multisim仿真教程正弦波脉宽调制(SPWM)逆变电路精品PPT课件

合集下载

6正弦波脉宽调制逆变器的MATLAB仿真

6正弦波脉宽调制逆变器的MATLAB仿真

6 正弦波脉宽调制逆变器的MATLAB仿真6.1正弦波脉宽调制逆变器的原理和仿真模型6.1.1正弦波脉宽调制逆变器的原理由于期望的逆变器输出是一个正弦电压波形,可以把一个正弦半波分作N 等分。

然后把每一等分的正弦曲线与横轴所包围的面积都用个与此面积相等的等高矩形脉冲来代替,矩形脉冲的中点与正弦波每一等分的中点重合。

这样,由N 个等幅不等宽的矩形脉冲所组成的波形为正弦的半周等效。

同样,正弦波的负半周也可用相同的方法来等效。

这一系列脉冲波形就是所期望的逆变器输出SPWM波形。

由于各脉冲的幅值相等,所以逆变器可由恒定的直流电源供电,也就是说,这种交一直一交变频器中的整流器采用不可控的二极管整流器就可以了(见图6-1,6-2,6-3 )。

逆变器输出脉冲的幅值就是整流器的输出电压。

当逆变器各开关器件都是在理想状态下工作时,驱动相应开关器件的信号也应为与形状相似的一系列脉冲波形,这是很容易推断出来的。

从理论上讲,这一系列脉冲波形的宽度可以严格地用计算方法求得,作为控制逆变器中各开关器件通断的依据。

但较为实用的办法是引用通信技术中的“调制”这一概念,以所期望的波形(在这里是正弦波)作为调制波(ModulationWave ),而受它调制的信号称为载波(Carrier Wave )。

在SPWM中常用等腰三角波作为载波,因为等腰三角波是上下宽度线性对称变化的波形,当它与任何一个光滑的曲线相交时,在交点的时刻控制开关器件的通断,即可得到一组等幅而脉冲宽度正比于该曲线函数值的矩形脉冲,这正是SPWM所需要的结果(6-1)可控整流器调压、六拍逆变器变频(6-2)不控整流、斩波器调压、六拍逆变器变频(6-3)不控整流、PWM逆变器调压调频1.工作原理图6-4是SPWM变频器的主电路,图中VTl-VT6是逆变器的六个功率开关器件(在这里画的是IGBT),各由一个续流二极管反并联,整个逆变器由恒值直流电压U供电。

图6-5是它的控制电路,一组三相对称的正弦参考电压信号由参考信号发生器提供,其频率决定逆变器输出的基波频率,应在所要求的输出频率范围内可调。

11.8正弦波脉宽调制(SPWM)逆变电路

11.8正弦波脉宽调制(SPWM)逆变电路

图11.8.8 通过比较器产生的波形
11.8.3 SPWM逆变电路 SPWM逆变电路如图11.8.9(a)(b)所 示。图中函数发生器XFG1产生1kHz的三角波信 号作为载波信号uc,函数发生器XFG1产生50Hz 的正弦波信号作为调制信号ur ,XFG1和XFG2 对话框设置如图11.8.6所示。
11.8正弦脉宽调制( SPWM)逆变电路 11.8正弦脉宽调制( SPWM) 正弦脉宽调制
11.8.1正弦脉宽调制(SPWM) 11.8.1正弦脉宽调制(SPWM)逆变电路工作原理 正弦脉宽调制 1. SPWM控制的基本原理 图11.8.1(a)示出正弦彼的正半周波形, 并将其划分为N等份,这样就可把正弦半波看成 由N个彼此相连的脉冲所组成的波形。这些脉冲 的宽度相等,都等于π/ N,但幅值不等,且 脉冲顶部是曲线,各脉冲的幅值按正弦规律变 化。
如果将每一等份的正弦曲线与横轴所包围的面 积用一个与此面积相等的等高矩形脉冲代替, 就得到图11.8.1(b)所示的脉冲序列。这样, 由N个等幅而不等宽的矩形脉冲所组成的波形 与正弦波的正半周等效,正弦波的负半周也可 用相同的方法来等效。
SPWM(Sine Pulse Width Modulation正弦波 脉宽调制)的控制思想,就是利用逆变器的 开关元件,由控制线路按一定的规律控制开 关元件的通断,从而在逆变器的输出端获得 一组等幅、等距而不等宽的脉冲序列。其脉 宽基本上按正弦分布,以此脉冲列来等效正 弦电压波。
控制VT4或VT3通断的方法如图11.8.3所示。载 波uc在调制信号波ur的正半周为正极性的三角 波,在负半周为负极性的三角波。调制信号ur 为正弦波。在ur和uc的交点时刻控制晶体管VT4 或VT3的通断。在ur的正半周,VT1保持导通, 当ur> uc时使VT4导通,负载电压uo= UD,

