苏科版第一学期八年级数学第三次月考试卷(含解析)

合集下载

苏科版八年级上学期第三次月考数学试卷 (解析版)

苏科版八年级上学期第三次月考数学试卷 (解析版)

苏科版八年级上学期第三次月考数学试卷 (解析版)一、选择题1.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( )A .1-B .0C .1D .22.若点P 在y 轴负半轴上,则点P 的坐标有可能是( )A .()1,0-B .()0,2-C .()3,0D .()0,43.如图,△ABC ≌△ADE ,∠B=20°,∠E=110°,则∠EAD 的度数为( )A .80°B .70°C .50°D .130°4.7的平方根是( ) A .±7 B .7 C .-7 D .±75.如图,∠A =30°,∠C ′=60°,△ABC 与△A′B′C′关于直线l 对称,则∠B 度数为()A .30B .60︒C .90︒D .120︒6.下列四个实数中,属于无理数的是( )A .0B 9C .23 D 127.+1x x 的取值范围是( ).A .x >﹣1B .x ≥0C .x ≥﹣1D .任意实数8.若2149x kx ++是完全平方式,则实数k 的值为( )A .43 B .13 C .43± D .13±9.一次函数112y x =-+的图像不经过的象限是:( )A .第一象限B .第二象限C .第三象限D .第四象限10.下列图案中,属于轴对称图形的是( )A .B .C .D .11.如图(1),在四边形ABCD 中,AB CD ∥,90ABC ∠=︒,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,ABP ∆的面积为y ,如果y 关于x 的函数图象如图(2)所示,则BCD ∆的面积是( )A .6B .5C .4D .312.已知:如图,点P 在线段AB 外,且PA=PB ,求证:点P 在线段AB 的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A .作∠APB 的平分线PC 交AB 于点CB .过点P 作PC ⊥AB 于点C 且AC=BCC .取AB 中点C ,连接PCD .过点P 作PC ⊥AB ,垂足为C13.我们知道,平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为( ) A .1 B .2C .4D .无数 14.如图,在ABC 中,,904C AC ︒∠==cm ,3BC =cm ,点D 、E 分别在AC 、BC上,现将DCE 沿DE 翻折,使点C 落在点'C 处,连接AC ',则AC '长度的最小值 ( )A .不存在B .等于 1cmC .等于 2 cmD .等于 2.5 cm 15.已知一次函数y =kx +b 的图象经过第一、二、三象限,则b 的值可以是( )A .﹣2B .﹣1C .0D .2二、填空题16.如果点P (m+1,m+3)在y 轴上,则m=_____.17.如图,函数3y x =-和4y ax =+的图像相交于点A (m ,3),则不等式34x ax ->+的解集为____.18.如图,已知直线3y x b =+与2y ax =-的交点的横坐标为-2,则关于x 的不等式32x b ax +>-的解集为______.19.如图,在△ABC 中,∠B=40°,BC 边的垂直平分线交BC 于D ,交AB 于E ,若CE 平分∠ACB,则∠A=______°.20.等腰三角形的两边长分别为5cm 和2cm ,则它的周长为_____. 21.若正比例函数y=kx 的图象经过点(2,4),则k=_____.22.如图,在坐标系中,一次函数21y x =-+与一次函数y x k =+的图像交于点(2,5)A -,则关于x 的不等式21x k x +>-+的解集是__________.23.如图,在△ABC 中,AB = AC ,∠BAC = 120º,AD ⊥BC ,则∠BAD = _____°.24.如图,在△ABC 中,∠C =90°,∠B =22.5°,DE 垂直平分AB 交BC 于点E ,EC =1,则三角形ACE 的面积为__.25.如图,等腰△ABC 中,AB=AC ,∠DBC=15°,AB 的垂直平分线MN 交AC 于点D ,则∠A 的度数是 .三、解答题26.在如图所示的正方形网格中,每个小正方形的边长都是1,已知三角形ABC 的三个顶点的坐标分别为(3,6)A -,(1,2)B -,(5,4)C -(1)作出三角形ABC 关于y 轴对称的三角形111A B C(2)点1A 的坐标为 .(3)①利用网络画出线段AB 的垂直平分线L ;②P 为直线上L 上一动点,则PA PC +的最小值为 .27.如图,一次函数1y x b =+的图像与x 轴y 轴分别交于点A 、点B ,函数1y x b =+,与243y x =-的图像交于第二象限的点C ,且点C 横坐标为3-.(1)求b 的值;(2)当120y y <<时,直接写出x 的取值范围;(3)在直线243y x =-上有一动点P ,过点P 作x 轴的平行线交直线1y x b =+于点Q ,当145PQ OC =时,求点P 的坐标.28.解方程:12242x x x -=--. 29.王阿姨到超市购买大米,元旦前按原价购买,用了105元,元旦后,这种大米8折出售,她用168元又买了一些,两次一共购买了45kg ,这种大米的原价是多少?30.某商场计划销售甲、乙两种产品共200件,每销售1件甲产品可获得利润0.4万元, 每销售1件乙产品可获得利润0.5万元,设该商场销售了甲产品x (件),销售甲、乙两种产品获得的总利润为y (万元).(1)求y 与x 之间的函数表达式;(2)若每件甲产品成本为0.6万元,每件乙产品成本为0.8万元,受商场资金影响,该商场能提供的进货资金至多为150万元,求出该商场销售甲、乙两种产品各为多少件时,能获得最大利润.31.已知:如图,点A 是线段CB 上一点,△ABD 、△ACE 都是等边三角形,AD 与BE 相交于点G ,AE 与CD 相交于点F .求证:△AGF 是等边三角形.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可.【详解】∵点P(a,2a-1)在一、三象限的角平分线上,∴a=2a-1,解得a=1.故选:C.【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.2.B解析:B【解析】【分析】根据y轴上的点的坐标特点,横坐标为0,然后根据题意求解.【详解】解:∵y轴上的点的横坐标为0,又因为点P在y轴负半轴上,∴(0,-2)符合题意故选:B【点睛】本题考查坐标轴上的点的坐标特点,利用数形结合思想解题是本题的解题关键.3.C解析:C【解析】【分析】根据全等的性质知∠D=∠B=20°,再根据三角形的内角和即可求出∠EAD.【详解】∵△ABC≌△ADE,∠B=20°,∠E=110°,∴∠D=∠B=20°,∴∠EAD=180°-20°-110°=50°,故选C.【点睛】本题是对三角形全等知识的考查,熟练掌握全等知识及三角形的内角和是解决本题的关键. 4.D解析:D【解析】【分析】根据乘方运算,可得一个正数的平方根.【详解】)2=7,∴7.故选:D.【点睛】本题考查了平方根,利用了乘方运算求一个正数的平方根,注意一个正数有两个平方根.5.C解析:C【解析】【分析】由已知条件,根据轴对称的性质可得∠C=∠C′=30°,利用三角形的内角和等于180°可求答案.【详解】∵△ABC与△A′B′C′关于直线l对称,∴∠A=∠A′=30°,∠C=∠C′=60°;∴∠B=180°−30°-60°=90°.故选:C.【点睛】主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是180°.6.D解析:D【解析】【分析】根据无理数的定义,即可得到答案.【详解】=D正确;03=,23是有理数,故ABC错误;故选择:D.【点睛】本题考查了无理数的定义,解题的关键是熟记定义. 7.C解析:C【解析】【分析】根据二次根式的意义可得出x+1≥0,即可得到结果.【详解】解:由题意得:x+1≥0,解得:x≥﹣1,故选:C.【点睛】本题主要是考查了二次根式有意义的条件应用,计算得出的不等式是关键.8.C解析:C【解析】【分析】本题是已知平方项求乘积项,根据完全平方式的形式可得出k的值.【详解】由完全平方式的形式(a±b)2=a2±2ab+b2可得:kx=±2•2x•13,解得k=±43.故选:C【点睛】本题关键是有平方项求乘积项,掌握完全平方式的形式(a±b)2=a2±2ab+b2是关键.9.C解析:C【解析】试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.这个一次函数的k=12<0与b=1>0,因此不经过第三象限.答案为C考点:一次函数的图像10.D解析:D【解析】【分析】根据轴对称图形的定义逐一分析即可.【详解】A选项不是轴对称图形,故本选项不符合题意; B选项不是轴对称图形,故本选项不符合题意; C选项不是轴对称图形,故本选项不符合题意; D选项是轴对称图形,故本选项符合题意;故选D.此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.11.D解析:D【解析】【分析】根据图1可知,可分P在BC上运动和P在CD上运动分别讨论,由此可得BC和CD的值,进而利用三角形面积公式可得BCD∆的面积.【详解】解:动点P从直角梯形ABCD的直角顶点B出发,沿BC,CD的顺序运动,当P在BC段运动,△ABP面积y随x的增大而增大;当P在CD段运动,因为△ABP的底边不变,高不变,所以面积y不变化.由图2可知,当0<x<2时,y随x的增大而增大;当2<x<5时,y的值不随x变化而变化.综上所述,BC=2,CD=5-2=3,故1123322BCDS CD BC∆.故选:D.【点睛】本题考查动点问题的函数图象,动点的图象问题是中考的常考题型,做此类题需要弄清横纵坐标的代表量,并观察确定图象分为几段,弄清每一段自变量与因变量的变化情况及变化的趋势,主要是正负增减及变化的快慢等. 匀速变化呈现直线段的形式,平行于x轴的直线代表未发生变化.12.B解析:B【解析】【分析】利用判断三角形全等的方法判断即可得出结论.【详解】A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,故选B.【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.13.B解析:B【解析】直接利用轴对称图形的性质画出对称轴即可.【详解】解:如图所示:平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为2条.故选:B.【点睛】此题主要考查了轴对称图形的性质,正确掌握轴对称图形的性质是解题关键.14.C解析:C【解析】【分析】当C′落在AB上,点B与E重合时,AC'长度的值最小,根据勾股定理得到AB=5cm,由折叠的性质知,BC′=BC=3cm,于是得到结论.【详解】解:当C′落在AB上,点B与E重合时,AC'长度的值最小,∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm,由折叠的性质知,BC′=BC=3cm,∴AC′=AB-BC′=2cm.故选:C.【点睛】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.15.D解析:D【解析】【分析】根据一次函数的图象经过第一、二、三象限判断出b的符号,再找出符合条件的b的可能值即可.