2019年湖北省潜江市中考数学试卷(含答案解析)
2019年湖北省江汉油田、潜江市、天门市、仙桃市中考数学试题(含答案)
解答:解:
红左 ﹣﹣﹣
(红右,红左) (黑左,红左) (黑右,红左)
红右
(红左,红右) ﹣﹣﹣
(黑左,红右) (黑右,红右)
黑左
(红左,黑左) (红右,黑左) ﹣﹣﹣
(黑右,黑左)
黑右
(红左,黑右) (红右,黑右) (黑左,黑右) ﹣﹣﹣
所有等可能的情况有 12 种,其中两次取出的鞋颜色恰好相同的情况有 4 种,
13.(3 分)(2019•仙桃)纸箱里有双拖鞋,除颜色不同外,其它都相同,从中随机取一只(不放回),再 取一只,则两次取出的鞋颜色恰好相同的概率为 .
考点:列表法与树状图法.
专题:计算题.
分析:假设两双拖鞋的颜色分别为红色与黑色,列表得出所有等可能的情况数,找出两次取出的鞋
颜色恰好相同的情况数,即可求出所求的概率.
考点:坐标与图形变化-平移. 分析:根据旋转变换与平移的规律作出图形,然后解答即可. 解答:解:如图,将点 C 绕点 A 逆时针旋转 90°后,对应点的坐标为(1,0),
再将(1,0)向下平移 3 个单位,此时点 C 的对应点的坐标为(1,﹣3).
故答案为(1,﹣3).
点评: 本题考查了坐标与图形的变化﹣旋转与平移,作出图形,利用数形结合求解更加简便.
解答:解:﹣ 的倒数是﹣2.
故选:C.
点评:本题主要考查倒数的定义,要求熟练掌握.需要注意的是:
倒数的性质:负数的倒数还是负数,正数的倒数是正数,0 没有倒数.
倒数的定义:若两个数的乘积是 1,我们就称这两个数互为倒数.
2.(3 分)(2019•仙桃)美丽富饶的江汉平原,文化底蕴深厚,人才辈出.据统计,该地区的天门、仙桃、
到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为 y=﹣0.5x2+2, 当水面下降 1 米,通过抛物线在图上的观察可转化为: 当 y=﹣1 时,对应的抛物线上两点之间的距离,也就是直线 y=﹣1 与抛物线相交的两点之间的 距离, 可以通过把 y=﹣1 代入抛物线解析式得出:
潜江市中考数学试卷及答案
潜江市天门市仙桃市江汉油田数学试卷(本卷共6页,满分120分,考试时间120分钟)注意事项:1 •答题前,考生务必将自己的姓名、准考证号填写在试卷第1页装订线内和答题卡上,并在答题卡的规定位置贴好条形码,核准姓名和准考证号.2•选择题的答案选出后,必须使用2B铅笔把答题卡上对应的答案标号涂黑•如需改动, 先用橡皮擦干净后,再选涂其他答案标号•非选择题答案必须使用0.5毫米黑色墨水签字笔填写在答题卡对应的区域内,写在试卷上无效3 •考试结束后,请将本试卷和答题卡一并上交.、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分•)1. -3的绝对值是A• 3 B •_3 2. 如图所示的几何体,其左视图是C.A. B. C. D.3.位于江汉平原的兴隆水利枢纽工程于2014年9月25日竣工,该工程设计的年发电量为2.25亿度,2.25亿这个数用科学记数法表示为A • 2.25 109B • 2.25 108C. 22.5 107 4•计算(-2a2b)3的结果是6 3 6 3 6 3A • -6a bB • -8a bC • 8a bD • 225 106 D • -8a5b35.某合作学习小组的 6名同学在一次数学测试中,成绩分别为 76, 88, 96, 82, 78, 96.6. 7. 8. 这组数据的中位数是A . 82不等式组 B . 851 _x 《0x -0,的解集在数轴上表示正确的是 3x -6 :: 0C . 88D . 96F 列各式计算正确的是C . 2、3 3、3已知一块圆心角为 的底面圆的直径是 A . 24cm-6—1B .D . .27—3=3 300 °勺扇形铁皮,用它做一个圆锥形的烟囱帽 80cm ,则这块扇形铁皮的半径是B . 48cmC . 96cm (接缝忽略不计),圆锥D . 192cmA . (4, 1) C . ( 5, 1) D . (5, -1)每个小正方形的边长均为 1 , △ ABC 的三个顶点都是网格线的交点, 已知B , C 两点的坐标分别为(- 1 , - 1),( 1 , - 2),将厶ABC 绕着点C 顺时针旋转90° 则点A 的对应点的坐标为yfx = 1(第10题图)210.二次函数y = ax bx c ( a = 0)的图象如图所示, 对称轴为x = 1.给出下列结论:①abc 0 :②b 2 4ac :③4a 2b c 0 :④3a c 0.其中正确的结论有A . 1个B . 2个C . 3个D . 4个9.在下面的网二、填空题(本大题共5个小题,每小题3分,满分15分.将结果直接填写在答题卡对应的横线上.)11.已知3a —2b =2,贝U 9a —6b = ______ .12 .清明节期间,七(1)班全体同学分成若干小组到革命传统教育基地缅怀先烈,若每小组7人,则余下3人;若每小组8人,则少5人•由此可知该班共有 ______________ 名同学.13.如图,在Rt △ ABC中,/ ACB=90°点D在AB边上,将△ CBD沿CD折叠,使点B恰好落在AC边上的点E处.若/ A =26°则/ CDE= _____________14 •把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同的两片,然后堆放到一起混合洗匀•从这堆图片中随机抽出两张,这两张图片恰好能组成一张原风景图片的概率是__________15. 菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1, 0),点B的坐标为(0, Q).动点P从点A出发,沿A T B~C T D T A T B T…的路径,在菱形的边上以每秒0. 5个单位长度的速度移动.移动到第2015秒时,点P的坐标为 _________ .三、解答题(本大题共10个小题,满分75分.)16. (满分5分)先化简,再求值:「•弓,其中a =5.a a -117. (满分5分)我们把两组邻边分别相等的四边形叫做“筝形”一个筝形,其中AB二CB, AD二CD.请你写出与筝形ABCD的角或者对角线有关的一个结论,并证明你的结论.如图,四边形ABCD是(第13题图)nC(第17题图)18. (满分6分)某校男子足球队的年龄分布如下面的条形图所示(1) 求这些队员的平均年龄;(2 )下周的一场校际足球友谊赛中,该校男子足球队将会有11名队员作为首发队员出场•不考虑其他因素,请你求出其中某位队员首发出场的概率19. (满分6分)热气球的探测器显示,从热气球底部A处看一栋高楼顶部的俯角为30°看这栋楼底部的俯角为60°热气球A处与地面距离为420米,求这栋楼的高度.D (第19题图C220. (满分7分)已知关于x的一元二次方程x -4x= 0 .(1 )若方程有实数根,求实数m的取值范围;(2) 若方程两实数根分别为X1, X2,且满足5x1 2x^2,求实数m的值.21.(满分8分)如图,口ABCD放置在平面直角坐标系中,已知点A (2, 0), B (6, 0),D(0,3),反比例函数的图像经过点C.(1) 求反比例函数的解析式;(2) 将门ABCD向上平移,使点B恰好落在双曲线上,此时A,B,C,D的对应点分别为A', B', C', D',且C'与双曲线交于点E,求线段A A的长及点E的坐标.22.(满分8分)如图,AC是O O的直径,OB是O O的半径, PA切O O于点A,PB与AC的延长线交于点M,/ COB = / APB.(1)求证:PB是O O的切线;(2)当OB =3,FA=6 时,求MB,MC 的长.23.(满分8分)随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦•现有某教学网站策划了A,B两种上网学习的月收费方式:收费方式月使用费/元包时上网时间/h超时费/(元/ min)A7250.01B m n0.01设每月上网学习时间为x小时,方案A,B的收费金额分别为y A,y B.(1)右图是y与x之间函数关系的图象,请根据图象填空:m = ___________(2) 写出y A与x之间的函数关系式;(3) 选择哪种方式上网学习合算,为什么?24. (满分10分)已知/ MAN =135 °正方形 ABCD 绕点A 旋转.(1)当正方形 ABCD 旋转到/ MAN 的外部(顶点 A 除外)时,AM , AN 分别与正方形 ABCD 的边CB , CD 的延长线交于点 M , N ,连结MN .① 如图1,若BM =DN ,则线段 MN 与BM + DN 之间的数量关系是 _____________________ ② 如图2,若BM 工DN ,请判断①中的数量关系是否仍成立?若成立,请给予证明;若 不成立,请说明理由;(2)如图3,当正方形 ABCD 旋转到/ MAN 的内部(顶点 A 除外)时,AM , AN 分别 与直线BD 交于点M , N .探究:以线段BM , MN , DN 的长度为三边长的三角形是何种 三角形,并说明理由.在点C 的左边),与抛物线的对称轴交于点 E. (1) 求该抛物线的解析式;(2) 如图1,当S EOC 二S.EAB 时,求一次函数的解析式;(3) 如图2,设/ CEH - :•,/ EAH = 一:,当:• > 一:时,直接写出k 的取值范围25 .(满分12分)已知抛物线经过5A ( -3, 0) ,B (1 , 0) ,C (2,-)三点,其对称轴交轴于点H. —次函数y =kx b (k 工0)的图象经过点 C ,与抛物线交于另一点 D (点 D(第24题图1) M(第24题图2)(第25题图1)(第25题图2)数学试卷参考答案及评分说明当a = 5时,5原式=上一5—117. 结论:(1) / DAB = / DCB; (2) BD 平分/ ADC 和/ABC;(3) DB 丄 AC, DB 平分 AC ..........................评分说明:结论只需写出其中一个。
【中考真题】2014-2019年湖北省江汉油田潜江天门仙桃中考数学试题汇编(含参考答案与解析)
【中考数学真题解析精编】2014—2019年湖北省江汉油田/潜江市/天门市/仙桃市中考数学试题汇编(含参考答案与解析)1、2014年湖北省江汉油田潜江市天门市仙桃市中考数学试题及参考答案与解析 (2)2、2015年湖北省江汉油田潜江市天门市仙桃市中考数学试题及参考答案与解析 (31)3、2016年湖北省江汉油田潜江市天门市仙桃市中考数学试题及参考答案与解析 (54)4、2017年湖北省江汉油田潜江市天门市仙桃市中考数学试题及参考答案与解析 (79)5、2018年湖北省江汉油田潜江市天门市仙桃市中考数学试题及参考答案与解析 (102)6、2019年湖北省江汉油田潜江市天门市仙桃市中考数学试题及参考答案与解析 (127)2014年湖北省江汉油田、潜江市、天门市、仙桃市中考数学试题及参考答案与解析一、选择题(本大题共10小题,每小题3分,满分30分)在下列各小题中,均给出四个答案,其中有且只有一个正确答案)1.12-的倒数等于( ) A .12 B .12- C .﹣2 D .22.美丽富饶的江汉平原,文化底蕴深厚,人才辈出.据统计,该地区的天门、仙桃、潜江和江汉油田2014年共有约25000名初中毕业生参加了毕业生参加了统一的学业考试,将25000用科学记数法可表示为( )A .25×103B .2.5×104C .2.5×105D .0.25×1063.如图,已知a ∥b ,小华把三角板的直角顶点放在直线b 上.若∠1=40°,则∠2的度数为( )A .100°B .110°C .120°D .130° 4.下列事件中属于不可能事件的是( )A .某投篮高手投篮一次就进球B .打开电视机,正在播放世界杯足球比赛C .掷一次骰子,向上的一面出现的点数不大于6D .在一个标准大气压下,90℃的水会沸腾 5.如图所示,几何体的主视图是( )A .B .C .D .6.将(a ﹣1)2﹣1分解因式,结果正确的是( )A .a (a ﹣1)B .a (a ﹣2)C .(a ﹣2)(a ﹣1)D .(a ﹣2)(a+1) 7.把不等式组123x x -⎧⎨+⎩>≤的解集在数轴上表示,正确的是( )A .B .C .D .8.已知m ,n 是方程x 2﹣x ﹣1=0的两实数根,则11m n+的值为( ) A .﹣1 B .12-C .12D .1 9.如图,正比例函数y 1=k 1x 和反比例函数22k y x=的图象交于A (1,2),B 两点,给出下列结论: ①k 1<k 2;②当x <﹣1时,y 1<y 2;③当y 1>y 1时,x >1;④当x <0时,y 2随x 的增大而减小. 其中正确的有( )A .0个B .1个C .2个D .3个10.如图,B ,C ,D 是半径为6的⊙O 上的三点,已知»BC 的长为2π,且OD ∥BC ,则BD 的长为( )A .B .6C .D .12二、填空题(本大题共5个小题,每小题3分,满分15分)11= .12.如图,在直角坐标系中,点A 的坐标为(﹣1,2),点C 的坐标为(﹣3,0),将点C 绕点A 逆时针旋转90°,再向下平移3个单位,此时点C 的对应点的坐标为 .13.纸箱里有双拖鞋,除颜色不同外,其它都相同,从中随机取一只(不放回),再取一只,则两次取出的鞋颜色恰好相同的概率为 .14.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为 米.15.将相同的矩形卡片,按如图方式摆放在一个直角上,每个矩形卡片长为2,宽为1,依此类推,摆放2014个时,实线部分长为 .三、解答题(本大题共10小题,满分75分)16.(5分)计算:)11153-⎛⎫--+ ⎪⎝⎭.17.(6分)解方程:21133x xx x =+++. 18.(6分)为弘扬中华传统文化,某校组织八年级1000名学生参加汉字听写大赛,为了解学生整体听写能力,从中抽取部分学生的成绩(得分取正整数,满分为100分)进行统计分析,请根据尚未完成的下列图表,解答问题:组别 分数段 频数 频率 一 50.5~60.5 16 0.08 二 60.5~70.5 30 0.15 三 70.5~80.5 50 0.25 四 80.5~90.5 m 0.40 五90.5~24n(1)本次抽样调查的样本容量为,此样本中成绩的中位数落在第组内,表中m=,n=;(2)补全频数分布直方图;(3)若成绩超过80分为优秀,则该校八年级学生中汉字听写能力优秀的约有多少人?19.(6分)如图,四边形ABCD是平行四边形,E,F为对角线AC上两点,连接ED,EB,FD,FB.给出以下结论:①BE∥DF;②BE=DF;③AE=CF.请你从中选取一个条件,使∠1=∠2成立,并给出证明.20.(6分)如图,在坡角为30°的山坡上有一铁塔AB,其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD的长为6米,落在广告牌上的影子CD的长为4米,求铁塔AB的高(AB,CD均与水平面垂直,结果保留根号).21.(8分)反比例函数kyx=在第一象限的图象如图所示,过点A(1,0)作x轴的垂线,交反比例函数kyx=的图象于点M,△AOM的面积为3.(1)求反比例函数的解析式;(2)设点B的坐标为(t,0),其中t>1.若以AB为一边的正方形有一个顶点在反比例函数k yx =的图象上,求t的值.22.(8分)如图,已知BC是以AB为直径的⊙的切线,且BC=AB,连接OC交⊙O于点D,延长AD交BC于点E,F为BE上一点,且DF=FB.(1)求证:DF是⊙O的切线;(2)若BE=2,求⊙O的半径.23.(8分)为改善生态环境,防止水土流失,某村计划在江汉堤坡种植白杨树,现甲、乙两家林场与相同的白杨树苗可供选择,其具体销售方案如下:设购买白杨树苗x棵,到两家林场购买所需费用分别为y甲(元)、y乙(元).(1)该村需要购买1500棵白杨树苗,若都在甲林场购买所需费用为元,若都在乙林场购买所需费用为元;(2)分别求出y甲、y乙与x之间的函数关系式;(3)如果你是该村的负责人,应该选择到哪家林场购买树苗合算,为什么?24.(10分)如图①,△ABC与△DEF是将△ACF沿过A点的某条直线剪开得到的(AB,DE是同一条剪切线).平移△DEF使顶点E与AC的中点重合,再绕点E旋转△DEF,使ED,E F分别与AB,BC交于M,N两点.(1)如图②,△ABC中,若AB=BC,且∠ABC=90°,则线段EM与EN有何数量关系?请直接写出结论;(2)如图③,△ABC中,若AB=BC,那么(1)中的结论是否还成立?若成立,请给出证明:若不成立,请说明理由;(3)如图④,△ABC中,若AB:BC=m:n,探索线段EM与EN的数量关系,并证明你的结论.25.(12分)已知抛物线经过A(﹣2,0),B(0,2),C(32,0)三点,一动点P从原点出发以1个单位/秒的速度沿x轴正方向运动,连接BP,过点A作直线BP的垂线交y轴于点Q.设点P的运动时间为t秒.(1)求抛物线的解析式;(2)当BQ=12AP时,求t的值;(3)随着点P的运动,抛物线上是否存在一点M,使△MPQ为等边三角形?若存在,请直接写t 的值及相应点M的坐标;若不存在,请说明理由.参考答案与解析一、选择题(本大题共10小题,每小题3分,满分30分)在下列各小题中,均给出四个答案,其中有且只有一个正确答案)1.12-的倒数等于()A.12B.12-C.﹣2 D.2【知识考点】倒数.【思路分析】根据倒数定义可知,12-的倒数是﹣2.【解答过程】解:12-的倒数是﹣2.故选:C.【总结归纳】本题主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.美丽富饶的江汉平原,文化底蕴深厚,人才辈出.据统计,该地区的天门、仙桃、潜江和江汉油田2014年共有约25000名初中毕业生参加了毕业生参加了统一的学业考试,将25000用科学记数法可表示为()A.25×103B.2.5×104C.2.5×105D.0.25×106【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于25000有5位,所以可以确定n=5﹣1=4.【解答过程】解:25 000=2.5×104.故选B.【总结归纳】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.如图,已知a∥b,小华把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为()A.100°B.110°C.120°D.130°。
2019年湖北省各市中考数学试题汇编(1)(含参考答案与解析)
第Ⅱ卷(非选择题共90分)
二、填空题(本大题共6个小题,每小题3分,共18分)
11.计算 的结果是.
12.武汉市某气象观测点记录了5天的平均气温(单位:℃),分别是25、20、18、23、27,这组数据的中位数是.
13.计算 ﹣ 的结果是.
(1)如图1,过点A画线段AF,使AF∥DC,且AF=DC.
(2)如图1,在边AB上画一点G,使∠AGD=∠BGC.
(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB.
21.(8分)已知AB是⊙O的直径,AM和BN是⊙O的两条切线,DC与⊙O相切于点E,分别交AM、BN于D、C两点.
(1)如图1,求证:AB2=4AD•BC;
(2)如图2,连接OE并延长交AM于点F,连接CF.若∠ADE=2∠OFC,AD=1,求图中阴影部分的面积.
