TS TJ TV型溶气释放器
气浮法设计计算
气浮法设计计算一.气浮法分类及原理处理方法按产气方式分类常用方式原 理气 浮 法气浮法压力溶气 全溶气气浮法部分回流溶气气浮法用水泵将废水提升到溶气罐,加压至0.3~0.55MPa (表压)同时注入压缩空气,使之过饱和。
然后瞬间减压,骤然释放出大量密集的微细气泡,从而使气泡和被去除物质的结合体迅速分离,上浮至水面。
气浮法细碎空气 喷射气浮法叶轮气浮法(韦姆科气浮法)利用高速喷射的水流或高速旋转的叶轮,将吸入水中的空气剪切成微细气泡,从而使气泡与被去除物质的结合体迅速上浮与水分离。
二.气浮法设计参数全溶气气浮法 部分回流溶气气浮法1流 程 示 意 图2 进水水质 pH=6.5~8.5含油量<100mg/l pH=6.5~8.5含油量<100mg/l3投加药剂(品种和数量根据实际水质筛选决定) 聚合铝25~35mg/l 或硫酸铝60~80mg/l 或聚合铁15~30mg/l 或有机高分子凝聚剂1~10mg/l 聚合铝15~25mg/l 或硫酸铝40~60mg/l 或聚合铁10~20mg/l 或有机高分子凝聚剂1~8mg/l 4混凝反应管道和水泵混合无反应室管道混合,阻力损失≥0.3m 或机械混合,搅拌浆叶线速度0.5m/s 左右,混合时间气 浮 方式参 数 序 号三.气浮法设计计算四.不同温度下的K T值和736K T值例:2×75m3 / h气浮池气浮池设置在絮凝池侧旁,沉淀池上方。
气浮类型较多,有全部压力溶气气浮、分散空气气浮、电解凝聚气浮、内循环射流气浮等,这里选择适用于城镇给水处理的部分回流压力溶气气浮。
气浮适用于含藻类及有机杂质、水温较低、常年浊度低于100NTU的原水;它依靠微气泡粘附絮粒,实现絮粒强制性上浮,达到固、液分离,由于气泡的重度远小于水,浮力很大,促使絮粒迅速上浮,提高固、液分离速度。
气浮依靠无数微气泡去粘附絮粒,对絮粒的重度、大小要求不高,能减少絮凝时间,节约混凝剂量;带气絮粒与水的分离速度快,单位面积产水量高,池容及占地减少,造价降低;气泡捕足絮粒的机率很高,跑矾花现象很少,有利于后级滤池延长冲洗周期,节约水耗;排渣方便,浮渣含水率低,耗水量小;池深浅,构造简单,可随时开、停,而不影响出水水质,管理方便。
气浮法
化学药剂的投加对气浮效果的影响
一般的疏水性或亲水性的物质,均需投加化学药剂, 以改变颗粒的表面性质,增加气泡与颗粒的吸附。这些化学 药剂分为下述几类: 混凝剂
浮选剂
助凝剂 抑制剂
浮选剂使亲水性物质转化为疏水性物质, 从而能使其与微细气泡相粘附。 浮选剂的种类有松香油、石油、表面活 性剂、硬脂酸盐等。
原因有二
气泡本身具有自动降低表面自由能的倾向,即气 泡合并, ΔE变小,这种合并趋势的存在,使气 泡很难做到极细的分散度(微气泡)。 纯气泡上升到水表面时,由于气泡表面水分子层 薄,会很快破灭而得不到稳定的水表“气浮泡沫 层”,致使污染物脱落而重新返回水中。 一定量表面活性剂的存在使气泡表面带同种电荷, 不易合并。同时,一定量表面活性剂的存在使水 面气泡表面有一定厚度的水膜而不易破灭,从而 有利于收集除去。
一定温度下,溶解度与压力成正比。
加 压 溶 气 的 两 种 方 式
存在问题: 填料长膜; 压缩气含油; 调节不便; 时而需放气。
存在问题: 设备较复杂; 造价偏高。
部分溶气加压气浮法
全溶气气浮工艺流程 部分溶气气浮工艺流程 回流加压溶气气浮工艺流程
回流加压溶气流程:即部分气浮池出水进行 回流溶气,实际上属于部分溶气流程。 特点:可避免废水中的高浓度悬浮物堵塞溶 气罐填料。
调节剂
化学药剂的投加对气浮效果的影响
一般的疏水性或亲水性的物质,均需投加化学药剂, 以改变颗粒的表面性质,增加气泡与颗粒的吸附。这些化学 药剂分为下述几类: 混凝剂
浮选剂
助凝剂 抑制剂 作用是提高悬浮颗粒表面的水密性,以 提高颗粒的可浮性,如聚丙烯酰胺。
调节剂
化学药剂的投加对气浮效果的影响
工业废水处理技术(气浮详细)
哈尔滨工业大学
24
(3)涡凹气浮的优点
根据处理水量的不同决定曝气机台数,每台曝气机只有1.12.2k.w,刮泥板马达仅为0.75-2.2kw,整套涡凹气浮设备所消 耗的动力极小,仅相当于传统溶气气浮的1/5-1/8, 槽内没有需要维修的部件设备整体性好,安装方便 气泡直径可以根据情况进行调整 节省运行费用40%—90%,节省占地面积40%—60%,5-500m3/h 的涡凹气浮机设备的安装面积仅有10-110m2 不需要循环泵、空压机、喷嘴、压力容器 不需要校准空气控制阀 不需要絮凝剂预先混合槽
哈尔滨工业大学 29
(4)工艺优势
净化池浅,但留有足够的浮渣储备空间,特别适用高浓度 污水的处理 ,处理能力大。 占地面积小,可架空 。 水位及刮渣深度均可调,流量适应范围大,刮起的浮渣含 固率高。 拼装式结构,便于运输,安装和搬迁。 均衡消能系统全不锈钢结构,无运动部件,不需清洗,不 需维护,不会堵塞。 由于微气泡直径极小,密度极高,能充分捕捉极细小的悬 浮物,不需事先将它们聚凝为很大的矾花,故可大大减少 投药量,一些场合下甚至可不投药运行,极大的降低了运 哈尔滨工业大学 行成本 。