【详解】∵一次函数的图象经过第一、二、三象限,∴b >0,∴四个选项中只有2符合条件.故选:D .【点睛】本题考查了一次函数图象与系数的关系:对于一次函数y=kx+b :当k >0,b >0⇔y=kx+b 的图象在一、二、三象限;k >0,b <0⇔y=kx+b 的图象在一、三、四象限;k <0,b >0⇔y=kx+b 的图象在一、二、四象限;k <0,b <0⇔y=kx+b 的图象在二、三、四象限.二、填空题16.﹣1.【解析】∵点P (m+1,m+3)在y 轴上,∴m+1=0,∴m=-1.故答案为:-1.解析:﹣1.【解析】∵点P (m+1,m+3)在y 轴上,∴m+1=0,∴m=-1.故答案为:-1.17.x <-1.【解析】【分析】由图象可知,在点A 的左侧,函数的图像在的图像的上方,即,所以求出点A 的坐标后结合图象即可写出不等式的解集.【详解】解:∵和的图像相交于点A (m ,3),∴∴∴解析:x <-1.【解析】【分析】由图象可知,在点A 的左侧,函数3y x =-的图像在4y ax =+的图像的上方,即34x ax ->+,所以求出点A 的坐标后结合图象即可写出不等式34x ax ->+的解集.【详解】解:∵3y x =-和4y ax =+的图像相交于点A (m ,3),∴33m =-∴1m =-∴交点坐标为A (-1,3),由图象可知,在点A 的左侧,函数3y x =-的图像在4y ax =+的图像的上方, 即34x ax ->+∴不等式34x ax ->+的解集为x <-1.故答案是:x <-1.【点睛】此题主要考查了一次函数与一元一次不等式的关系,用图象法解不等式的关键是找到y 相等时的分界点,观察分界点左右图象的变化趋势,即可求出不等式的解集,重点要掌握利用数形结合的思想.18.x >−2【解析】【分析】直线y =3x +b 与y =ax −2的交点的横坐标为−2,求不等式3x +b >ax −2的解集,就是看函数在什么范围内y =3x +b 的图象在函数y =ax −2的图象上方.【详解】解析:x >−2【解析】【分析】直线y =3x +b 与y =ax−2的交点的横坐标为−2,求不等式3x +b >ax−2的解集,就是看函数在什么范围内y =3x +b 的图象在函数y =ax−2的图象上方.【详解】解:从图象得到,当x >−2时,y =3x +b 的图象在y =ax−2的图象上方,∴不等式3x +b >ax−2的解集为:x >−2.故答案为x >−2.【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.19.60【解析】∵E 在线段BC 的垂直平分线上,∴BE=CE,∴∠ECB=∠B=40°,∵CE 平分∠ACB,∴∠ACD=2∠ECB=80°,又∵∠A+∠B+∠ACB=180°,∴∠A=18解析:60【解析】∵E在线段BC的垂直平分线上,∴BE=CE,∴∠ECB=∠B=40°,∵CE平分∠ACB,∴∠ACD=2∠ECB=80°,又∵∠A+∠B+∠ACB=180°,∴∠A=180°−∠B−∠ACB=60°,故答案为:60.20.12cm.【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2解析:12cm.【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2cm为底,此时周长为12cm;②5cm为底,2cm为腰,则两边和小于第三边无法构成三角形,故舍去.所以其周长是12cm.故答案为12cm.【点睛】此题主要考查等腰三角形的周长,解题的关键熟知等腰三角形的性质及三角形的构成条件. 21.2【解析】解析:2【解析】4=22⇒=k k22.【解析】【分析】根据图像解答即可.【详解】由图像可知,关于的不等式的解集是.故答案为:.【点睛】本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细解析:2x >-【解析】【分析】根据图像解答即可.【详解】由图像可知,关于x 的不等式21x k x +>-+的解集是2x >-.故答案为:2x >-.【点睛】本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.函数y 1>y 2时x 的范围是函数y 1的图象在y 2的图象上边时对应的未知数的范围,反之亦然.23.60°【解析】【分析】根据等腰三角形三线合一的性质得:AD 平分∠BAC,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC,AD⊥BC,∴AD 平分∠BAC,∴∠BAD=∠BA解析:60°【解析】【分析】根据等腰三角形三线合一的性质得:AD 平分∠BAC ,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC ,AD ⊥BC ,∴AD 平分∠BAC ,∴∠BAD=12∠BAC,∵∠BAC=120°,∴∠BAD=12×120°=60°,故答案为:60°.【点睛】本题考查的知识点是等腰三角形的性质,解题关键是熟记等腰三角形三线合一的性质. 24..【解析】【分析】由线段垂直平分线的性质可知EA=EB,由等边对等角的性质及外角的性质可得∠AEC=45°,易知△ACE为等腰直角三角形,可得CA长,利用三角形面积公式求解即可.【详解】解解析:12.【解析】【分析】由线段垂直平分线的性质可知EA=EB,由等边对等角的性质及外角的性质可得∠AEC=45°,易知△ACE为等腰直角三角形,可得CA长,利用三角形面积公式求解即可.【详解】解:∵DE垂直平分AB交BC于点E,∴EA=EB,∴∠EAB=∠B=22.5°,∴∠AEC=∠EAB+∠B=45°,∵∠C=90°,∴△ACE为等腰直角三角形,∴CA=CE=1,∴三角形ACE的面积=12×1×1=12.故答案为:12.【点睛】本题主要考查了线段垂直平分线的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等,等腰三角形的两底角相等,灵活利用这两个性质是解题的关键. 25.50°.【解析】【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三解析:50°.【解析】【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可:【详解】∵MN是AB的垂直平分线,∴AD="BD." ∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为50°.三、解答题26.(1)见解析(2)点1A的坐标为(3,6);(3)①见解析.【解析】【分析】(1)首先确定A、B、C三点关于y轴的对称点位置A1、B1、C1,再连接即可得到△ABC关于y轴对称的△A1B1C1;(2)根据平面直角坐标系写出点1A的坐标;(3)①根据垂直平分线的定义画图即可;的最小值为BC的长,再由勾股定②根据轴对称的性质以及两点之间线段最短得PA PC理求解即可.【详解】(1)如图所示:(2)点1A 的坐标为(3,6);(3)①如图所示:②PA PC +的最小值为BC 的长,即2224+=20 【点睛】此题主要考查了作图--轴对称变换,以及三角形的面积,关键是掌握几何图形都可看作是由点组成,画一个图形的轴对称图形时,就是确定一些特殊的对称点.27.(1)7b =(2)73x -<<-(3)点P 坐标为(3,4)-或(9,12)-【解析】【分析】(1)将点C 横坐标代入243y x =-求得点C 的纵坐标为4,再把(-3,4)代入1y x b =+求出b 即可;(2)求出点A 坐标,结合点C 坐标即可判断出当120y y <<时, x 的取值范围; (3)设P (a,-43a ),可求出Q (473a --,43a -),即可得PQ=773a +,再求出OC=5,根据145PQ OC =求出a 的值即可得出结论. 【详解】 (1)把3x =-代入243y x =-, 得4y =.∴C (-3,4)把点(3,4)C -代入1y x b =+,得7b =.(2)∵b=7∴y=x+7,当y=0时,x=-7,x=-3时,y=4,∴当120y y <<时,73x -<<-.(3)点P 为直线43y x =-上一动点, ∴设点P 坐标为4(,)3a a -. //PQ x ∵轴,∴把43y a =-代入7y x =+,得473x a =--. ∴点Q 坐标为447,33a a ⎛⎫--- ⎪⎝⎭, 477733PQ a a a ∴=++=+ 又点C 坐标为()3,4-,5OC ∴==14145PQ OC ∴== 77143a ∴+= 解之,得3a =或9a =-.∴点P 坐标为(3,4)-或(9,12)-.【点睛】理解点在直线上则它的坐标满足直线的解析式.学会用坐标表示线段的长.28.无解【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:x -2=4(x -2)解得:x =2.检验:当x =2时,2(x -2)=0,∴x =2是增根.∴方程无解.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.29.7元/千克【解析】【分析】设这种大米原价是每千克x元,根据题意列出分式方程,解出并检验即可.【详解】解:设这种大米原价是每千克x元,根据题意得:105168450.8x x+=,解得x=7 经检验x=7是原分式方程的解,答:这种大米的原价是7元/千克.【点睛】此题主要考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 30.(1) y=-0.1x+100 (2) 该商场销售甲50件,乙150件时,能获得最大利润.【解析】【分析】(1) 根据题意即可列出一次函数,化简即可;(2) 设甲的件数为x,那么乙的件数为:200-x,根据题意列出不等式0.6x+0.8(200-x)≤150,解出,根据y=-0.1x+100的性质,即可求出.【详解】解:(1)由题意可得:y=0.4x+0.5×(200-x)得到:y=-0.1x+100所以y与x之间的函数表达式为y=-0.1x+100(2)设甲的件数为x,那么乙的件数为:200-x,依题意可得:0.6x+0.8(200-x)≤150解得:x≥50由y=-0.1x+100得到y随x的增大而减小所以当利润最大时,x值越小利润越大所以甲产品x=50 乙产品200-x=150答:该商场销售甲50件,乙150件时,能获得最大利润.【点睛】此题主要考查了一次函数及一元一次不等式,熟练掌握实际生活转化为数学模式是解题的关键.31.见解析【解析】【分析】由等边三角形可得AD=AB,AE=AC,∠BAE=∠DAC=120°,再由两边夹一角即可判定△BAE≌△DAC,可得∠1=∠2,进而可得出△BAG≌△DAF,AG=AF,则可得△AGF是等边三角形.【详解】证明:∵△ABD,△ACE都是等边三角形,∴AD=AB,AE=AC,∴∠DAE=∠BAD=∠CAE=60°∴∠BAE=∠DAC=120°,在△BAE和△DAC中AD=AB,∠BAE=∠DAC,AE=AC,∴△BAE≌△DAC.∴∠1=∠2在△BAG和△DAF中∠1=∠2,AB=AD,∠BAD=∠DAE,∴△BAG≌△DAF,∴AG=AF,又∠DAE=60°,∴△AGF是等边三角形.【点睛】本题主要考查了全等三角形的判定及性质,以及等边三角形的性质和判定,解答本题的关键是明确题意,利用数形结合的思想解答.。

苏科版八年级上学期第三次月考数学试卷 (解析版)

苏科版八年级上学期第三次月考数学试卷 (解析版)