22.(10分)某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:
售价x(元/件)
50
60
80
A.0B.1C.2D.3
9.如图,AB是⊙O的直径,M、N是 (异于A、B)上两点,C是 上一动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是( )
A. B. C. D.
10.观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是( )
湖北省江汉油田、潜江市、天门市、仙桃市2019年中考数学真题试题(含解析)
湖北省江汉油田、潜江市、天门市、仙桃市2019年中考数学真题试题一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3.00分)8的倒数是()A.﹣8 B.8 C.﹣ D.2.(3.00分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱 D.圆锥3.(3.00分)2019年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010 C.3.5×1011 D.35×10104.(3.00分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30° B.36° C.45° D.50°5.(3.00分)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a| B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b6.(3.00分)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定7.(3.00分)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240°D.300°8.(3.00分)若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤49.(3.00分)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.510.(3.00分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3.00分)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.12.(3.00分)计算:+|﹣2|﹣()﹣1= .13.(3.00分)若一个多边形的每个外角都等于30°,则这个多边形的边数为.14.(3.00分)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为件.15.(3.00分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile处,则海岛A,C之间的距离为n mile.16.(3.00分)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2019=.三、解答题(本大题共9个小题,满分72分.)17.(5.00分)化简:•.18.(5.00分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.19.(7.00分)在2019年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了名教师,m= ;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.20.(7.00分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.21.(8.00分)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y轴交于点C,且△ABO的面积为,求直线BC的解析式.22.(8.00分)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.23.(10.00分)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?24.(10.00分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.25.(12.00分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为,,;(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x 轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3.00分)8的倒数是()A.﹣8 B.8 C.﹣ D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.2.(3.00分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱 D.圆锥【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:观察图形可知,这个几何体是三棱柱.故选:A.3.(3.00分)2019年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010 C.3.5×1011 D.35×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数350亿用科学记数法表示为3.5×1010.故选:B.4.(3.00分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30° B.36° C.45° D.50°【分析】直接利用平行线的性质得出∠ADC=150°,∠ADB=∠DBC,进而得出∠ADB的度数,即可得出答案.【解答】解:∵AD∥BC,∠C=30°,∴∠ADC=150°,∠ADB=∠DBC,∵∠ADB:∠BDC=1:2,∴∠ADB=×150°=50°,∴∠DBC的度数是50°.故选:D.5.(3.00分)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a| B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b【分析】根据图示可以得到a、b的取值范围,结合绝对值的含义推知|b|、|a|的数量关系.【解答】解:A、如图所示,|b|<2<|a|,故本选项不符合题意;B、如图所示,a<b,则2a<2b,由不等式的性质知1﹣2a>1﹣2b,故本选项不符合题意;C、如图所示,a<﹣2<b<2,则﹣a>2>b,故本选项符合题意;D、如图所示,a<﹣2<b<2且|a|>2,|b|<2.则a<﹣2<﹣b,故本选项不符合题意;故选:C.6.(3.00分)下列说法正确的是()A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明乙的射击成绩比甲稳定【分析】直接利用方差的意义以及中位数的定义和众数的定义分别分析得出答案.【解答】解:A、了解某班学生的身高情况,适宜采用全面调查,故此选项错误;B、数据3,5,4,1,1的中位数是:3,故此选项错误;C、数据5,3,5,4,1,1的众数是1和5,正确;D、甲、乙两人射中环数的方差分别为s甲2=2,s乙2=3,说明甲的射击成绩比乙稳定.故选:C.7.(3.00分)一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240°D.300°【分析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,则=2πr=πR,解得,n=180°,故选:B.8.(3.00分)若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤4【分析】先求出每个不等式的解集,再根据不等式组的解集和已知得出关于m的不等式,再求出解集即可.【解答】解:,∵解不等式①得:x>3,解不等式②得:x>m﹣1,又∵关于x的一元一次不等式组的解集是x>3,∴m﹣1≤3,解得:m≤4,故选:D.9.(3.00分)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.5【分析】根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE;在直角△ECG中,根据勾股定理即可求出DE的长.【解答】解:∵AB=AD=AF,∠D=∠AFE=90°,在Rt△ABG和Rt△AFG中,∵,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则EC=6﹣x.∵G为BC中点,BC=6,∴CG=3,在Rt△ECG中,根据勾股定理,得:(6﹣x)2+9=(x+3)2,解得x=2.则DE=2.故选:C.10.(3.00分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:A.二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3.00分)在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.【分析】根据概率公式进行计算即可.【解答】解:任选一个字母,这个字母为“s”的概率为:=,故答案为:.12.(3.00分)计算:+|﹣2|﹣()﹣1= 0 .【分析】根据二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则计算即可.【解答】解:原式=+2﹣﹣2=0故答案为:0.13.(3.00分)若一个多边形的每个外角都等于30°,则这个多边形的边数为12 .【分析】根据已知和多边形的外角和求出边数即可.【解答】解:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,∴多边形的边数是=12,故答案为:12.14.(3.00分)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为3200 件.【分析】设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据发往A、B两区的物资共6000件,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据题意得:x+1.5x﹣1000=6000,解得:x=2800,∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.15.(3.00分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile处,则海岛A,C之间的距离为18n mile.【分析】作AD⊥BC于D,根据正弦的定义、正切的定义分别求出BD、CD,根据题意列式计算即可.【解答】解:作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=x,则CD=x,在Rt△ABD中,BD=x,则x+x=18(1+),解得,x=18,答:A,C之间的距离为18海里.故答案为:1816.(3.00分)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2019=.【分析】分别过点P1、P2、P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【解答】解:如图,分别过点P1、P2、P3作x轴的垂线段,垂足分别为点C、D、E,∵P1(3,3),且△P1OA1是等腰直角三角形,∴OC=CA1=P1C=3,设A1D=a,则P2D=a,∴OD=6+a,∴点P2坐标为(6+a,a),将点P2坐标代入y=﹣x+4,得:﹣(6+a)+4=a,解得:a=,∴A1A2=2a=3,P2D=,同理求得P3E=、A2A3=,∵S1=×6×3=9、S2=×3×=、S3=××=、……∴S2019=,故答案为:.三、解答题(本大题共9个小题,满分72分.)17.(5.00分)化简:•.【分析】先将分子、分母因式分解,再约分即可得.【解答】解:原式=•=.18.(5.00分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;(2)利用菱形以及平行线的性质即可解决问题;【解答】解:(1)如图所示,射线OP即为所求.(2)如图所示,点C即为所求;19.(7.00分)在2019年“新技术支持未来教育”的教师培训活动中,会议就“面向未来的学校教育、家庭教育及实践应用演示”等问题进行了互动交流,记者随机采访了部分参会教师,对他们发言的次数进行了统计,并绘制了不完整的统计表和条形统计图.请你根据所给的相关信息,解答下列问题:(1)本次共随机采访了60 名教师,m= 5 ;(2)补全条形统计图;(3)已知受访的教师中,E组只有2名女教师,F组恰有1名男教师,现要从E组、F组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.【分析】(1)根据:某组的百分比=×100%,所有百分比的和为1,计算即可;(2)先计算出D、F组的人数,再补全条形统计图;(3)列出树形图,根据总的情况和一男一女的情况计算概率.【解答】解:(1)由条形图知,C组共有15名,占25%所以本次共随机采访了15÷25%=60(名)m=100﹣10﹣20﹣25﹣30﹣10=5故答案为:60,5(2)D组教师有:60×30%=18(名)F组教师有:60×5%=3(名)(3)E组共有6名教师,4男2女,F组有三名教师,1男2女共有18种可能,∴P一男一女==答:所选派的两名教师恰好是1男1女的概率为20.(7.00分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m 的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.21.(8.00分)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y轴交于点C,且△ABO的面积为,求直线BC的解析式.【分析】(1)将A点坐标代入直线y=﹣x中求出m的值,确定出A的坐标,将A的坐标代入反比例解析式中求出k的值,即可确定出反比例函数的解析式;(2)根据直线的平移规律设直线BC的解析式为y=﹣x+b,由同底等高的两三角形面积相等可得△ACO与△ABO面积相等,根据△ABO的面积为列出方程OC•2=,解方程求出OC=,即b=,进而得出直线BC的解析式.【解答】解:(1)∵直线y=﹣x过点A(m,1),∴﹣m=1,解得m=﹣2,∴A(﹣2,1).∵反比例函数y=(k≠0)的图象过点A(﹣2,1),∴k=﹣2×1=﹣2,∴反比例函数的解析式为y=﹣;(2)设直线BC的解析式为y=﹣x+b,∵三角形ACO与三角形ABO面积相等,且△ABO的面积为,∴△ACO的面积=OC•2=,∴OC=,∴b=,∴直线BC的解析式为y=﹣x+.22.(8.00分)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.【分析】(1)连接OC,如图,利用圆周角定理得到∠ACB=90°,再根据斜边上的中线性质得MC=MG=ME,所以∠G=∠1,接着证明∠1+∠2=90°,从而得到∠OCM=90°,然后根据直线与圆的位置关系的判断方法可判断CM为⊙O的切线;(2)先证明∠G=∠A,再证明∠EMC=∠4,则可判定△EFC∽△ECM,利用相似比先计算出CE,再计算出EF,然后计算ME﹣EF即可.【解答】解:(1)CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线;(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°,∴∠1=∠5,而∠1=∠G,∠5=∠A,∴∠G=∠A,∵∠4=2∠A,∴∠4=2∠G,而∠EMC=∠G+∠1=2∠G,∴∠EMC=∠4,而∠FEC=∠CEM,∴△EFC∽△ECM,∴==,即==,∴CE=4,EF=,∴MF=ME﹣EF=6﹣=.23.(10.00分)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?【分析】(1)根据线段EF经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(2)显然,当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,利用待定系数法确定一次函数的表达式即可;(3)利用:总利润=每千克利润×产量,根据x的取值范围列出有关x的二次函数,求得最值比较可得.【解答】解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.24.(10.00分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC ;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.25.(12.00分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为(,0),(3,0),(,);(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x 轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用二次函数图象上点的坐标特征可求出点A、B的坐标,再利用配方法即可找出抛物线的顶点D的坐标;(2)由点D的坐标结合对称找出点E的坐标,根据点B、C的坐标利用待定系数法可求出直线BC的解析式,再利用一次函数图象上点的坐标特征即可得出关于t的一元一次不等式组,解之即可得出t的取值范围;(3)假设存在,设点P的坐标为(m,0),则点Q的横坐标为m,分m<或m>3及≤m≤3两种情况,利用勾股定理找出关于m的一元二次方程,解之即可得出m的值,进而可找出点P的坐标,此题得解.【解答】解:(1)当y=0时,有﹣x2+x﹣1=0,解得:x1=,x2=3,∴点A的坐标为(,0),点B的坐标为(3,0).∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+,∴点D的坐标为(,).故答案为:(,0);(3,0);(,).(2)∵点E、点D关于直线y=t对称,∴点E的坐标为(,2t﹣).当x=0时,y=﹣x2+x﹣1=﹣1,∴点C的坐标为(0,﹣1).设线段BC所在直线的解析式为y=kx+b,将B(3,0)、C(0,﹣1)代入y=kx+b,,解得:,∴线段BC所在直线的解析式为y=x﹣1.∵点E在△ABC内(含边界),∴,解得:≤t≤.(3)当x<或x>3时,y=﹣x2+x﹣1;当≤x≤3时,y=x2﹣x+1.假设存在,设点P的坐标为(m,0),则点Q的横坐标为m.①当m<或m>3时,点Q的坐标为(m,﹣x2+x﹣1)(如图1),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(﹣m2+m)2=m2+1+m2+(﹣m2+m﹣1)2,整理,得:m1=,m2=,∴点P的坐标为(,0)或(,0);②当≤m≤3时,点Q的坐标为(m,x2﹣x+1)(如图2),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(m2﹣m+2)2=m2+1+m2+(m2﹣m+1)2,整理,得:11m2﹣28m+12=0,解得:m3=,m4=2,∴点P的坐标为(,0)或(1,0).综上所述:存在以CQ为直径的圆与x轴相切于点P,点P的坐标为(,0)、(,0)、(1,0)或(,0).。
2019年湖北省潜江市中考数学试卷及答案