4)气浮池设计
气固比:溶解空气量(A)与原水中悬浮物的含量(S)的比值。
A 经减压释放的溶解空气总量 a= = S 原水带入的悬浮固体总量
a.气固比的两种表示方法
分离比重小于水的液态悬浮物,a采用体积比计算; 分离比重大于水的固态悬浮物,a采用质量比计算;
哈尔滨工业大学 15
4)气浮池设计 b. a采用质量比计算公式
哈尔滨工业大学 12
4)气浮池设计 气浮分离装置:平流式,竖流式(P533图) 反应-气浮池;反应-气浮-沉淀池;反应-气浮-过滤 5)平流矩形气浮池设计
溶气释放器出大气泡的原因
溶气释放器出大气泡的原因溶气释放器是一种用来将气体溶解于液体中并释放出来的装置。
它广泛应用于实验室、工业生产以及水处理等领域。
在使用溶气释放器的过程中,我们常常会观察到溶气释放器会产生大气泡的现象。
那么,溶气释放器为什么会产生大气泡呢?下面我们将从几个方面来解析这个问题。
溶气释放器产生大气泡的原因之一是溶解气体的压力变化。
当液体中溶解了气体时,溶解气体会受到液体的压力约束。
而溶气释放器的设计原理是通过减小压力来促使溶解气体释放出来。
当溶气释放器的压力减小到一定程度时,溶解气体就会以大气泡的形式从液体中释放出来。
溶气释放器产生大气泡的原因之二是气体的饱和度。
饱和度是指在一定温度和压力下,液体中溶解气体的浓度达到最大值的程度。
当液体中溶解气体的浓度超过了饱和度,剩余的气体就会以气泡的形式释放出来。
而溶气释放器正是通过减小液体中溶解气体的浓度来促使剩余的气体以大气泡的形式释放出来。
溶气释放器产生大气泡的原因之三是气体的扩散速率。
扩散是指气体由高浓度区域向低浓度区域传播的物理现象。
在溶气释放器中,当液体中溶解气体的浓度较高时,气体分子之间的碰撞频率较高,气体的扩散速率也会增加。
而当溶气释放器的压力减小时,液体中溶解气体的浓度也会减小,导致气体的扩散速率减慢。
当溶解气体的扩散速率小于气体的释放速率时,就会形成大气泡。
溶气释放器产生大气泡的原因之四是液体的温度变化。
温度是影响溶解气体溶解度的重要因素之一。
当液体的温度升高时,溶解气体的溶解度会减小;而当液体的温度降低时,溶解气体的溶解度会增加。
在溶气释放器中,当液体的温度升高时,溶解气体的溶解度减小,导致气体较快地从液体中释放出来,形成大气泡。
溶气释放器产生大气泡的原因主要包括溶解气体的压力变化、气体的饱和度、气体的扩散速率以及液体的温度变化等因素。
通过合理控制这些因素,我们可以更好地利用溶气释放器来实现气体的溶解和释放,从而满足实验和生产的需求。
气浮1
竖流式气浮池
竖流式气浮池的基本工艺参数与平流 式气浮池相同。 其优点是接触室在池中央,水流向四 周扩散,水力条件较好。 缺点是与反应池较难衔接,容积利用 率较低。 有经验表明,当处理水量大于150~ 200m3/h、废水中的可沉物质较多时, 宜采用竖流式气浮池。
平流式气浮池
接触池的表面积Ac 选定接触室中水流的上升流速vc后,按下式计算:
利用气浮分离工艺具备三个基本条件:
(1)必须向水中提供足够量的气泡。 (2)必须使水中的污染物质形成悬浮状态, 必要时可采用混凝剂。 (3)必须使气泡与杂物颗粒产生粘附作用, 否则应采用表面活性剂等对颗粒改性。
三、气浮设备分类
按照产生气泡的方式不同,气浮设备通常分为:
散气气浮设备、溶气气浮设备和电解凝聚气浮设备等 多种类型。 (一)散气气浮设备: 工作原理:利用机械剪切力,将混合于水中的空气粉 碎成微细气泡,从而进行气浮的设备。 根据气泡粉碎的方法不同:又可以分为: 射流气浮、扩散曝气气浮、水泵吸水管吸气气浮、叶轮 气浮。
真空气浮
特点: 气浮池在负压下运行;
溶气压力比加压溶气 低,能耗较小;
缺点:
气浮池结构复杂,设 备密闭,运行维护都较 困难,生产中应用不多。
加压溶气气浮
使空气在加压的条件下溶解于水,然后将压力骤减 至常压而使过饱和的空气以微细气泡的形式释放出 来。 …… 按溶气水不同分为三种基本流程: ①全部进水溶气 ②部分进水溶气 ③部分处理水溶气
竖流式气浮池 池高可取4-5m,长宽或直径一般在9-10m以内。 中央进水室、刮渣板和刮泥耙都安装在中心转轴 上,依靠电机驱动匀速旋转。
目前最常用,其反应池与气浮池合建。 废水进入反应池完全混合后,经挡板底部 进入气浮接触室以延长絮体与气泡的接触 时间,然后由接触室上部进入分离室进行 固液分离。池面浮渣由刮渣机刮入集渣槽, 清水由底部集水槽排出。 平流式气浮池的优点是池深浅、造价低、 构造简单、运行方便。 缺点是分离部分的容积利用率不高等。
气浮机的种类及使用注意事项详解
气浮机的种类及使用注意事项详解气浮是指利用高度分散的微小气泡黏附污水中的污染物,形成密度小于水的气浮体,实现固-液分离和液-液分离的过程,适用于去除水中密度小于1t/m3的悬浮物、油类和脂肪,可用于污水处理的预处理与深度处理,气浮机在炼油、造纸、化工、焦化、洗涤、食品等行业的废水处理上应用十分广泛。
1、气浮机的种类目前市场上常见的气浮机有溶气气浮机、涡凹气浮机,浅层气浮机。
本期详细介绍一下这几种气浮机的原理及使用范围。