苏科版八年级上学期第三次月考数学试卷 (解析版)一、选择题1.下列四组线段a 、b 、c ,不能组成直角三角形的是( ) A .4,5,3a b c === B . 1.5,2, 2.5a b c === C .5,12,13a b c ===D .1,2,3a b c ===2.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m ),则不等式组mx ﹣2<kx+1<mx 的解集为( ) A .x>12B .12<x<32C .x<32D .0<x<323.已知等腰三角形的两边长分别为3和4,则它的周长为( ) A .10B .11C .10或11D .74.如图,∠AOB=60°,OA=OB ,动点C 从点O 出发,沿射线OB 方向移动,以AC 为边在右侧作等边△ACD ,连接BD ,则BD 所在直线与OA 所在直线的位置关系是( )A .平行B .相交C .垂直D .平行、相交或垂直5.如图,AD 是ABC 的角平分线,DE AB ⊥于E ,已知ABC 的面积为28.6AC =,4DE =,则AB 的长为( )A .4B .6C .8D .10 6.已知:△ABC ≌△DCB ,若BC=10cm ,AB=6cm ,AC=7cm ,则CD 为( ) A .10cm B .7cm C .6cm D .6cm 或7cm 7.已知a >0,b <0,那么点P(a ,b)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.给出下列实数:227、2539 1.442π、0.16、0.1010010001-⋯(每相邻两个1之间依次多一个0),其中无理数有( )A .2个B .3个C .4个D .5个9.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( ) A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)10.下列四组线段中,可以构成直角三角形的是( ) A .4,5,6B .1.5,2,2.5C .2,3,4D .1,2, 311.下列说法中正确的是( ) A .带根号的数都是无理数 B .不带根号的数一定是有理数 C .无限小数都是无理数 D .无理数一定是无限不循环小数12.9的平方根是( ) A .3B .81C .3±D .81±13.如图,平面直角坐标系中,长方形OABC ,点A ,C 分别在x 轴,y 轴的正半轴上,点B (6,3),现将△OAB 沿OB 翻折至△OA ′B 位置,OA ′交BC 于点P .则点P 的坐标为( )A .(94,3) B .(32,3) C .(125,3) D .(5,32) 14.已知一次函数y =kx +b 的图象经过第一、二、三象限,则b 的值可以是( ) A .﹣2B .﹣1C .0D .215.下列调查中,调查方式最适合普查(全面调查)的是( ) A .对全国初中学生视力情况的调查 B .对2019年央视春节联欢晚会收视率的调查 C .对一批飞机零部件的合格情况的调查 D .对我市居民节水意识的调查二、填空题16.点P (﹣5,12)到原点的距离是_____.17.如果2x -有意义,那么x 可以取的最小整数为______.18.已知点(,)P m n 在一次函数31y x =-的图像上,则2296m mn n -+=___________. 19.如图,直线l 上有三个正方形,,a b c ,若,a c 的面积分别为5和11,则b 的面积为__________.20.若x ,y 都是实数,且338y x x =-+-+,则3x y +的立方根是______.21.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB 绕点B 顺时针旋转90°至CB,那么点C的坐标是.22.如图,在ABC中,∠A=60°,D是BC边上的中点,DE⊥BC,∠ABC的平分线BF交DE于ABC内一点P,连接PC,若∠ACP=m°,∠ABP=n°,则m、n之间的关系为______.23.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是_________.24.在第二象限内的点P到x轴的距离是1,到y轴的距离是4,则点P的坐标是_________.25.一次函数y1=ax+3与y2=kx﹣1的图象如图所示,则不等式kx﹣1<ax+3的解集是_____.三、解答题26.已知BC=5,AB=1,AB⊥BC,射线CM⊥BC,动点P在线段BC上(不与点B,C重合),过点P作DP⊥AP交射线CM于点D,连接AD.(1)如图1,若BP=4,判断△ADP的形状,并加以证明.(2)如图2,若BP=1,作点C关于直线DP的对称点C′,连接AC′.①依题意补全图2;②请直接写出线段AC′的长度.27.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?28.如图,正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点.(1)在图①中,以格点为端点画一条长度为13的线段MN;(2)在图②中,A、B、C是格点,求∠ABC的度数.29.(新知理解)如图①,若点A、B在直线l同侧,在直线l上找一点P,使AP BP+的值最小.作法:作点A关于直线l的对称点A',连接A B'交直线l于点P,则点P即为所求.(解决问题)如图②,AD是边长为6cm的等边三角形ABC的中线,点P、E分别在AD、AC上,则PC PE+的最小值为 cm;(拓展研究)如图③,在四边形ABCD的对角线AC上找一点P,使APB APD∠=∠.(保留作图痕迹,并对作图方法进行说明)30.如图,正比例函数y=34x与一次函数y=ax+7的图象相交于点P(4,n),过点A(2,0)作x轴的垂线,交一次函数的图象于点B,连接OB.(1)求a值;(2)求△OBP的面积;(3)在坐标轴的正半轴上存在点Q,使△POQ是以OP为腰的等腰三角形,请直接写出Q 点的坐标.31.如图,点D是△ABC内部的一点,BD=CD,过点D作DE⊥AB,DF⊥AC,垂足分别为E、F,且BE=CF.求证:AB=AC.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据勾股定理逆定理,即若三角形中两边到的平方和等于第三边的平方,那么这个三角形是直角三角形,对每项进行计算判断即可. 【详解】解:A.2222223491625,525,a b c +=+==+=,B.222221.52 2.254 6.25,2.5 6.25,a b c +=+==+=,C.22222251225144169,13169,a b c +=+==+=,222222123,39,.1D a b c +=+==+≠.【点睛】本题考查了勾股定理的逆定理,解决本题的关键是熟练掌握勾股定理逆定理,正确计算出每项的结果.2.B解析:B 【解析】 【分析】由mx ﹣2<(m ﹣2)x+1,即可得到x <32;由(m ﹣2)x+1<mx ,即可得到x >12,进而得出不等式组mx ﹣2<kx+1<mx 的解集为12<x <32. 【详解】 把(12,12m )代入y 1=kx+1,可得 12m=12k+1, 解得k=m ﹣2,∴y 1=(m ﹣2)x+1, 令y 3=mx ﹣2,则当y 3<y 1时,mx ﹣2<(m ﹣2)x+1, 解得x <32; 当kx+1<mx 时,(m ﹣2)x+1<mx , 解得x >12, ∴不等式组mx ﹣2<kx+1<mx 的解集为12<x <32, 故选B . 【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.3.C解析:C【解析】【分析】可分3是腰长与底边,两种情况讨论求解即可.【详解】解:①3是腰长时,三角形的三边分别为:3、3、4,能组成三角形,周长=3+3+4=10,②3是底边时,三角形的三边分别为3、4、4,能组成三角形,周长=3+4+4=11,∴三角形的周长为10或11.故选择:C.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键,难点在于要分情况讨论.4.A解析:A【解析】【分析】先判断出OA=OB,∠OAB=∠ABO,分两种情况判断出△AOC≌△ABD,进而判断出∠ABD=∠AOB=60°,即可得出结论.【详解】∵∠AOB=60°,OA=OB,∴△OAB是等边三角形,∴OA=AB,∠OAB=∠ABO=60°①当点C在线段OB上时,如图1,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,OA BAOAC BAD AC AD=⎧⎪∠=∠⎨⎪=⎩,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA;②当点C在OB的延长线上时,如图2,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,OA BAOAC BADAC AD=⎧⎪∠=∠⎨⎪=⎩,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,故选A.【点睛】本题考查了等边三角形的判定和性质,全等三角形的判定和性质,求出∠ABD=60°是解本题的关键.5.C解析:C【解析】【分析】作DF⊥AC于F ,根据角平分线的性质求出DF,根据三角形的面积公式计算即可.【详解】解:作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DF=DE=4,∴112228AB DE AC DF即112246428AB解得,AB=8,故选:C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.C解析:C 【解析】 【分析】全等图形中的对应边相等. 【详解】根据△ABC ≌△DCB ,所以AB=CD,所以CD=6,所以答案选择C 项. 【点睛】本题考查了全等,了解全等图形中对应边相等是解决本题的关键.7.D解析:D 【解析】试题分析:根据a >0,b <0和第四象限内的坐标符号特点可确定p 在第四象限. ∵a >0,b <0,∴点P (a ,b )在第四象限, 故选D.考点:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点点评:解答本题的关键是掌握好四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8.B解析:B 【解析】 【分析】根据无理数是无限不循环小数,可得答案. 【详解】解:−5,实数:227、2π、0.16、0.1010010001-⋯(每相邻两个1之间依次多一个02π、-0.1010010001…(每相邻两个1之间依次多一个0)共3个. 故选:B . 【点睛】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.9.B解析:B 【解析】 【分析】先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案. 【详解】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+, 此时与x 轴相交,则0y =, ∴360x +=,即2x =-, ∴点坐标为(-2,0), 故选B. 