2019年湖北省潜江市中考数学试卷副标题题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.下列各数中,是无理数的是()D. √6A. 3.1415B. √4C. 2272.如图所示的正六棱柱的主视图是()A. B.C. D.3.据海关统计,今年第一季度我国外贸进出口总额是70100亿元人民币,比去年同期增长了3.7%,数70100亿用科学记数法表示为()A. 7.01×104B. 7.01×1011 C. 7.01×1012 D. 7.01×10134.下列说法正确的是()A. 了解我市市民知晓“礼让行人”交通新规的情况,适合全面调查B. 甲、乙两人跳远成绩的方差分别为S甲2=3,S乙2=4,说明乙的跳远成绩比甲稳定C. 一组数据2,2,3,4的众数是2,中位数是2.5D. 可能性是1%的事件在一次试验中一定不会发生5.如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF的度数是()A. 20∘B. 25∘C. 30∘D. 35∘6.不等式组{x−1>0,5−2x≥1的解集在数轴上表示正确的是()A. B.C. D.7.若方程x2-2x-4=0的两个实数根为α,β,则α2+β2的值为()A. 12B. 10C. 4D. −48. 把一根9m 长的钢管截成1m 长和2m 长两种规格均有的短钢管,且没有余料,设某种截法中1m 长的钢管有a 根,则a 的值可能有( ) A. 3种 B. 4种 C. 5种 D. 9种 9. 反比例函数y =-3x ,下列说法不正确的是( )A. 图象经过点(1,−3)B. 图象位于第二、四象限C. 图象关于直线y =x 对称D. y 随x 的增大而增大10. 如图,AB 为⊙O 的直径,BC 为⊙O 的切线,弦AD ∥OC ,直线CD 交BA 的延长线于点E ,连接BD .下列结论:①CD 是⊙O 的切线;②CO ⊥DB ;③△EDA ∽△EBD ;④ED •BC =BO •BE .其中正确结论的个数有( ) A. 4个 B. 3个 C. 2个 D. 1个二、填空题(本大题共6小题,共18.0分) 11. 分解因式:x 4-4x 2=______. 12. 75°的圆心角所对的弧长是2.5πcm ,则此弧所在圆的半径是______cm . 13. 矩形的周长等于40,则此矩形面积的最大值是______.14. 一个不透明的口袋中有四个完全相同的小球,其上分别标有数字1,2,4,8.随机摸取一个小球后不放回,再随机摸取一个小球,则两次取出的小球上数字之积等于8的概率是______.15. 如图,为测量旗杆AB 的高度,在教学楼一楼点C 处测得旗杆顶部的仰角为60°,在四楼点D 处测得旗杆顶部的仰角为30°,点C 与点B 在同一水平线上.已知CD =9.6m ,则旗杆AB 的高度为______m . 16. 如图,在平面直角坐标系中,四边形OA 1B 1C 1,A 1A 2B 2C 2,A 2A 3B 3C 3,…都是菱形,点A 1,A 2,A 3,…都在x 轴上,点C 1,C 2,C 3,…都在直线y =√33x +√33上,且∠C 1OA 1=∠C 2A 1A 2=∠C 3A 2A 3=…=60°,OA 1=1,则点C 6的坐标是______.三、解答题(本大题共8小题,共72.0分)17. (1)计算:(-2)2-|-3|+√2×√8+(-6)0;(2)解分式方程:2x−1=5x 2−1.18. 请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图①,四边形ABCD 中,AB =AD ,∠B =∠D ,画出四边形ABCD 的对称轴m ;(2)如图②,四边形ABCD 中,AD ∥BC ,∠A =∠D ,画出BC 边的垂直平分线n .19. 为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm ),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题. (1)填空:样本容量为______,a =______; (2)把频数分布直方图补充完整;(3)若从该地随机抽取1名学生,估计这名学生身高低于160cm 的概率.20.某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克,若一次购买超过5千克,则超过5千克部分的种子价格打8折.设一次购买量为x千克,付款金额为y元.(1)求y关于x的函数解析式;(2)某农户一次购买玉米种子30千克,需付款多少元?21.如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG∥BF,交正方形外角的平分线CG于点G,连接GF.求证:(1)AE⊥BF;(2)四边形BEGF是平行四边形.22.如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B(8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.(1)直接写出y关于t的函数解析式及t的取值范围:______;(2)当PQ=3√5时,求t的值;(k≠0)经过点D,问k的值是否变化?(3)连接OB交PQ于点D,若双曲线y=kx若不变化,请求出k的值;若变化,请说明理由.23.已知△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,连接DB,DC.(1)如图①,当∠BAC=120°时,请直接写出线段AB,AC,AD之间满足的等量关系式:______;(2)如图②,当∠BAC=90°时,试探究线段AB,AC,AD之间满足的等量关系,并证明你的结论;的值.(3)如图③,若BC=5,BD=4,求ADAB+AC24.在平面直角坐标系中,已知抛物线C:y=ax2+2x-1(a≠0)和直线l:y=kx+b,点A(-3,-3),B(1,-1)均在直线l上.(1)若抛物线C与直线l有交点,求a的取值范围;(2)当a=-1,二次函数y=ax2+2x-1的自变量x满足m≤x≤m+2时,函数y的最大值为-4,求m的值;(3)若抛物线C与线段AB有两个不同的交点,请直接写出a的取值范围.答案和解析1.【答案】D【解析】解:=2是有理数,是无理数,故选:D.根据无理数的定义:无限不循环小数进行判断,=2是有理数;本题考查无理数的定义;能够准确辨识无理数是解题的关键.2.【答案】B【解析】解:正六棱柱的主视图如图所示:故选:B.主视图是从正面看所得到的图形即可,可根据正六棱柱的特点作答.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.【答案】C【解析】解:70100亿=7.01×1012.故选:C.把一个很大的数写成a×10n的形式.本能运用了科学记数法的定义这一知识点,掌握好n与数位之间的关系是解题的关键.4.【答案】C【解析】解:A.了解我市市民知晓“礼让行人”交通新规的情况,适合抽样调查,A错误;B.甲、乙两人跳远成绩的方差分别为S甲2=3,S乙2=4,说明甲的跳远成绩比乙稳定,B错误;C.一组数据2,2,3,4的众数是2,中位数是2.5,正确;D.可能性是1%的事件在一次试验中可能会发生,D错误.故选:C.全面调查与抽样调查的优缺点:①全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.②抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.一组数据中出现次数最多的数据叫做众数.本题考查了统计的应用,正确理解概率的意义是解题的关键.5.【答案】D【解析】解:∵CD∥AB,∴∠AOD+∠D=180°,∴∠AOD=70°,∴∠DOB=110°,∵OE平分∠BOD,∴∠DOE=55°,∵OF⊥OE,∴∠FOE=90°,∴∠DOF=90°-55°=35°,∴∠AOF=70°-35°=35°,故选:D.根据平行线的性质解答即可.此题考查平行线的性质,关键是根据平行线的性质解答.6.【答案】C【解析】解:解不等式x-1>0得x>1,解不等式5-2x≥1得x≤2,则不等式组的解集为1<x≤2,故选:C.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.【答案】A【解析】解:∵方程x2-2x-4=0的两个实数根为α,β,∴α+β=2,αβ=-4,∴α2+β2=(α+β)2-2αβ=4+8=12;故选:A.根据根与系数的关系可得α+β=2,αβ=-4,再利用完全平方公式变形α2+β2=(α+β)2-2αβ,代入即可求解;本题考查一元二次方程根与系数的关系;熟练掌握韦达定理,灵活运用完全平方公式是解题的关键.8.【答案】B【解析】解:设2m的钢管b根,根据题意得:a+2b=9,∵a、b均为整数,∴,,,.故选:B.可列二元一次方程解决这个问题.本题运用了二元一次方程的整数解的知识点,运算准确是解此题的关键.9.【答案】D【解析】解:由点(1,-3)的坐标满足反比例函数y=-,故A是正确的;由k=-3<0,双曲线位于二、四象限,故B也是正确的;由反比例函数的对称性,可知反比例函数y=-关于y=x对称是正确的,故C 也是正确的,由反比例函数的性质,k<0,在每个象限内,y随x的增大而增大,不在同一象限,不具有此性质,故D是不正确的,故选:D.通过反比例图象上的点的坐标特征,可对A选项做出判断;通过反比例函数图象和性质、增减性、对称性可对其它选项做出判断,得出答案.考查反比例函数的性质,当k<0时,在每个象限内y随x的增大而增大的性质、反比例函数的图象是轴对称图象,y=x和y=-x是它的对称轴,同时也是中心对称图形;熟练掌握反比例函数图象上点的坐标特征和反比例函数图象和性质是解答此题的基础;多方面、多角度考查反比例函数的图象和性质.10.【答案】A【解析】解:连结DO.∵AB为⊙O的直径,BC为⊙O的切线,∴∠CBO=90°,∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中,,∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°.又∵点D在⊙O上,∴CD是⊙O的切线;故①正确,∵△COD≌△COB,∴CD=CB,∵OD=OB,∴CO垂直平分DB,即CO⊥DB,故②正确;∵AB为⊙O的直径,DC为⊙O的切线,∴∠EDO=∠ADB=90°,∴∠EDA+∠ADO=∠BDO+∠ADO=90°,∴∠ADE=∠BDO,∵OD=OB,∴∠ODB=∠OBD,∴∠EDA=∠DBE,∵∠E=∠E,∴△EDA∽△EBD,故③正确;∵∠EDO=∠EBC=90°,∠E=∠E,∴△EOD∽△ECB,∴,∵OD=OB,∴ED•BC=BO•BE,故④正确;故选:A.由切线的性质得∠CBO=90°,首先连接OD,易证得△COD≌△COB(SAS),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD是⊙O的切线,根据全等三角形的性质得到CD=CB,根据线段垂直平分线的判定定理得到即CO⊥DB,故②正确;根据余角的性质得到∠ADE=∠BDO,等量代换得到∠EDA=∠DBE,根据相似三角形的判定定理得到△EDA∽△EBD,故③正确;根据相似三角形的性质得到,于是得到ED•BC=BO•BE,故④正确.本题主要考查了切线的判定、全等三角形的判定与性质以及相似三角形的判定与性质,注意掌握辅助线的作法,注意数形结合思想的应用是解答此题的关键.11.【答案】x2(x+2)(x-2)【解析】解:x4-4x2=x2(x2-4)=x2(x+2)(x-2);故答案为x2(x+2)(x-2);先提取公因式再利用平方差公式进行分解,即x4-4x2=x2(x2-4)=x2(x+2)(x-2);本题考查因式分解;熟练运用提取公因式法和平方差公式进行因式分解是解题的关键.12.【答案】6【解析】解:由题意得:圆的半径R=180×2.5π÷(75π)=6cm.故本题答案为:6.由弧长公式:l=计算.本题考查了弧长公式.13.【答案】100【解析】解:设矩形的宽为x,则长为(20-x),S=x(20-x)=-x2+20x=-(x-10)2+100,当x=10时,S最大值为100.故答案为100.设矩形的宽为x,则长为(20-x),S=x(20-x)=-x2+20x=-(x-10)2+100,当x=10时,S最大值为100.本题考查了函数的最值,熟练运用配方法是解题的关键.14.【答案】13【解析】解:列表如下1 2 4 81 2 4 82 2 8 164 4 8 328 8 16 32由表知,共有12种等可能结果,其中两次取出的小球上数字之积等于8的有4种结果,所以两次取出的小球上数字之积等于8的概率为=,故答案为:.列表将所有等可能的结果列举出来,然后利用概率公式求解即可.本题考查了列表法与树状图的知识,解题的关键是能够用列表或列树状图将所有等可能的结果列举出来,难度不大.15.【答案】14.4【解析】解:作DE⊥AB于E,如图所示:则∠AED=90°,四边形BCDE是矩形,∴BE=CD=9.6m,∠CDE=∠DEA=90°,∴∠ADC=90°+30°=120°,∵∠ACB=60°,∴∠ACD=30°,∴∠CAD=30°=∠ACD,∴AD=CD=9.6m,在Rt△ADE中,∠ADE=30°,∴AE=AD=4.8m,∴AB=AE+BE=4.8m+9.6m=14.4m;故答案为:14.4.作DE⊥AB于E,则∠AED=90°,四边形BCDE是矩形,得出BE=CD=9.6m,∠CDE=∠DEA=90°,求出∠ADC=120°,证出∠CAD=30°=∠ACD,得出AD=CD=9.6m,在Rt△ADE中,由直角三角形的性质得出AE=AD=4.8m,即可得出答案.本题考查了解直角三角形的应用-仰角俯角问题、矩形的判定与性质、等腰三角形的判定;正确作出辅助线是解题的关键.16.【答案】(97,32√3)【解析】解:∵OA1=1,∴OC1=1,∴∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,∴C1的纵坐标为:sin60°•OC1=,横坐标为cos60°•OC1=,∴C1(,),∵四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,∴A1C2=2,A2C3=4,A3C4=8,…,∴C2的纵坐标为:sin60°•A1C2=,代入y=x+求得横坐标为2,∴C2(,2,),C 3的纵坐标为:sin60°•A 2C 3=4,代入y=x+求得横坐标为11,∴C 3(11,4), ∴C 4(23,8), C 5(47,16), ∴C 6(97,32);故答案为(97,32).根据菱形的边长求得A 1、A 2、A 3…的坐标然后分别表示出C 1、C 2、C 3…的坐标找出规律进而求得C 6的坐标.本题是对点的坐标变化规律的考查,主要利用了菱形的性质,解直角三角形,根据已知点的变化规律求出菱形的边长,得出系列C 点的坐标,找出规律是解题的关键.17.【答案】解:(1)原式=4-3+4+1=6;(2)两边都乘以(x +1)(x -1),得:2(x +1)=5, 解得:x =32,检验:当x =32时,(x +1)(x -1)=54≠0, ∴原分式方程的解为x =32. 【解析】(1)先计算乘方、取绝对值符号、计算二次根式的乘法及零指数幂,再计算加减可得;(2)去分母化分式方程为整式方程,解之求得x 的值,再检验即可得. 本题主要考查二次根式的混合运算与解分式方程,解题的关键是熟练掌握二次根式的乘法法则及解分式方程的步骤. 18.【答案】解:(1)如图①,直线m 即为所求(2)如图②,直线n 即为所求【解析】(1)连接AC,AC所在直线即为对称轴m.(2)延长BA,CD交于一点,连接AC,BC交于一点,连接两点获得垂直平分线n.本题考查了轴对称作图,根据全等关系可以确定点与点的对称关系,从而确定对称轴所在,即可画出直线.19.【答案】100 30【解析】解:(1)15÷=100,所以样本容量为100;B组的人数为100-15-35-15-5=30,所以a%=×100%=30%,则a=30;故答案为100,30;(2)补全频数分布直方图为:(3)样本中身高低于160cm的人数为15+30=45,样本中身高低于160cm的频率为=0.45,所以估计从该地随机抽取1名学生,估计这名学生身高低于160cm的概率为0.45.(1)用A组的频数除以它所占的百分比得到样本容量,然后计算B组所占的百分比得到a的值;(2)利用B组的频数为30补全频数分布直方图;(3)计算出样本中身高低于160cm的频率,然后利用样本估计总体和利用频率估计概率求解.本题考查了利用频率估计概率:用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了统计中的有关概念.20.【答案】解:(1)根据题意,得①当0≤x≤5时,y=20x;②当x>5,y=20×0.8(x-5)+20×5=16x+20;(2)把x=30代入y=16x+20,∴y=16×30+20=500;∴一次购买玉米种子30千克,需付款500元;【解析】(1)根据题意,得①当0≤x≤5时,y=20x;②当x>5,y=20×0.8(x-5)+20×5=16x+20;(2)把x=30代入y=16x+20,即可求解;本题考查一次函数的应用;能够根据题意准确列出关系式,利用代入法求函数值是解题的关键.21.【答案】证明:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCD=90°,∴∠ABE=∠BCF=90°,在△ABE和△BCF中,{AB=BC∠ABE=∠BCF BE=CF,∴△ABE≌△BCF(SAS),∴AE=BF,∠BAE=∠CBF,∵EG∥BF,∴∠CBF=∠CEG,∵∠BAE+∠BEA=90°,∴∠CEG+∠BEA=90°,∴AE⊥EG,∴AE⊥BF;(2)延长AB至点P,使BP=BE,连接EP,如图所示:则AP=CE,∠EBP=90°,∴∠P=45°,∵CG为正方形ABCD外角的平分线,∴∠ECG=45°,∴∠P=∠ECG,由(1)得∠BAE=∠CEG,在△APE和△ECG中,{∠P=∠ECGAP=CE∠BAE=∠CEG,∴△APE≌△ECG(ASA),∴AE=EG,∵AE=BF,∴EG=BF,∵EG∥BF,∴四边形BEGF是平行四边形.【解析】(1)由SAS证明△ABE≌△BCF得出AE=BF,∠BAE=∠CBF,由平行线的性质得出∠CBF=∠CEG,证出AE⊥EG,即可得出结论;(2)延长AB至点P,使BP=BE,连接EP,则AP=CE,∠EBP=90°,证明△APE≌△ECG得出AE=EG,证出EG=BF,即可得出结论.本题考查了正方形的性质、全等三角形的判定与性质、平行四边形的判定、平行线的性质等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.22.【答案】y=25t2-80t+100(0≤t≤4)【解析】解:(1)过点P作PE⊥BC于点E,如图1所示.当运动时间为t秒时(0≤t≤4)时,点P的坐标为(3t,0),点Q的坐标为(8-2t,6),∴PE=6,EQ=|8-2t-3t|=|8-5t|,∴PQ2=PE2+EQ2=62+|8-5t|2=25t2-80t+100,∴y=25t2-80t+100(0≤t≤4).故答案为:y=25t2-80t+100(0≤t≤4).(2)当PQ=3时,25t2-80t+100=(3)2,整理,得:5t2-16t+11=0,解得:t1=1,t2=.(3)经过点D的双曲线y=(k≠0)的k值不变.连接OB,交PQ于点D,过点D作DF⊥OA于点F,如图2所示.∵OC=6,BC=8,∴OB==10.∵BQ∥OP,∴△BDQ∽△ODP,∴===,∴OD=6.∵CB∥OA,∴∠DOF=∠OBC.在Rt△OBC中,sin∠OBC===,cos∠OBC===,∴OF=OD•cos∠OBC=6×=,DF=OD•sin∠OBC=6×=,∴点D的坐标为(,),∴经过点D的双曲线y=(k≠0)的k值为×=.(1)过点P作PE⊥BC于点E,由点P,Q的出发点、速度及方向可找出当运动时间为t秒时点P,Q的坐标,进而可得出PE,EQ的长,再利用勾股定理即可求出y关于t的函数解析式(由时间=路程÷速度可得出t的取值范围);(2)将PQ=3代入(1)的结论中可得出关于t的一元二次方程,解之即可得出结论;(3)连接OB,交PQ于点D,过点D作DF⊥OA于点F,利用勾股定理可求出OB的长,由BQ∥OP可得出△BDQ∽△ODP,利用相似三角形的性质结合OB=10可求出OD=6,由CB∥OA可得出∠DOF=∠OBC,在Rt△OBC中可求出sin∠OBC及cos∠OBC的值,由OF=OD•cos∠OBC,DF=OD•sin∠OBC可求出点D的坐标,再利用反比例函数图象上点的坐标特征即可求出k值,此题得解.本题考查了勾股定理、解直角三角形、解一元二次方程、相似三角形的判定与性质、平行线的性质以及反比例函数图象上点的坐标特征,解题的关键是:(1)利用勾股定理,找出y关于t的函数解析式;(2)通过解一元二次方程,求出当PQ=3时t的值;(3)利用相似三角形的性质及解直角三角形,找出点D的坐标.23.【答案】AB+AC=AD【解析】解:(1)如图①在AD上截取AE=AB,连接BE,∵∠BAC=120°,∠BAC的平分线交⊙O于点D,∴∠DBC=∠DAC=60°,∠DCB=∠BAD=60°,∴△ABE和△BCD都是等边三角形,∴∠DBE=∠ABC,AB=BE,BC=BD,∴△BED≌△BAC(SAS),∴DE=AC,∴AD=AE+DE=AB+AC;故答案为:AB+AC=AD.(2)AB+AC=AD.理由如下:如图②,延长AB至点M,使BM=AC,连接DM,∵四边形ABDC内接于⊙O,∴∠MBD=∠ACD,∵∠BAD=∠CAD=45°,∴BD=CD,∴△MBD≌△ACD(SAS),∴MD=AD,∠M=∠CAD=45°,∴MD⊥AD.∴AM=,即AB+BM=,∴AB+AC=;(3)如图③,延长AB至点N,使BN=AC,连接DN,∵四边形ABDC内接于⊙O,∴∠NBD=∠ACD,∵∠BAD=∠CAD,∴BD=CD,∴△NBD≌△ACD(SAS),∴ND=AD ,∠N=∠CAD ,∴∠N=∠NAD=∠DBC=∠DCB ,∴△NAD ∽△CBD , ∴, ∴,又AN=AB+BN=AB+AC ,BC=5,BD=4, ∴=.(1)在AD 上截取AE=AB ,连接BE ,由条件可知△ABE 和△BCD 都是等边三角形,可证明△BED ≌△BAC ,可得DE=AC ,则AB+AC=AD ;(2)延长AB 至点M ,使BM=AC ,连接DM ,证明△MBD ≌△ACD ,可得MD=AD ,证得AB+AC=;(3)延长AB 至点N ,使BN=AC ,连接DN ,证明△NBD ≌△ACD ,可得ND=AD ,∠N=∠CAD ,证△NAD ∽△CBD ,可得,可由AN=AB+AC ,求出的值.本题属于圆的综合题,考查了圆周角定理,全等三角形的判定与性质,相似三角形的判定和性质,等边三角形的判定与性质等知识,解题的关键是正确作出辅助线解决问题.24.【答案】解:(1)点A (-3,-3),B (1,-1)代入y =kx +b ,∴{k +b =−1−3k +b =−3, ∴{k =12b =−32, ∴y =12x -32;联立y =ax 2+2x -1与y =12x -32,则有2ax 2+3x +1=0,∵抛物线C 与直线l 有交点,∴△=9-8a ≥0,∴a ≤98且a ≠0; (2)根据题意可得,y =-x 2+2x -1,∵a <0,∴抛物线开口向下,对称轴x =1,∵m ≤x ≤m +2时,y 有最大值-4,∴当y =-4时,有-x 2+2x -1=-4,∴x =-1或x =3,①在x =1左侧,y 随x 的增大而增大,∴x =m +2=-1时,y 有最大值-4,∴m =-3;②在对称轴x =1右侧,y 随x 最大而减小,∴x =m =3时,y 有最大值-4;综上所述:m =-3或m =3;(3)①a <0时,x =1时,y ≤-1,即a ≤-2;②a >0时,x =-3时,y ≥-3,即a ≥49,直线AB 的解析式为y =12x -32,抛物线与直线联立:ax 2+2x -1=12x -32,∴ax 2+32x +12=0,△=94-2a >0,∴a <98,∴a 的取值范围为49≤a <98或a ≤-2;【解析】(1)点A (-3,-3),B (1,-1)代入y=kx+b ,求出y=x-;联立y=ax 2+2x-1与y=x-,则有2ax 2+3x+1=0,△=9-8a≥0即可求解;(2)根据题意可得,y=-x 2+2x-1,当y=-4时,有-x 2+2x-1=-4,x=-1或x=3;①在x=1左侧,y 随x 的增大而增大,x=m+2=-1时,y 有最大值-4,m=-3; ②在对称轴x=1右侧,y 随x 最大而减小,x=m=3时,y 有最大值-4; (3))①a <0时,x=1时,y≤-1,即a≤-2;②a>0时,x=-3时,y≥-3,即a≥,直线AB的解析式为y=x-,抛物线与直线联立:ax2+2x-1=x-,△=-2a>0,则a<,即可求a的范围;本题考查二次函数的图象及性质,一次函数的图象及性质;熟练掌握待定系数法求解析式,数形结合,分类讨论函数在给定范围内的最大值是解题的关键.。
初中-数学-中考-2019年湖北省(江汉油田、潜江、天门、仙桃)市中考数学试题