(1)压力溶气气浮机压力溶气气浮(DAF)主要由溶气泵、释放器、刮渣机、空压机、加药系统、配电系统等组成。
适用于处理低浊度、高色度、高有机物含量、低含油量、低表面活性物质含量或具有富藻的水,广泛用于造纸、印染、电镀、化工、食品、炼油等工业污水处理。
适合小水量小于500m3/d 的污水处理。
相对于其他的气浮方式,它具有水力负荷高、池体紧凑等优点,但是它的工艺复杂、电能消耗较大、空压机的噪声大等缺点也限制着它的应用。
溶气气浮工艺段分:混/絮凝区、溶气释放区、沉淀区、溶气水回流区、污泥槽、清水槽。
(2)涡凹气浮机涡凹气浮机是一种主要用于去除工业或城市污水中的油脂、胶状物及固体悬浮物而设计的新型污水处理设备,系统主要由曝气装置、刮渣装置和排渣装置组成,其中曝气装置主要是带有专利性质的涡凹曝气机,刮渣装置主要由刮渣机和牵引链条组成。
涡凹曝气系统结构示意图。
工作原理为:溶气设备由电机带动高速旋转(旋转速度一般控制在1000~3000r/min),利用底部扩散叶轮(该叶轮的叶片为空心状)的高速转动在水中形成一个负压区,使液面上的空气沿着“涡凹头”的中空管进入扩散叶轮释放到水中,并经过叶片的高速剪切而变成小气泡。
小气泡在上浮的过程中黏附在絮凝体上而形成新的低密度絮凝体,靠水的浮力将水中的悬浮物带到水面,然后靠刮渣装置除去浮渣。
其工艺流程如下:经过预处理后的污水流入装有涡凹曝气机的小型曝气段,涡凹曝气机底部散气叶轮的高速转动在水中形成一个真空区,从而将液面上的空气通过抽风管道输入水中,由叶轮高速转动而产生的三股剪切作用把空气粉碎成微气泡,空气中的氧气也随之溶入水中;固体悬浮物与微气泡黏附后上浮到水面,并通过呈辐射状的气流推动力将其驱赶到刮泥机附近。
第四章 气浮
33
加压溶气法需要的设备: 空气压缩机、溶气罐、减压阀或溶气释放 器、水泵。 溶气量、析出气泡大小及气泡均匀性与压 力、温度、溶气时间、溶气罐及释放器构 造等因素有关。
34
A、溶气压力:
空气在水中的溶解度V与压力p的关系符合 亨利定律。 ★ 压力越高,空气溶解度越大,动力消耗 也越大,对设备要求也越高。 ★ 温度越高,空气溶解度越小。 ★ 一定温度下,溶解度与压力成正比。
19
叶轮气浮设备构造示意图
20
布气浮选的特点:
• 优点:设备简单,易于实现。 • 缺点:空气被粉碎的不够充分,形成的气泡 粒径较大,一般不小于 l0OOµm,这样,在供 气量一定的情况下,气泡的表面积小。 • 由于气泡直径大,运动速度快,气泡与被去 除污染物质的接触时间短,这些因素都使布 气气浮法去除效率较低。
37
溶气罐形式
(a)纵隔板式; (b)花板式; (c)横隔板 式; 式;(d) (d) (d)填充式; 填充式; 填充式;(e) (e) (e)涡轮式 涡轮式
38
39
填料溶气罐的主要工艺参数:
过流密度:2500-5000 m3/m2.d ; 填料高度:0.8-1.3m ; 液位高度:0.6-1.0m(从罐底计); 承压能力:大于0.6MPa ; 工作压力:0.3~0.5MPa 。
40
溶气罐供气方式:
a、采用水泵吸水管上吸入空气; b、在水泵加压管上设置射流器吸入空气; c、采用空气压缩机供气。
41
a、采用水泵吸水管上吸入空气
BACK
42
b、在水泵加压管上设置射流器吸入空气
12
4.3.2 布气气浮法
• 布气浮选是利用机械剪切力,将混合于水 中的空气粉碎成细小的气泡,以进行浮选 的方法。 • 按粉碎气泡方法的不同,布气气浮又分为 水泵水管吸气浮选、射流浮选、扩散曝气 浮选以及叶轮气浮等四种。
气浮 一、概述
压力过高时
Ⅲ主要设备:
①溶解的空气量增加,减压后析出
主要设备均包含加压泵、大溶量气空罐气、促释进放微器气和泡气的浮凝池聚。,不利 于气浮分离;
②高压需要的溶气水量较少,不利
加压泵:
于气浮水和原废水充分混合。
用来提供一定压力的水压量力。过低时 ——压力高低影响气浮效溶果气水量增加,致使气浮池的
供气方式的选择
一般在采用填料溶气罐时,以空压机供气为好; 采用空罐时,为了保证较高的溶气效率,宜采用射
流进气; 当有高性能的溶气释放器,且处理水量较小时,则
以泵前插管进气较为简便、经济。
释放器:
作用:通过减压,迅速的将溶于水中的空气以极微小气 泡的形式释放出。
界面能和界面张力 一样也有降低到最小的趋势。当废水中有气泡存在时,悬
浮颗粒就力图粘附在气泡上而降低其界面能。
当废水中有气泡存在时,并非所有的颗粒都能粘附 上去,它们能否与气泡粘附取决于水对该颗粒的表面性 质(即颗粒的润湿性)。
一般规律:疏水性颗粒易与气泡粘附,而亲水性颗 粒难以与气泡粘附。
容易被水润湿的物质称为亲水性物质。
膜片式微孔曝气器
② 叶轮气浮法
工作原理: 将空气引入一个高速旋转的叶轮附近,通过叶轮
的高速剪切运动将空气吸入并分散为小气泡。 气泡尺寸:
1mm左右
叶轮气浮设备构造
进水
空气
6 5
4 3
出水
进水
7 11
23 68
出水
5
11
12
泡沫
9
10
叶轮气浮设备构造示意图
1-叶轮;2-盖板;3-转轴;4-轴套;5-轴承;6-进气管;7-进水槽;8-出水槽; 9-泡沫槽;10-刮沫板;11-整流板