【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.10.B解析:B 【解析】试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可: A 、42+52=41≠62,不可以构成直角三角形,故本选项错误; B 、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确; C 、22+32=13≠42,不可以构成直角三角形,故本选项错误;D 、222133+=≠,不可以构成直角三角形,故本选项错误.故选B .考点:勾股定理的逆定理.11.D解析:D 【解析】 【分析】根据无理数的定义判断各选项即可. 【详解】A 2=,是有理数,错误;B 中,例如π,是无理数,错误;C 中,无限循环小数是有理数,错误;D 正确,无限不循环的小数是无理数 故选:D 【点睛】本题考查无理数的定义,注意含有π和根号开不尽的数通常为无理数.12.C解析:C 【解析】 【分析】根据平方根的定义进行求解即可. 【详解】解:9的平方根是3.故选C.【点睛】本题考查平方根,一个正数有两个实平方根,它们互为相反数.13.A解析:A【解析】【分析】由折叠的性质和矩形的性质证出OP=BP,设OP=BP=x,则PC=6﹣x,再用勾股定理建立方程9+(6﹣x)2=x2,求出x即可.【详解】∵将△OAB沿OB翻折至△OA′B位置,OA′交BC于点P,∴∠A'OB=∠AOB,∵四边形OABC是矩形,∴BC∥OA,∴∠OBC=∠AOB,∴∠OBC=∠A'OB,∴OP=BP,∵点B的坐标为(6,3),∴AB=OC=3,OA=BC=6,设OP=BP=x,则PC=6﹣x,在Rt△OCP中,根据勾股定理得,OC2+PC2=OP2,∴32+(6﹣x)2=x2,解得:x=154,∴PC=6﹣154=94,∴P(94,3),故选:A.【点睛】此题主要考查折叠和矩形的性质以及利用勾股定理构建方程,熟练掌握,即可解题. 14.D解析:D【解析】【分析】根据一次函数的图象经过第一、二、三象限判断出b的符号,再找出符合条件的b的可能值即可.【详解】∵一次函数的图象经过第一、二、三象限,∴b>0,∴四个选项中只有2符合条件.故选:D.【点睛】本题考查了一次函数图象与系数的关系:对于一次函数y=kx+b:当k>0,b>0⇔y=kx+b 的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.15.C解析:C【解析】【分析】根据普查和抽样调查的特点解答即可.【详解】解:A.对全国初中学生视力情况的调查,适合用抽样调查,不合题意;B.对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,不合题意;C.对一批飞机零部件的合格情况的调查,适合全面调查,符合题意;D.对我市居民节水意识的调查,适合用抽样调查,不合题意;故选:C.【点睛】本题考查了抽样调查和全面调查的知识,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题16.13【解析】【分析】直接根据勾股定理进行解答即可.【详解】∵点P(-5,12),∴点P到原点的距离==13.故答案为13.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,解析:13【解析】【分析】直接根据勾股定理进行解答即可.【详解】∵点P(-5,12),∴点P到原点的距离=13.故答案为13.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.17.2【解析】【分析】根据被开方数大于等于0列式求解即可.【详解】根据题意得,x-2≥0,解得x≥2,∴x可以取的最小整数为2.故填:2.【点睛】本题考查了二次根式有意义的条件,根据解析:2【解析】【分析】根据被开方数大于等于0列式求解即可.【详解】根据题意得,x-2≥0,解得x≥2,∴x可以取的最小整数为2.故填:2.【点睛】本题考查了二次根式有意义的条件,根据被开方数大于等于列式求解即可,比较简单.18.1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入===.故答案为:1.【解析:1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入2296m mn n -+=223196())31(m m m m -+--=2229186196m m m m m -++-+=1.故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标性质,正确代入点的坐标求出是解题关键. 19.16【解析】【分析】运用正方形边长相等,再根据同角的余角相等可得∠ABC=∠DAE,然后证明△ΔBCA≌ΔAED,结合全等三角形的性质和勾股定理来求解即可.【详解】解:∵AB=AD,∠BC解析:16【解析】【分析】运用正方形边长相等,再根据同角的余角相等可得∠ABC =∠DAE ,然后证明△ΔBCA ≌ΔAED ,结合全等三角形的性质和勾股定理来求解即可.【详解】解:∵AB =AD ,∠BCA =∠AED =90°,∴∠ABC =∠DAE ,∴ΔBCA≌ΔAED(ASA),∴BC=AE,AC=ED,故AB²=AC²+BC²=ED²+BC²=11+5=16,即正方形b的面积为16.点睛:此题主要考查对全等三角形和勾股定理的综合运用,解题的重点在于证明ΔBCA≌ΔAED,而利用全等三角形的性质和勾股定理得到b=a+c则是解题的关键.20.3【解析】【分析】根据被开方数大于等于0列式求出x的值,然后求出y的值,代入代数式求解,再根据立方根的定义解答.【详解】解:根据题意得,x-3≥0且3-x≥0,解得x≥3且x≤3,所以解析:3【解析】【分析】根据被开方数大于等于0列式求出x的值,然后求出y的值,代入代数式求解,再根据立方根的定义解答.【详解】解:根据题意得,x-3≥0且3-x≥0,解得x≥3且x≤3,所以x=3,y=8,x+3y=3+3×8=27,∴x+3y的立方根为3.故答案为:3.【点睛】本题考查二次根式的被开方数是非负数,立方根的定义,根据x的取值范围求出x的值是解题的关键.21..【解析】【分析】【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,,.解析:(21)【解析】【分析】【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,∠BDC=∠AOB, BC=AB,∴△ABO≌△BCD(AAS),∴CD=OB,BD=AO,∵点A(1,0),B(0,2),∴CD=2,BD=1,∴OD=OB-BD=1,又∵点C在第二象限,∴点C的坐标是(-2,1).22.m+3n=120【解析】【分析】根据线段垂直平分线的性质,可得∠PBC=∠PCB,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP,最后根据三角形内角和定理,从而得到m、n之间的关系.【解析:m+3n=120【解析】【分析】根据线段垂直平分线的性质,可得∠PBC=∠PCB,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP,最后根据三角形内角和定理,从而得到m、n之间的关系.【详解】解:∵点D是BC边的中点,DE⊥BC,∴PB=PC,∴∠PBC=∠PCB,∵BP平分∠ABC,∴∠PBC=∠ABP,∴∠PBC=∠PCB=∠ABP=n°,∵∠A=60°,∠ACP=m°,∠+∠+∠=︒180,A ABC ACB∴∠PBC+∠PCB+∠ABP=120°-m°,∴3∠ABP=120°-m°,∴3n°+m°=120°,故答案为:m+3n=120.【点睛】本题主要考查了三角形内角和定理以及线段垂直平分线的性质的运用,角平分线的定义,解题时注意:线段垂直平分线上任意一点,到线段两端点的距离相等;三角形内角和等于180°.23.a>b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为a>b.【点睛】本题考查一次函数图象上点的坐标特征解析:a>b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为a>b.【点睛】本题考查一次函数图象上点的坐标特征.24.(-4,1).【解析】【分析】根据第二象限内点的坐标特征以及点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【详解】∵第二象限的点P到x轴的距离是1,到y轴的距离是4,解析:(-4,1).【解析】【分析】根据第二象限内点的坐标特征以及点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【详解】∵第二象限的点P到x轴的距离是1,到y轴的距离是4,∴点P的横坐标是-4,纵坐标是1,∴点P的坐标为(-4,1).故答案为:(-4,1).【点睛】此题考查点的坐标,解题关键在于熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度.25.x<1.【解析】【分析】结合图象,写出直线y1=ax+3在直线y2=kx﹣1上方所对应的自变量的范围即可.【详解】∵一次函数y1=ax+3与y2=kx﹣1的图象的交点坐标为(1,2),∴解析:x<1.【解析】【分析】结合图象,写出直线y1=ax+3在直线y2=kx﹣1上方所对应的自变量的范围即可.【详解】∵一次函数y1=ax+3与y2=kx﹣1的图象的交点坐标为(1,2),∴当x<1时,y1>y2,∴不等式kx﹣1<ax+3的解集为x<1.故答案为:x<1.【点睛】本题考查了一次函数与一元一次不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.三、解答题26.(1)△ADP是等腰直角三角形.证明见解析;(2)①补图见解析;②10【解析】【分析】(1)先判断出PC=AB,再用同角的余角相等判断出∠APB=∠PDC,得出△ABP≌△PCD (AAS),即可得出结论;(2)①利用对称的性质画出图形;②过点C'作C'Q⊥BA交BA的延长线于Q,先求出CP=4,AB=AP,∠CPD=45°,进而得出C'P=CP=4,∠C'PD=∠CPD=45°,再判断出四边形BQC'P是矩形,进而求出AQ=BQ﹣AB=3,最后用勾股定理即可得出结论.【详解】(1)△ADP是等腰直角三角形.证明如下:∵BC=5,BP=4,∴PC=1.∵AB=1,∴PC=AB.∵AB⊥BC,CM⊥BC,DP⊥AP,∴∠B=∠C=90°,∠APB+∠DPC=90°,∠PDC+∠DPC=90°,∴∠APB=∠PDC.在△ABP和△PCD中,∵B CAPB PDCAB PC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABP≌△PCD(AAS),∴AP=PD.∵∠APD=90°,∴△ADP是等腰直角三角形.(2)①依题意补全图2;②过点C'作C'Q⊥BA交BA的延长线于Q.∵BP=1,AB=1,BC=5,∴CP=4,AB=AP.∵∠ABP=90°,∴∠APB=45°.∵∠APD=90°,∴∠CPD=45°,连接C'P.∵点C与C'关于DP对称,∴C'P=CP=4,∠C'PD=∠CPD=45°,∴∠CPC'=90°,∴∠BPC'=90°,∴∠Q=∠ABP=∠BPC'=90°,∴四边形BQC'P是矩形,∴C'Q=BP=1,BQ=C'P=4,∴AQ=BQ﹣AB=3.在Rt△AC'Q中,AC′=.【点睛】本题考查了矩形的判定与性质以及全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理,构造出直角三角形是解答本题的关键.27.