单相正弦波脉宽调制(SPWM)逆变

单相正弦波脉宽调制(SPWM)逆变

实验九 单相正弦波脉宽调制(SPWM )逆变一.实验目的1.熟悉单相交直交变频电路原理及电路组成2.熟悉ICL8038的功能。

3.掌握SPWM 波产生的基理。

4.分析交直交变频电路在不同负载时的工作情况和波形,并研究工作频率对电路工作波形的影响。

二.实验所需挂件及附件 序号型号 备注 1DJK01电源控制屏 该控制屏包含“三相电源输出”等模块 2DJK09单相调压与可调负载 该挂件包含“单相自耦调压器”等模块 3DJK14 单相交直交变频原理 4双踪示波器 5 万用表三.实验线路及原理采用SPWM 正弦波脉宽调制,通过改变调制频率,实现交直交变频的目的。

实验电路由三部分组成:即主电路,驱动电路和控制电路。

1.主电路部分如图3-20所示,交直流变换部分(AC/DC)为不可控整流电路(由实验挂箱DJK09提供); 逆变部分(DC/AC)由四只IGBT 管组成单相桥式逆变电路,采用双极性调制方式。

输出经LC 低通滤波器,滤除高次谐波,得到频率可调的正弦波(基波)交流输出。

本实验设计的负载为电阻性或电阻电感性负载,在满足一定条件下,可接电阻启动式单相鼠笼式异步电动机。

1.驱动电路如图3-21(以其中一路为例)所示,采用IGBT 管专用驱动芯片M57962L ,其输入端接控制电路产生的SPWM 信号,其输出可用以直接驱动IGBT 管。

其特点如下: ①采用快速型的光耦实现电气隔离。

②具有过流保护功能,通讨检测IGBT 管的饱和压降来判断IGBT 是否过流,过流时AC/DC (整流) DC/AC (逆变)图3-20 主电路结构原理图IGBT 管CE 结之间的饱和压降升到某一定值,使8脚输出低电平,在光耦TLP521的输出端OC1呈现高电平,经过流保护电路(见图3-22),使4013的输出Q 端呈现低电平,送控制电路,起到了封锁保护作用。

3.控制电路控制电路如图3-23所示,它是由两片集成函数信号发生器ICL8038为核心组成,其中一片8038产生正弦调制波U r ,另一片用以产生三角载波U c ,将此两路信号经比较电路LM311异步调制后,产生一系列等幅,不等宽的矩形波U m ,即SPWM 波。

逆变电路spwm调制PPT课件

逆变电路spwm调制PPT课件
图7.25 电流滞环跟踪控制的逆变电路
第33页/共49页
跟踪控制技术
• 2) 采用滞环比较方式的电流跟踪型PWM变流电路的特点 • ① 硬件电路简单,属于闭环控制。 • ② 系统具有较高的稳定性。 • ③ 具有快速的瞬态响应。 • ④ 电流型半桥电路容易产生失控。电流脉宽不等固然可以维持电感端压的伏秒值平衡,但却会导致电容电
第24页/共49页
控制的基本原理
1. PWM的基本原理
• 在采样控制理论中的一个重要的 结论,就是当在一个惯性环节的 输入端施加面积相同但形状不同 的脉冲信号时,该环节的输出响 应中,低频段特性非常接近,仅 在高频段略有差异。而且输入信 号的脉冲越窄,输出响应的差别 越小。
• 图7.18(b)所示的等幅脉冲列就称 为脉冲宽度调制(PWM)波形,可 以看出该波形中各个脉冲的幅值 相等,而宽度是按正弦规律变化 的,根据面积等效原理,PWM
是换流方式中最简单的一种。适用于各种由全控型器件构成的电 力电子电路。
图7.3 电流强迫换流原理图
第4页/共49页
器件换流方式
• 1. 电网换流(Line Commutation) • 利用电网提供换流电压进行换流称为电网换流。 • 2. 负载换流(Load Commutation) • 利用负载自身提供换流电压的换流方式称为负载换流。 • 3. 强迫换流(Forced Commutation) • 强迫换流是采用专门的换流电路,给欲关断的晶闸管强制施加反向电压或反向电流的换流方式。
• 2) 载波比K
M U rm U cm
K fc fr
第30页/共49页
逆变电路的控制方式
4. PWM的异步调制和同步调制 • 1) 异步调制 • 在频率改变过程中,载波信号和调制信号不保持同步的调制方式称为异步调制。 • 2) 同步调制 • 在变频时使载波和调制信号波始终保持同步,并保持载波比K等于常数的调制方式称为同步调制。 • 3) 分段同步调制 • 为有效克服上述同步、异步调制存在的缺点,将异步和同步两种调制方法结合起来,使在整个频率范围内

