOS等,每种类型具有不同的特性 和应用场景。
三极管的类型与特性
类型
根据材料和结构,三极管可分为 NPN、PNP和硅平面管等类型。
温度特性
三极管的工作受温度影响较大, 温度升高会导致三极管的性能下 降。
特性
不同类型三极管具有不同的特性, 如电流放大倍数、频率响应、功 耗等。
参数
三极管的主要参数包括电流放大 倍数、频率响应、功耗等,这些 参数决定了三极管的应用范围。
特性
场效应管具有输入阻抗高、噪声低、动态范围大等特性,使其在模拟电路和数字 电路中都有广泛的应用。
场效应管的应用
01
02
03
放大器
场效应管可作为放大器使 用,用于放大微弱信号。
开关电路
由于场效应管具有开关特 性,因此可用于开关电路 中实现高速切换。
集成电路
在现代集成电路中,场效 应管已成为主要的元件之 一,用于实现各种逻辑功 能和信号处理。
二极管的类型与特性
类型
硅二极管、锗二极管、肖特基二极管、PIN二极管等。
特性
正向导通压降、反向击穿电压、温度系数等。
二极管的应用
整流
将交流电转换为直流电,如家用 电器中的电源整流器。
稳压
通过串联或并联方式稳定电路中 的电压,如稳压二极管。
《电子技术基础》ppt课件
PN结内部载流子基本为零,因此导电率很低,相当于介质。 但PN结两侧的P区和N区导电率很高,相当于导体,这一点和 电容比较相似,所以说PN结具有电容效应。
半导体基础与常用器件
电子技术基础
PN结的单向导电性
PN结的上述“正向导通,反向阻断”作用,说明它具有单 向
导电性,PN结的单PN向结导中电反性向是它电构流成的半讨导论体器件的基础。
3. 空间电荷区的电阻率很高,是指其内电场阻碍多数载流子扩 散运动的作用,由于这种阻碍作用,使得扩散电流难以通过空 间电荷区,即空间电荷区对扩散电流呈现高阻作用。
4. PN结的单向导电性是指:PN结正向偏置时,呈现的电阻很小 几乎为零,因此多子构成的扩散电流极易通过PN结;PN结反向 偏置时,呈现的电阻趋近于无穷大,因此电流无法通过被阻断。
由于热激发而在晶体中出现电子空穴对的现象称为本征激发。
本征激发的结果,造成了半导体内部自由电子载流子运动的产 生,由此本征半导体的电中性被破坏,使失掉电子的原子变成带 正电荷的离子。
由于共价键是定域的,这些带正电的离子不会移动,即不能参 与导电,成为晶体中固定不动的带正电离子。
半导体基础与常用器件
电子技术基础
内部几乎没有自由电子, 因此不导电。
半导体基础与常用器件
电子技术基础
(3) 半导体
半导体的最外层电子数一般为4个,在常温下存在的自 由电子数介于导体和绝缘体之间,因而在常温下半导体的 导电能力也是介于导体和绝缘体之间。
常用的半导体材料有硅、锗、硒等。
+
原子核
半导体的特点:
导电性能介于导体和绝缘体之 间,但具有光敏性、热敏性和参 杂性的独特性能,因此在电子技 术中得到广泛应用。
光敏性——半导体受光照后,其导电能力大大增强;
半导体基础与常用器件
电子技术基础
PN结的单向导电性
PN结的上述“正向导通,反向阻断”作用,说明它具有单 向
导电性,PN结的单PN向结导中电反性向是它电构流成的半讨导论体器件的基础。
3. 空间电荷区的电阻率很高,是指其内电场阻碍多数载流子扩 散运动的作用,由于这种阻碍作用,使得扩散电流难以通过空 间电荷区,即空间电荷区对扩散电流呈现高阻作用。
4. PN结的单向导电性是指:PN结正向偏置时,呈现的电阻很小 几乎为零,因此多子构成的扩散电流极易通过PN结;PN结反向 偏置时,呈现的电阻趋近于无穷大,因此电流无法通过被阻断。
由于热激发而在晶体中出现电子空穴对的现象称为本征激发。
本征激发的结果,造成了半导体内部自由电子载流子运动的产 生,由此本征半导体的电中性被破坏,使失掉电子的原子变成带 正电荷的离子。
由于共价键是定域的,这些带正电的离子不会移动,即不能参 与导电,成为晶体中固定不动的带正电离子。
半导体基础与常用器件
电子技术基础
内部几乎没有自由电子, 因此不导电。
半导体基础与常用器件
电子技术基础
(3) 半导体
半导体的最外层电子数一般为4个,在常温下存在的自 由电子数介于导体和绝缘体之间,因而在常温下半导体的 导电能力也是介于导体和绝缘体之间。
常用的半导体材料有硅、锗、硒等。
+
原子核
半导体的特点:
导电性能介于导体和绝缘体之 间,但具有光敏性、热敏性和参 杂性的独特性能,因此在电子技 术中得到广泛应用。
光敏性——半导体受光照后,其导电能力大大增强;
最新第2讲 二极管、三极管PPT课件
iB
1. 分别分析uI=0V、5V时T是工作在截止状态还是导通状态; 2. 已知T导通时的UBE=0.7V,若uI=5V,则β在什么范围内T 处于放大状态?在什么范围内T处于饱和状态?