(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.【解析】【分析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为3 2 x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作12006040m-天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为3 2 x米,根据题意得:360360332x x-=,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴32x=32×40=60,答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;(2)设安排甲队工作m天,则安排乙队工作12006040m-天,根据题意得:7m+5×12006040m-≤145,解得:m≥10,答:至少安排甲队工作10天.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.28.(1)见解析;(2)45°【解析】【分析】(1)根据网格和勾股定理即可在图①中,以格点为端点画一条长度为13的线段MN;(2)连接AC,根据勾股定理及逆定理可得三角形ABC是等腰直角三角形,进而可求∠ABC的度数.【详解】解:(1)如图根据勾股定理,得MN22AM AN+22+1323(2)连接AC∵22AC+2213102425AB=+=BC,221310∴AC2+BC2=AB2,∴ABC是等腰直角三角形,∴∠ABC=45°.【点睛】此题考查的是勾股定理和网格问题,掌握勾股定理及逆定理是解决此题的关键.29.(1)332)作图见解析.【解析】试题分析:(1)作点E关于AD的对称点F,连接PF,则PE=PF,根据两点之间线段最短以及垂线段最短,得出当CF⊥AB时,PC+PE=PC+PF=CF(最短),最后根据勾股定理,求得CF的长即可得出PC+PE的最小值;(2)根据轴对称的性质进行作图.方法1:作B关于AC的对称点E,连接DE并延长,交AC于P,连接BP,则∠APB=∠APD.方法2:作点D关于AC的对称点D',连接D'B并延长与AC的交于点P,连接DP,则∠APB=∠APD.试题解析:(1)【解决问题】如图②,作点E关于AD的对称点F,连接PF,则PE=PF,当点F,P,C在一条直线上时,PC+PE=PC+PF=CF(最短),当CF⊥AB时,CF最短,此时BF=12AB=3(cm),∴Rt△BCF中,CF=2222=63=33BC BF--(cm),∴PC+PE的最小值为33cm;(2)【拓展研究】方法1:如图③,作B关于AC的对称点E,连接DE并延长,交AC于P,点P即为所求,连接BP,则∠APB=∠APD.方法2:如图④,作点D关于AC的对称点D',连接D'B并延长与AC的交于点P,点P 即为所求,连接DP,则∠APB=∠APD.30.(1)a=-1;(2)7;(3)点Q的坐标为(5,0)或(8,0)或(0,5)或(0,6)【解析】【分析】(1)先由点P在正比例函数图象上求得n的值,再把点P坐标代入一次函数的解析式即可求出结果;(2)易求点B坐标,设直线AB与OP交于点C,如图,则点C坐标可得,然后利用△OBP 的面积=S△BCO+S△BCP代入相关数据计算即可求出结果;(3)先根据勾股定理求出OP的长,再分两种情况:当OP=OQ时,以O为圆心,OP为半径作圆分别交y轴和x轴的正半轴于点Q1、Q2,如图2,则点Q1、Q2即为所求,然后利用等腰三角形的定义即可求出结果;当PO=PQ时,以P为圆心,OP为半径作圆分别交y轴和x轴的正半轴于点Q4、Q3,如图3,则点Q4、Q3也为所求,然后利用等腰三角形的性质即可求得结果.【详解】解:(1)把点P(4,n)代入y=34x,得:n=34×4=3,∴P(4,3),把P(4,3)代入y=ax+7得,3=4a+7,∴a=﹣1;(2)∵A(2,0),AB⊥x轴,∴B点的横坐标为2,∵点B在y=﹣x+7上,∴B(2,5),设直线AB与OP交于点C,如图1,当x=2时,33242y=⨯=,∴C(2,32),∴△OBP的面积=S△BCO+S△BCP=12⨯2×(5﹣32)+12⨯(4﹣2)×(5﹣32)=7;(3)过点P作PD⊥x轴于点D,∵P(4,3),∴OD=4,PD=3,∴22345OP=+=,当OP=OQ时,以O为圆心,OP为半径作圆分别交y轴和x轴的正半轴于点Q1、Q2,如图2,则点Q1、Q2即为所求,且Q2(5,0)、Q1(0,5);当PO=PQ时,以P为圆心,OP为半径作圆分别交y轴和x轴的正半轴于点Q4、Q3,如图3,则点Q4、Q3也为所求,由于PO=PQ3,∴DQ3=DO=4,∴Q3(8,0),过点P作PF⊥y轴于点F,同理可得:FQ4=FO=3,∴Q4(0,6).综上所述,在坐标轴的正半轴上存在点Q,使△POQ是以OP为腰的等腰三角形,点Q的坐标为(5,0)或(8,0)或(0,5)或(0,6).【点睛】本题考查了一次函数图象上点的坐标特征、勾股定理、三角形的面积和等腰三角形的性质等知识,属于常考题型,熟练掌握一次函数的相关知识和等腰三角形的性质是解题的关键.31.证明见解析.【解析】【分析】欲证明AB=AC,只要证明∠ABC=∠ACB即可,根据“HL”证明Rt△BDE≌Rt△CDF,由全等三角形的性质可证∠EBD=∠FCD,再由等腰三角形的性质∠DBC=∠DCB,从而可证∠ABC=∠ACB.【详解】∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.在Rt△BDE和Rt△CDF中,∴Rt△BDE≌Rt△CDF(HL),∴∠EBD=∠FCD,∵BD=CD,∴∠DBC=∠DCB,∴∠DBC+∠EBD=∠DCB+∠FCD,即∠ABC=∠ACB,∴AB=AC.【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。

苏科版第一学期八年级数学第三次月考试卷(含解析)

苏科版第一学期八年级数学第三次月考试卷(含解析)

苏科版第一学期八年级数学第三次月考试卷(含解析) 一、选择题 1.下列各组数中互为相反数的是( )A .2-与2B .2-与38-C .2-与12-D .2-与()22-2.如图,在四边形ABCD 中,AB ∥DC ,AD=BC=5,DC=7,AB=13,点P 从点A 出发以3个单位/s 的速度沿AD→DC 向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动.当四边形PQBC 为平行四边形时,运动时间为( )A .4sB .3sC .2sD .1s3.如图,在正方形网格中,若点(1,1)A ,点(3,2)C -,则点B 的坐标为( )A .(1,2)B .(0,2)C .(2,0)D .(2,1)4.下列四个图标中,是轴对称图形的是( )A .B .C .D .5.下列运算正确的是( )A .=2B .|﹣3|=﹣3C .=±2D .=36.分式221x x -+的值为0,则x 的值为( )A .0B .2C .﹣2D .127.已知等腰三角形的两边长分别为3和4,则它的周长为( )A .10B .11C .10或11D .78.下列图形中的五边形ABCDE 都是正五边形,则这些图形中的轴对称图形有()A .1个B .2个C .3个D .4个9.1(1)1a a --变形正确的是( ) A .1-B .1a -C .1a --D .1a -- 10.如图,已知△ABC 的三条边和三个角,则甲、乙、丙三个三角形中和△ABC 全等的是( )A .甲和乙B .甲和丙C .乙和丙D .只有乙11.若点Α()m,n 在一次函数y=3x+b 的图象上,且3m-n>2,则b 的取值范围为 ( ) A .b>2 B .b>-2 C .b<2 D .b<-212.如图,在平面直角坐标系中,A (0,3),B (5,3),C (5,0),点D 在线段OA 上,将△ABD 沿着直线BD 折叠,点A 的对应点为E ,当点E 在线段OC 上时,则AD 的长是( )A .1B .43C .53D .213.如果等腰三角形两边长是5cm 和2cm ,那么它的周长是( )A .7cmB .9cmC .9cm 或12cmD .12cm14.10的说法中,错误的是( )A 10B .3104<C .1010D 10是10的算术平方根15.下列调查中,调查方式最适合普查(全面调查)的是( )A .对全国初中学生视力情况的调查B .对2019年央视春节联欢晚会收视率的调查C .对一批飞机零部件的合格情况的调查D .对我市居民节水意识的调查 二、填空题16.函数1y=x 2-中,自变量x 的取值范围是 ▲ . 17.若点(1,35)P m m +-在x 轴上,则m 的值为________.18.已知点(,)P a b 在一次函数21y x =+的图象上,则21a b --=_____.19.如图,长方形OABC 中,8OA =,6AB =,点D 在边BC 上,且3CD DB =,点E 是边OA 上一点,连接DE ,将四边形ABDE 沿DE 折叠,若点A 的对称点'A 恰好落在边OC 上,则OE 的长为____.20.若直线y x m =+与直线24y x =-+的交点在y 轴上,则m =_______.21.如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是_______22.如图是某足球队全年比赛情况统计图:根据图中信息,该队全年胜了_______场.23.如图,在△ABC 中,AB = AC ,∠BAC = 120º,AD ⊥BC ,则∠BAD = _____°.24.如图,在△ABC 中,∠C =90°,∠B =22.5°,DE 垂直平分AB 交BC 于点E ,EC =1,则三角形ACE 的面积为__.25.某人一天饮水1679mL ,精确到100mL 是_____.三、解答题26.如图,在边长为12cm 的正方形ABCD 中,M 是AD 边的中点,点P 从点A 出发,在正方形边上沿A B C D→→→的方向以大于1 cm/s的速度匀速移动,点Q从点D出发,在CD边上沿D C→方向以1 cm/s的速度匀速移动,P、Q两点同时出发,当点P、Q相遇时即停止移动.设点P移动的时间为t(s),正方形ABCD与PMQ∠的内部重叠部分面积为y(cm2).已知点P移动到点B处,y的值为96(即此时正方形ABCD与PMQ∠的内部重叠部分面积为96cm2).(1)求点P的速度:(2)求y与t的函数关系式,并直接写出的取值范围.27.在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及△AMN的周长x与等边△ABC的周长y的关系.(1)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是;此时xy=;(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想( I)问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.(3)如图3,当M、N分别在边AB、CA的延长线上时,探索BM、NC、MN之间的数量关系如何?并给出证明.28.如图,四边形OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x 轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处.