2019年湖北省(江汉油田、潜江、天门、仙桃)市中考数学试题一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1、下列各数中,是无理数的是( )A. 3.1415B.C. 227D.2、如图所示的正六棱柱的主视图是()A. B. C. D.3、据海关统计,今年第一季度我国外贸进出口总额是70100亿元人民币,比去年同期增长了3.7%,数70100亿用科学记数法表示为( )A. 47.0110⨯B. 117.0110⨯C. 127.0110⨯D. 137.0110⨯4、下列说法正确的是( )A. 了解我市市民知晓“礼让行人”交通新规的情况,适合全面调查B. 甲、乙两人跳远成绩的方差分别为2234s s ==甲乙,,说明乙的跳远成绩比甲稳定C. 一组数据2,2,3,4的众数是2,中位数是2.5D. 可能性是1%的事件在一次试验中一定不会发生5、如图,CD ∥AB ,点O 在AB 上,OE 平分∥BOD ,OF ∥OE ,∥D =,则∥AOF 的度数是()A. B. C. D.6、不等式组10521x x ->⎧⎨-≥⎩,的解集在数轴上表示正确的是( )A. B.C. D.7、若方程2240x x --=的两个实数根为α,β,则22αβ+的值为( )A. 12B. 10C. 4D. -48、把一根长9m 的钢管截成1m 长和2m 长两种规格均有的短钢管,且没有余料,设某种截法中1m 长的钢管有a 根,则a 的值可能有( )A. 3种B. 4种C. 5种D. 9种 9、反比例函数3y x =-,下列说法不正确的是( )A. 图象经过点(1,-3)B. 图象位于第二、四象限C. 图象关于直线y =x 对称D. y 随x 的增大而增大 10、如图,AB 为O ⊙的直径,BC 为O ⊙的切线,弦AD ∥OC ,直线CD 交BA 的延长线于点E ,连接BD. 下列结论:∥CD 是O ⊙的切线;∥CO DB ⊥;∥EDA EBD △△;∥ED BC BO BE ⋅=⋅.其中正确结论的个数有( )A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11、分解因式:424x x -=______.12、75°的圆心角所对的弧长是2.5π cm ,则此弧所在圆的半径是______cm . 13、矩形的周长等于40,则此矩形面积的最大值是______.14、一个不透明的口袋中有四个完全相同的小球,其上分别标有数字1,2,4,8.随机摸取一个小球后不放回,再随机摸取一个小球,则两次取出的小球上数字之积等于8的概率是______.15、如图,为测量旗杆AB 的高度,在教学楼一楼点C 处测得旗杆顶部的仰角为60°,在四楼点D 处测得旗杆顶部的仰角为30°,点C 与点B 在同一水平线上.已知CD =9.6 m ,则旗杆AB 的高度为______m .16、如图,在平面直角坐标系中,四边形111OA B C ,1222A A B C ,2333A A B C ,…都是菱形,点123A A A ,,,…都在x 轴上,点123C C C ,,,…都在直线3333y x =+上,且11C OA ∠= 21232360C A A C A A ∠=∠==…,11OA =, 则点6C 的坐标是______.三、解答题(本大题共8个小题,满分72分.)17、(1)计算:()()2023286---+⨯+-;(2)解分式方程:22511x x =--. 18、请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图①,四边形ABCD 中,AB =AD ,∠B =∠D ,画出四边形ABCD 的对称轴m ;(2)如图②,四边形ABCD 中,AD ∥BC ,∠A =∠D ,画出边BC 的垂直平分线n .19、为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm ),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题. (1)填空:样本容量为______,a =______;(2)把频数分布直方图补充完整;(3)若从该地随机抽取1名学生,估计这名学生身高低于160 cm的概率.20、某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克,若一次购买超过5千克,则超过5千克部分的种子价格打8折.设一次购买量为x 千克,付款金额为y元.(1)求y关于x的函数解析式;(2)某农户一次购买玉米种子30千克,需付款多少元?21、如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E 作EG∥BF,交正方形外角的平分线CG于点G,连接GF.求证:(1)AE⊥BF;(2)四边形BEGF 是平行四边形.22、如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B(8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ=y.(1)直接写出y关于t的函数解析式及t的取值范围:______;(2)当PQ =3时,求t的值;(3)连接OB交PQ于点D ,若双曲线经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.23、已知∥ABC 内接于O ⊙,BAC ∠的平分线交O ⊙于点D ,连接DB ,DC .(1)如图∥,当120BAC ∠=时,请直接写出线段AB ,AC ,AD 之间满足的等量关系式:______;(2)如图∥,当90BAC ∠=时,试探究线段AB ,AC ,AD 之间满足的等量关系,并证明你的结论;(3)如图∥,若BC =5,BD =4,求AD AB AC+的值.24、在平面直角坐标系中,已知抛物线()2210C y ax x a =+-≠:和直线l :y =kx +b ,点A (-3,-3),B (1,-1)均在直线l 上.(1)若抛物线C 与直线l 有交点,求a 的取值范围;(2)当a =-1,二次函数221y ax x =+-的自变量x 满足m ≤x ≤m +2时,函数y 的最大值为-4,求m 的值;(3)若抛物线C 与线段AB 有两个不同的交点,请直接写出a 的取值范围.答案第1页,共14页 参考答案1、【答案】D【分析】本题考查无理数的定义.根据无理数的定义——无限不循环小数叫做无理数,进行判断即可.【解答】解: 3.1415,,227是有理数,是无理数.选. 2、【答案】A【分析】本题考查三视图的知识.根据主视图是从正面看到的图象判定则可.【解答】从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同.选A .3、【答案】C【分析】本题考查了科学记数法的定义这一知识点,掌握好与数位之间的关系是解题的关键. 【解答】解:亿=.选.4、【答案】C【分析】本题考查统计的应用.全面调查与抽样调查的优缺点:∥全面调查收集的数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.∥抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果数据的个数是偶数,中间两数的平均数就是中位数,一组数据中出现次数最多的数据叫做众数.【解答】解:A .了解我市市民知晓“礼让行人”交通新规的情况,适合抽样调查,A 错误;B .甲、乙两人跳远成绩方差分别为2234s s ==甲乙,,说明甲的跳远成绩比乙稳定,B 错误;C .一组数据,,,的众数是,中位数是,正确;D .可能性是1%的事件在一次试验中可能会发生,D 错误.选C .5、【答案】D【分析】本题考查平行线的性质.根据平行线的性质解答即可. 【解答】解:,.,.,.,,,.选D.6、【答案】C【分析】本题考查的是解一元一次不等式组,正确求出每一个不等式的解集是基础.分别求出每一个不等式的解集,根据口诀“同大取大、同小取小、大小小大中间找、大大小小无解了”确定不等式组的解集.【解答】解:解不等式得;解不等式得,则不等式组的解集为.选C.7、【答案】A【分析】本题考查一元二次方程根与系数的关系.根据根与系数的关系可得,,再利用完全平方公式变形:,代入即可求解.【解答】解:方程的两个实数根为,,,.选A.8、【答案】B【分析】本题考查了二元一次方程整数解的知识点.可列二元一次方程解决这个问题.【解答】解:设2 m长的钢管有根,根据题意得:,,均为正整数,,,,.选B.9、【答案】D【分析】考查反比例函数的性质.当时,在每个象限内随的增大而增大;反比例函数的图象是轴对称图象,和是它的对称轴,同时也是中心对称图形;熟练掌握反比例函数图象上点的坐标特征和反比例函数图象和性质是解答此题的关键.通过反比例图象上的点的坐标特征,可对A选项作出判断;通过反比例函数图象和性质、增减性、对称性可对其他选项作出判断,得出答案.【解答】解:由点的坐标满足反比例函数,故A是正确的;由,双曲线位于第二、四象限,故B也是正确的;由反比例函数的对称性,可知反比例函数关于对称,故C也是正确的,由反比例函数的性质,,在每个象限内,随的增大而增大,不在同一象限,不具有此性质,故D是不正确的.选D.10、【答案】A【分析】本题考查切线的判定、全等三角形的判定与性质以及相似三角形的判定与性质,注意掌握辅助线的作法.由切线的性质得,首先连接,易证得,然后由全等三角形的对应角相等,求得,即可证得直线是的切线,根据全等三角形的性质得到,根据线段垂直平分线的判定定理得到,故∥正确;根据余角的性质得到,等量代换得到,根据相似三角形的判定定理得到,故∥正确;根据相似三角形的性质得到,于是得到,故∥正确.【解答】解:连结.为的直径,为的切线,.,,.又,答案第3页,共14页,.在和中,,,.又点在上,是的切线;故∥正确,,.,垂直平分,即,故∥正确;为的直径,为的切线,,,.,,.,,故∥正确;,,,.,,故∥正确.选A.11、【答案】【分析】本题考查因式分解.先提取公因式再利用平方差公式进行分解.【解答】解:.故答案为.12、【答案】6【分析】本题考查弧长公式.由弧长公式:计算.【解答】解:由题意得:圆的半径.故答案为6.13、【答案】100【分析】本题考查函数的最值.设矩形的宽为x,则长为(20-x),S=x(20-x)=-x2+20x= -(x-10)2+100,利用二次函数的性质求最值即可.【解答】解:设矩形的宽为,矩形的面积为S ,则长为,∴,当时,的最大值为.故答案为100.14、【答案】1 3【分析】本题考查列表法与树状图的知识.列表将所有等可能的结果列举出来,然后利用概率公式求解即可.【解答】解:列表如下:由表知,共有12种等可能结果,其中两次取出的小球上数字之积等于8的有4种结果,∴两次取出的小球上数字之积等于8的概率为.故答案为.15、【答案】14.4【分析】本题考查解直角三角形的应用——仰角俯角问题、矩形的判定与性质、等腰三角形的判定.作于,则,四边形是矩形,得出,,求出,证出,得出,在中,由直角三角形的性质得出,即可得出答案.【解答】解:作于,如图所示:答案第5页,共14页则,四边形是矩形,,,., ,, ,在中,,,.故答案为14.4. 16、【答案】(47,16)【分析】本题是对点的坐标变化规律的考查,利用了菱形的性质,解直角三角形,根据已知点的变化规律求出菱形的边长,得出系列C 点的坐标,找出规律是解题的关键.根据菱形的边长求得、、…的坐标,然后分别表示出、、…的坐标,找出规律进而求得6C 的坐标. 【解答】解:,,,的纵坐标为:,横坐标为,.∥四边形111OA B C ,1222A A B C ,2333A A B C ,…都是菱形,OA 1=1,,,,…, 的纵坐标为:,代入求得横坐标为2,,的纵坐标为:,代入求得横坐标为11,,,.故答案为.17、【答案】(1)6;(2)x =.【分析】本题考查二次根式的混合运算与解分式方程,解题的关键是熟练掌握二次根式的乘法法则及解分式方程的步骤.(1)先计算乘方、去绝对值符号、计算二次根式的乘法及零指数幂,再计算加减即可;(2)去分母化分式方程为整式方程,解之求得x的值,再检验即可.【解答】解:(1)原式=;(2)两边都乘,得,解得,检验:当时,,原分式方程的解为.18、【答案】(1)见解答;(2)见解答.【分析】本题考查轴对称作图,根据全等关系可以确定点与点的对称关系,从而确定对称轴所在,即可画出直线.(1)连接AC,AC所在直线即为对称轴m.(2)延长BA,CD交于一点,连接AC,BC交于一点,连接两点获得垂直平分线n.【解答】解:(1)如图①,直线即为所求;(2)如图②,直线即为所求.19、【答案】(1)100,30;(2)见解答;(3)0.45.【分析】本题考查利用频率估计概率:用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.同时考查了统计中的有关概念.(1)用A组的频数除以它所占的答案第7页,共14页百分比得到样本容量,然后计算B组所占的百分比得到a的值;(2)利用B组的频数为30补全频数分布直方图;(3)计算出样本中身高低于160 cm的频率,然后利用样本估计总体和利用频率估计概率求解.【解答】解:(1),∴样本容量为100;B组的人数为,∴30%100%30%100a=⨯=,∴.故答案为,;(2)补全频数分布直方图为:(3)样本中身高低于160cm的人数为,样本中身高低于160cm的频率为,∴估计从该地随机抽取名学生,估计这名学生身高低于160cm的概率为.20、【答案】(1)∥当0≤x≤5时,y=20x;∥当x>5时,y=16x+20;(2)一次购买玉米种子30千克,需付款500元.【分析】本题考查一次函数的应用.(1)根据题意,得∥当0≤x≤5时,y=20x;∥当x>5时,y=20×0.8(x-5)+20×5=16x+20;(2)把x=30代入y=16x+20,即可求解.【解答】解:(1)根据题意,得∥当时,;∥当时,;(2)把代入,,一次购买玉米种子千克,需付款元.21、【答案】(1)见解答;(2)见解答.【分析】本题考查正方形的性质、全等三角形的判定与性质、平行四边形的判定、平行线的性质等知识.(1)由“SAS”证明△ABE≌△BCF得出AE=BF,∠BAE=∠CBF,由平行线的性质得出∠CBF=∠CEG,证出AE⊥EG,即可得出结论;(2)延长AB至点P,使BP=BE,连接EP,则AP=CE,∠EBP=90°,证明△APE≌△ECG 得出AE=EG,证出EG=BF,即可得出结论.【解答】证明:(1)四边形是正方形,,,.在和中,,,,.,.,,,.(2)延长至点,使,连接,如图所示:则,,.为正方形外角的平分线,,.由(1),得,答案第9页,共14页在和中,,,.,.,四边形是平行四边形.22、【答案】(1);(2);(3).【分析】本题考查勾股定理、解直角三角形、解一元二次方程、相似三角形的判定与性质、平行线的性质以及反比例函数图象上点的坐标特征,解题的关键是:(1)利用勾股定理,找出y关于t的函数解析式;(2)通过解一元二次方程,求出当PQ=时t的值;(3)利用相似三角形的性质及解直角三角形,找出点D的坐标.【解答】解:(1)过点作于点,如图1所示.当运动时间为秒时,点的坐标为,点的坐标为,,|,,.故答案为.(2)当时,,整理,得,解得.(3)经过点的双曲线的值不变.连接,交于点,过点作于点,如图2所示.,,.,,,.,.在中,,,,,点的坐标为,经过点的双曲线的值为.23、【答案】(1)AB+AC=AD;(2);(3).【分析】本题属于圆的综合题,考查了圆周角定理,全等三角形的判定与性质,相似三角形的判定和性质,等边三角形的判定与性质等知识.(1)在AD上截取AE=AB,连接BE,由条件可知∥ABE和∥BCD都是等边三角形,可证明∥BED∥∥BAC,可得DE=AC,则AB+AC=AD;(2)延长AB至点M,使BM=AC,连接DM,证明∥MBD∥∥ACD,可得MD=AD,证得AB+AC =;(3)延长AB至点N,使BN=AC,连接DN,证明∥NBD∥∥ACD,可得ND=AD,∥N=∥CAD,证∥NAD∥∥CBD ,可得,由AN=AB+AC ,求出的值.【解答】解:(1)如图∥,在AD上截取AE=AB,连接BE,答案第11页,共14页∥∥BAC=120°,∥BAC的平分线交∥O于点D,∥∥DBC=∥DAC=60°,∥DCB=∥BAD=60°,∥∥ABE和∥BCD都是等边三角形,∥∥DBE=∥ABC,AB=BE,BC=BD,∥∥BED∥∥BAC(SAS),∥DE=AC,∥AD=AE+DE=AB+AC.故答案为AB+AC=AD.(2)AB+AC=.理由如下:如图∥,延长AB至点M,使BM=AC,连接DM.∥四边形ABDC内接于∥O,∥∥MBD=∥ACD,∥∥BAD=∥CAD=45°,∥BD=CD,∥∥MBD∥∥ACD(SAS),∥MD=AD,∥M=∥CAD=45°,∥MD∥AD.∥AM=,即AB+BM=,∥AB+AC=.(3)如图∥,延长AB至点N,使BN=AC,连接DN,∥四边形ABDC内接于∥O,∥∥NBD=∥ACD.∥∥BAD=∥CAD,∥BD=CD,∥∥NBD∥∥ACD(SAS),∥ND=AD,∥N=∥CAD,∥∥N=∥NAD=∥DBC=∥DCB,∥∥NAD∥∥CBD,∥,∥,又AN=AB+BN=AB+AC,BC=5,BD=4,∥.24、【答案】(1)a ≤且a≠0;(2)m=-3或m=3;(3)或a≤-2.【分析】本题考查二次函数的图象及性质,一次函数的图象及性质.(1)将点,代入,求出;联立与,则由,即可求解;(2)根据题意,可得,当时,有,或;∥在左侧,随的增大而增大,时,有最大值,;∥在对称轴右侧,随最大而减小,时,有最大值;(3)∥当,时,,即;∥当,时,,即,直线的解析式为,抛物线与直线方程联立得,,则,即可求的范围.【解答】解:(1)点,代入,答案第13页,共14页,,.联立与,则有,抛物线与直线有交点,,解得a≤且a≠0.(2)根据题意,可得,,抛物线开口向下,对称轴.时,有最大值,∥当时,有,或.∥在左侧,随的增大而增大,时,有最大值,;∥在对称轴右侧,随的增大而减小,时,有最大值;综上所述,m=-3或m=3.(3)∥当,时,,即;∥当,时,,即,直线的解析式为,抛物线与直线的方程联立,得,,,,的取值范围为或a≤-2.。
湖北省潜江市中考教学调研考试数学试卷有答案
12019年湖北省潜江市中考教学调研考试数 学 试 卷满分120分,时间120分钟注意事项:1. 答题前,考生务必将自己的姓名、准考证号填写在试卷第1页装订线内和答题卡上,并在答题卡的规定位置贴好条形码,核准姓名和准考证号.2. 选择题的答案选出后,必须使用2B 铅笔把答题卡上对应的答案标号涂黑.如需改动,先用橡皮擦干净后,再选涂其他答案标号. 非选择题答案必须使用0.5毫米黑色墨水签字笔填写在答题卡对应的区域内,写在试卷上无效.3. 考试结束后,请将本试卷和答题卡一并上交.一、选择题(每小题3分,共30分)1. 下列四个数:-3,-3,-π,-1,其中最小的数是A .-πB .-3C .-1D .-32.下列图形中,是轴对称图形但不是中心对称图形的是A .平行四边形B .等边三角形C .正六边形D .圆3.C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个,将100万用科学记数法表示为 A .1×106B .100×104C .1×107D .0.1×1084.如图,直线m ∥n .若∠1=70°,∠2=25°,则∠A 等于(第4题图)1A . 30°B . 35°C . 45°D .55°5.下列说法正确的是A .“打开电视,正在播放新闻节目”是必然事件B .要考察一个班级中的学生对建立生物角的看法适合采用抽样调查方式C .为了解潜江市4月15日到29日的气温变化情况,适合制作折线统计图D .对端午节期间市面上粽子质量情况的调查适合采用全面调查(普查)方式 6.下列等式从左到右的变形,属于因式分解的是 A .2221(1)x x x +-=- B .22()()a b a b a b +-=- C .2244(2)x x x ++=+D .22(1)ax a a x -=-7.若关于x 的一元一次不等式组()2132,x x x m->-⎧⎪⎨<⎪⎩的解集是x <5,则m 的取值范围是A .m ≥5B .m >5C .m ≤5D .m <58.如图是按1︰10的比例画出的一个几何体的三视图,则该几何体的侧面积是 A .200 cm 2B .600 cm 2C .100π cm 2D .200π cm 29.如图,在平面直角坐标系中,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上,∠BOC =60°,顶点C 的坐标为(m ,33),反比例函数xky =的图象与菱形对角线AO 交于点D ,连接DB ,当DB ⊥x 轴时,k 的值是 A .36B .36-C .312D .312-10.如图,在正方形ABCD 中,△BPC 是等边三角形,BP ,CP 的延长线分别交AD 于点E ,F ,连接BD ,DP ,BD 与CF 交于点H .下列结论:①BE =2AE ;②△DFP ∽△BPH ;③△PFD ∽△PDB ;1(第14题图)←1→单位:cm(第8题图)(第10题图)A B CDE P FH④DP 2=PH •PC ,其中正确的结论是A .①②③④B .②③C .①②④D .①③④二、填空题(每小题3分,共18分)11.不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是 .12.我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x ,y 人,则可列方程组为 .13.已知x 1,x 2是关于x 的一元二次方程x 2+nx +n -3=0的两个实数根,且x 1+x 2=-2,则x 1•x 2= . 14.如图,直线113y x =+与x 轴,y 轴分别交于点A ,B △BOC 与△B ′O ′C ′ 是以点A1相似比为1︰2,则点B ′ 的坐标为 . 15.某商场购进一批单价为20元的日用商品.如果以单价30元销售,那么半月内可销售出400件.根据销售经验,提高销售单价会导致销售量减少,即销售单价每提高1元,销售量相应减少20件,当销售单价是 元时,才能在半月内获得最大利润.16.如图,把正方形铁片OABC 置于平面直角坐标系中,顶点A 的坐标为(3,0),点P (1,2次旋转90°,第一次旋转至图①位置,第二次旋转至 图②位置,…,则正方形铁片连续旋转2018次后, 点P 的坐标为 .三、解答题(共72分)17.(本题满分5分)计算:11(|2|()2---.18.(本题满分5分)如图,在Rt△ABC 中,∠C =90°,求作Rt△ABC 的外接圆(不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑).(第18题图)ABC(第16题图)19.(本题满分6分)如图,在水平地面上有一幢房屋BC与一棵树DE,在地面观测点A处测得屋顶C与树梢D的仰角分别是45°与60°,∠CAD=60°,在屋顶C处测得∠DCA=90°.