压力溶气罐
压力溶气罐气浮压力溶气罐又名喷淋式填料罐,是压力溶气气浮净化工艺中的重要设备,压缩空气与压力水在溶气罐中通过扩散、溶解、传质等过程使大量空气溶于水中。
采用低能耗空压机供气、阶梯环填料、喷淋式溶气罐。
构造形式见附图1。
压力溶气罐采用阶梯环、拉西环、规整填料为填料,其中阶梯环填料具有较高的溶气效率,较为常用。
填料层高一般为1000~2100mm。
TR系列压力溶气罐内部为多孔板及阶梯环填料,外部由进水口、进气口、排气安全阀接口、视镜、压力表接咀、排气口、液位计、出水口、人孔等组成。
压力溶气罐设计、制作需按一类压力容器要求考虑。
【产品特点】∙1、溶气效率高达98%,接近饱和值(在水温30°C时),与无填料的溶气罐相比约高出30%,释放量约为理论饱和溶气量的90~99%;∙2、过水流量大,罐截面负荷率可达5000m3/m2.d;∙3、装有水位计,操作管理方便,可保证释放器稳定工作;∙4、在不排放未溶空气的条件下运行,可节省空压机的能耗,大大缩短连续运行时间,延长空压机寿命;∙5、小阻力均匀布水,压力降仅为喷头布水的十分之一,因而有效地利用水泵扬程,节省电耗,避免喷头的堵塞;∙6、与国外先进水平相比,溶气效率提高5~10%;过水密度提高1~5倍;溶气罐水力停留时间仅为51s(原来为3~5min),因而大大缩小了罐容积,降低了造价。
【工作原理】压力溶气罐是通过回流泵将清水加压至0.30~0.40MPa,同时加入压缩空气,使空气溶解于水的一种特殊装置。
加压后的溶气水通过管道、阀门接至释放器,然后骤然减至常压,溶解于水的空气以微小气泡形式(气泡直径约为30-120μm左右),从水中析出,将污水中的悬浮物颗粒载浮于水面,由刮渣机刮出,从而实现固-液分离。
气浮回流比一般按30~50%,用气量按40-60ml/L设计。
【工艺参数】∙过流密度:2500~5000 m3/m2.d∙填料高度:1000~2100mm(0.8~1.3m)∙液位高度:600~1300mm(从罐底计)∙承压能力:≥0.6MPa∙工作压力:0.3~0.4MPa溶气罐是气浮法水处理中最关健的设备,溶气效果的好坏直接影响气浮出水的水质,我厂研制生产的溶气罐采用空压机供气的喷淋式填料罐,配备自动液位控制阀、液位显示管、电磁阀、安全阀、压力表。
气浮的基本原理
8
图 8-14 内循环式射流加压溶气方式
1-回流水;2-清水池;3-加压泵;4-射流器Ι ;5-射流器Ⅱ;6-溶气罐; 7-水位自控设备;8-循环泵;9-减压释放设备;10-真空进气阀
(3)空气饱和设备:
作用:在一定压力下将空气溶解于水中而提供溶气水的设备
加压泵:溶入空气量V=KTP(L/m3水)
e——极板净距,mm;e=15~20mm
φ——极板厚度,mm;δ=6~10mm
3 2 1
i
b
B H1
5
7
4
L 6
8
8
L2
L2
图 8-5 双室平流式电解气浮池
1-入流室;2-整流栅;3-电极组;4-出口水位调节器; 5-刮渣机;6-浮渣室;7-排渣阀;8-污泥排除口
② 电极作用表面积
S(8—EQ 7)(m 2 )
式中:P ——空气所受的绝对压力(Pa)
KT——溶解常数,见表13—4
设计空气量V’=1.25V(L/m3水)
空气在水中的溶解量与加压时间关系
溶气罐
进水
填充式溶气罐(图8—15)
出水
图 8-15 填充式溶气罐
(3)溶气水的减压释放设备:要求微气泡的直径20~100um
● 减压阀(截止阀)
每个阀门流量不同,气泡合并现象,阀芯、阀杆、螺栓易松动。
1-入流室;2-整流栅;3-电极组;4-出流孔;5-分离室;6-集水孔; 7-出水管;8-排沉泥管;9-刮渣机;10-水位调节器
2、平流式电解气浮池(图8—5) 平流式电解气浮装置的工艺设计
① 电流板块数
n B 21 e
式中:B——电解池的宽度,mm e
l——极板面与池壁的净距,取100mm
气浮池
加压气浮池的计算在水温C ︒20溶气压力为0.25MPa 时,采用TS 型溶气释放器,其释气量为L mL 40。
当回流比为10%时,出水浊度可降至4NTU 左右,除藻率在80%以上。
(1)基本设计数据的确定:1)絮凝时间采用15min 。
2)回流比取10%。
3)接触室上升流速采用s mm 20。
4)气浮分流速度采用2s mm 2。
5)溶气罐过流密度取)15023m h m ∙。
6)溶气罐压力定为0.25MPa 。
7)气浮池分离室停留时间为16min 。
(2)气浮池:1)加压溶气水水量:h m Q R Q p 3'3.832420000%10=⨯==同时根据所需压力为0.25MPa,选6SA-8型号水泵一台,为安全计,增设一台备用。
2)气浮所需空气量:h L Q Q p g 4.39982.1403.83=⨯⨯==αφ3)空气压缩机所需额定气量:m i n 093.04.11000604.39981000603'm Q Q g g =⨯⨯=⨯=ψ 故选用Z-0.3/7型空压机一台,为安全计,增设一台备用。
4)压力溶气罐直径: m I Q D p71.01503.8344=⨯⨯==ππ 选用标准填料罐,TR-10型溶气罐一只。