(1)求CE 的长;(2)求点D 的坐标.29.如图,将一张边长为8的正方形纸片OABC 放在直角坐标系中,使得OA 与y 轴重合,OC 与x 轴重合,点P 为正方形AB 边上的一点(不与点A 、点B 重合).将正方形纸片折叠,使点O 落在P 处,点C 落在G 处,PG 交BC 于H ,折痕为EF .连接OP 、OH .初步探究(1)当AP =4时①直接写出点E 的坐标 ;②求直线EF 的函数表达式.深入探究(2)当点P 在边AB 上移动时,∠APO 与∠OPH 的度数总是相等,请说明理由. 拓展应用(3)当点P 在边AB 上移动时,△PBH 的周长是否发生变化?并证明你的结论.30.已知21a =,求代数式223a a -+的值.31.先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷⎪--+⎝⎭,其中x =2﹣3.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】 根据相反数的性质判断即可;【详解】A 中-2=2,不是互为相反数;B 中382-=-,不是相反数;C 中两数互为倒数;D 中两数互为相反数;故选:D .【点睛】本题主要考查了相反数的性质应用,准确分析是解题的关键.2.B解析:B【解析】【分析】【详解】解:设运动时间为t 秒,则CP=12-3t ,BQ=t ,根据题意得到12-3t=t ,解得:t=3,故选B .【点睛】本题考查一元一次方程及平行四边形的判定,难度不大.3.C解析:C【解析】【分析】根据点(1,1)A ,点(3,2)C -建立平面直角坐标系,再结合图形即可确定出点B 的坐标.【详解】解:∵点A 的坐标是:(1,1),点C 的坐标是:(3,-2),∴点B 的坐标是:(2,0).故选:C .【点睛】本题主要考查了点的坐标,点坐标就是在平面直角坐标系中,坐标平面内的点与一对有序实数是一一对应的关系,这对有序实数则为这个点的坐标点的坐标.4.B解析:B【解析】【分析】直接根据轴对称图形的概念分别解答得出答案.【详解】A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不合题意.故选:B.【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.A解析:A【解析】【分析】根据算术平方根和立方根的定义、绝对值的性质逐一计算可得结论.【详解】A.=2,此选项计算正确;B.|﹣3|=3,此选项计算错误;C.=2,此选项计算错误;D.不能进一步计算,此选项错误.故选A.【点睛】本题考查了算术平方根,解题的关键是掌握算术平方根和立方根的定义、绝对值性质.6.B解析:B【解析】【分析】直接利用分式的值为零,则分子为零进而得出答案.【详解】解:∵分式22 1x x -+的值为0,∴x﹣2=0,解得:x=2.故选:B.【点睛】此题主要考查了分式为零的条件,正确把握分式为零的条件是解题关键.7.C解析:C【解析】【分析】可分3是腰长与底边,两种情况讨论求解即可.【详解】解:①3是腰长时,三角形的三边分别为:3、3、4,能组成三角形,周长=3+3+4=10,②3是底边时,三角形的三边分别为3、4、4,能组成三角形,周长=3+4+4=11,∴三角形的周长为10或11.故选择:C.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键,难点在于要分情况讨论.8.D解析:D【解析】分析:直接利用轴对称图形的性质画出对称轴得出答案.详解:如图所示:直线l即为各图形的对称轴.,故选:D.点睛:此题主要考查了轴对称图形,正确把握轴对称图形的定义是解题关键.9.C解析:C【解析】【分析】先根据二次根式有意义有条件得出1-a>0,再由此利用二次根式的性质化简得出答案.【详解】1有意义,-1a∴->,10a10a ∴-<,(a ∴-== 故选C .【点睛】 考查了二次根式的性质与化简,正确化简二次根式是解题关键.10.B解析:B【解析】【分析】根据三角形全等的判定定理SSS 、SAS 、 AAS 、ASA 、HL 逐个进行分析即可.【详解】解:甲三角形有两条边及夹角与△ABC 对应相等,根据SAS 可以判断甲三角形与△ABC 全等;乙三角形只有一条边及对角与△ABC 对应相等,不满足全等判定条件,故乙三角形与△ABC 不能判定全等;丙三角形有两个角及夹边与△ABC 对应相等,根据ASA 可以判定丙三角形与△ABC 全等; 所以与△ABC 全等的有甲和丙,故选:B .【点睛】本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.11.D解析:D【解析】分析:由点(m,n )在一次函数3y x b =+的图像上,可得出3m+b=n ,再由3m-n >2,即可得出b <-2,此题得解.详解:∵点A (m ,n )在一次函数y=3x+b 的图象上,∴3m+b=n .∵3m-n >2,∴3m-(3m+b)>2,即-b>2,∴b <-2.故选D .点睛:考查了一次函数图象上点的坐标特征:点的坐标满足函数的解析式,根据一次函数图象上点的坐标特征,再结合3m-n >2,得出-b >2是解题的关键.12.C解析:C【解析】【分析】先根据勾股定理求出EC的长,进而可得出OE的长,在Rt△DOE中,由DE=AD及勾股定理可求出AD的长.【详解】解:根据各点坐标可得AB=OC=BE=5,AO=BC=3,设AD=x,则DE=x,DO=3-x∴=4,∴OE=1,在Rt△DOE中,DO2+OE2=DE2,解得x=53,∴AD=53,故选C.【点睛】本题考查了勾股定理的应用,找准直角三角形,设出未知数列出方程即可解答.13.D解析:D【解析】【分析】因为题中没有说明已知两边哪个是底,哪个是腰,所以要分情况进行讨论.【详解】解:当三边是2cm,2cm,5cm时,不符合三角形的三边关系;当三角形的三边是5cm,5cm,2cm时,符合三角形的三边关系,此时周长是5+5+2=12cm.故选:D.【点睛】考查了等腰三角形的性质,此类题注意分情况讨论,还要看是否符合三角形的三边关系.14.C解析:C【解析】试题解析:A是无理数,说法正确;B、3<4,说法正确;C、10,故原题说法错误;D是10的算术平方根,说法正确;故选C.15.C【解析】【分析】根据普查和抽样调查的特点解答即可.【详解】解:A.对全国初中学生视力情况的调查,适合用抽样调查,不合题意;B.对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,不合题意;C.对一批飞机零部件的合格情况的调查,适合全面调查,符合题意;D.对我市居民节水意识的调查,适合用抽样调查,不合题意;故选:C.【点睛】本题考查了抽样调查和全面调查的知识,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题16..【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.解析:x2.【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.17.【解析】【分析】根据x轴上点的纵坐标为0列方程求解即可.【详解】∵点在x轴上,∴3m−5=0,解得m=.故答案为:.【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关解析:5 3【解析】根据x 轴上点的纵坐标为0列方程求解即可.【详解】∵点(1,35)P m m +-在x 轴上,∴3m−5=0,解得m =53. 故答案为:53. 【点睛】 本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关键.18.【解析】【分析】根据点在函数图像上,即将点代入函数解析式,能够使解析式成立,将本题中P 点的坐标代入解析式,变形即可解决.【详解】解:将代入函数解析式得:b=2a+1,将此式变形即可得到:解析:2-【解析】【分析】根据点在函数图像上,即将点代入函数解析式,能够使解析式成立,将本题中P 点的坐标代入解析式,变形即可解决.【详解】解:将(,)P a b 代入函数解析式得:b=2a+1,将此式变形即可得到:210a b -+=,两边同时减去2,得:21a b --=-2,故答案为:2-.【点睛】本题考查了通过函数上点的坐标,求相关代数式的值,解决本题的关键要熟练掌握一次函数的性质,明白函数上的点都能使函数解析式成立.19.【解析】【分析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD ,A′E=AE ,可证明Rt △A′CD ≌Rt △DBA ,解析:【解析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD ,A′E=AE ,可证明Rt △A′CD ≌Rt △DBA ,根据全等三角形的性质得到A′C=BD=2,A′O=4,然后在Rt △A′OE 中根据勾股定理列出方程求解即可.【详解】解:如图,∵四边形OABC 是矩形,∴BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,∵CD=3DB ,∴CD=6,BD=2,∴CD=AB ,∵将四边形ABDE 沿DE 折叠,若点A 的对称点A′恰好落在边OC 上,∴A′D=AD ,A′E=AE ,在Rt △A′CD 与Rt △DBA 中,CD AB A D AD '=⎧⎨=⎩, ∴Rt △A′CD ≌Rt △DBA (HL ),∴A′C=BD=2,∴A′O=4,∵A′O 2+OE 2=A′E 2,∴42+OE 2=(8-OE )2,∴OE=3,故答案是:3.【点睛】本题考查了轴对称变换(折叠问题),矩形的性质,全等三角形的判定和性质,掌握相关性质是解题的关键.20.4【解析】【分析】先求出直线与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入即可求出m 的值.【详解】解:当x=0时,=4,则直线与y 轴的交点坐标为(0,4),把(解析:4【解析】【分析】先求出直线24y x =-+与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入y x m =+即可求出m 的值.【详解】解:当x=0时,24y x =-+=4,则直线24y x =-+与y 轴的交点坐标为(0,4), 把(0,4)代入y x m =+得m=4,故答案为:4.【点睛】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.21.—1【解析】【分析】首先根据勾股定理计算出AC 的长,进而得到AE 的长,再根据A 点表示-1,可得E 点表示的数.【详解】∵AD 长为2,AB 长为1,∴AC=,∵A 点表示-1,∴E 点表示的数为:1【解析】【分析】首先根据勾股定理计算出AC 的长,进而得到AE 的长,再根据A 点表示-1,可得E 点表示的数.【详解】∵AD 长为2,AB 长为1,∴=∵A 点表示-1,∴E ,【点睛】本题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方.22.22【解析】【分析】【详解】解:用平的场次除以所占的百分比求出全年比赛场次:10÷25%=40(场),∴胜场:40×(1﹣20%﹣25%)=40×55%=22(场).故答案为:22.【解析:22【解析】【分析】【详解】解:用平的场次除以所占的百分比求出全年比赛场次:10÷25%=40(场),∴胜场:40×(1﹣20%﹣25%)=40×55%=22(场).