讨论二
2.7
ΔiC
PCMiCuCE
uCE=1V时的iC就是ICM
iC
iB
UC E
U(BR)CEO
由图示特性求出PCM、ICM、U (BR)CEO 、β。
讨论一
判断电路中二极管的工作状态,求解输出电压。
判断二极管工作状态的方法?
讨论二
1. V=2V、5V、10V时二极管中
的直流电流各为多少?
2. 若输入电压的有效值为5mV,
则上述各种情况下二极管中的交
ID
流电流各为多少? V=5V时,
rd
uD iD
UT IDQ
Q uD=V-iR
ID
V
UD R
V 较小时应实测伏安 特性,用图解法求ID。
直流电流 放大系数
IC
IB
iC
iB
ICEO(1)ICBO
交流电流放大系数
穿透电流 集电结反向电流
为什么基极开路集电极回 路会有穿透电流?
三、晶体管的共射输入特性和输出特性
1. 输入特性
iBf(uBE )UCE
为什么像PN结的伏安特性? 为什么UCE增大曲线右移? 为什么UCE增大到一定值曲 线右移就不明显了?
一、晶体管的结构和符号
为什么有孔?
小功率管
中功率管
大功率管
多子浓度高
多子浓度很 低,且很薄
面积大
晶体管有三个极、三个区、两个PN结。
二、晶体管的放大原理
放大的条 uuC BB E 件 U 0, o( n 即 u发 CE射 uB( E结集 正电 偏结 )反偏)
1. 分别分析uI=0V、5V时T是工作在截止状态还是导通状态; 2. 已知T导通时的UBE=0.7V,若uI=5V,则β在什么范围内T 处于放大状态?在什么范围内T处于饱和状态?
讨论二
2.7
ΔiC
PCMiCuCE
uCE=1V时的iC就是ICM
iC
iB
UC E
U(BR)CEO
由图示特性求出PCM、ICM、U (BR)CEO 、β。
讨论一
判断电路中二极管的工作状态,求解输出电压。
判断二极管工作状态的方法?
讨论二
1. V=2V、5V、10V时二极管中
的直流电流各为多少?
2. 若输入电压的有效值为5mV,
则上述各种情况下二极管中的交
ID
流电流各为多少? V=5V时,
rd
uD iD
UT IDQ
Q uD=V-iR
ID
V
UD R
V 较小时应实测伏安 特性,用图解法求ID。
直流电流 放大系数
IC
IB
iC
iB
ICEO(1)ICBO
交流电流放大系数
穿透电流 集电结反向电流
为什么基极开路集电极回 路会有穿透电流?
三、晶体管的共射输入特性和输出特性
1. 输入特性
iBf(uBE )UCE
为什么像PN结的伏安特性? 为什么UCE增大曲线右移? 为什么UCE增大到一定值曲 线右移就不明显了?
一、晶体管的结构和符号
为什么有孔?