若房屋的高BC=6米,求树DE的高度.(第19题图)20.(本题满分8分)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10, 8, 5, 7, 8,10, 8, 8, 7;乙:5, 7, 8, 7, 8, 9, 7, 9,10,10;丙:7, 6, 8, 5, 4, 7, 6, 3, 9, 5.(1)根据以上数据完成下表:11(2(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.21.(本题满分9分)在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(-3,5)与(5,-3)是一对“互换点”. (1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M ,N 是一对“互换点”,若点M 的坐标为(m ,n ),求直线MN 的解析式(用含m ,n 的式子表示);(3)在二次函数2y x bx c =++的图象上有一对“互换点”A ,B ,其中点A 在反比例函数2y x=-的图象上,直线AB 经过点P (12,12),求此二次函数的解析式.22.(本题满分8分)如图,在△ABC 中,∠ACB =90°,点D ,E 分别是边BC ,AB 的中点,连接DE 并延长至点F ,使EF =2DE ,连接CE ,AF . (1)证明:AF =CE ;(2)当∠B =30°时,试判断四边形AFEC 的形状并说明理由.123.(本题满分9分)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A 型商品的件数是用7500元采购B 型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价多10元.(1)求一件A ,B 型商品的进价分别为多少元?(2)若该欧洲客商购进A ,B 型商品共250件进行试销,其中A 型商品的件数不大于B 型商品的件数,且不小于80件,已知A 型商品的售价为240元/件,B 型商品的售价为220元/件,且全部售出,设购进A 型商品m 件,求该客商销售这批商品的利润y 与m 之间的函数关系式,并写出m 的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A 型商品,就从一件A 型商品的利润中捐献慈善资金a 元,求该客商售完所有商品并捐献资金后获得的最大收益.(第22题图)FABCDE124.(本题满分10分)如图,在⊙O 中,直径CD 垂直于不过圆心O 的弦AB ,垂足为点N ,连接AC ,点E 在AB 上,且AE =CE ,过点B 作⊙O 的切线交EC 的延长线于点P . (1)求证:AC 2=AE •AB ;(2)试判断PB 与PE 是否相等,并说明理由;(3)设⊙O 的半径为4,N 为OC 的中点,点Q 在⊙O 上,求线段PQ 的最小值.(第24题图)P· ABCDE NO125.(本题满分12分) 如图,直线23y x c =-+与x 轴交于点A (3,0),与y 轴交于点B ,抛物线243y x bx c =-++经过点A ,B .(1)求点B 的坐标和抛物线的解析式;(2)M (m ,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 和抛物线分别交于点P ,N .①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与△APM 相似,求点M 的坐标;中恰有一点是其它两点所连线段的中点1潜江市2019年初中毕业年级教学调研考试数学学科参考答案及评分说明说明:本评分说明一般只给出一种解法,对其他解法,只要推理严谨,运算合理,结果正确,均给满分;对部分正确的,参照此评分说明,酌情给分. 一、选择题(每小题3分,共30分)ABACC CADDC二、填空题(每小题3分,共18分)11.; 12. ⎩⎨⎧3x +13y =100,x +y =100; 13.-1; 14. (3,2)或(-9,-2); 15. 35; 16. (6056,1). 三、解答题(共72分)17.(5分)解:(1)原式=………………………………………4分=- …………………………………… 5分18.(5分)解:如图,⊙O 即为所求. ……………………………………5分119.(6分)解:在Rt△ABC 中,∠CAB =45°,BC =6m , ∴(m ); ……………………………2分 在Rt△ACD 中,∠CAD =60°, ∴(m ); ……………………………4分 在Rt△DEA 中,∠EAD =60°,, 答:树DE 的高为米. ……………………………………………6分20.(8分)解:(1)∴甲的方差是2, ……………………………………………1分乙的平均数是8, ……………………………………………2分 丙的中位数是6; ………………………………………………3分(2)∴S 甲2<S 乙2<S 丙2,∴甲运动员的成绩最稳定; ……………………………………………4分(3)根据题意画图如下:1∵共有6种情况数,甲、乙相邻出场的有4种情况, ……………………6分 ∴甲、乙相邻出场的概率是3264 . …………………………………………8分21.(9分)解:(1)不一定. …………………………………………1分 设反比例函数为(k ≠0),这一对“互换点”的坐标为(a ,b )和(b ,a ).①当ab =0时,它们不可能在反比例函数的图象上, ……………………………2分 ②当ab ≠0时,(a ,b )和(b ,a )都在反比例函数(k ≠0)的图象上;……3分(2)由M (m ,n )得N (n ,m ),设直线MN 的表达式为y =cx +d (c ≠0), 则有,解得.∴直线MN 的表达式为y =﹣x +m +n ; ……………………………5分(3)设点A (p ,q ),则,∵直线AB 经过点P (12,12),由(2)得,∴p +q =1, …………………………………………6分 ∴.解并检验得:p=2或p=﹣1,∴q=﹣1或q=2.∴这一对“互换点”是(2,﹣1)和(﹣1,2). …………………………8分将这一对“互换点”代入y=x2+bx+c得,∴解得.∴此抛物线的表达式为y=x2﹣2x﹣1.…………………………9分22.(8分)【解答】(1)证明:∵点D,E分别是边BC,AB的中点,∴DE∥AC,AC=2DE.∵EF=2DE,∴EF∥AC,EF=AC.∴四边形AFEC是平行四边形.∴AF=CE;…………………………………………………4分(2)解:当∠B=30°时.四边形AFEC是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE.∴△AEC是等边三角形.∴AC=CE.又∵四边形AFEC是平行四边形,∴四边形AFEC是菱形.……………………………………………8分1123.(9分)………3分(2)设A 型商品m 件,B 型商品(250-m )件,则解得80≤m ≤125,]函数关系式为:y =10m +17500(80≤m ≤125); …………………………6分(3)y =10m +17500-ma =(10-a )m +17500,当0<a <10时,y 随m 的增大而增大,当m =125时利润最大,y max =1250-125a +17500=18750-125a ;当a =10时,y =17500,y max = 17500;当a >10时,y 随m 的增大而减小,当m =80时,利润最大,y max =800-80a +17500=18300-80a . ………………9分24.(10分证明:(1)如图1,连接BC ,∵CD 为⊙O 的直径,AB ⊥CD ,∴=, ∴∠A =∠ABC .∵EC =AE , ∴∠A =∠ACE .∴∠ABC =∠ACE .∵∠A =∠A , ∴△AEC ∽△ACB .∴,∴AC 2=AE •AB ; …………………………………3分(2)PB =PE .理由是:如图2,连接OB ,∵PB为⊙O的切线,∴OB⊥PB,∴∠OBP=90°,∴∠PBN+∠OBN=90°.∵∠OBN+∠COB=90°,∴∠PBN=∠COB.∵∠PEB=∠A+∠ACE=2∠A,∠COB=2∠A,∴∠PEB=∠COB,∴∠PEB=∠PBN.∴PB=PE;…………………………………6分(3)如图3,∵N为OC的中点,∴ON=OC=OB,Rt△OBN中,∠OBN=30°,∴∠COB=60°,∵OC=OB,∴△OCB为等边三角形,∵Q为⊙O任意一点,连接PQ、OQ,∵OQ为半径,是定值4,则PQ+OQ的值最小时,PQ最小,当P、Q、O三点共线时,PQ最小,∴Q为OP与⊙O的交点时,PQ最小,…………………………………8分∵∠A=∠COB=30°,∴∠PEB=2∠A=60°,∠ABP=90°﹣30°=60°,∴△PBE是等边三角形,Rt△OBN中,BN==2,∴AB=2BN=4,设AE=x,则CE=x,EN=2﹣x,Rt△CNE中,x2=22+(2﹣x)2,解得:x=,……………………9分∴BE=PB=4﹣=,Rt△OPB中,OP===,1∴PQ=﹣4=.则线段PQ的最小值是.………………………………10分25.( 12分)解:(1)∵直线与轴交于点A(3,0),∴,解得c=2,…………………………………1分∴直线AB的解析式为:∴B(0,2),…………………………………2分∵抛物线经过点A(3,0),B(0,2),∴,∴b=∴抛物线的解析式为;…………………………………3分(2)∵M(m,0),轴与直线AB和抛物线分别交于点P,N.1∴P(m,),N( )①由(1)知直线AB的解析式为,OA=3,OB=2∵在△APM中和△BPN中,∠APM=∠BPN, ∠AMP=90°,1若使△APM和△BPN相似,则必须∠NBP=90°或∠BNP=90°,分两种情况讨论如下:(I)当∠NBP=90°时,过点N作NC轴于点C,则∠NBC+∠BNC=90°,NC=m,BC=∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠BNC=∠ABO,∴Rt△NCB∽ Rt△BOA∴ ,即,解得m=0(舍去)或m=∴M(,0);………………………………………………6分…………………9分………………………………………………12分1。
2019年湖北省潜江市、仙桃市、天门市、江汉油田中考数学试题及答案(Word解析版)
2019年湖北省潜江市、仙桃市、天门市、江汉油田中考数学试题及答案(Word解析版)一、选择题(本大题共10个小题,每小题3分,满分30分)在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.﹣2.(3分)(2018•天门)英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 0003.(3分)(2018•天门)如图,已知直线AB∥CD,∠GEB的平分线EF交CD于点F,∠1=40°,则∠2等于()∴∠FEB=∠GEB=20°,÷2=2介于6.(3分)(2018•天门)小明为了鼓励芦山地震灾区的学生早日走出阴影,好好学习,制作了一个正方体礼盒(如图).礼盒每个面上各有一个字,连起来组成“芦山学子加油”,其中“芦”的对面是“学”,“加”的对面是“油”,则它的平面展开图可能是()B7.(3分)(2018•天门)如果一个扇形的弧长是π,半径是6,那么此扇形的圆心角为()l=.,∴n===40°.222根与系数的关系.根据根与系数的关系α+β=﹣,αβ=,求出α+β和αβ的值,再把要求的式子进行整理,即可,=9.(3分)(2018•天门)如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB 于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()∴AB=cm=AC∴BE=cmCF=∴BM=10.(3分)(2018•天门)小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小文出发时间t(分)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a=24;④b=480.其中正确的是()二、填空题(本大题共5个小题,每小题3分,满分15分)将结果直接填写在答题卡对应的横线上.11.(3分)(2018•天门)分解因式:a2﹣4= (a+2)(a﹣2).12.(3分)(2018•天门)如图,两个完全相同的三角尺ABC和DEF在直线l上滑动.要使四边形CBFE为菱形,还需添加的一个条件是答案不惟一,如:CB=BF;BE⊥CF;∠EBF=60°;BD=BF等(写出一个即可).形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.13.(3分)(2018•天门),中国羽毛球队蝉联苏迪曼杯团体赛冠军,成就了首个五连冠霸业.比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图).若不考虑外力因素,羽毛球行进高度y(米)与水平距离x(米)之间满足关系,则羽毛球飞出的水平距离为 5 米.考点:二次函数的应用.分析:根据羽毛球飞出的水平距离即为抛物线与x轴正半轴交点到原点的距离,进而求出即可.解答:解:当y=0时,0=﹣x2+x+,解得:x1=﹣1,x2=5,故羽毛球飞出的水平距离为5m.故答案为:5.点评:此题主要考查了二次函数的应用,根据已知得出图象与x轴交点坐标是解题关键.14.(3分)(2018•天门)有两把不同的锁和三把钥匙,其中两把钥匙能打开同一把锁,第三把钥匙能打开另一把锁.任意取出一把钥匙去开任意的一把锁,一次能打开锁的概率是.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与任意取出一把钥匙去开任意的一把锁,一次能打开锁的情况,再利用概率公式求解即可求得答案.解答:解:画树状图得:∵共有6种等可能的结果,任意取出一把钥匙去开任意的一把锁,一次能打开锁的有3种情况,∴任意取出一把钥匙去开任意的一把锁,一次能打开锁的概率是:=.故答案为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.15.(3分)(2018•天门)如图,正方形ABCD的对角线相交于点O,正三角形OEF绕点O旋转.在旋转过程中,当AE=BF时,∠AOE的大小是15°或165°.考点:旋转的性质;等边三角形的性质;正方形的性质.专题:计算题.分析:讨论:如图1,连结AE、BF,根据正方形与等边三角形的性质得OA=OB,∠AOB=90°,OE=OF,∠EOF=60°,根据“SSS”可判断△AOE≌△BOF,则∠AOE=∠BOF,于是∠AOE=∠BOF=(90°﹣60°)=15°;如图同理可证得△AOE≌△BOF,所以∠AOE=∠BOF,则∠DOF=∠COE,于是∠DOF=(90°﹣60°)=15°,所,∴∠AOE=∠BOF=(90°﹣60°)=15°,,∴∠DOF=三、解答题(本大题共10个小题,满分75分)16.(5分)(2018•天门)计算:.=6.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握绝对值、乘方二次根式化简等考点的运算.17.(6分)(2018•天门)解不等式组.考点:解一元一次不等式组分析:求出每个不等式的解集,根据找不等式组解集的规律找出即可.解答:解:∵解不等式①,得x>﹣1,解不等式②,得x≤4,∴原不等式组的解集为:﹣1<x≤4.点评:本题考查了解一元一次不等式和一元一次不等式组的应用,关键是能根据不等式的解集找出不等式组的解集.18.(6分)(2018•天门)垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:根据图表解答下列问题:(1)请将条形统计图补充完整;(2)在抽样数据中,产生的有害垃圾共 3 吨;(3)调查发现,在可回收物中塑料类垃圾占,每回收1吨塑料类垃圾可获得0.7吨二级原料.假设该城市每月产生的生活垃圾为5 000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?考点:条形统计图;扇形统计图.分析:(1)根据D类垃圾量和所占的百分比即可求得垃圾总数,然后乘以其所占的百分比即可求得每个小组的频数从而补全统计图;(2)求得C组所占的百分比,即可求得C组的垃圾总量;(3)首先求得可回收垃圾量,然后求得塑料颗粒料即可;解答:解:(1)观察统计图知:D类垃圾有5吨,占10%,∴垃圾总量为5÷10%=50吨,)19.(6分)(2018•天门)如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以证明.20.(6分)(2018•天门)某商场为方便顾客使用购物车,准备将滚动电梯的坡面坡度由1:1.8改为1:2.4(如图).如果改动后电梯的坡面长为13米,求改动后电梯水平宽度增加部分BC的长.考点:解直角三角形的应用-坡度坡角问题.分析:在Rt△ADC中,已知了坡面AC的坡比以及坡面AC的值,通过勾股定理可求AD,DC的值,在Rt△ABD 中,根据坡面AC的坡比可求BD的值,再根据BC=DC﹣BD即可求解.解答:解:在Rt△ADC中,∵AD:DC=1:2.4,AC=13,由AD2+DC2=AC2,得AD2+(2.4AD)2=132.∴AD=±5(负值不合题意,舍去).∴DC=12.在Rt△ABD中,∵AD:BD=1:1.8,∴BD=5×1.8=9.∴BC=DC﹣BD=12﹣9=3.答:改动后电梯水平宽度增加部分BC的长为3米.点评:此题主要考查学生对坡度坡角的掌握及三角函数的运用能力,熟练运用勾股定理是解答本题的关键.21.(8分)(2018•天门)如图,在平面直角坐标系中,双曲线和直线y=kx+b交于A,B两点,点A的坐标为(﹣3,2),BC⊥y轴于点C,且OC=6BC.(1)求双曲线和直线的解析式;(2)直接写出不等式的解集.考点:反比例函数与一次函数的交点问题专题:计算题.分析:(1)将A坐标代入反比例解析式中求出m的值,确定出反比例解析式,根据OC=6BC,且B在反比例图象上,设B坐标为(a,﹣6a),代入反比例解析式中求出a的值,确定出B坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;(2)根据一次函数与反比例函数的两交点A与B的横坐标,以及0,将x轴分为四个范围,找出反比例图象在一次函数图象上方时x的范围即可.解答:解:(1)∵点A(﹣3,2)在双曲线y=上,∴2=,即m=﹣6,∴双曲线的解析式为y=﹣,∵点B在双曲线y=﹣上,且OC=6BC,设点B的坐标为(a,﹣6a),∴﹣6a=﹣,解得:a=±1(负值舍去),∴点B的坐标为(1,﹣6),∵直线y=kx+b过点A,B,∴,解得:.∴直线的解析式为y=﹣2x﹣4;)根据图象得:不等式>22.(8分)(2018•天门)某文化用品商店用1 000元购进一批“晨光”套尺,很快销售一空;商店又用1 500元购进第二批该款套尺,购进时单价是第一批的倍,所购数量比第一批多100套.(1)求第一批套尺购进时单价是多少?(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?(1)设第一批套尺购进时单价是x元/套,则设第二批套尺购进时单价是x元/套,根据题意可得等量(2)两批套尺得总数量×4﹣两批套尺的总进价=利润,代入数进行计算即可.由题意得:,(2)(元).23.(8分)(2018•天门)如图,以AB为直径的半圆O交AC于点D,且点D为AC的中点,DE⊥BC于点E,AE 交半圆O于点F,BF的延长线交DE于点G.(1)求证:DE为半圆O的切线;(2)若GE=1,BF=,求EF的长.的直径得到∠AFB=90°,易证得△BGE∽△EGF,利用,∴GF=EF=.24.(10分)(2018•天门)一张矩形纸片,剪下一个正方形,剩下一个矩形,称为第一次操作;在剩下的矩形纸片中再剪下一个正方形,剩下一个矩形,称为第二次操作;…;若在第n次操作后,剩下的矩形为正方形,则称原矩形为n阶奇异矩形.如图1,矩形ABCD中,若AB=2,BC=6,则称矩形ABCD为2阶奇异矩形.(1)判断与操作:如图2,矩形ABCD长为5,宽为2,它是奇异矩形吗?如果是,请写出它是几阶奇异矩形,并在图中画出裁剪线;如果不是,请说明理由.(2)探究与计算:已知矩形ABCD的一边长为20,另一边长为a(a<20),且它是3阶奇异矩形,请画出矩形ABCD及裁剪线的示意图,并在图的下方写出a的值.(3)归纳与拓展:已知矩形ABCD两邻边的长分别为b,c(b<c),且它是4阶奇异矩形,求b:c(直接写出结果).(3)根据题意得出第1次操作前短边与长边之比为:,;,;,;,,最终得出长边和短解答:解:(1)矩形ABCD是3阶奇异矩形,裁剪线的示意图如下:(2)裁剪线的示意图如下:(3)b:c的值为,,,,,,,,规律如下:第4次操作前短边与长边之比为:;第3次操作前短边与长边之比为:,;第2次操作前短边与长边之比为:,;,;第1次操作前短边与长边之比为:,;,;,;,.点评:本题考查了矩形性质,正方形性质,寻找规律的应用,主要考查学生的变换能力和了解能力,注意:要进行分类讨论.25.(12分)(2018•天门)如图,已知抛物线y=ax2+bx﹣4经过A(﹣8,0),B(2,0)两点,直线x=﹣4交x 轴于点C,交抛物线于点D.(1)求该抛物线的解析式;(2)点P在抛物线上,点E在直线x=﹣4上,若以A,O,E,P为顶点的四边形是平行四边形,求点P的坐标;(3)若B,D,C三点到同一条直线的距离分别是d1,d2,d3,问是否存在直线l,使d1=d2=?若存在,请直接写出d3的值;若不存在,请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线的解析式;(2)平行四边形可能有多种情形,如答图1所述,需要分类讨论:①以AO为一边的平行四边形,有2个;②以AO为对角线的平行四边形,有1个,此时点P和点E必关于点C成中心对称.(3)存在4条符合条件的直线,分别如答图2、答图3所示.解答:解:(1)∵抛物线y=ax2+bx﹣4经过A(﹣8,0),B(2,0)两点,∴,解得:;,,解得:=则,,即,∴d3=2d1,∴d1=d2=.∴CG=×=CG′=2CH==∴HI=CI=∴OH===×4×3=×d,.的值为:,。
2019年湖北省潜江市中考数学试卷(Word解析版)