故答案为:22.【点睛】本题考查1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系.23.60°【解析】【分析】根据等腰三角形三线合一的性质得:AD平分∠BAC,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC,AD⊥BC,∴AD平分∠BAC,∴∠BAD=∠BA解析:60°【解析】【分析】根据等腰三角形三线合一的性质得:AD平分∠BAC,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC,AD⊥BC,∴AD平分∠BAC,∴∠BAD=12∠BAC,∵∠BAC=120°,∴∠BAD=12×120°=60°,故答案为:60°.【点睛】本题考查的知识点是等腰三角形的性质,解题关键是熟记等腰三角形三线合一的性质. 24..【解析】【分析】由线段垂直平分线的性质可知EA=EB,由等边对等角的性质及外角的性质可得∠AEC=45°,易知△ACE为等腰直角三角形,可得CA长,利用三角形面积公式求解即可.【详解】解解析:12.【解析】【分析】由线段垂直平分线的性质可知EA=EB,由等边对等角的性质及外角的性质可得∠AEC=45°,易知△ACE为等腰直角三角形,可得CA长,利用三角形面积公式求解即可.【详解】解:∵DE垂直平分AB交BC于点E,∴EA=EB,∴∠EAB=∠B=22.5°,∴∠AEC=∠EAB+∠B=45°,∵∠C=90°,∴△ACE为等腰直角三角形,∴CA=CE=1,∴三角形ACE的面积=12×1×1=12.故答案为:12.【点睛】本题主要考查了线段垂直平分线的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等,等腰三角形的两底角相等,灵活利用这两个性质是解题的关键. 25.7×103ml【解析】【分析】先用科学记数法表示,再根据精确度求解.【详解】解:1679mL=1.679×103mL ,所以1679mL 精确到100mL 是1.7×103mL . 故答案为:1.解析:7×103ml【解析】【分析】先用科学记数法表示,再根据精确度求解.【详解】解:1679mL =1.679×103mL ,所以1679mL 精确到100mL 是1.7×103mL .故答案为:1.7×103mL .【点睛】本题考查了近似数和有效数字,属于基本题型,掌握求解的方法是解题关键.三、解答题26.(1)3 cm/s ;(2)()()()144120418021481081289t t y t t t t ⎧-≤≤⎪=-<≤⎨⎪-<≤⎩. 【解析】【分析】(1)由于P 的速度比Q 的速度大,因此P 到达B 点时,Q 在DC 边上,此时重叠部分面积为正方形的面积减去△DQM 和△ABM 的面积,求解即可;(2)分三种情况讨论:当点P 在边AB 上时,当点P 在边BC 上时,当点P 在边CD 上时,根据题意列函数关系式即可.【详解】解:(1)由已知得,AB=AD=CD=BC=12,∵M 是AD 边的中点,∴AM=MD=6,由题意可知当P 到达B 点时Q 在DC 边上,DQ=t ,∴ABM DMQ ABCD y S S S =--△△正方形 , ∴11961212612622t =⨯-⨯⨯-⨯⨯, 解得,t=4,∴ P 点的速度为12÷4=3 cm/s ;(2)当点P 在边AB 上时,04t ≤≤, APM DMQ ABCD y S S S =--△△正方形,111212636=144-1222y t t t =⨯-⨯⨯-⨯⨯当点P 在边BC 上时,48t <≤,DMQ ABCD AMPB y S S S =--△正方形梯形()1112123126126=180-2122y t t t =⨯-⨯-+⨯-⨯⨯ 当点P 在边CD 上时,8t <≤9,MQ y S =△P ,()112336=108-122y t t t =⨯⨯--⨯; 综上所述,y 与t 的函数关系式为()()()144120418021481081289t t y t t t t ⎧-≤≤⎪=-<≤⎨⎪-<≤⎩. 【点睛】本题考查了四边形的动点问题,注意分类讨论是解题的关键.27.(1)BM+NC=MN ;23x y =;(2)成立:BM+NC=MN ;(3)BM+MN=NC.证明见解析. 【解析】【分析】(1)由DM=DN ,∠MDN=60°,可证得△MDN 是等边三角形,又由△ABC 是等边三角形,CD=BD ,易证得Rt △BDM ≌Rt △CDN ,然后由直角三角形的性质,即可求得BM 、NC 、MN 之间的数量关系 BM+NC=MN ,此时2=3x y ; (2)在CN 的延长线上截取CM 1=BM ,连接DM 1.可证△DBM ≌△DCM 1,即可得DM=DM 1,易证得∠CDN=∠MDN=60°,则可证得△MDN ≌△M 1DN ,然后由全等三角形的性质,即可得结论仍然成立;(3)首先在CN 上截取CM 1=BM ,连接DM 1,可证△DBM ≌△DCM 1,即可得DM=DM 1,然后证得∠CDN=∠MDN=60°,易证得△MDN ≌△M 1DN ,则可得NC-BM=MN .【详解】解:(1)如图1,BM 、NC 、MN 之间的数量关系 BM+NC=MN . 此时2=3x y . 理由:∵DM=DN ,∠MDN=60°,∴△MDN 是等边三角形,∵△ABC 是等边三角形,∴∠A=60°,∵BD=CD ,∠BDC=120°,∴∠DBC=∠DCB=30°,∴∠MBD=∠NCD=90°,∵DM=DN,BD=CD,∴Rt△BDM≌Rt△CDN,∴∠BDM=∠CDN=30°,BM=CN,∴DM=2BM,DN=2CN,∴MN=2BM=2CN=BM+CN;∴AM=AN,∴△AMN是等边三角形,∵AB=AM+BM,∴AM:AB=2:3,∴2 =3xy;(2)猜想:结论仍然成立.证明:在NC的延长线上截取CM1=BM,连接DM1.∵∠MBD=∠M1CD=90°,BD=CD,∴△DBM≌△DCM1,∴DM=DM1,∠MBD=∠M1CD,M1C=BM,∵∠MDN=60°,∠BDC=120°,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N=M1C+NC=BM+NC,∴△AMN的周长为:AM+MN+AN=AM+BM+CN+AN=AB+AC,∴2 =3xy;(3)证明:在CN上截取CM1=BM,连接DM1.可证△DBM≌△DCM1,∴DM=DM1,可证∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N,∴NC-BM=MN.【点睛】此题考查了等边三角形,直角三角形,等腰三角形的性质以及全等三角形的判定与性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用与辅助线的作法.28.(1)4 (2)(0,5)【解析】【分析】(1)根据轴对称的性质以及勾股定理即可求出线段C 的长;(2)在Rt △DCE 中,由DE =OD 及勾股定理可求出OD 的长,进而得出D 点坐标.【详解】解:(1)依题意可知,折痕AD 是四边形OAED 的对称轴,∴在Rt △ABE 中,AE =AO =10,AB =8,∴BE =22221086AE AB -=-=,∴CE =BC ﹣BE =4;(2)在Rt △DCE 中,DC 2+CE 2=DE 2,又∵DE =OD ,∴()22284OD OD -+=,∴OD =5, ∴()05D ,.【点睛】本题主要考查勾股定理及轴对称的性质,关键是根据轴对称的性质得到线段的等量关系,然后利用勾股定理求解即可.29.(1)①(0,5);②152y x=-+;(2)理由见解析;(3)周长=16,不会发生变化,证明见解析.【解析】【分析】(1)①设:OE=PE=a,则AE=8﹣a,AP=4,在Rt△AEP中,由勾股定理得:PE2=AE2+AP2,即可求解;②证明△AOP≌△FRE(AAS),则ER=AP=4,故点F(8,1),即可求解;(2)∠EOP=∠EPO,而∠EPH=∠EOC=90°,故∠EPH﹣∠EPO=∠EOC﹣∠EOP,即∠POC=∠OPH,又因为AB∥OC,故∠APO=∠POC,即可求解;(3)证明△AOP≌△QOP(AAS)、△OCH≌△OQH(SAS),则CH=QH,即可求解.【详解】(1)①设:OE=PE=a,则AE=8﹣a,AP=4,在Rt△AEP中,由勾股定理得:PE2=AE2+AP2,即a2=(8﹣a)2+16,解得:a=5,故点E(0,5).故答案为:(0,5);②过点F作FR⊥y轴于点R,折叠后点O落在P处,则点O、P关于直线EF对称,则OP⊥EF,∴∠EFR+∠FER=90°,而∠FER+∠AOP=90°,∴∠AOP=∠EFR,而∠OAP=∠FRE,RF=AO,∴△AOP≌△FRE(AAS),∴ER=AP=4,OR=EO﹣OR=5﹣4=1,故点F(8,1),将点E、F的坐标代入一次函数表达式:y=kx+b得:185k bb=+⎧⎨=⎩,解得:125kb⎧=-⎪⎨⎪=⎩,故直线EF的表达式为:y=﹣12x+5;(2)∵PE=OE,∴∠EOP=∠EPO.又∵∠EPH=∠EOC=90°,∴∠EPH﹣∠EPO=∠EOC﹣∠EOP.即∠POC=∠OPH.又∵AB∥OC,∴∠APO=∠POC,∴∠APO=∠OPH;(3)如图,过O作OQ⊥PH,垂足为Q.由(1)知∠APO=∠OPH,在△AOP和△QOP中,APO OPHA OQPOP OP∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AOP≌△QOP(AAS),∴AP=QP,AO=OQ.又∵AO=OC,∴OC=OQ.又∵∠C=∠OQH=90°,OH=OH,∴△OCH≌△OQH(SAS),∴CH=QH,∴△PHB的周长=PB+BH+PH=AP+PB+BH+HC=AB+CB=16.故答案为:16.【点睛】此题主要考查了翻折变换的性质、正方形的性质以及全等三角形的判定与性质和勾股定理等知识,熟练利用全等三角形的判定得出对应相等关系是解题关键.30.4【解析】试题分析:先将223a a-+变形为(a-1)2+2,再将21a=代入求值即可.试题解析:223a a-+=221a a-++2=(a-1)2+2当2+1时,原式=2+1-1)2+2=2)2+2=2+2=4.31.﹣21(2)x -,﹣112【解析】【分析】直接括号里面通分运算,进而利用分式的混合运算法则计算得出答案.【详解】原式= [221(2)(2)x x x x x +----]•4x x- =2(2)(2)(1)(2)4x x x x x x x x +---⋅-- =24(2)4x x x x x-⋅-- =﹣21(2)x -,当x =2﹣时,原式=﹣112. 【点睛】 此题主要考查分式的化简求值,熟练掌握,即可解题.。

苏科版八年级(上)第三次月考数学试卷(含答案)

苏科版八年级(上)第三次月考数学试卷(含答案)