正弦波脉宽调制SPWM

正弦波脉宽调制SPWM

三相桥式PWM逆变器的双极性SPWM波形
上图为三相PWM波形,其中 urU 、urV 、urW为U,V,W三相的正弦调制波, uc为双极性三角载波; uUN’ 、uVN’ 、uWN’ 为U,V,W三相输出与电源
中性点N’之间的相电压矩形波形;


uUV为输出线电压矩形波形,其脉冲幅值为+Ud和
根据载波和信号波是否同步及载波比的 变化情况,PWM调制方式分为异步调制和 同步调制。
(1)异步调制 异步调制——载波信号和调制信号不 同步的调制方式。

通常保持 fc 固定不变,当 fr 变化时,载 波比 N 是变化的;
在信号波的半周期内,PWM波的脉冲个 数不固定,相位也不固定,正负半周期 的脉冲不对称,半周期内前后1/4周期的 脉冲也不对称;


为使一相的PWM波正负半周镜对称,N 应取奇数;
不易滤除;
fr 很低时,f使开关器件难以承
受。
•同步调制三 相PWM波形
u
u rU
uc
u rV
u rW
O
t
u UN'
Ud 2 Ud 2
0

t
u VN' 0 u WN' t
0
t
(3)分段同步调制
1 M sin r tD 2 /2 Tc / 2
因此可得
Tc (1 M sin r t D ) 2
三角波一周期内,脉冲两边间隙宽度
Tc 1 ' Tc (1 M sin r tD ) 2 4
根据上述采样原理和计算公式,可以用 计算机实时控制产生SPWM波形,具体实 现方法有:
VT V 1 1

6正弦波脉宽调制逆变器的MATLAB仿真

6正弦波脉宽调制逆变器的MATLAB仿真

6 正弦波脉宽调制逆变器的MATLAB仿真6.1正弦波脉宽调制逆变器的原理和仿真模型6.1.1正弦波脉宽调制逆变器的原理由于期望的逆变器输出是一个正弦电压波形,可以把一个正弦半波分作N 等分。

然后把每一等分的正弦曲线与横轴所包围的面积都用个与此面积相等的等高矩形脉冲来代替,矩形脉冲的中点与正弦波每一等分的中点重合。

这样,由N 个等幅不等宽的矩形脉冲所组成的波形为正弦的半周等效。

同样,正弦波的负半周也可用相同的方法来等效。

这一系列脉冲波形就是所期望的逆变器输出SPWM波形。

由于各脉冲的幅值相等,所以逆变器可由恒定的直流电源供电,也就是说,这种交一直一交变频器中的整流器采用不可控的二极管整流器就可以了(见图6-1,6-2,6-3 )。

逆变器输出脉冲的幅值就是整流器的输出电压。

当逆变器各开关器件都是在理想状态下工作时,驱动相应开关器件的信号也应为与形状相似的一系列脉冲波形,这是很容易推断出来的。

从理论上讲,这一系列脉冲波形的宽度可以严格地用计算方法求得,作为控制逆变器中各开关器件通断的依据。

但较为实用的办法是引用通信技术中的“调制”这一概念,以所期望的波形(在这里是正弦波)作为调制波(ModulationWave ),而受它调制的信号称为载波(Carrier Wave )。