小功率管
中功率管
大功率管
多子浓度高
多子浓度很 低,且很薄
面积大
晶体管有三个极、三个区、两个PN结。
二、晶体管的放大原理
放大的条 uuC BB E 件 U 0, o( n 即 u发 CE射 uB( E结集 正电 偏结 )反偏)
半导体二极管和三极管ppt课件
5
本征半导体的导电机理
Si
Si
自由电子
free eletron
Si
Si
空穴
(hole)
价电子
valence electron
价电子在获得一定能量(温度升高或受光照)后, 即可挣脱原子核的束缚,成为自由电子,同时共价键 中留下一个空位,称为空穴。这一现象称为本征激发。
温度愈高,晶体中产生的自由电子便愈多。 6
本征半导体的导电机理
Si
Si
自由电子
free eletron
Si
Si
空穴
(hole)
价电子
在外电场的作用下,自由电子将产生定向移动,形
成电子电流;由于空穴的存在,价电子将按一定的方 向依次来填补空穴,而在该原子中出现一个空穴,其 结果相当于空穴的运动(相当于正电荷的移动)。
7
本征半导体的导电机理 当半导体两端加上外电压时,在半导体中将出
浓度差
14
14.2.2 PN结的单向导电性
1. PN 结加正向电压(正向偏置) (forward bias)
PN 结变窄
P接正、N接负
---- - - ---- - - ---- - -
+ + ++ + + + + ++ + + + + ++ + +
P IF
内电场 N
外电场
+–
内电场被
削弱,多子 的扩散加强, 形成较大的 扩散电流。
11
半导体的导电特性:
热敏性:当环境温度升高时,导电能力显著增强 (可做成温度敏感元件,如热敏电阻)。
本征半导体的导电机理
Si
Si
自由电子
free eletron
Si
Si
空穴
(hole)
价电子
valence electron
价电子在获得一定能量(温度升高或受光照)后, 即可挣脱原子核的束缚,成为自由电子,同时共价键 中留下一个空位,称为空穴。这一现象称为本征激发。
温度愈高,晶体中产生的自由电子便愈多。 6
本征半导体的导电机理
Si
Si
自由电子
free eletron
Si
Si
空穴
(hole)
价电子
在外电场的作用下,自由电子将产生定向移动,形
成电子电流;由于空穴的存在,价电子将按一定的方 向依次来填补空穴,而在该原子中出现一个空穴,其 结果相当于空穴的运动(相当于正电荷的移动)。
7
本征半导体的导电机理 当半导体两端加上外电压时,在半导体中将出
浓度差
14
14.2.2 PN结的单向导电性
1. PN 结加正向电压(正向偏置) (forward bias)
PN 结变窄
P接正、N接负
---- - - ---- - - ---- - -
+ + ++ + + + + ++ + + + + ++ + +
P IF
内电场 N
外电场
+–
内电场被
削弱,多子 的扩散加强, 形成较大的 扩散电流。
11
半导体的导电特性:
热敏性:当环境温度升高时,导电能力显著增强 (可做成温度敏感元件,如热敏电阻)。
半导体二极管三极管
例 1 的图
[例 1] 图中通过稳压管的电流 IZ 等于多少?R 是限流电阻,
其值是否合适?
[解]
IZ12 .6 0 1 130 2 A510 3A5m A
IZ < IZM ,电阻值合适。
9.4 半导体三极管
9.4.1 基本结构 BE
二氧化硅保护膜
E 铟球
N 型硅 P 型硅 N 型硅
C
(a) 平面型
发射极与集电极之间如同一个开关的断开,其间电阻很大, 可见,晶体管除了有放大作用外,还有开关作用。
晶体管的三种工作状态如下图所示
IB
UBC
<
0
IC +
+
+
UCE
UBE > 0
(a)放大
IB
=
0
+
+
UBC
<
IC
0
+ E
IB
UBC >
0IC
+
U CC RC
+
+
UCE 0
IB/m
0
A
0.10
0.02 0.04 0.06 0.08
IC/m < 0.001 0.70 1.50 2.30 3.10
A
3.95
结论IAE/:m((12))
< I0E.00I1C0I.B72 1符.5合4 基2尔.3霍6 夫3定.1律8 4IC.0和5 IE 比 IB 大得多。从第三列和第四列的数据可得
(3)当 IB = 0(将基极开路)时,IC = ICEO,表中 ICEO <