5)溶气罐容积:32.460m T Q W R == 6)溶气罐的高度: m D W H 6.10421==π 7)气浮接触室尺寸: 接触室平面面积:37.123600001.0203.83833m v Q Q A c pc =⨯⨯+=+=接触室宽度选用m b c 5.1=,则接触室长度(即气浮池宽度):m b A B c c c 5.85.17.12===8)气浮分离室尺寸: 分离室平面面积:31273600001.023.83833m v Q Q A s ps =⨯⨯+=+= 分离室长度:m B A L s c 9.145.8127===9)气浮池水深: m t v H s 92.11000601621000=⨯⨯==10)气浮池的容积:m H A A W s c 2.26892.1)1277.12()(=+=+= 总停留时间:min 6.178333.832.2686060=+⨯=+⨯=p Q Q W T 11)气浮池集水管:集水管采用穿孔管,沿池长方向均布四根(管间距1.33m ),每根管的 集水量m Q Q q p32294=+=,选用管直径D=600mm,管中最大流速为s m 86.0。
气浮
三、工艺类型
浮上法的类型
按生产细微气泡的方法分
分散空气浮上法
电解浮上法
溶解空气浮上法
微气泡曝 气浮上法
叶轮气 浮法
真空 浮上法
加压溶气 浮上法
电解气浮法
电解气浮法是用不溶性阳极和阴极,通以直流电,直接 将废水电解。阳极和阴极产生氢气和氧的微细气泡,将废水 中的污染物颗粒或先经混凝处理所形成的絮凝体粘附而上浮 至水面,生成泡沫层,然后将泡沫刮除,实现分离去除污染 物质。 电解浮上法产生的气泡小于其他方法产生的气泡,故特 别适用于脆弱絮状悬浮物。电解浮上法的表面负荷通常低于 4m3/(m2· h)。 电解浮上法主要用于工业废水处理方面,处理水量约在 10~20m3/h。由于电耗高、操作运行管理复杂及电极结 垢等问题,较难适用于大型生产。 有竖流式和平流式装置。
空气从水中析出的过程分两个步骤,即气泡的形成过程与气泡的 增长过程。 气泡核的形成过程起决定性作用,有了相当数量的气泡核,就可 以控制气泡数量的多少与气泡直径的大小。溶气气浮法要求在这个过 程中形成数目众多的气泡核,溶解同样空气,如形成的气泡核的数量 越多,则形成的气泡的直径也就越小,越有利于满足浮上工艺的要求。
压力溶气系统——溶气罐
影响填料溶气罐效率的主 要因素为: 填料特性 填料层高度
填料溶气罐的主要工艺参 数为: 过流密度:2500~5000
m3/(m2· d)
罐内液位高
布水方式 温度
填料层高度:0.8~1.3m 液位的控制高:0.6~1.0m (从罐底计) 溶气罐承压能力:>0.6MPa
压力溶气系统——溶气罐设计
σLG
θ
σLG σGS
液
θ
σLS
颗粒 被水湿润的 面积
气浮法设计计算
气浮法设计计算一.气浮法分类及原理二.气浮法设计参数三.气浮法设计计算四.不同温度下的K T值和736K T值气浮池设置在絮凝池侧旁,沉淀池上方。
气浮类型较多,有全部压力溶气气浮、分散空气气浮、电解凝聚气浮、内循环射流气浮等,这里选择适用于城镇给水处理的部分回流压力溶气气浮。
气浮适用于含藻类及有机杂质、水温较低、常年浊度低于100NTU的原水;它依靠微气泡粘附絮粒,实现絮粒强制性上浮,达到固、液分离,由于气泡的重度远小于水,浮力很大,促使絮粒迅速上浮,提高固、液分离速度。
气浮依靠无数微气泡去粘附絮粒,对絮粒的重度、大小要求不高,能减少絮凝时间,节约混凝剂量;带气絮粒与水的分离速度快,单位面积产水量高,池容及占地减少,造价降低;气泡捕足絮粒的机率很高,跑矾花现象很少,有利于后级滤池延长冲洗周期,节约水耗;排渣方便,浮渣含水率低,耗水量小;池深浅,构造简单,可随时开、停,而不影响出水水质,管理方便。
●结构尺寸:取回流比R=20%,气浮池处理水量:Q3=(1+R)Q2=1.2×75=90m3/h接触区底部上升段纵截面为矩形,上升流速10~20mm/s,取U J1=18mm/s=64.8m/h 接触区底部通水平面面积:F J1=90/64.8=1.389≈1.4m2接触区宽与絮凝池相同,B=2m,接触区底部平面池长方向尺寸:L J1=1.4/2=0.7m接触区上端扩散段纵截面为倒直角梯形,出口流速5~10mm/s,取U J2=7.5mm/s=27m/h 接触区上端扩散出口通水平面面积:F J2=90/27=3.333m2接触区宽与絮凝池相同,B=2m,接触区上端扩散出口平面池长方向尺寸:L J2=3.333/2=1.6665≈1.7m扩散段水平倾角α=35°,扩散段高:h K=(1.7-0.7)tan35°=0.7m扩散段容积:V K=〔(1.7+0.7)/2〕×0.7×2=1.68m3接触区停留时间需大于60s,取t J=90s=1.5min,接触区容积:V J=90×1.5/60=2.25m3接触区底部上升段高:h D=(V J-V K)/F J1=(2.25-1.68)/1.4=0.4m分离区清水下降流速1.5~2.5mm,取U3=2.5mm/s=9m/h分离区平面面积:F F=Q3/U3=90/9=10m2分离区平面池长方向尺寸:L F=10/2=5m(<沉淀池长5.5m)气浮池长度方向尺寸:L=5.5m取分离区液深h Y=1.5m,分离区容积:V F=5.5×2×1.5=16.5m3分离区清水下降时间:t F=h Y/U3=1.5/9=0.167h=10min取分离区安全超高h A=0.5m,气浮池高H F=1.5+0.5=2m复核分离停留时间:t F′=V F /Q3=16.5/90=0.183h=11min,满足停留10~15min的要求,并能满足清水到达池底所需时间。