在SPWM中常用等腰三角波作为载波,因为等腰三角波是上下宽度线性对称变化的波形,当它与任何一个光滑的曲线相交时,在交点的时刻控制开关器件的通断,即可得到一组等幅而脉冲宽度正比于该曲线函数值的矩形脉冲,这正是SPWM所需要的结果(6-1)可控整流器调压、六拍逆变器变频(6-2)不控整流、斩波器调压、六拍逆变器变频(6-3)不控整流、PWM逆变器调压调频1.工作原理图6-4是SPWM变频器的主电路,图中VTl-VT6是逆变器的六个功率开关器件(在这里画的是IGBT),各由一个续流二极管反并联,整个逆变器由恒值直流电压U供电。

图6-5是它的控制电路,一组三相对称的正弦参考电压信号由参考信号发生器提供,其频率决定逆变器输出的基波频率,应在所要求的输出频率范围内可调。

单相正弦波脉宽调制(SPWM)逆变

单相正弦波脉宽调制(SPWM)逆变

实验九 单相正弦波脉宽调制(SPWM )逆变一.实验目的1.熟悉单相交直交变频电路原理及电路组成2.熟悉ICL8038的功能。

3.掌握SPWM 波产生的基理。

4.分析交直交变频电路在不同负载时的工作情况和波形,并研究工作频率对电路工作波形的影响。

二.实验所需挂件及附件 序号型号 备注 1DJK01电源控制屏 该控制屏包含“三相电源输出”等模块 2DJK09单相调压与可调负载 该挂件包含“单相自耦调压器”等模块 3DJK14 单相交直交变频原理 4双踪示波器 5 万用表三.实验线路及原理采用SPWM 正弦波脉宽调制,通过改变调制频率,实现交直交变频的目的。

实验电路由三部分组成:即主电路,驱动电路和控制电路。

1.主电路部分如图3-20所示,交直流变换部分(AC/DC)为不可控整流电路(由实验挂箱DJK09提供); 逆变部分(DC/AC)由四只IGBT 管组成单相桥式逆变电路,采用双极性调制方式。

输出经LC 低通滤波器,滤除高次谐波,得到频率可调的正弦波(基波)交流输出。

本实验设计的负载为电阻性或电阻电感性负载,在满足一定条件下,可接电阻启动式单相鼠笼式异步电动机。

1.驱动电路如图3-21(以其中一路为例)所示,采用IGBT 管专用驱动芯片M57962L ,其输入端接控制电路产生的SPWM 信号,其输出可用以直接驱动IGBT 管。

其特点如下: ①采用快速型的光耦实现电气隔离。

②具有过流保护功能,通讨检测IGBT 管的饱和压降来判断IGBT 是否过流,过流时AC/DC (整流) DC/AC (逆变)图3-20 主电路结构原理图IGBT 管CE 结之间的饱和压降升到某一定值,使8脚输出低电平,在光耦TLP521的输出端OC1呈现高电平,经过流保护电路(见图3-22),使4013的输出Q 端呈现低电平,送控制电路,起到了封锁保护作用。

3.控制电路控制电路如图3-23所示,它是由两片集成函数信号发生器ICL8038为核心组成,其中一片8038产生正弦调制波U r ,另一片用以产生三角载波U c ,将此两路信号经比较电路LM311异步调制后,产生一系列等幅,不等宽的矩形波U m ,即SPWM 波。

单相正弦波PWM逆变电路仿真报告(Simulink)

单相正弦波PWM逆变电路仿真报告(Simulink)

单相正弦波PWM逆变电路仿真报告1. 仿真目的:通过对单相SPWM逆变电路不同控制方式的仿真研究,进一步理解SPWM 控制信号的产生原理,单极性、双极性控制方式的原理及不同、载波比与调制深度不同对逆变电路输出波形的影响等。

2. 仿真原理:2.1 单相桥式逆变电路图1 所示为单相桥式逆变电路的框图,设负载为阻感负载。

在桥式逆变电路中,桥臂的上下两个开关器件轮流导通,即工作时V1 和V2 通断状态互补,V3 和V4 的通断状态互补。

下面将就单极性及双极性两种不同的控制方法进行分析。

图1 单相桥式PWM逆变电路2.2 不同控制方式原理2.2.1 单极性控制方式调制信号u r为正弦波,载波u c在u r的正半周为正极性的三角波,在u r的负半周为负极性的三角波。

在u r的正半周,V1保持通态,V2保持断态,在u r>u c 时使V4导通,V3关断,u0=U d; 在u r<u c时使V3导通,V4关断,u0=0; 在u r 的负半周,V1保持断态,V2保持通态,在u r<u c时使V3导通,V4关断,u0=-U d; 在u r>u c时使V4导通,V3关断,u0=0。