0.001 mA = 1 A。
(4)要使晶体管起放大作用,发射结必须正向偏置,发射区 才可向基区发射电子;而集电结必须反向偏置,集电区才可收 集从发射区发射过来的电子。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1-15)
二、P 型半导体
在硅或锗晶体中掺入少量的三价元素,如硼
(或铟),晶体点阵中的某些半导体原子被杂质
取代,硼原子的最外层有三个价电子,与相邻的
半导体原子形成共价键时, 空穴
产生一个空穴。这个空穴
可能吸引束缚电子来填补,
+4
+4
使得硼原子成为不能移动
的带负电的离子。由于硼
+3
+4
原子接受电子,所以称为
(1-11)
本征半导体中电流由两部分组成: 1. 自由电子移动产生的电流。 2. 空穴移动产生的电流。
本征半导体的导电能力取决于载流子的浓度。
温度越高,载流子的浓度越高。因此本征半 导体的导电能力越强,温度是影响半导体性 能的一个重要的外部因素,这是半导体的一 大特点。
(1-12)
15.1.3 杂质半导体
• 往纯净的半导体中掺入某些杂质,会使 它的导电能力明显改变。
(1-4)
15.1.2 本征半导体
一、本征半导体的结构特点
现代电子学中,用的最多的半导体是硅和锗,它们 的最外层电子(价电子)都是四个。
Ge
Si
通过一定的工艺过程,可以将半导体制成晶体。
(1-5)
本征半导体:完全纯净的、结构完整的半导体晶体。 在硅和锗晶体中,原子按四角形系统组成
+4
+4
+4
+4
共价键有很强的结合力,使原子规 则排列,形成晶体。
共价键中的两个电子被紧紧束缚在共价键中,称为 束缚电子,常温下束缚电子很难脱离共价键成为自 由电子,因此本征半导体中的自由电子很少,所以 本征半导体的导电能力很弱。
(1-8)
二、本征半导体的导电机理 1.载流子、自由电子和空穴
在绝对0度(T=0K)和没有外界激发时,价 电子完全被共价键束缚着,本征半导体中没有 可以运动的带电粒子(即载流子),它的导电 能力为 0,相当于绝缘体。
绝缘体:有的物质几乎不导电,称为绝缘体,如橡 皮、陶瓷、塑料和石英。
半导体:另有一类物质的导电特性处于导体和绝缘 体之间,称为半导体,如锗、硅、砷化镓 和一些硫化物、氧化物等。
(1-3)
半导体的导电机理不同于其它物质,所以它具有 不同于其它物质的特点。例如:
• 当受外界热和光的作用时,它的导电能 力明显变化。
(1-14)
多余 电子
磷原子
+4 +4 +5 +4
N 型半导体中 的载流子是什 么?
1.由施主原子提供的电子,浓度与施主原子相同。 2.本征半导体中成对产生的电子和空穴。
掺杂浓度远大于本征半导体中载流子浓度,所以,自 由电子浓度远大于空穴浓度。自由电子称为多数载流 子(多子),空穴称为少数载流子(少子)。
晶体点阵,每个原子都处在正四面体的中心, 而四个其它原子位于四面体的顶点,每个原子 与其相临的原子之间形成共价键,共用一对价 电子。
硅和锗的晶 体结构:
(1-6)
硅和锗的共价键结构
+4表示 除去价电 子后的原
子
+4
+4
+4
+4
共价键共 用电子对
(1-7)
形成共价键后,每个原子的最外层电子是 八个,构成稳定结构。
(1-17)
§15.2 PN结
15.2.1 PN 结的形成
在同一片半导体基片上,分别制造P 型半导 体和N 型半导体,经过载流子的扩散,在它们的 交界面处就形成了PN 结。
(1-18)
内电场越强,就使漂移 运动越强,而漂移使空 间电荷区变薄。
漂移运动
P型半导体
内电场E N型半导体
---- - - ---- - - ---- - - ---- - -
在本征半导体中掺入某些微量的杂质,就会 使半导体的导电性能发生显著变化。其原因是掺 杂半导体的某种载流子浓度大大增加。
N 型半导体:自由电子浓度大大增加的杂质半导体, 也称为(电子半导体)。
P 型半导体:空穴浓度大大增加的杂质半导体,也 称为(空穴半导体)。
(1-13)
一、N 型半导体
在硅或锗晶体中掺入少量的五价元素磷 (或锑),晶体点阵中的某些半导体原子被 杂质取代,磷原子的最外层有五个价电子, 其中四个与相邻的半导体原子形成共价键, 必定多出一个电子,这个电子几乎不受束缚, 很容易被激发而成为自由电子,这样磷原子 就成了不能移动的带正电的离子。每个磷原 子给出一个电子,称为施主原子。
电子技术 模拟电路部分