技能认证污水处理工初级考试(习题卷2)
技能认证污水处理工初级考试(习题卷2)第1部分:单项选择题,共50题,每题只有一个正确答案,多选或少选均不得分。
1.[单选题]润滑脂润滑时,注入量一般为油腔容积的( )A)1/2~2/3B)1/3~2/3C)必须充满油腔答案:B解析:2.[单选题]标准化包括( )的过程。
A)研究、制定及颁布标准B)制定、修改及使用标准C)制定、发布及实施标准D)研究、公认及发布标准答案:C解析:3.[单选题]单位质量的液体,从泵进口到泵出口的能量增值为泵的 ( )A)效率B)扬程C)流量D)功率答案:B解析:4.[单选题]辐流式沉淀池沉淀时间一般 。
A)3hB)4hC)12hD)1.5~2h答案:D解析:5.[单选题]据水力学原理,两层水流间的摩擦力和水层接触面积的关系( )。
A)反比例B)正比例C)相等D)无关系答案:B解析:6.[单选题]总有机碳的测定前水样要进行酸化曝气,以消除由于 ( )存在所产生的误差.A)无机碳B)有机碳C)总碳答案:A解析:7.[单选题]产生的气体是新生态的,氧化能力很强,微气泡细小,载荷能力极强的气浮是( )。
A)叶轮散气浮B)微孔布气气浮C)电解气浮D)压力溶气气浮答案:C解析:8.[单选题]石化生产的显特点是工艺复杂、( )要求严格。
A)产品B)原料C)操作D)温度答案:C解析:9.[单选题]吸附再生法中,污水与活性污泥在吸附池混合接触一般( ),使污泥吸附大部分有机物。
A)15~60minB)3~5hC)6~7hD)8~9h答案:A解析:10.[单选题]生物膜挂膜的过程同时也是微生物的生长、繁殖和 ( ) 过程。
A)固定化B)死亡C)扩增D)驯化答案:D解析:11.[单选题]水的社会循环是由( )构成的。
A)取水和用水B)水利用和水处理C)给水工程和排水工程D)生产水和生活水答案:C解析:12.[单选题]废水处理场的常规分析化验项目中反映处理效果的项目是( ).A)进.出水的BOD5 . SSB)水温C)DOD)MLSS答案:A解析:13.[单选题]对铸铁管管径应采用( )标注。
气浮
电解气浮法
特点:
产生的气泡尺寸较小; 降低BOD、氧化、脱色和杀菌; 对废水负荷变化有较强的适应性; 生成污泥量少,占地少,不产生噪声; 应用 钢铁废水中铁粉的去除; 含油废水中油的去除;
电解气浮法的气浮装置
10 9
竖 流 式 电 解 气 浮 池
出水
4 5 7 进水 3 5 2 1 6 8 排泥
2、颗粒与气泡的附着条件
2、颗粒与气泡的附着条件
3、气泡的稳定性
气泡的稳定性:洁净气泡本身具有自动降低表面 自由能的倾向,即所谓气泡合并
导致表面张力大的洁净水中的气泡粒常常不能达到 气泡操作要求的极细分散度。 表面活性物质很少,则气泡壁表面由于缺少两亲分 子吸附层的包裹,泡壁变簿,气泡浮升到水面以后, 水分子很快蒸发,因而极易破灭,---在水面上得不 到稳定的气浮泡沫层。 解决的办法:加入一定量的起泡剂;适量投加,加 多了可能起泡好,但是气—粒粘附不好,同样影响 处理效果。
基本概念
• 亲水性:如果颗粒易被水润湿,则称该颗粒为亲
水性的。
• 疏水性:如颗粒不易被水润湿,则是疏水性的。 • 接触角:在静止状态下,当气、液、固三相接触
时,气-液界面张力线和固液界面张力线之间的夹角 (包含液相的)称为平衡接触角,用表示。
一、气浮原理
1、界面张力和润湿接触角
2、颗粒与气泡的附着条件
压力溶气罐
进水
因装有填料可加剧紊动程
度,提高液相的分散程度,不 断更新液相与气相的界面,从 而提高了溶气效率。填料有各 种形式,研究表明,阶梯环的
溶气效率最高,可达 90% 以
上,拉西环次之,波纹片卷最
出水
低,这是由于填料的几何特征 不同造成的。
TS、TJ、TV型溶气释放器
型系列溶气释放器1、概况压力溶气气浮净水法是一种新的水处理技术它已在我国和许多先进工业国中广泛应用。
这种新净水法是将压力溶气水中释放出的大量微细气泡引入待处理水中。
利用粘附在固体杂质上气泡的浮托力,达到固、液快速分离,并提高浮渣浓缩程度的目的。
因此,被认为是水处理技术上的一次重在突破。
溶气释放器是压力气气浮净水系统中关键装置。
压力溶气中只有通过该置降压消能后,才能释放出大量的微细气泡,释放器性能的好坏,涉及到气释放出的我寡,气泡的微细度及气泡尺寸的分配律等,它直接影响气浮法净水的电能的消耗。
为此,工业发达国家将先进的溶气释放器纳入专利,加以保护。
TS-70型低压溶气释放器。