这样就得到了SPWM波形u0。

图2 单极性PWM控制波形2.2.2 双极性控制方式采用双极性方式时,在u r的半个周期内,三角波不再是单极性的,而是有正有负,所得的PWM波也是有正有负。

在u r的一个周期内,输出的PWM波只有两种电平,而不像单极性控制时还有零电平。

在u r的正负半周,对各开关器件的控制规律相同。

即u r>u c时,给V1和V4导通信号,给V2和V3以关断信号,如i0>0,则V1和V4通,如i0<0,则VD1和VD4通,不管哪种情况都是输出电压u0=U d。

u r<u c时,给V2和V3导通信号,给V1和V4以关断信号,这时如i0<0,则V2和V3通,如i0>0,则VD2和VD3通,不管哪种情况都是输出电压u0=-U d。

最新multisim仿真教程 正弦波脉宽调制(SPWM)逆变电路

最新multisim仿真教程  正弦波脉宽调制(SPWM)逆变电路
multisim仿真教程 正弦 波脉宽调制(SPWM)逆变电

11.8.1正弦脉宽调制(SPWM)逆变电路工作原理
1. SPWM控制的基本原理 图11.8.1(a)示出正弦彼的正半周波形,
并将其划分为N等份,这样就可把正弦半波看成 由N个彼此相连的脉冲所组成的波形。这些脉冲 的宽度相等,都等于π/ N,但幅值不等,且 脉冲顶部是曲线,各脉冲的幅值按正弦规律变 化。
生器XFG1产生1kHz的三角波信号作为载波信号
uc,函数发生器XFG1产生50Hz的正弦波信号作
为调制信号ur 。XFG1和XFG2对话框设置如图
11.8.6所示,产生的波形如图11.8.7所示。通
过比较器产生的波形如图1.8.8所示。
图11.8.5 SPWM产生电路
(a)
(b)
图11.8.6 XFG1和XFG2对话框设置
为零。这样,负载上的输出电压uo就可得到零
和UD交替的两种电平。
同样,在负半周期,让晶体管VT2保持导 通。当VT3导通时,负载被加上负电压一 UD;当VT3关断时, VD4续流,负载电压为
零,负载电压uo可得到一UD和零两种电平。
这样,在一个周期内,逆变器输出的PWM 波形就由±UD和0三种电平组成。
当 ur<uc时使VT4关断,uo=0;在ur的负半周, VT1关断,VT2保持导通,当ur<uc时使VT3导
通,uo=一UD,当ur>uc时使VT3关断,uo=0。 这样,就得到了PWM波形uo。图中虚线uof表示 uo中的基波分量。
像这种在ur的半个周期内三角波载波只在一个
方向变化,所得到输出电压的PWM波形也只在 一个方向变化的控制方式称为单极性PWM控制 方式。
3. 双极性PWM控制方式

正弦波脉宽调制(SPWM)

正弦波脉宽调制(SPWM)

为使一相的PWM波正负半周镜对称,N 应取奇数;
fr 很低时,fc 也很低,由调制带来的谐波 不易滤除;
fr 很高时,fc 会过高,使开关器件难以承 受。
•同步调制三 u 相PWM波形
O
u UN'
Ud 2
0
Ud 2
u VN'
0
u WN'
0
u rU
u c u rV
u rW t
t t t
u a)
O
t
u
b)
O
t
图6-3
PWM调制原理
按照波形面积相等的原则,每一个矩形 波的面积与相应位置的正弦波面积相等, 因而这个序列的矩形波与期望的正弦波等 效。这种调制方法称作正弦波脉宽调制 (Sinusoidal pulse width modulation,简称 SPWM),这种序列的矩形波称作SPWM 波。
1.2
0.8
0.4
0 10 20 30 40 50 60 70 80 fr /Hz
(4)混合调制
可在低频输出时采用异步调制方式,高 频输出时切换到同步调制方式,这样把两 者的优点结合起来,和分段同步方式效果 接近。
5. PWM逆变器主电路及输出波形
Ud 2
+ VVT11 C
U
VD1 VVT3 3
(3)分段同步调制
把 fr 范围划分成若干个频段,每个频段内 保持N恒定,不同频段N不同;
在 fr 高的频段采用较低的N,使载波频率 不致过高;
在 fr 低的频段采用较高的N,使载波频率 不致过低;
• 分段同步调制方式
fc /kHz 201 147 99
2.4