第十五章 半导体二极管和
三极管
(1-1)
第十五章 半导体器件
§ 15.1 半导体的导电特性 § 15.2 PN 结 § 15.3 半导体二极管 § 15.4 稳压二极管 § 15.5 半导体三极管
(1-2)
§15.1 半导体的导电特性
15.1.1 导体、半导体和绝缘体
导体:自然界中很容易导电的物质称为导体,金属 一般都是导体。
所以扩散和漂移这一对相反的运动最终达到平衡, 相当于两个区之间没有电扩散荷运运动动,空间电荷区的厚 度固定不变。
(1-20)
电位V
V0
---- - - ---- - - ---- - - ---- - -
+ +++++ + +++++ + +++++ + +++++
受主原子。
硼原子
P 型半导体中空穴是多子,电子是少子。
(1-16)
三、杂质半导体的示意表示法
---- - - ---- - - ---- - - ---- - -
+ +++++ + +++++ + +++++ + +++++
P 型半导体
N 型半导体
杂质型半导体多子和少子的移动都能形成电流。
但由于数量的关系,起导电作用的主要是多子。 近似认为多子与杂质浓度相等。
+ +++++ + +++++ + +++++ + +++++
空间电荷区, 也称耗尽层。
扩散运动
扩散的结果是使空间电 荷区逐渐加宽,空间电 荷区越宽。
(1-19)
漂移运动
P型半导体
内电场E N型半导体
---- - - ---- - - ---- - - ---- - -
+ +++++ + +++++ + +++++ + +++++
在常温下,由于热激发,使一些价电子获 得足够的能量而脱离共价键的束缚,成为自由电 子,同时共价键上留下一个空位,称为空穴。
(1-9)
空穴
+4
+4
+4
+4
自由电子 束缚电子
(1-10)
2.本征半导体的导电机理
本征半导体中存在数量相等的两种载流子,即 自由电子和空穴。
+4
+4
+4
+4
在其它力的作用下, 空穴吸引附近的电子 来填补,这样的结果 相当于空穴的迁移, 而空穴的迁移相当于 正电荷的移动,因此 可以认为空穴是载流 子。
二、P 型半导体
在硅或锗晶体中掺入少量的三价元素,如硼
(或铟),晶体点阵中的某些半导体原子被杂质
取代,硼原子的最外层有三个价电子,与相邻的
半导体原子形成共价键时, 空穴
产生一个空穴。这个空穴
可能吸引束缚电子来填补,
+4
+4
使得硼原子成为不能移动
的带负电的离子。由于硼
+3
+4
原子接受电子,所以称为
(1-11)
本征半导体中电流由两部分组成: 1. 自由电子移动产生的电流。 2. 空穴移动产生的电流。
本征半导体的导电能力取决于载流子的浓度。
温度越高,载流子的浓度越高。因此本征半 导体的导电能力越强,温度是影响半导体性 能的一个重要的外部因素,这是半导体的一 大特点。
(1-12)
15.1.3 杂质半导体
• 往纯净的半导体中掺入某些杂质,会使 它的导电能力明显改变。
(1-4)
15.1.2 本征半导体
一、本征半导体的结构特点
现代电子学中,用的最多的半导体是硅和锗,它们 的最外层电子(价电子)都是四个。
Ge
Si
通过一定的工艺过程,可以将半导体制成晶体。
(1-5)
本征半导体:完全纯净的、结构完整的半导体晶体。 在硅和锗晶体中,原子按四角形系统组成
+4
+4
+4
+4
共价键有很强的结合力,使原子规 则排列,形成晶体。
共价键中的两个电子被紧紧束缚在共价键中,称为 束缚电子,常温下束缚电子很难脱离共价键成为自 由电子,因此本征半导体中的自由电子很少,所以 本征半导体的导电能力很弱。
(1-8)
二、本征半导体的导电机理 1.载流子、自由电子和空穴
在绝对0度(T=0K)和没有外界激发时,价 电子完全被共价键束缚着,本征半导体中没有 可以运动的带电粒子(即载流子),它的导电 能力为 0,相当于绝缘体。
绝缘体:有的物质几乎不导电,称为绝缘体,如橡 皮、陶瓷、塑料和石英。
半导体:另有一类物质的导电特性处于导体和绝缘 体之间,称为半导体,如锗、硅、砷化镓 和一些硫化物、氧化物等。
(1-3)
半导体的导电机理不同于其它物质,所以它具有 不同于其它物质的特点。例如:
• 当受外界热和光的作用时,它的导电能 力明显变化。
(1-14)
多余 电子
磷原子
+4 +4 +5 +4
N 型半导体中 的载流子是什 么?