它是国内首创的专用释放器,可在低压下释出符合气浮净水要求的大量微气泡,为此TS-70型溶气释放器于1980年获得了国家发明奖。
随着国内气浮净水技术的推广,第一代TS型释放器保留了TS型优良的释放性能,增加了出水量,而且增设了水射器抽真空置。
在堵塞时,可以不拆卸释放器而在原位冲洗。
但它有管咀出水分布不够均匀及增加抽真空装置的不足。
TV型均分布振动溶气释放器是继TS型、TJ型溶气释放器后最新研制成的第三代溶气释放器,它是在探讨溶气释放基本原理的基础上,结合振动动原理而研制成功的。
它既吸了TS、TJ型溶释放器的各项优良性能,又提高了释放器释放出水的分布均匀性。
增加了微气泡与待处理水中杂质碰撞粘附的机率,从而进一步改善了气浮净水效果。
此外,释放器如一量受堵,只要在气浮池外打开通气阀,接通压缩空气气源,就能利用压力溶气水将释放器内的堵物冲洗干净。
这就克服TS型溶气释放器易堵的弊病。
同时,也比TJ型溶气释放器节省了抽真空装置。
TV型系列溶气释放器具有以下先进技术性能:1. 在2公斤/厘米2的低压下,即能有效地工作;2. 释出气泡的平均直径仅在20~30微米;3. 释气率高达99%以上。
2、TS型系列溶气释放器(1)产品规格及选用数据3、TJ型系列溶气释放器(1) 产品规格及选用数据TJ型溶气释放器目前有五种规格,其压力、出流量及作用范围参见下表,以供设计时选用。
气浮的原理及类型
亲水性的;(2)疏水性:如果颗粒不易被水润湿,则是疏水性的;(3)润湿接触
角:在静止状态下,当气、液、固三相接触时,气—液界面张力线和固—液界面
张力线之间的夹角(包含液相的)称为平衡接触角,用 θ 表示。具体如图 1.1 所
示。
水对各种物质润湿性的大小,可以利用它们与水的接触角来衡量。当接触角
θ<90 时,则该物质为亲水性物质;当 θ>90 时,则该物质为疏水性物质。另外,
气浮的原理及应用
一、气浮的基本原理
1.1 气浮简介
气浮是气 浮 机 的一种简称,也可以作为一种专有名词使用,其主要目的是
利用高度分散的微小气泡为载体去粘附废水中疏水性颗粒,将小气泡和颗粒视为
一个整体,其整体密度小于水而上浮到水面,从而实现固—液或者液—液分离的
过程。
1.2 界面张力与润湿接触角
首先介绍几个基本概念。(1)亲水性:如果颗粒易被水润湿,则称该颗粒为
1、耗电量大,投资成本高;
絮状悬浮物;2、对废水负荷变化有 2、操作运行管理较复杂,操作不方便;
较强的适应性;3、生成的污泥量少、 3、电极板容易结垢,使用寿命短。
ห้องสมุดไป่ตู้
占地少。不产生噪声。
分 微气 散 泡曝 空 气气 气 浮法
设备简单、易行
扩散板上的孔容易堵塞,导致气泡量少 而不均匀,气浮效果不是很好。
(2)水泵压水管装射流器挟气式 压力水(约 0.3 MPa)经水射器高速喷射,在喉管内形成负压吸入空气,从 而使空气溶解的方式。其结构示意图如图 3.2 所示。
8
图 3.2 射流器挟气式溶气系统
(3)空压机供气式 该方法通过空压机将空气打入溶气罐,再通过气泡释放器将空气释放成微小 气泡。其结构示意图如图 3.3 所示。
气浮法设计计算
气浮法设计计算WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】气浮法设计计算一.气浮法分类及原理二.气浮法设计参数三.气浮法设计计算四.不同温度下的K T值和736K T值例:2×75m3 / h气浮池气浮池设置在絮凝池侧旁,沉淀池上方。
气浮类型较多,有全部压力溶气气浮、分散空气气浮、电解凝聚气浮、内循环射流气浮等,这里选择适用于城镇给水处理的部分回流压力溶气气浮。
气浮适用于含藻类及有机杂质、水温较低、常年浊度低于100NTU的原水;它依靠微气泡粘附絮粒,实现絮粒强制性上浮,达到固、液分离,由于气泡的重度远小于水,浮力很大,促使絮粒迅速上浮,提高固、液分离速度。
气浮依靠无数微气泡去粘附絮粒,对絮粒的重度、大小要求不高,能减少絮凝时间,节约混凝剂量;带气絮粒与水的分离速度快,单位面积产水量高,池容及占地减少,造价降低;气泡捕足絮粒的机率很高,跑矾花现象很少,有利于后级滤池延长冲洗周期,节约水耗;排渣方便,浮渣含水率低,耗水量小;池深浅,构造简单,可随时开、停,而不影响出水水质,管理方便。
●结构尺寸:取回流比R=20%,气浮池处理水量:Q3=(1+R)Q2=×75=90m3/h接触区底部上升段纵截面为矩形,上升流速10~20mm/s,取U J1=18mm/s=64.8m/h接触区底部通水平面面积:F J1=90/=≈1.4m2接触区宽与絮凝池相同,B=2m,接触区底部平面池长方向尺寸:L J1=2=0.7m 接触区上端扩散段纵截面为倒直角梯形,出口流速5~10mm/s,取U J2=7.5mm/s=27m/h接触区上端扩散出口通水平面面积:F J2=90/27=3.333m2接触区宽与絮凝池相同,B=2m,接触区上端扩散出口平面池长方向尺寸:L J2=2=≈1.7m扩散段水平倾角α=35°,扩散段高:h K=(-)tan35°=0.7m扩散段容积:V K=〔(+)/2〕××2=1.68m3接触区停留时间需大于60s,取t J=90s=,接触区容积:V