2019年湖北省潜江市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.下列各数中,是无理数的是()A. B. C.D.2.如图所示的正六棱柱的主视图是()A. B.C. D.3.据海关统计,今年第一季度我国外贸进出口总额是70100亿元人民币,比去年同期增长了3.7%,数70100亿用科学记数法表示为()A. B. C. D.4.下列说法正确的是()A. 了解我市市民知晓“礼让行人”交通新规的情况,适合全面调查B. 甲、乙两人跳远成绩的方差分别为甲,乙,说明乙的跳远成绩比甲稳定C. 一组数据2,2,3,4的众数是2,中位数是D. 可能性是的事件在一次试验中一定不会发生5.如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF的度数是()A. B. C. D.6.不等式组的解集在数轴上表示正确的是()A. B.C. D.7.若方程x2-2x-4=0的两个实数根为α,β,则α2+β2的值为()A. 12B. 10C. 4D.8.把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有()A. 3种B. 4种C. 5种D. 9种9.反比例函数y=-,下列说法不正确的是()A. 图象经过点B. 图象位于第二、四象限C. 图象关于直线对称D. y随x的增大而增大10.如图,AB为⊙O的直径,BC为⊙O的切线,弦AD∥OC,直线CD交BA的延长线于点E,连接BD.下列结论:①CD是⊙O的切线;②CO⊥DB;③△EDA∽△EBD;④ED•BC=BO•BE.其中正确结论的个数有()A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共6小题,共18.0分)11.分解因式:x4-4x2=______.12.75°的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是______cm.13.矩形的周长等于40,则此矩形面积的最大值是______.14.一个不透明的口袋中有四个完全相同的小球,其上分别标有数字1,2,4,8.随机摸取一个小球后不放回,再随机摸取一个小球,则两次取出的小球上数字之积等于8的概率是______.15.如图,为测量旗杆AB的高度,在教学楼一楼点C处测得旗杆顶部的仰角为60°,在四楼点D处测得旗杆顶部的仰角为30°,点C与点B在同一水平线上.已知CD=9.6m,则旗杆AB的高度为______m.16.如图,在平面直角坐标系中,四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,点A1,A2,A3,…都在x轴上,点C1,C2,C3,…都在直线y=x+上,且∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,OA1=1,则点C6的坐标是______.三、解答题(本大题共8小题,共72.0分)17.(1)计算:(-2)2-|-3|+×+(-6)0;(2)解分式方程:=.18.请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图①,四边形ABCD中,AB=AD,∠B=∠D,画出四边形ABCD的对称轴m;(2)如图②,四边形ABCD中,AD∥BC,∠A=∠D,画出BC边的垂直平分线n.19.为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.(1)填空:样本容量为______,a=______;(2)把频数分布直方图补充完整;(3)若从该地随机抽取1名学生,估计这名学生身高低于160cm的概率.20.某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克,若一次购买超过5千克,则超过5千克部分的种子价格打8折.设一次购买量为x千克,付款金额为y元.(1)求y关于x的函数解析式;(2)某农户一次购买玉米种子30千克,需付款多少元?21.如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG∥BF,交正方形外角的平分线CG于点G,连接GF.求证:(1)AE⊥BF;(2)四边形BEGF是平行四边形.22.如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B(8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.(1)直接写出y关于t的函数解析式及t的取值范围:______;(2)当PQ=3时,求t的值;(3)连接OB交PQ于点D,若双曲线y=(k≠0)经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.23.已知△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,连接DB,DC.(1)如图①,当∠BAC=120°时,请直接写出线段AB,AC,AD之间满足的等量关系式:______;(2)如图②,当∠BAC=90°时,试探究线段AB,AC,AD之间满足的等量关系,并证明你的结论;(3)如图③,若BC=5,BD=4,求的值.24.在平面直角坐标系中,已知抛物线C:y=ax2+2x-1(a≠0)和直线l:y=kx+b,点A(-3,-3),B(1,-1)均在直线l上.(1)若抛物线C与直线l有交点,求a的取值范围;(2)当a=-1,二次函数y=ax2+2x-1的自变量x满足m≤x≤m+2时,函数y的最大值为-4,求m的值;(3)若抛物线C与线段AB有两个不同的交点,请直接写出a的取值范围.答案和解析1.【答案】D【解析】解:=2是有理数,是无理数,故选:D.根据无理数的定义:无限不循环小数进行判断,=2是有理数;本题考查无理数的定义;能够准确辨识无理数是解题的关键.2.【答案】B【解析】解:正六棱柱的主视图如图所示:故选:B.主视图是从正面看所得到的图形即可,可根据正六棱柱的特点作答.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.【答案】C【解析】解:70100亿=7.01×1012.故选:C.把一个很大的数写成a×10n的形式.本能运用了科学记数法的定义这一知识点,掌握好n与数位之间的关系是解题的关键.4.【答案】C【解析】解:A.了解我市市民知晓“礼让行人”交通新规的情况,适合抽样调查,A错误;B.甲、乙两人跳远成绩的方差分别为S甲2=3,S乙2=4,说明甲的跳远成绩比乙稳定,B错误;C.一组数据2,2,3,4的众数是2,中位数是2.5,正确;D.可能性是1%的事件在一次试验中可能会发生,D错误.故选:C.全面调查与抽样调查的优缺点:①全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.②抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.一组数据中出现次数最多的数据叫做众数.本题考查了统计的应用,正确理解概率的意义是解题的关键.5.【答案】D【解析】解:∵CD∥AB,∴∠AOD+∠D=180°,∴∠AOD=70°,∴∠DOB=110°,∵OE平分∠BOD,∴∠DOE=55°,∵OF⊥OE,∴∠FOE=90°,∴∠DOF=90°-55°=35°,∴∠AOF=70°-35°=35°,故选:D.根据平行线的性质解答即可.此题考查平行线的性质,关键是根据平行线的性质解答.6.【答案】C【解析】解:解不等式x-1>0得x>1,解不等式5-2x≥1得x≤2,则不等式组的解集为1<x≤2,故选:C.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.【答案】A【解析】解:∵方程x2-2x-4=0的两个实数根为α,β,∴α+β=2,αβ=-4,∴α2+β2=(α+β)2-2αβ=4+8=12;故选:A.根据根与系数的关系可得α+β=2,αβ=-4,再利用完全平方公式变形α2+β2=(α+β)2-2αβ,代入即可求解;本题考查一元二次方程根与系数的关系;熟练掌握韦达定理,灵活运用完全平方公式是解题的关键.8.【答案】B【解析】解:设2m的钢管b根,根据题意得:a+2b=9,∵a、b均为整数,∴,,,.故选:B.可列二元一次方程解决这个问题.本题运用了二元一次方程的整数解的知识点,运算准确是解此题的关键.9.【答案】D【解析】解:由点(1,-3)的坐标满足反比例函数y=-,故A是正确的;由k=-3<0,双曲线位于二、四象限,故B也是正确的;由反比例函数的对称性,可知反比例函数y=-关于y=x对称是正确的,故C 也是正确的,由反比例函数的性质,k<0,在每个象限内,y随x的增大而增大,不在同一象限,不具有此性质,故D是不正确的,故选:D.通过反比例图象上的点的坐标特征,可对A选项做出判断;通过反比例函数图象和性质、增减性、对称性可对其它选项做出判断,得出答案.考查反比例函数的性质,当k<0时,在每个象限内y随x的增大而增大的性质、反比例函数的图象是轴对称图象,y=x和y=-x是它的对称轴,同时也是中心对称图形;熟练掌握反比例函数图象上点的坐标特征和反比例函数图象和性质是解答此题的基础;多方面、多角度考查反比例函数的图象和性质.10.【答案】A【解析】解:连结DO.∵AB为⊙O的直径,BC为⊙O的切线,∴∠CBO=90°,∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中,,∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°.又∵点D在⊙O上,∴CD是⊙O的切线;故①正确,∵△COD≌△COB,∴CD=CB,∵OD=OB,∴CO垂直平分DB,即CO⊥DB,故②正确;∵AB为⊙O的直径,DC为⊙O的切线,∴∠EDO=∠ADB=90°,∴∠EDA+∠ADO=∠BDO+∠ADO=90°,∴∠ADE=∠BDO,∵OD=OB,∴∠ODB=∠OBD,∴∠EDA=∠DBE,∵∠E=∠E,∴△EDA∽△EBD,故③正确;∵∠EDO=∠EBC=90°,∠E=∠E,∴△EOD∽△ECB,∴,∵OD=OB,∴ED•BC=BO•BE,故④正确;故选:A.由切线的性质得∠CBO=90°,首先连接OD,易证得△COD≌△COB(SAS),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD是⊙O的切线,根据全等三角形的性质得到CD=CB,根据线段垂直平分线的判定定理得到即CO⊥DB,故②正确;根据余角的性质得到∠ADE=∠BDO,等量代换得到∠EDA=∠DBE,根据相似三角形的判定定理得到△EDA∽△EBD,故③正确;根据相似三角形的性质得到,于是得到ED•BC=BO•BE,故④正确.本题主要考查了切线的判定、全等三角形的判定与性质以及相似三角形的判定与性质,注意掌握辅助线的作法,注意数形结合思想的应用是解答此题的关键.11.【答案】x2(x+2)(x-2)【解析】解:x4-4x2=x2(x2-4)=x2(x+2)(x-2);故答案为x2(x+2)(x-2);先提取公因式再利用平方差公式进行分解,即x4-4x2=x2(x2-4)=x2(x+2)(x-2);本题考查因式分解;熟练运用提取公因式法和平方差公式进行因式分解是解题的关键.12.【答案】6【解析】解:由题意得:圆的半径R=180×2.5π÷(75π)=6cm.故本题答案为:6.由弧长公式:l=计算.本题考查了弧长公式.13.【答案】100【解析】解:设矩形的宽为x,则长为(20-x),S=x(20-x)=-x2+20x=-(x-10)2+100,当x=10时,S最大值为100.故答案为100.设矩形的宽为x,则长为(20-x),S=x(20-x)=-x2+20x=-(x-10)2+100,当x=10时,S最大值为100.本题考查了函数的最值,熟练运用配方法是解题的关键.14.【答案】【解析】解:列表如下由表知,共有12种等可能结果,其中两次取出的小球上数字之积等于8的有4种结果,所以两次取出的小球上数字之积等于8的概率为=,故答案为:.列表将所有等可能的结果列举出来,然后利用概率公式求解即可.本题考查了列表法与树状图的知识,解题的关键是能够用列表或列树状图将所有等可能的结果列举出来,难度不大.15.【答案】14.4【解析】解:作DE⊥AB于E,如图所示:则∠AED=90°,四边形BCDE是矩形,∴BE=CD=9.6m,∠CDE=∠DEA=90°,∴∠ADC=90°+30°=120°,∵∠ACB=60°,∴∠ACD=30°,∴∠CAD=30°=∠ACD,∴AD=CD=9.6m,在Rt△ADE中,∠ADE=30°,∴AE=AD=4.8m,∴AB=AE+BE=4.8m+9.6m=14.4m;故答案为:14.4.作DE⊥AB于E,则∠AED=90°,四边形BCDE是矩形,得出BE=CD=9.6m,∠CDE=∠DEA=90°,求出∠ADC=120°,证出∠CAD=30°=∠ACD,得出AD=CD=9.6m,在Rt△ADE中,由直角三角形的性质得出AE=AD=4.8m,即可得出答案.本题考查了解直角三角形的应用-仰角俯角问题、矩形的判定与性质、等腰三角形的判定;正确作出辅助线是解题的关键.16.【答案】(97,32)【解析】解:∵OA1=1,∴OC1=1,∴∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,∴C1的纵坐标为:sin60°•OC1=,横坐标为cos60°•OC1=,∴C1(,),∵四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,∴A1C2=2,A2C3=4,A3C4=8,…,∴C 2的纵坐标为:sin60°•A1C2=,代入y=x+求得横坐标为2,∴C2(,2,),C3的纵坐标为:sin60°•A2C3=4,代入y=x+求得横坐标为11,∴C3(11,4),∴C4(23,8),C5(47,16),∴C6(97,32);故答案为(97,32).根据菱形的边长求得A1、A2、A3…的坐标然后分别表示出C1、C2、C3…的坐标找出规律进而求得C6的坐标.本题是对点的坐标变化规律的考查,主要利用了菱形的性质,解直角三角形,根据已知点的变化规律求出菱形的边长,得出系列C点的坐标,找出规律是解题的关键.17.【答案】解:(1)原式=4-3+4+1=6;(2)两边都乘以(x+1)(x-1),得:2(x+1)=5,解得:x=,检验:当x=时,(x+1)(x-1)=≠0,∴原分式方程的解为x=.【解析】(1)先计算乘方、取绝对值符号、计算二次根式的乘法及零指数幂,再计算加减可得;(2)去分母化分式方程为整式方程,解之求得x的值,再检验即可得.本题主要考查二次根式的混合运算与解分式方程,解题的关键是熟练掌握二次根式的乘法法则及解分式方程的步骤.18.【答案】解:(1)如图①,直线m即为所求(2)如图②,直线n即为所求【解析】(1)连接AC,AC所在直线即为对称轴m.(2)延长BA,CD交于一点,连接AC,BC交于一点,连接两点获得垂直平分线n.本题考查了轴对称作图,根据全等关系可以确定点与点的对称关系,从而确定对称轴所在,即可画出直线.19.【答案】100 30【解析】解:(1)15÷=100,所以样本容量为100;B组的人数为100-15-35-15-5=30,所以a%=×100%=30%,则a=30;故答案为100,30;(2)补全频数分布直方图为:(3)样本中身高低于160cm的人数为15+30=45,样本中身高低于160cm的频率为=0.45,所以估计从该地随机抽取1名学生,估计这名学生身高低于160cm的概率为0.45.(1)用A组的频数除以它所占的百分比得到样本容量,然后计算B组所占的百分比得到a的值;(2)利用B组的频数为30补全频数分布直方图;(3)计算出样本中身高低于160cm的频率,然后利用样本估计总体和利用频率估计概率求解.本题考查了利用频率估计概率:用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了统计中的有关概念.20.【答案】解:(1)根据题意,得①当0≤x≤5时,y=20x;②当x>5,y=20×0.8(x-5)+20×5=16x+20;(2)把x=30代入y=16x+20,∴y=16×30+20=500;∴一次购买玉米种子30千克,需付款500元;【解析】(1)根据题意,得①当0≤x≤5时,y=20x;②当x>5,y=20×0.8(x-5)+20×5=16x+20;(2)把x=30代入y=16x+20,即可求解;本题考查一次函数的应用;能够根据题意准确列出关系式,利用代入法求函数值是解题的关键.21.【答案】证明:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCD=90°,∴∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴AE=BF,∠BAE=∠CBF,∵EG∥BF,∴∠CBF=∠CEG,∵∠BAE+∠BEA=90°,∴∠CEG+∠BEA=90°,∴AE⊥EG,∴AE⊥BF;(2)延长AB至点P,使BP=BE,连接EP,如图所示:则AP=CE,∠EBP=90°,∴∠P=45°,∵CG为正方形ABCD外角的平分线,∴∠ECG=45°,∴∠P=∠ECG,由(1)得∠BAE=∠CEG,在△APE和△ECG中,,∴△APE≌△ECG(ASA),∴AE=EG,∵AE=BF,∴EG=BF,∵EG∥BF,∴四边形BEGF是平行四边形.【解析】(1)由SAS证明△ABE≌△BCF得出AE=BF,∠BAE=∠CBF,由平行线的性质得出∠CBF=∠CEG,证出AE⊥EG,即可得出结论;(2)延长AB至点P,使BP=BE,连接EP,则AP=CE,∠EBP=90°,证明△APE≌△ECG得出AE=EG,证出EG=BF,即可得出结论.本题考查了正方形的性质、全等三角形的判定与性质、平行四边形的判定、平行线的性质等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.22.【答案】y=25t2-80t+100(0≤t≤4)【解析】解:(1)过点P作PE⊥BC于点E,如图1所示.当运动时间为t秒时(0≤t≤4)时,点P的坐标为(3t,0),点Q的坐标为(8-2t,6),∴PE=6,EQ=|8-2t-3t|=|8-5t|,∴PQ2=PE2+EQ2=62+|8-5t|2=25t2-80t+100,∴y=25t2-80t+100(0≤t≤4).故答案为:y=25t2-80t+100(0≤t≤4).(2)当PQ=3时,25t2-80t+100=(3)2,整理,得:5t2-16t+11=0,解得:t1=1,t2=.(3)经过点D的双曲线y=(k≠0)的k值不变.连接OB,交PQ于点D,过点D作DF⊥OA于点F,如图2所示.∵OC=6,BC=8,∴OB==10.∵BQ∥OP,∴△BDQ∽△ODP,∴===,∴OD=6.∵CB∥OA,∴∠DOF=∠OBC.在Rt△OBC中,sin∠OBC===,cos∠OBC===,∴OF=OD•cos∠OBC=6×=,DF=OD•sin∠OBC=6×=,∴点D的坐标为(,),∴经过点D的双曲线y=(k≠0)的k值为×=.(1)过点P作PE⊥BC于点E,由点P,Q的出发点、速度及方向可找出当运动时间为t秒时点P,Q的坐标,进而可得出PE,EQ的长,再利用勾股定理即可求出y关于t的函数解析式(由时间=路程÷速度可得出t的取值范围);(2)将PQ=3代入(1)的结论中可得出关于t的一元二次方程,解之即可得出结论;(3)连接OB,交PQ于点D,过点D作DF⊥OA于点F,利用勾股定理可求出OB的长,由BQ∥OP可得出△BDQ∽△ODP,利用相似三角形的性质结合OB=10可求出OD=6,由CB∥OA可得出∠DOF=∠OBC,在Rt△OBC中可求出sin∠OBC及cos∠OBC的值,由OF=OD•cos∠OBC,DF=OD•sin∠OBC可求出点D的坐标,再利用反比例函数图象上点的坐标特征即可求出k值,此题得解.本题考查了勾股定理、解直角三角形、解一元二次方程、相似三角形的判定与性质、平行线的性质以及反比例函数图象上点的坐标特征,解题的关键是:(1)利用勾股定理,找出y关于t的函数解析式;(2)通过解一元二次方程,求出当PQ=3时t的值;(3)利用相似三角形的性质及解直角三角形,找出点D的坐标.23.【答案】AB+AC=AD【解析】解:(1)如图①在AD上截取AE=AB,连接BE,∵∠BAC=120°,∠BAC的平分线交⊙O于点D,∴∠DBC=∠DAC=60°,∠DCB=∠BAD=60°,∴△ABE和△BCD都是等边三角形,∴∠DBE=∠ABC,AB=BE,BC=BD,∴△BED≌△BAC(SAS),∴DE=AC,∴AD=AE+DE=AB+AC;故答案为:AB+AC=AD.(2)AB+AC=AD.理由如下:如图②,延长AB至点M,使BM=AC,连接DM,∵四边形ABDC内接于⊙O,∴∠MBD=∠ACD,∵∠BAD=∠CAD=45°,∴BD=CD,∴△MBD≌△ACD(SAS),∴MD=AD,∠M=∠CAD=45°,∴MD⊥AD.∴AM=,即AB+BM=,∴AB+AC=;(3)如图③,延长AB至点N,使BN=AC,连接DN,∵四边形ABDC内接于⊙O,∴∠NBD=∠ACD,∵∠BAD=∠CAD,∴BD=CD,∴△NBD≌△ACD(SAS),∴ND=AD,∠N=∠CAD,∴∠N=∠NAD=∠DBC=∠DCB,∴△NAD∽△CBD,∴,∴,又AN=AB+BN=AB+AC,BC=5,BD=4,∴=.(1)在AD上截取AE=AB,连接BE,由条件可知△ABE和△BCD都是等边三角形,可证明△BED≌△BAC,可得DE=AC,则AB+AC=AD;(2)延长AB至点M,使BM=AC,连接DM,证明△MBD≌△ACD,可得MD=AD,证得AB+AC=;(3)延长AB至点N,使BN=AC,连接DN,证明△NBD≌△ACD,可得ND=AD,∠N=∠CAD,证△NAD∽△CBD,可得,可由AN=AB+AC,求出的值.本题属于圆的综合题,考查了圆周角定理,全等三角形的判定与性质,相似三角形的判定和性质,等边三角形的判定与性质等知识,解题的关键是正确作出辅助线解决问题.24.【答案】解:(1)点A(-3,-3),B(1,-1)代入y=kx+b,∴ ,∴ ,∴y=x-;联立y=ax2+2x-1与y=x-,则有2ax2+3x+1=0,∵抛物线C与直线l有交点,∴△=9-8a≥0,∴a≤且a≠0;(2)根据题意可得,y=-x2+2x-1,∵a<0,∴抛物线开口向下,对称轴x=1,∵m≤x≤m+2时,y有最大值-4,∴当y=-4时,有-x2+2x-1=-4,∴x=-1或x=3,①在x=1左侧,y随x的增大而增大,∴x=m+2=-1时,y有最大值-4,∴m=-3;②在对称轴x=1右侧,y随x最大而减小,∴x=m=3时,y有最大值-4;综上所述:m=-3或m=3;(3)①a<0时,x=1时,y≤-1,即a≤-2;②a>0时,x=-3时,y≥-3,即a≥,直线AB的解析式为y=x-,抛物线与直线联立:ax2+2x-1=x-,∴ax2+x+=0,△=-2a>0,∴a<,∴a的取值范围为≤a<或a≤-2;【解析】(1)点A(-3,-3),B(1,-1)代入y=kx+b,求出y=x-;联立y=ax2+2x-1与y=x-,则有2ax2+3x+1=0,△=9-8a≥0即可求解;(2)根据题意可得,y=-x2+2x-1,当y=-4时,有-x2+2x-1=-4,x=-1或x=3;①在x=1左侧,y随x的增大而增大,x=m+2=-1时,y有最大值-4,m=-3;②在对称轴x=1右侧,y随x最大而减小,x=m=3时,y有最大值-4;(3))①a<0时,x=1时,y≤-1,即a≤-2;②a>0时,x=-3时,y≥-3,即a≥,直线AB的解析式为y=x-,抛物线与直线联立:ax2+2x-1=x-,△=-2a>0,则a<,即可求a的范围;本题考查二次函数的图象及性质,一次函数的图象及性质;熟练掌握待定系数法求解析式,数形结合,分类讨论函数在给定范围内的最大值是解题的关键.。