multisim仿真教程正弦波脉宽调制SPWM逆变电路ppt课件

multisim仿真教程正弦波脉宽调制SPWM逆变电路ppt课件
看出,同一半桥上下两个桥臂晶体管的驱动信 号极性相反TT1和VT4处
于导通状态时,给VT1或VT4以关断信号,而给
VT2和VT3以开通信号后,则VT1或VT4立即关断,
因感性负载电流不能突变,VT2和VT3并不能立
即导通,二极管VD2和VD3导通续流。
1
如果将每一等份的正弦曲线与横轴所包围的面 积用一个与此面积相等的等高矩形脉冲代替, 就得到图11.8.1(b)所示的脉冲序列。这样, 由N个等幅而不等宽的矩形脉冲所组成的波形 与正弦波的正半周等效,正弦波的负半周也可 用相同的方法来等效。
2
SPWM(Sine Pulse Width Modulation正弦波 脉宽调制)的控制思想,就是利用逆变器的 开关元件,由控制线路按一定的规律控制开 关元件的通断,从而在逆变器的输出端获得 一组等幅、等距而不等宽的脉冲序列。其脉 宽基本上按正弦分布,以此脉冲列来等效正 弦电压波。

SPWM逆变电路如图11.8.9(a)(b)所
示。图中函数发生器XFG1产生1kHz的三角波信
号作为载波信号uc,函数发生器XFG1产生50Hz
的正弦波信号作为调制信号ur ,XFG1和XFG2
对话框设置如图11.8.6所示。
27
图中采用LM339AJ比较器作为SPWM调制电路, A2 3545AM作为反相放大器,产生的波形如图 11.8.9(c)所示。在负载电阻R4上的输出波 形如图11.8.9(d)所示。
13
当 ur<uc时使VT4关断,uo=0;在ur的负半周, VT1关断,VT2保持导通,当ur<uc时使VT3导 通,uo=一UD,当ur>uc时使VT3关断,uo=0。 这样,就得到了PWM波形uo。图中虚线uof表示 uo中的基波分量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25
图11.8.7 XFG1和XFG2 产生的波形
26
图11.8.8 通过比较器产生的波形
27
11.8.3 SPWM逆变电路
SPWM逆变电路如图11.8.9(a)(b)所
18
在电感性负载的情况下,若VTT1和VT4处
于导通状态时,给VT1或VT4以关断信号,而给
VT2和VT3以开通信号后,则VT1或VT4立即关断,
因感性负载电流不能突变,VT2和VT3并不能立
即导通,二极管VD2和VD3导通续流。
19
当感性负载电流较大时,直到下一次VT1 和VT4重新导通前,负载电流方向始终未 变,VD2和VD3持续导通,而VT2和VT3始终 未开通。当负载电流较小时,在负载电流 下降到零之前,VD2和VD3续流,之后VT2 和VT3开通,负载电流反向。
20
不论VD2和VD3导通,还是VT2和VT3开通,负载 电压都是一UD。从VT2和VT3开通向VT1和VT4开 通切换时,VD1和VD4的续流情况和上述情况类 似。
21
图11.8.4 双极性PWM控制方式的波形
22
11.8.2 SPWM产生电路
SPWM产生电路如图11.8.5所示,图中采
用LM339AJ比较器作为SPWM调制电路,函数发
生器XFG1产生1kHz的三角波信号作为载波信号
uc,函数发生器XFG1产生50Hz的正弦波信号作
为调制信号ur 。XFG1和XFG2对话框设置如图
11.8.6所示,产生的波形如图11.8.7所示。通
过比较器产生的波形如图1.8.8所示。
23
图11.8.5 SPWM产生电路
24
(a)
(b)
图11.8.6 XFG1和XFG2对话框设置
11.8正弦脉宽调制宽调制(SPWM)逆变电路工作原理
1. SPWM控制的基本原理 图11.8.1(a)示出正弦彼的正半周波形,
并将其划分为N等份,这样就可把正弦半波看成 由N个彼此相连的脉冲所组成的波形。这些脉冲 的宽度相等,都等于π/ N,但幅值不等,且 脉冲顶部是曲线,各脉冲的幅值按正弦规律变 化。