J=90×60=2.25m3接触区底部上升段高:h D=(V J-V K)/F J1=(-)/=0.4m分离区清水下降流速~2.5mm,取U3=2.5mm/s=9m/h分离区平面面积:F F=Q3/U3=90/9=10m2分离区平面池长方向尺寸:L F=10/2=5m(<沉淀池长5.5m)气浮池长度方向尺寸:L=5.5m取分离区液深h Y=1.5m,分离区容积:V F=×2×=16.5m3分离区清水下降时间:t F=h Y/U3=9==10min取分离区安全超高h A=0.5m,气浮池高H F=+=2m复核分离停留时间:t F′=V F /Q3=90==11min,满足停留10~15min的要求,并能满足清水到达池底所需时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
型系列溶气释放器
1、概? 况
??? 压力溶气气浮净水法是一种新的水处理技术它已在我国和许多先进工业国中广泛应用。
这种新净水法是将压力溶气水中释放出的大量微细气泡引入待处理水中。
利用粘附在固体杂质上气泡的浮托力,达到固、液快速分离,并提高浮渣浓缩程度的目的。
因此,被认为是水处理技术上的一次重在突破。
??? 溶气释放器是压力气气浮净水系统中关键装置。
压力溶气中只有通过该置降压消能后,才能释放出大量的微细气泡,释放器性能的好坏,涉及到气释放出的我寡,气泡的微细度及气泡尺寸的分配律等,它直接影响气浮法净水的电能的消耗。
为此,工业发达国家将先进的溶气释放器纳入专利,加以保护。
??? TS-70型低压溶气释放器。
它是国内首创的专用释放器,可在低压下释出符合气浮净水要求的大量微气泡,为此TS-70型溶气释放器于1980年获得了国家发明奖。
??? 随着国内气浮净水技术的推广,第一代TS型释放器保留了TS型优良的释放性能,增加了出水量,而且增设了水射器抽真空置。
在堵塞时,可以不拆卸释放器而在原位冲洗。
但它有管咀出水分布不够均匀及增加抽真空装置的不足。
TV型均分布振动溶气释放器是继TS型、TJ型溶气释放器后最新研制成的第三代溶气释放器,它是在探讨溶气释放基本原理的基础上,结合振动动原理而研制成功的。
它既吸了TS、TJ型溶释放器的各项优良性能,又提高了释放器释放出水的分布均匀性。
增加了微气泡与待处理水中杂质碰撞粘附的机率,从而进一步改善了气浮净水效果。
此外,释放器如一量受堵,只要在气浮池外打开通气阀,接通压缩空气气源,就能利用压力溶气水将释放器内的堵物冲洗干净。
这就克服TS型溶气释放器易堵的弊病。
同时,也比TJ型溶气释放器节省了抽真空装置。
?? TV型系列溶气释放器具有以下先进技术性能:
??????? 1. 在2公斤/厘米2的低压下,即能有效地工作;
??????? 2. 释出气泡的平均直径仅在20~30微米;
??????? 3. 释气率高达99%以上。
2、TS型系列溶气释放器
(1)产品规格及选用数据
3、TJ型系列溶气释放器
(1) 产品规格及选用数据
?? TJ型溶气释放器目前有五种规格,其压力、出流量及作用范围参见下表,以供设计时选用。
(2)使用说明
?? TJ型溶气释放器内有一可升降的舌簧。
在正常工作时,该舌簧利用泵的压力(通过水射器及抽真空传递)处于工作位置。
如当水中杂质堵塞释放器而影响正常释气时,则可开启水射器后的闸门,使水射器工作,在抽真空管内产生负压,而将舌簧拉起,因此,也应加大了水流的通道,而将杂质排出,待冲洗一段时间后(约十余秒)。
关闭闸门,即能使舌簧复位,投入正常工作。
?(3)安装须知
1.必须先将压力溶气水总、支管冲洗干净后,方可装上TJ型溶气释放器
型释放器可以倒装。
即抽真空的一头在下,而接溶气的一头在上。
3.不管释放器正装或倒装,水射器及其控制闸门都宜装在便于操作处。
4.每只水射器允许接8~10只TJ型释放器。
型释放器应水平安装。
以防各出流量分配不均。
6.如释气水出流需要改变方向。
可以出口端自行装弯头改向,但不宜加接管。
4、TV型系列溶气释放器
??? TV型均匀分振动溶气释放器已获准新产品。
?? (1)产品规格及选用数据
?? TV型均匀分布振动溶气释放器目前有三种规格,其压力,出流量及作用范围参见下表,以供设计时选用。
(2)作用说明
??? TV型均匀布振动熔气释放器在正常工作时,振动盘因随弹簧压力而与固定盘保持最佳工作状态时的间隙。
如当水中杂质堵塞释放器而正常释放时,则可接通压缩空气机气源,使振动盘落下一段距离,致使水流通道加大,杂质很快被溶气水冲走,约隔数秒钟后,即切断气源并打开放阀放气,使振动盘复位,再次处于最佳工作状态。
(3)安装须知
本释放器虽能防堵,但对粗大杂质仍需消除后才能使用,为此:
???? 1.首先将压力溶气水总、支管中杂质冲洗干净,最好利用气、水混合反复冲洗数次,以证大杂质能被冲净,然后在固定溶气总管上接出溶气以管相接溶气释放器。
2.为了保证释放器出水均匀和正常工作,安装时应保持释放器位置不倾斜。
3.耐奢橡胶与固定压缩空气总管上的支管连处应予箍紧,并保证能承受5kg/cm2 气压。
4.通气阀与放气阀应固定在便于操作处,释放器一般不宜倒装。