湖北省潜江市老新中学2019年5月中考模拟题数学试卷含答案解析
潜江市老新中学2019年中考模拟题数学试卷(5月份)一.选择题(每题3分,满分30分)1.=()A.±4 B.4 C.±2 D.22.下列平面图形,是中心对称但不是轴对称图形的是()A.B.C.D.3.下列计算的结果是a6的为()A.a12÷a2B.a7﹣a C.a2•a4D.(﹣a2)34.如图,已知∠BED=55°,则∠B+∠C=()A.30°B.35°C.45°D.55°5.下列说法:①要了解一批灯泡的使用寿命,应采用普查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;③甲、乙两组数据的样本容量与平均数分别相同若方差S甲2=0.1,S乙2=0.2,则甲组数据比乙组数据稳定;④“掷一枚硬币,正面朝上”是必然事件.正确的说法有()个.A.4 B.3 C.2 D.16.2019年足球亚洲杯正在阿联酋进行,这项起源于我国“蹴鞠”的运动项目近年来在我国中小学校园得到大力推广,某次校园足球比赛规定:胜一场得3分,平一场得1分,负一场得0分,某足球队共进行了8场比赛,得了12分,该队获胜的场数有几种可能()A.3 B.4 C.5 D.67.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A.(4,4)B.(3,3)C.(3,1)D.(4,1)8.如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为()A.9πB.10πC.11πD.12π9.如果不等式组的整数解仅为1,2,3,那么适合这个不等式组的整数a,b 的有序数对(a,b)的个数是()A.5 B.6 C.12 D.410.如图,△PAB与△PC D均为等腰直角三角形,点C在PB上,若△ABC与△BCD的面积之和为10,则△PAB与△PCD的面积之差为()A.5 B.10 C.l5 D.20二.填空题(满分18分,每小题3分)11.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:假如你去摸一次,你摸到白球的概率是 .12.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m ,这个数用科学记数法表示正确的是 m .13.设α、β是方程x 2+2018x ﹣2=0的两根,则(α2+2018α﹣1)(β2+2018β+2)=.14.如图,∠AOB =60°,点P 是∠AOB 内一定点,且OP =2,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是 .15.飞机着陆后滑行的距离S (单位:米)与滑行的时间t (单位:秒)之间的函数关系式是s =60t ﹣1.2t 2,那么飞机着陆后滑行 秒停下. 16.观察下列各等式: 第一个等式:=1,第二个等式:=2,第三个等式:=3…根据上述等式反映出的规律直接写出第四个等式为 ;猜想第n 个等式(用含n 的代数式表示)为 . 三.解答题17.(10分)(1)计算:;(2)先化简,再求值:,其中3x 2+3x ﹣2=0.18.(6分)如图,在Rt △ABC 中,∠ACB =90°,请用尺规过点C 作直线l ,使其将Rt △ABC 分割成两个等腰三角形.(保留作图痕迹,不写作法)19.(6分)为了维护国家主权和海洋权利,我国海监部门对中国海域实现常态化管理.某日,我国海监船在某海岛附近的海域执行巡逻任务.如图,此时海监船位于海岛P的北偏东30°方向,距离海岛100海里的A处,它沿正南方向航行一段时间后,到达位于海岛P的南偏东45°方向的B处,求海监船航行了多少海里(结果保留根号)?20.(10分)张老师为了了解班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查.他将调查结果分为四类:A:很好;B:较好;C:一般;D:较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)请计算出A类男生和C类女生的人数,并将条形统计图补充完整.(2)为了共同进步,张老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率.21.(8分)如图,AB是⊙O的直径,CD切⊙O于点C,AD交⊙O于点E,AC平分∠BAD,连接BE.(Ⅰ)求证:CD⊥ED;(Ⅱ)若CD=4,AE=2,求⊙O的半径.22.(10分)我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼,有关成本、销售情况如下表:(1)2010年,王大爷养殖甲鱼20亩,桂鱼10亩,求王大爷这一年共收益多少万元?(收益=销售额﹣成本)(2)2011年,王大爷继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2010年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?(3)已知甲鱼每亩需要饲料500kg,桂鱼每亩需要饲料700kg,根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每次装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需要全部饲料比原计划减少了2次,求王大爷原定的运输车辆每次可装载饲料多少千克?23.(10分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.24.(12分)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C (4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.参考答案一.选择1.解:=4,故选:B.2.解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,不是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是轴对称图形,是中心对称图形.故选:A.3.解:A、a12÷a2=a10,故此选项错误;B、a7﹣a,无法计算,故此选项错误;C、a2•a4=a6,故此选项正确;D、(﹣a2)3=﹣a6,故此选项错误.故选:C.4.解:∵∠BED是△BCE的外角,∴∠BED=∠B+∠C=55°,故选:D.5.解:①要了解一批灯泡的使用寿命,应采用抽样查的方式,此结论错误;②若一个游戏的中奖率是1%,则做100次这样的游戏也不一定会中奖,此结论错误;③甲、乙两组数据的样本容量与平均数分别相同,若方差S甲2=0.1,S乙2=0.2,则甲组数据比乙组数据稳定,此结论正确;④“掷一枚硬币,正面朝上”是随机事件,此结论错误;故选:D.6.解:设该队获胜x场,平y场,则负(8﹣x﹣y)场,依题意,得:3x+y=12,∴y=12﹣3x,∴,,,,.又∵x+y≤8,∴该队可能获胜2场、3场或4场.故选:A.7.解:∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选:A.8.解:由题意可得此几何体是圆锥,底面圆的半径为:2,母线长为:5,故这个几何体的侧面积为:π×2×5=10π.故选:B.9.解:解不等式组得,∵不等式组的整数解仅为1,2,3,∴,解得:0<a≤3、6<b≤8,则整数a的值有1、2、3,整数b的值有7、8,所以有序数对(a,b)有(1,7)、(1,8)、(2,7)、(2,8)、(3,7)、(3,8)这6组,故选:B.10.解:依题意∵△PAB与△PCD均为等腰直角三角形∴PB=PB,PC=PD∴S△PAB﹣S△PCD=PD2﹣PA2=(PA+PD)(PA﹣PD)=(PB﹣PC)(PA+PD)=BC(PA+PD),又∵S△ABC+S△BCD=BC•PA+BC•PD=BC•(PA+PD)=10∴S△PAB﹣S△PCD=10故选:B.二.填空题11.解:根据摸到白球的频率稳定在0.6左右,所以摸一次,摸到白球的概率为0.6.故答案为0.6.12.解:根据科学记数法的表示方法可得:0.00000000034=3.4×10﹣10.故答案为:3.4×10﹣10.13.解:∵α、β是方程x2+2018x﹣2=0的两根,∴α2+2018α=2,β2+2018β=2,∴(α2+2018α﹣1)(β2+2018β+2)=(2﹣1)(2+2)=4.故答案为:4.14.解:作点P关于OA的对称点F,点P关于OB的对称点E,连接EF,OE,OF,则EF即△PMN周长的最小值,∵∠AOB=60°,∴∠EOF=120°,由对称性可知:OF=OP=OE=2,∴∠OEF=∠OFE=30°,∴EF=2;故答案为2;15.解:由题意,s=﹣1.2t2+60t,=﹣1.2(t2﹣50t+625﹣625)=﹣1.2(t﹣25)2+750,即当t=25秒时,飞机才能停下来.故答案是:25.16.解:观察规律第四个等式为:根据规律,每个等式左侧分母恒为2,分子前两项分别是n+1,n则第n个等式为:=n故答案为:,=n三.解答题(共8小题,满分72分)17.解(1)原式=﹣﹣1+3﹣+2×=﹣+=;(2)原式=•﹣=﹣===由3x2+3x﹣2=0.得x2+x=.∴原式==.18.解如图所示:,△ACD和△CDB即为所求.19.解:过点P作PC⊥AB于C点,则线段PC的长度即为海监船与灯塔P的最近距离.由题意,得∠APC=90°﹣30°=60°,∠B=45°,AP=100海里.在Rt△APC中,∵∠ACP=90°,∠APC=60°,∴PC=AP=50海里.AC=海里在Rt△PCB中,∵∠BCP=90°,∠B=45°,PC=50海里,∴BC=PC=50海里,∴AB=AC+BC=50+50(海里)答:轮船航行的距离AB为50+50海里.20.解:(1)∵被调查的总人数为(7+5)÷60%=20人,∴A类别人数为20×15%=3人、C类别人数为20×(1﹣15%﹣60%﹣10%)=3,则A类男生人数为3﹣1=2、C类女生人数为3﹣1=2,补全图形如下:(2)画树状图得:∵共有6种等可能的结果,所选两位同学恰好是一位男同学和一位女同学的有3种情况,∴所选两位同学恰好是一男一女同学的概率为.21.(Ⅰ)证明:连接OC,交BE于F,由DC是切线得OC⊥DC;又∵OA=OC,∴∠OAC=∠OCA,∵∠DAC=∠OAC.∴∠OCA=∠DAC,∴OC∥AD,∴∠D=∠OCD=90°即CD⊥ED.(Ⅱ)解:∵AB是⊙O的直径,∴∠AEB=90°,∵∠D=90°,∴∠AEB=∠D,∴BE∥CD,∵OC⊥CD,∴OC⊥BE,∴EF=B F,∵OC∥ED,∴四边形EFCD是矩形,∴EF=CD=4,∴BE=8,∴AB===2∴⊙O的半径为.22.解:(1)2010年王大爷的收益为:20×(3﹣2.4)+10×(2.5﹣2)=17(万元),答:王大爷这一年共收益17万元.(2)设养殖甲鱼x亩,则养殖桂鱼(30﹣x)亩,由题意得2.4x +2(30﹣x )≤70解得x ≤25,又设王大爷可获得收益为y 万元,则y =0.6x +0.5(30﹣x ),即y =x +15.∵函数值y 随x 的增大而增大,∴当x =25时,可获得最大收益.答:要获得最大收益,应养殖甲鱼25亩,桂鱼5亩.(3)设大爷原定的运输车辆每次可装载饲料a (kg ),由(2)得,共需要饲料为500×25+700×5=16000(kg ),根据题意得﹣=2,解得a =4000,把a =4000代入原方程公分母得,2a =2×4000=8000≠0,故a =4000是原方程的解.答:王大爷原定的运输车辆每次可装载饲料4000kg .23.解:(1)∵四边形ABCD 是正方形,∴AB =CB =CD =DA =4,∠D =∠DAB =90°∠DAC =∠BAC =45°,∴AC ==4,∵∠DAC =∠AHC +∠ACH =45°,∠ACH +∠ACG =45°, ∴∠AHC =∠ACG .故答案为=.(2)结论:AC 2=AG •AH .理由:∵∠AHC =∠ACG ,∠CAH =∠CAG =135°,∴△AHC ∽△ACG ,=,∴AC 2=AG •AH .(3)①△AGH的面积不变.理由:∵S=•AH•AG=AC2=×(4)2=16.∴△AGH的面积为16.②如图1中,当GC=GH时,易证△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴==,∴AE=AB=.如图2中,当CH=HG时,易证AH=BC=4(可以证明△GAH≌△HDC得到)∵BC∥AH,∴==1,∴AE=BE=2.如图3中,当CG=CH时,易证∠ECB=∠DCF=22.5°.在BC上取一点M,使得BM=BE,∴∠BME=∠BEM=45°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.5°,∴CM=EM,设BM=BE=x,则CM=EM=x,∴x+x=4,∴m=4(﹣1),∴AE=4﹣4(﹣1)=8﹣4,综上所述,满足条件的m的值为或2或8﹣4.24.解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,解得,∴抛物线的解析式为y=x2﹣x﹣1;(2)令y=0,则x﹣1=0,解得x=,∴点A的坐标为(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,DF=DE•sin∠DEF=DE•=DE,∴p=2(DF+EF)=2(+)DE=DE,∵点D的横坐标为t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴当t=2时,p有最大值;(3)∵△AOB绕点M沿逆时针方向旋转90°,∴A1O1∥y轴时,B1O1∥x轴,设点A1的横坐标为x,①如图1,点O1、B1在抛物线上时,点O1的横坐标为x,点B1的横坐标为x+1,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1,解得x=,②如图2,点A1、B1在抛物线上时,点B1的横坐标为x+1,点A1的纵坐标比点B1的纵坐标大,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1+,解得x=﹣,综上所述,点A1的横坐标为或﹣.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年湖北省潜江市中考数学试卷(含答案解析)一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3分)下列各数中,是无理数的是()A.3.1415B.C.D.2.(3分)如图所示的正六棱柱的主视图是()A.B.C.D.3.(3分)据海关统计,今年第一季度我国外贸进出口总额是70100亿元人民币,比去年同期增长了3.7%,数70100亿用科学记数法表示为()A.7.01×104B.7.01×1011 C.7.01×1012 D.7.01×1013 4.(3分)下列说法正确的是()A.了解我市市民知晓“礼让行人”交通新规的情况,适合全面调查B.甲、乙两人跳远成绩的方差分别为S甲2=3,S乙2=4,说明乙的跳远成绩比甲稳定C.一组数据2,2,3,4的众数是2,中位数是2.5D.可能性是1%的事件在一次试验中一定不会发生5.(3分)如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF的度数是()A.20°B.25°C.30°D.35°6.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(3分)若方程x2﹣2x﹣4=0的两个实数根为α,β,则α2+β2的值为()A.12B.10C.4D.﹣48.(3分)把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有()A.3种B.4种C.5种D.9种9.(3分)反比例函数y=﹣,下列说法不正确的是()A.图象经过点(1,﹣3)B.图象位于第二、四象限C.图象关于直线y=x对称D.y随x的增大而增大10.(3分)如图,AB为⊙O的直径,BC为⊙O的切线,弦AD∥OC,直线CD交BA的延长线于点E,连接BD.下列结论:①CD是⊙O的切线;②CO⊥DB;③△EDA∽△EBD;④ED•BC=BO•BE.其中正确结论的个数有()A.4个B.3个C.2个D.1个二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3分)分解因式:x4﹣4x2=.12.(3分)75°的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是cm.13.(3分)矩形的周长等于40,则此矩形面积的最大值是.14.(3分)一个不透明的口袋中有四个完全相同的小球,其上分别标有数字1,2,4,8.随机摸取一个小球后不放回,再随机摸取一个小球,则两次取出的小球上数字之积等于8的概率是.15.(3分)如图,为测量旗杆AB的高度,在教学楼一楼点C处测得旗杆顶部的仰角为60°,在四楼点D处测得旗杆顶部的仰角为30°,点C与点B在同一水平线上.已知CD=9.6m,则旗杆AB的高度为m.16.(3分)如图,在平面直角坐标系中,四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,点A1,A2,A3,…都在x轴上,点C1,C2,C3,…都在直线y=x+上,且∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,OA1=1,则点C6的坐标是.三、解答题(本大题共8个小题,满分72分.)17.(12分)(1)计算:(﹣2)2﹣|﹣3|+×+(﹣6)0;(2)解分式方程:=.18.(6分)请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图①,四边形ABCD中,AB=AD,∠B=∠D,画出四边形ABCD的对称轴m;(2)如图②,四边形ABCD中,AD∥BC,∠A=∠D,画出BC边的垂直平分线n.19.(7分)为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.(1)填空:样本容量为,a=;(2)把频数分布直方图补充完整;(3)若从该地随机抽取1名学生,估计这名学生身高低于160cm的概率.20.(8分)某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克,若一次购买超过5千克,则超过5千克部分的种子价格打8折.设一次购买量为x千克,付款金额为y元.(1)求y关于x的函数解析式;(2)某农户一次购买玉米种子30千克,需付款多少元?21.(8分)如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG∥BF,交正方形外角的平分线CG于点G,连接GF.求证:(1)AE⊥BF;(2)四边形BEGF是平行四边形.22.(10分)如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A (12,0),B(8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.(1)直接写出y关于t的函数解析式及t的取值范围:;(2)当PQ=3时,求t的值;(3)连接OB交PQ于点D,若双曲线y=(k≠0)经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.23.(10分)已知△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,连接DB,DC.(1)如图①,当∠BAC=120°时,请直接写出线段AB,AC,AD之间满足的等量关系式:;(2)如图②,当∠BAC=90°时,试探究线段AB,AC,AD之间满足的等量关系,并证明你的结论;(3)如图③,若BC=5,BD=4,求的值.24.(11分)在平面直角坐标系中,已知抛物线C:y=ax2+2x﹣1(a≠0)和直线l:y=kx+b,点A(﹣3,﹣3),B(1,﹣1)均在直线l上.(1)若抛物线C与直线l有交点,求a的取值范围;(2)当a=﹣1,二次函数y=ax2+2x﹣1的自变量x满足m≤x≤m+2时,函数y的最大值为﹣4,求m的值;(3)若抛物线C与线段AB有两个不同的交点,请直接写出a的取值范围.2019年湖北省潜江市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3分)下列各数中,是无理数的是()A.3.1415B.C.D.【分析】根据无理数的定义:无限不循环小数进行判断,=2是有理数;【解答】解:=2是有理数,是无理数,故选:D.【点评】本题考查无理数的定义;能够准确辨识无理数是解题的关键.2.(3分)如图所示的正六棱柱的主视图是()A.B.C.D.【分析】主视图是从正面看所得到的图形即可,可根据正六棱柱的特点作答.【解答】解:正六棱柱的主视图如图所示:故选:B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(3分)据海关统计,今年第一季度我国外贸进出口总额是70100亿元人民币,比去年同期增长了3.7%,数70100亿用科学记数法表示为()A.7.01×104B.7.01×1011 C.7.01×1012 D.7.01×1013【分析】把一个很大的数写成a×10n的形式.【解答】解:70100亿=7.01×1012.故选:C.【点评】本能运用了科学记数法的定义这一知识点,掌握好n与数位之间的关系是解题的关键.4.(3分)下列说法正确的是()A.了解我市市民知晓“礼让行人”交通新规的情况,适合全面调查B.甲、乙两人跳远成绩的方差分别为S甲2=3,S乙2=4,说明乙的跳远成绩比甲稳定C.一组数据2,2,3,4的众数是2,中位数是2.5D.