1.由施主原子提供的电子,浓度与施主原子相同。 2.本征半导体中成对产生的电子和空穴。
掺杂浓度远大于本征半导体中载流子浓度,所以,自 由电子浓度远大于空穴浓度。自由电子称为多数载流 子(多子),空穴称为少数载流子(少子)。
晶体点阵,每个原子都处在正四面体的中心, 而四个其它原子位于四面体的顶点,每个原子 与其相临的原子之间形成共价键,共用一对价 电子。
硅和锗的晶 体结构:
(1-6)
硅和锗的共价键结构
+4表示 除去价电 子后的原
子
+4
+4
+4
+4
共价键共 用电子对
(1-7)
形成共价键后,每个原子的最外层电子是 八个,构成稳定结构。
(1-17)
§15.2 PN结
15.2.1 PN 结的形成
在同一片半导体基片上,分别制造P 型半导 体和N 型半导体,经过载流子的扩散,在它们的 交界面处就形成了PN 结。
(1-18)
内电场越强,就使漂移 运动越强,而漂移使空 间电荷区变薄。
漂移运动
P型半导体
内电场E N型半导体
---- - - ---- - - ---- - - ---- - -
在本征半导体中掺入某些微量的杂质,就会 使半导体的导电性能发生显著变化。其原因是掺 杂半导体的某种载流子浓度大大增加。
N 型半导体:自由电子浓度大大增加的杂质半导体, 也称为(电子半导体)。
P 型半导体:空穴浓度大大增加的杂质半导体,也 称为(空穴半导体)。
(1-13)
一、N 型半导体
在硅或锗晶体中掺入少量的五价元素磷 (或锑),晶体点阵中的某些半导体原子被 杂质取代,磷原子的最外层有五个价电子, 其中四个与相邻的半导体原子形成共价键, 必定多出一个电子,这个电子几乎不受束缚, 很容易被激发而成为自由电子,这样磷原子 就成了不能移动的带正电的离子。每个磷原 子给出一个电子,称为施主原子。
电子技术 模拟电路部分
第十五章 半导体二极管和
三极管
(1-1)
第十五章 半导体器件
§ 15.1 半导体的导电特性 § 15.2 PN 结 § 15.3 半导体二极管 § 15.4 稳压二极管 § 15.5 半导体三极管
(1-2)
§15.1 半导体的导电特性
15.1.1 导体、半导体和绝缘体
导体:自然界中很容易导电的物质称为导体,金属 一般都是导体。
所以扩散和漂移这一对相反的运动最终达到平衡, 相当于两个区之间没有电扩散荷运运动动,空间电荷区的厚 度固定不变。
(1-20)
电位V
V0
---- - - ---- - - ---- - - ---- - -
+ +++++ + +++++ + +++++ + +++++
受主原子。
硼原子
P 型半导体中空穴是多子,电子是少子。
(1-16)
三、杂质半导体的示意表示法
---- - - ---- - - ---- - - ---- - -
+ +++++ + +++++ + +++++ + +++++
P 型半导体
N 型半导体
杂质型半导体多子和少子的移动都能形成电流。
但由于数量的关系,起导电作用的主要是多子。 近似认为多子与杂质浓度相等。
+ +++++ + +++++ + +++++ + +++++
空间电荷区, 也称耗尽层。
扩散运动
扩散的结果是使空间电 荷区逐渐加宽,空间电 荷区越宽。
(1-19)
漂移运动
P型半导体
内电场E N型半导体
---- - - ---- - - ---- - - ---- - -
+ +++++ + +++++ + +++++ + +++++
在常温下,由于热激发,使一些价电子获 得足够的能量而脱离共价键的束缚,成为自由电 子,同时共价键上留下一个空位,称为空穴。
(1-9)
空穴
+4
+4
+4
+4
自由电子 束缚电子
(1-10)
2.本征半导体的导电机理
本征半导体中存在数量相等的两种载流子,即 自由电子和空穴。
+4
+4
+4
+4
在其它力的作用下, 空穴吸引附近的电子 来填补,这样的结果 相当于空穴的迁移, 而空穴的迁移相当于 正电荷的移动,因此 可以认为空穴是载流 子。