11
图11.8.2 电压型单相桥式逆变电路
12
图11.8.3单极性PWM控制方式
13
控制VT4或VT3通断的方法如图11.8.3所示。载
波uc在调制信号波ur的正半周为正极性的三角 波,在负半周为负极性的三角波。调制信号ur 为正弦波。在ur和uc的交点时刻控制晶体管VT4 或VT3的通断。在ur的正半周,VT1保持导通, 当ur> uc时使VT4导通,负载电压uo= UD,
2
如果将每一等份的正弦曲线与横轴所包围的面 积用一个与此面积相等的等高矩形脉冲代替, 就得到图11.8.1(b)所示的脉冲序列。这样, 由N个等幅而不等宽的矩形脉冲所组成的波形 与正弦波的正半周等效,正弦波的负半周也可 用相同的方法来等效。
3
SPWM(Sine Pulse Width Modulation正弦波 脉宽调制)的控制思想,就是利用逆变器的 开关元件,由控制线路按一定的规律控制开 关元件的通断,从而在逆变器的输出端获得 一组等幅、等距而不等宽的脉冲序列。其脉 宽基本上按正弦分布,以此脉冲列来等效正 弦电压波。
得到的就是SPWM波形。如在交点时刻控制电
路中开关器件的通断,就可以得到宽度正比
于信号波幅值的脉冲。这正好符合SPWM控制
的要求。
7
2. 单极性PWM控制方式
一个电压型单相桥式逆变电路如图11.8.2
所示,采用电力晶体管作为开关器件。设负载
为电感性,对各晶体管的控制按下面的规律进
行:在正半周期,让晶体管VT1一直保持导通,
4
图11.8.1 SPWM控制的基本原理
5
SPWM正弦波脉宽调制的特点是输出
脉冲列是不等宽的,宽度按正弦规律变
化,故输出电压的波形接近正弦波。
SPWM是采用一个正弦波与三角波相交的
方案确定各分段矩形脉冲的宽度。通常
采用等腰三角波作为载波,因为等腰三
角波上下宽度与高度成线性关系且左右
对称。
6
当它与正弦波的调制信号波相交时,所
为零。这样,负载上的输出电压uo就可得到零
和UD交替的两种电平。
10
同样,在负半周期,让晶体管VT2保持导 通。当VT3导通时,负载被加上负电压一 UD;当VT3关断时, VD4续流,负载电压为
零,负载电压uo可得到一UD和零两种电平。
这样,在一个周期内,逆变器输出的PWM 波形就由±UD和0三种电平组成。
14
当 ur<uc时使VT4关断,uo=0;在ur的负半周, VT1关断,VT2保持导通,当ur<uc时使VT3导 通,uo=一UD,当ur>uc时使VT3关断,uo=0。 这样,就得到了PWM波形uo。图中虚线uof表示 uo中的基波分量。
15
像这种在ur的半个周期内三角波载波只在一个
方向变化,所得到输出电压的PWM波形也只在 一个方向变化的控制方式称为单极性PWM控制 方式。 3. 双极性PWM控制方式
16
图11.8.2的单相桥式逆变电路采用双极性PWM 控制方式的波形如图11.8.4所示。在双极性方
式中ur的半个周期内,三角波载波是在正、负
两个方向变化的,所得到的PWM波形也是在两
个方向变化的。在ur的一周期内,输出的PWM 波形只有±UD两种电平,仍然在调制信号ur和 载波信号uc的交点时刻控制各开关器件的通断。
而让晶体管VT4交替通断。
8
当VT1和VT4导通时,负载上所加的电压为直流 电源电压UD。当VT1导通而使VT4关断后,由于 电感性负载中电流不能突变,负载电流将通过 二极管VD3续流,负载上所加电压为零。
9
如负载电流较大,那么直到使VT4再一次导通之 前,VD3一直持续导通。如负载电流较快地衰减 到零,在VT4再一次导通之前,负载电压也一直
17
在ur的正负半周,对各开关器件的控制规律相 同。当ur>uc时,给晶体管VT1和VT4以导通信 号,给VT2、 VT3以关断信号,输出电压uo=UD。 当ur<uc时,给VT2 、VT3以导通信号,给VT1 和VT4以关断信号,输出电压Uo=-UD。可以
看出,同一半桥上下两个桥臂晶体管的驱动信 号极性相反,处于互补工作方式。
相关文档
最新文档