可能性是1%的事件在一次试验中一定不会发生【分析】全面调查与抽样调查的优缺点:①全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.②抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.一组数据中出现次数最多的数据叫做众数.【解答】解:A.了解我市市民知晓“礼让行人”交通新规的情况,适合抽样调查,A错误;B.甲、乙两人跳远成绩的方差分别为S甲2=3,S乙2=4,说明甲的跳远成绩比乙稳定,B错误;C.一组数据2,2,3,4的众数是2,中位数是2.5,正确;D.可能性是1%的事件在一次试验中可能会发生,D错误.故选:C.【点评】本题考查了统计的应用,正确理解概率的意义是解题的关键.5.(3分)如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF的度数是()A.20°B.25°C.30°D.35°【分析】根据平行线的性质解答即可.【解答】解:∵CD∥AB,∴∠AOD+∠D=180°,∴∠AOD=70°,∴∠DOB=110°,∵OE平分∠BOD,∴∠DOE=55°,∵OF⊥OE,∴∠FOE=90°,∴∠DOF=90°﹣55°=35°,∴∠AOF=70°﹣35°=35°,故选:D.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.6.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣1>0得x>1,解不等式5﹣2x≥1得x≤2,则不等式组的解集为1<x≤2,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(3分)若方程x2﹣2x﹣4=0的两个实数根为α,β,则α2+β2的值为()A.12B.10C.4D.﹣4【分析】根据根与系数的关系可得α+β=2,αβ=﹣4,再利用完全平方公式变形α2+β2=(α+β)2﹣2αβ,代入即可求解;【解答】解:∵方程x2﹣2x﹣4=0的两个实数根为α,β,∴α+β=2,αβ=﹣4,∴α2+β2=(α+β)2﹣2αβ=4+8=12;故选:A.【点评】本题考查一元二次方程根与系数的关系;熟练掌握韦达定理,灵活运用完全平方公式是解题的关键.8.(3分)把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有()A.3种B.4种C.5种D.9种【分析】可列二元一次方程解决这个问题.【解答】解:设2m的钢管b根,根据题意得:a+2b=9,∵a、b均为整数,∴,,,.故选:B.【点评】本题运用了二元一次方程的整数解的知识点,运算准确是解此题的关键.9.(3分)反比例函数y=﹣,下列说法不正确的是()A.图象经过点(1,﹣3)B.图象位于第二、四象限C.图象关于直线y=x对称D.y随x的增大而增大【分析】通过反比例图象上的点的坐标特征,可对A选项做出判断;通过反比例函数图象和性质、增减性、对称性可对其它选项做出判断,得出答案.【解答】解:由点(1,﹣3)的坐标满足反比例函数y=﹣,故A是正确的;由k=﹣3<0,双曲线位于二、四象限,故B也是正确的;由反比例函数的对称性,可知反比例函数y=﹣关于y=x对称是正确的,故C也是正确的,由反比例函数的性质,k<0,在每个象限内,y随x的增大而增大,不在同一象限,不具有此性质,故D是不正确的,故选:D.【点评】考查反比例函数的性质,当k<0时,在每个象限内y随x的增大而增大的性质、反比例函数的图象是轴对称图象,y=x和y=﹣x是它的对称轴,同时也是中心对称图形;熟练掌握反比例函数图象上点的坐标特征和反比例函数图象和性质是解答此题的基础;多方面、多角度考查反比例函数的图象和性质.10.(3分)如图,AB为⊙O的直径,BC为⊙O的切线,弦AD∥OC,直线CD交BA的延长线于点E,连接BD.下列结论:①CD是⊙O的切线;②CO⊥DB;③△EDA∽△EBD;④ED•BC=BO•BE.其中正确结论的个数有()A.4个B.3个C.2个D.1个【分析】由切线的性质得∠CBO=90°,首先连接OD,易证得△COD≌△COB(SAS),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD是⊙O的切线,根据全等三角形的性质得到CD=CB,根据线段垂直平分线的判定定理得到即CO⊥DB,故②正确;根据余角的性质得到∠ADE=∠BDO,等量代换得到∠EDA=∠DBE,根据相似三角形的判定定理得到△EDA∽△EBD,故③正确;根据相似三角形的性质得到,于是得到ED•BC=BO•BE,故④正确.【解答】解:连结DO.∵AB为⊙O的直径,BC为⊙O的切线,∴∠CBO=90°,∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中,,∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°.又∵点D在⊙O上,∴CD是⊙O的切线;故①正确,∵△COD≌△COB,∴CD=CB,∵OD=OB,∴CO垂直平分DB,即CO⊥DB,故②正确;∵AB为⊙O的直径,DC为⊙O的切线,∴∠EDO=∠ADB=90°,∴∠EDA+∠ADO=∠BDO+∠ADO=90°,∴∠ADE=∠BDO,∵OD=OB,∴∠ODB=∠OBD,∴∠EDA=∠DBE,∵∠E=∠E,∴△EDA∽△EBD,故③正确;∵∠EDO=∠EBC=90°,∠E=∠E,∴△EOD∽△ECB,∴,∵OD=OB,∴ED•BC=BO•BE,故④正确;故选:A.【点评】本题主要考查了切线的判定、全等三角形的判定与性质以及相似三角形的判定与性质,注意掌握辅助线的作法,注意数形结合思想的应用是解答此题的关键.二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3分)分解因式:x4﹣4x2=x2(x+2)(x﹣2).【分析】先提取公因式再利用平方差公式进行分解,即x4﹣4x2=x2(x2﹣4)=x2(x+2)(x﹣2);【解答】解:x4﹣4x2=x2(x2﹣4)=x2(x+2)(x﹣2);故答案为x2(x+2)(x﹣2);【点评】本题考查因式分解;熟练运用提取公因式法和平方差公式进行因式分解是解题的关键.12.(3分)75°的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是6cm.【分析】由弧长公式:l=计算.【解答】解:由题意得:圆的半径R=180×2.5π÷(75π)=6cm.故本题答案为:6.【点评】本题考查了弧长公式.13.(3分)矩形的周长等于40,则此矩形面积的最大值是100.【分析】设矩形的宽为x,则长为(20﹣x),S=x(20﹣x)=﹣x2+20x=﹣(x﹣10)2+100,当x=10时,S最大值为100.【解答】解:设矩形的宽为x,则长为(20﹣x),S=x(20﹣x)=﹣x2+20x=﹣(x﹣10)2+100,当x=10时,S最大值为100.故答案为100.【点评】本题考查了函数的最值,熟练运用配方法是解题的关键.14.(3分)一个不透明的口袋中有四个完全相同的小球,其上分别标有数字1,2,4,8.随机摸取一个小球后不放回,再随机摸取一个小球,则两次取出的小球上数字之积等于8的概率是.【分析】列表将所有等可能的结果列举出来,然后利用概率公式求解即可.【解答】解:列表如下1248 12482281644832881632由表知,共有12种等可能结果,其中两次取出的小球上数字之积等于8的有4种结果,所以两次取出的小球上数字之积等于8的概率为=,故答案为:.【点评】本题考查了列表法与树状图的知识,解题的关键是能够用列表或列树状图将所有等可能的结果列举出来,难度不大.15.(3分)如图,为测量旗杆AB的高度,在教学楼一楼点C处测得旗杆顶部的仰角为60°,在四楼点D处测得旗杆顶部的仰角为30°,点C与点B在同一水平线上.已知CD=9.6m,则旗杆AB的高度为14.4m.【分析】作DE⊥AB于E,则∠AED=90°,四边形BCDE是矩形,得出BE=CD=9.6m,∠CDE=∠DEA=90°,求出∠ADC=120°,证出∠CAD=30°=∠ACD,得出AD=CD=9.6m,在Rt△ADE中,由直角三角形的性质得出AE=AD=4.8m,即可得出答案.【解答】解:作DE⊥AB于E,如图所示:则∠AED=90°,四边形BCDE是矩形,∴BE=CD=9.6m,∠CDE=∠DEA=90°,∴∠ADC=90°+30°=120°,∵∠ACB=60°,∴∠ACD=30°,∴∠CAD=30°=∠ACD,∴AD=CD=9.6m,在Rt△ADE中,∠ADE=30°,∴AE=AD=4.8m,∴AB=AE+BE=4.8m+9.6m=14.4m;故答案为:14.4.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题、矩形的判定与性质、等腰三角形的判定;正确作出辅助线是解题的关键.16.(3分)如图,在平面直角坐标系中,四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,点A1,A2,A3,…都在x轴上,点C1,C2,C3,…都在直线y=x+上,且∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,OA1=1,则点C6的坐标是(95,32).【分析】根据菱形的边长求得A1、A2、A3…的坐标然后分别表示出C1、C2、C3…的坐标找出规律进而求得C6的坐标.【解答】解:∵OA1=1,∴OC1=1,∴∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,∴C1的纵坐标为:sin60°•OC1=,横坐标为cos60°•OC1=,∴C1(,),∵四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,∴A1C2=2,A2C3=4,A3C4=8,…,∴C2的纵坐标为:sin60°•A1C2=,代入y=x+求得横坐标为2,∴C2(2,),C3的纵坐标为:sin60°•A2C3=2,代入y=x+求得横坐标为5,∴C3(5,4),∴C4(23,8),C5(47,16),∴C6(95,32);故答案为(95,32).【点评】本题是对点的坐标变化规律的考查,主要利用了菱形的性质,解直角三角形,根据已知点的变化规律求出菱形的边长,得出系列C点的坐标,找出规律是解题的关键.三、解答题(本大题共8个小题,满分72分.)17.(12分)(1)计算:(﹣2)2﹣|﹣3|+×+(﹣6)0;(2)解分式方程:=.【分析】(1)先计算乘方、取绝对值符号、计算二次根式的乘法及零指数幂,再计算加减可得;(2)去分母化分式方程为整式方程,解之求得x的值,再检验即可得.【解答】解:(1)原式=4﹣3+4+1=6;(2)两边都乘以(x+1)(x﹣1),得:2(x+1)=5,解得:x=,检验:当x=时,(x+1)(x﹣1)=≠0,∴原分式方程的解为x=.【点评】本题主要考查二次根式的混合运算与解分式方程,解题的关键是熟练掌握二次根式的乘法法则及解分式方程的步骤.18.(6分)请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图①,四边形ABCD中,AB=AD,∠B=∠D,画出四边形ABCD的对称轴m;(2)如图②,四边形ABCD中,AD∥BC,∠A=∠D,画出BC边的垂直平分线n.【分析】(1)连接AC,AC所在直线即为对称轴m.(2)延长BA,CD交于一点,连接AC,BC交于一点,连接两点获得垂直平分线n.【解答】解:(1)如图①,直线m即为所求(2)如图②,直线n即为所求【点评】本题考查了轴对称作图,根据全等关系可以确定点与点的对称关系,从而确定对称轴所在,即可画出直线.19.(7分)为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.(1)填空:样本容量为100,a=30;(2)把频数分布直方图补充完整;(3)若从该地随机抽取1名学生,估计这名学生身高低于160cm的概率.【分析】(1)用A组的频数除以它所占的百分比得到样本容量,然后计算B组所占的百分比得到a的值;(2)利用B组的频数为30补全频数分布直方图;(3)计算出样本中身高低于160cm的频率,然后利用样本估计总体和利用频率估计概率求解.【解答】解:(1)15÷=100,所以样本容量为100;B组的人数为100﹣15﹣35﹣15﹣5=30,所以a%=×100%=30%,则a=30;故答案为100,30;(2)补全频数分布直方图为:(3)样本中身高低于160cm的人数为15+30=45,样本中身高低于160cm的频率为=0.45,所以估计从该地随机抽取1名学生,估计这名学生身高低于160cm的概率为0.45.【点评】本题考查了利用频率估计概率:用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了统计中的有关概念.20.(8分)某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克,若一次购买超过5千克,则超过5千克部分的种子价格打8折.设一次购买量为x千克,付款金额为y元.(1)求y关于x的函数解析式;(2)某农户一次购买玉米种子30千克,需付款多少元?【分析】(1)根据题意,得①当0≤x≤5时,y=20x;②当x>5,y=20×0.8(x﹣5)+20×5=16x+20;(2)把x=30代入y=16x+20,即可求解;【解答】解:(1)根据题意,得①当0≤x≤5时,y=20x;②当x>5,y=20×0.8(x﹣5)+20×5=16x+20;(2)把x=30代入y=16x+20,∴y=16×30+20=500;∴一次购买玉米种子30千克,需付款500元;【点评】本题考查一次函数的应用;能够根据题意准确列出关系式,利用代入法求函数值是解题的关键.21.(8分)如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG∥BF,交正方形外角的平分线CG于点G,连接GF.求证:(1)AE⊥BF;(2)四边形BEGF是平行四边形.【分析】(1)由SAS证明△ABE≌△BCF得出AE=BF,∠BAE=∠CBF,由平行线的性质得出∠CBF=∠CEG,证出AE⊥EG,即可得出结论;(2)延长AB至点P,使BP=BE,连接EP,则AP=CE,∠EBP=90°,证明△APE ≌△ECG得出AE=EG,证出EG=BF,即可得出结论.【解答】证明:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCD=90°,∴∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴AE=BF,∠BAE=∠CBF,∵EG∥BF,∴∠CBF=∠CEG,∵∠BAE+∠BEA=90°,∴∠CEG+∠BEA=90°,∴AE⊥EG,∴AE⊥BF;(2)延长AB至点P,使BP=BE,连接EP,如图所示:则AP=CE,∠EBP=90°,∴∠P=45°,∵CG为正方形ABCD外角的平分线,∴∠ECG=45°,∴∠P=∠ECG,由(1)得∠BAE=∠CEG,在△APE和△ECG中,,∴△APE≌△ECG(ASA),∴AE=EG,∵AE=BF,∴EG=BF,∵EG∥BF,∴四边形BEGF是平行四边形.【点评】本题考查了正方形的性质、全等三角形的判定与性质、平行四边形的判定、平行线的性质等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.22.(10分)如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A (12,0),B(8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.(1)直接写出y关于t的函数解析式及t的取值范围:y=25t2﹣80t+100(0≤t≤4);(2)当PQ=3时,求t的值;(3)连接OB交PQ于点D,若双曲线y=(k≠0)经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.【分析】(1)过点P作PE⊥BC于点E,由点P,Q的出发点、速度及方向可找出当运动时间为t秒时点P,Q的坐标,进而可得出PE,EQ的长,再利用勾股定理即可求出y 关于t的函数解析式(由时间=路程÷速度可得出t的取值范围);(2)将PQ=3代入(1)的结论中可得出关于t的一元二次方程,解之即可得出结论;(3)连接OB,交PQ于点D,过点D作DF⊥OA于点F,利用勾股定理可求出OB的长,由BQ∥OP可得出△BDQ∽△ODP,利用相似三角形的性质结合OB=10可求出OD =6,由CB∥OA可得出∠DOF=∠OBC,在Rt△OBC中可求出sin∠OBC及cos∠OBC 的值,由OF=OD•cos∠OBC,DF=OD•sin∠OBC可求出点D的坐标,再利用反比例函数图象上点的坐标特征即可求出k值,此题得解.【解答】解:(1)过点P作PE⊥BC于点E,如图1所示.当运动时间为t秒时(0≤t≤4)时,点P的坐标为(3t,0),点Q的坐标为(8﹣2t,6),∴PE=6,EQ=|8﹣2t﹣3t|=|8﹣5t|,∴PQ2=PE2+EQ2=62+|8﹣5t|2=25t2﹣80t+100,∴y=25t2﹣80t+100(0≤t≤4).故答案为:y=25t2﹣80t+100(0≤t≤4).(2)当PQ=3时,25t2﹣80t+100=(3)2,整理,得:5t2﹣16t+11=0,解得:t1=1,t2=.(3)经过点D的双曲线y=(k≠0)的k值不变.连接OB,交PQ于点D,过点D作DF⊥OA于点F,如图2所示.∵OC=6,BC=8,∴OB==10.∵BQ∥OP,∴△BDQ∽△ODP,∴===,∴OD=6.∵CB∥OA,∴∠DOF=∠OBC.在Rt△OBC中,sin∠OBC===,cos∠OBC===,∴OF=OD•cos∠OBC=6×=,DF=OD•sin∠OBC=6×=,∴点D的坐标为(,),∴经过点D的双曲线y=(k≠0)的k值为×=.【点评】本题考查了勾股定理、解直角三角形、解一元二次方程、相似三角形的判定与性质、平行线的性质以及反比例函数图象上点的坐标特征,解题的关键是:(1)利用勾股定理,找出y关于t的函数解析式;(2)通过解一元二次方程,求出当PQ=3时t 的值;(3)利用相似三角形的性质及解直角三角形,找出点D的坐标.23.(10分)已知△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,连接DB,DC.(1)如图①,当∠BAC=120°时,请直接写出线段AB,AC,AD之间满足的等量关系式:AB+AC=AD;(2)如图②,当∠BAC=90°时,试探究线段AB,AC,AD之间满足的等量关系,并证明你的结论;(3)如图③,若BC=5,BD=4,求的值.【分析】(1)在AD上截取AE=AB,连接BE,由条件可知△ABE和△BCD都是等边三角形,可证明△BED≌△BAC,可得DE=AC,则AB+AC=AD;(2)延长AB至点M,使BM=AC,连接DM,证明△MBD≌△ACD,可得MD=AD,证得AB+AC=;(3)延长AB至点N,使BN=AC,连接DN,证明△NBD≌△ACD,可得ND=AD,∠N=∠CAD,证△NAD∽△CBD,可得,可由AN=AB+AC,求出的值.【解答】解:(1)如图①在AD上截取AE=AB,连接BE,∵∠BAC=120°,∠BAC的平分线交⊙O于点D,∴∠DBC=∠DAC=60°,∠DCB=∠BAD=60°,∴△ABE和△BCD都是等边三角形,∴∠DBE=∠ABC,AB=BE,BC=BD,∴△BED≌△BAC(SAS),∴DE=AC,∴AD=AE+DE=AB+AC;故答案为:AB+AC=AD.(2)AB+AC=AD.理由如下:如图②,延长AB至点M,使BM=AC,连接DM,∵四边形ABDC内接于⊙O,∴∠MBD=∠ACD,∵∠BAD=∠CAD=45°,∴BD=CD,∴△MBD≌△ACD(SAS),∴MD=AD,∠M=∠CAD=45°,∴MD⊥AD.∴AM=,即AB+BM=,∴AB+AC=;(3)如图③,延长AB至点N,使BN=AC,连接DN,∵四边形ABDC内接于⊙O,∴∠NBD=∠ACD,∵∠BAD=∠CAD,∴BD=CD,∴△NBD≌△ACD(SAS),∴ND=AD,∠N=∠CAD,∴∠N=∠NAD=∠DBC=∠DCB,∴△NAD∽△CBD,∴,∴,又AN=AB+BN=AB+AC,BC=5,BD=4,∴=.【点评】本题属于圆的综合题,考查了圆周角定理,全等三角形的判定与性质,相似三角形的判定和性质,等边三角形的判定与性质等知识,解题的关键是正确作出辅助线解决问题.24.(11分)在平面直角坐标系中,已知抛物线C:y=ax2+2x﹣1(a≠0)和直线l:y=kx+b,点A(﹣3,﹣3),B(1,﹣1)均在直线l上.(1)若抛物线C与直线l有交点,求a的取值范围;(2)当a=﹣1,二次函数y=ax2+2x﹣1的自变量x满足m≤x≤m+2时,函数y的最大值为﹣4,求m的值;(3)若抛物线C与线段AB有两个不同的交点,请直接写出a的取值范围.【分析】(1)点A(﹣3,﹣3),B(1,﹣1)代入y=kx+b,求出y=x﹣;联立y=ax2+2x﹣1与y=x﹣,则有2ax2+3x+1=0,△=9﹣8a≥0即可求解;(2)根据题意可得,y=﹣x2+2x﹣1,当y=﹣4时,有﹣x2+2x﹣1=﹣4,x=﹣1或x=3;①在x=1左侧,y随x的增大而增大,x=m+2=﹣1时,y有最大值﹣4,m=﹣3;②在对称轴x=1右侧,y随x最大而减小,x=m=3时,y有最大值﹣4;(3))①a<0时,x=1时,y≤﹣1,即a≤﹣2;②a>0时,x=﹣3时,y≥﹣3,即a≥,直线AB的解析式为y=x﹣,抛物线与直线联立:ax2+2x﹣1=x﹣,△=﹣2a>0,则a<,即可求a的范围;【解答】解:(1)点A(﹣3,﹣3),B(1,﹣1)代入y=kx+b,∴,∴,∴y=x﹣;联立y=ax2+2x﹣1与y=x﹣,则有2ax2+3x+1=0,∵抛物线C与直线l有交点,∴△=9﹣8a≥0,∴a≤且a≠0;(2)根据题意可得,y=﹣x2+2x﹣1,∵a<0,∴抛物线开口向下,对称轴x=1,∵m≤x≤m+2时,y有最大值﹣4,∴当y=﹣4时,有﹣x2+2x﹣1=﹣4,∴x=﹣1或x=3,①在x=1左侧,y随x的增大而增大,∴x=m+2=﹣1时,y有最大值﹣4,∴m=﹣3;②在对称轴x=1右侧,y随x最大而减小,∴x=m=3时,y有最大值﹣4;综上所述:m=﹣3或m=3;(3)①a<0时,x=1时,y≤﹣1,即a≤﹣2;②a>0时,x=﹣3时,y≥﹣3,即a≥,直线AB的解析式为y=x﹣,抛物线与直线联立:ax2+2x﹣1=x﹣,∴ax2+x+=0,△=﹣2a>0,∴a<,∴a的取值范围为≤a<或a≤﹣2;【点评】本题考查二次函数的图象及性质,一次函数的图象及性质;熟练掌握待定系数法求解析式,数形结合,分类讨论函数在给定范围内的最大值是解题的关键.。