苏科版八年级(上)第三次月考数学试卷(含答案)一、选择题1.下列四组线段中,可以构成直角三角形的是 ( ) A .4,5,6B .2,3,4C .7 ,3 ,4D .1,2 ,32.如图,在平面直角坐标系中,点,A C 在x 轴上,点C 的坐标为(1,0),2AC -=.将Rt ABC ∆先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,2)-B .(4,2)-C .(3,2)D .(2,2) 3.某种鲸的体重约为,关于这个近似数,下列说法正确的是( )A .精确到百分位B .精确到0.01C .精确到千分位D .精确到千位4.1(1)1a a--变形正确的是( ) A .1-B .1a -C .1a --D .1a --5.在直角坐标系中,函数y kx =与12y x k =-的图像大数是( ) A . B .C .D .6.下列图案中,不是轴对称图形的是( )A.B.C.D.7.已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA8.若分式12xx-+的值为0,则x的值为()A.1 B.2-C.1-D.29.点P(3,﹣4)关于y轴的对称点P′的坐标是()A.(﹣3,﹣4)B.(3,4)C.(﹣3,4)D.(﹣4,3)10.在下列黑体大写英文字母中,不是轴对称图形的是()A.B.C.D.11.下列计算正确的是()A.5151+22+-=25B.512+﹣512-=2C.515122+-⨯=1 D.515122--⨯=3﹣2512.若3n+3n+3n=19,则n=()A.﹣3 B.﹣2 C.﹣1 D.013.小明体重为 48.96 kg ,这个数精确到十分位的近似值为()A.48 kg B.48.9 kg C.49 kg D.49.0 kg14.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC15.在平面直角坐标系xOy 中,线段AB 的两个点坐标分别为A (﹣1,﹣1),B (1,2).平移线段AB ,得到线段A ′B ′.已知点A ′的坐标为(3,1),则点B ′的坐标为( ) A .(4,4)B .(5,4)C .(6,4)D .(5,3)二、填空题16.如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为(-1,4).将△ABC 沿y 轴翻折到第一象限,则点C 的对应点C′的坐标是_____.17.如图,在数轴上,点A 、B 表示的数分别为0、2,BC ⊥AB 于点B ,且BC=1,连接AC ,在AC 上截取CD=BC ,以A 为圆心,AD 的长为半径画弧,交线段AB 于点E ,则点E 表示的实数是_____.18.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____. 19.点A (3,-2)关于x 轴对称的点的坐标是________. 20.阅读理解:对于任意正整数a ,b ,∵20a b≥,∴0a ab b -≥,∴2a b ab +≥a b =时,等号成立;结论:在2a b ab +≥a 、b 均为正实数)中,只有当a b =时,+a b 有最小值2ab 若1m 1m m -有最小值为__________. 21.4的平方根是 .22.在平面直角坐标系中,将点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为_________.23.若等腰三角形的顶角为100︒,则这个等腰三角形的底角的度数__________. 24.在平面直角坐标系中,已知一次函数312y x =-+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x >,则1y ______________2y25.如图,在△ABC 中,AB =6,AC =5,BC =9,∠BAC 的角平分线AP 交BC 于点P ,则CP 的长为_____.三、解答题26.已知BC =5,AB =1,AB ⊥BC ,射线CM ⊥BC ,动点P 在线段BC 上(不与点B ,C 重合),过点P 作DP ⊥AP 交射线CM 于点D ,连接AD . (1)如图1,若BP =4,判断△ADP 的形状,并加以证明. (2)如图2,若BP =1,作点C 关于直线DP 的对称点C ′,连接AC ′. ①依题意补全图2;②请直接写出线段AC ′的长度.27.某天早上爸爸骑车从家送小明去上学.途中小明发现忘带作业本,于是他立即下车,下车后的小明匀速步行继续赶往学校,同时爸爸加快骑车速度,按原路匀速返回家中取作业本(拿作业本的时间忽略不计),紧接着以返回时的速度追赶小明.最后两人同时达到学校. 如图是小明离家的距离()ym 与所用时间()min x 的函数图像.请结合图像回答下列问题:(1)小明家与学校距离为______m ,小明步行的速度为______/min m ; (2)求线段AB 所表示的y 与x 之间的函数表达式; (3)在同一坐标系中画出爸爸离家的距离()y m 与所用时间()min x 的关系的图像.(标注..相关数据....) 28.计算:(1)23(5)427-(2)12426(8)18÷+-. 29.已知函数y 1=2x -4与y 2=-2x +8的图象,观察图象并回答问题:(1)x 取何值时,2x -4>0? (2)x 取何值时,-2x +8>0?(3)x 取何值时,2x -4>0与-2x +8>0同时成立?(4)求函数y 1=2x -4与y 2=-2x +8的图象与x 轴所围成的三角形的面积?30.已知 2x k x+=,k 为正实数. (1)当k =3时,求x 224x+的值;(2)当k =10时,求x ﹣2x的值; (3)小安设计一个填空题并给出答案,但被老师打了两个“×”小安没看懂老师为什么指出两个错误?如果你看懂了,请向小安解释一下.31.(模型建立)(1)如图1,等腰直角三角形ABC 中,∠ACB =90°,CA =CB ,直线ED 经过点C ,过A 作AD ⊥ED 于点D ,过B 作BE ⊥ED 于点E . 求证:△CDA ≌△BEC . (模型运用)(2)如图2,直线l 1:y =43x +4与坐标轴交于点A 、B ,将直线l 1绕点A 逆时针旋转90°至直线l2,求直线l2的函数表达式.(模型迁移)如图3,直线l经过坐标原点O,且与x轴正半轴的夹角为30°,点A在直线l上,点P为x 轴上一动点,连接AP,将线段AP绕点P顺时针旋转30°得到BP,过点B的直线BC交x轴于点C,∠OCB=30°,点B到x轴的距离为2,求点P的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A.42+52≠62,不可以构成直角三角形,故A选项错误;B.22+32≠42,不可以构成直角三角形,故B选项错误;C7)2+32≠42,可以构成直角三角形,故C选项错误.D.12+2)232,可以构成直角三角形,故D选项正确.故选D.【点睛】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.2.D解析:D【解析】【分析】先求出A点绕点C顺时针旋转90°后所得到的的坐标A',再求出A'向右平移3个单位长度后得到的坐标A'',A''即为变换后点A的对应点坐标.【详解】∆先绕点C顺时针旋转90°,得到点坐标为A'(-1,2),再向右平移3个单位长将Rt ABC度,则A'点的纵坐标不变,横坐标加上3个单位长度,故变换后点A的对应点坐标是A''(2,2).【点睛】本题考察点的坐标的变换及平移.3.D解析:D【解析】【分析】先写出其原数,看看近似数的最末一位在原数什么数位上,那么它就是精确到了哪个数位.【详解】解:1.36×105kg=136000kg的最后一位的6表示6千,即精确到千位.故选D.【点睛】本题考查了近似数,掌握用科学记数法表示的数的精确度是解题关键.近似数精确到哪一位,应当看末位数字实际在哪一位,即可得出答案.4.C解析:C【解析】【分析】先根据二次根式有意义有条件得出1-a>0,再由此利用二次根式的性质化简得出答案.【详解】1有意义,1a-∴->,10a∴-<,a10∴-==(a故选C.【点睛】考查了二次根式的性质与化简,正确化简二次根式是解题关键.5.B解析:B【解析】【分析】根据四个选项图像可以判断y kx = 过原点且k <0,12y x k =- ,-k >0 即可判断. 【详解】解:A .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0 故错误; B .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0 故正确; C .y kx = 与12y x k =-图像增减相反,12y x k =-为递增一次函数且不过原点,故错误; D .y kx =过原点,而图中两条直线都不过原点,故错误. 故选 B 【点睛】此题主要考查了一次函数图像的性质,熟记k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小;常数项为0,函数过原点.6.D解析:D 【解析】 【分析】根据轴对称图形的概念求解. 【详解】解:A 、是轴对称图形,故此选项不合题意; B 、是轴对称图形,故此选项不合题意; C 、是轴对称图形,故此选项不合题意; D 、不是轴对称图形,故此选项符合题意. 故选:D . 【点睛】此题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,折叠后两边会重合.7.B解析:B 【解析】试题分析:利用全等三角形判定定理ASA ,SAS ,AAS 对各个选项逐一分析即可得出答案. 解:A 、∵∠1=∠2,AD 为公共边,若AB=AC ,则△ABD ≌△ACD (SAS );故A 不符合题意;B 、∵∠1=∠2,AD 为公共边,若BD=CD ,不符合全等三角形判定定理,不能判定△ABD ≌△ACD ;故B 符合题意;C 、∵∠1=∠2,AD 为公共边,若∠B=∠C ,则△ABD ≌△ACD (AAS );故C 不符合题意; D 、∵∠1=∠2,AD 为公共边,若∠BDA=∠CDA ,则△ABD ≌△ACD (ASA );故D 不符合题意.故选B.考点:全等三角形的判定.8.A解析:A【解析】【分析】根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.【详解】根据题意得,1-x=0且x+2≠0,解得x=1且x≠-2,所以x=1.故选:A.【点睛】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.9.A解析:A【解析】试题解析:∵点P(3,-4)关于y轴对称点P′,∴P′的坐标是:(-3,-4).故选A.10.C解析:C【解析】【分析】根据轴对称图形的概念对各个大写字母判断即可得解.【详解】A.“E”是轴对称图形,故本选项不合题意;B.“M”是轴对称图形,故本选项不合题意;C.“N”不是轴对称图形,故本选项符合题意;D.“H”是轴对称图形,故本选项不合题意.故选:C.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.11.C解析:C【解析】【分析】利用二次根式的加减法对A 、B 进行判断;根据二次根式的乘法法则对C 进行判断;利用完全平方公式对D 进行判断. 【详解】解:A ==A 选项错误;B 212==,所以B 选项错误;C 1515114--==,所以C 选项正确;D 、151-=,所以D 选项错误. 故选:C . 【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12.A解析:A 【解析】 【分析】直接利用负整数指数幂的性质结合同底数幂的乘法运算法则将原式变形得出答案. 【详解】解:13339n n n++=, 1233n +-∴=,则12n +=-, 解得:3n =-. 故选:A . 【点睛】此题主要考查了负整数指数幂的性质以及同底数幂的乘法运算,正确掌握相关运算法则是解题关键.13.D解析:D 【解析】 【分析】把百分位上的数字6进行四舍五入即可. 【详解】解:48.96≈49.0(精确到十分位). 故选:D .本题考查了近似数:近似数与精确数的接近程度,可以用精确度表示,精确到哪位,就是对它后边的一位进行四舍五入.14.C解析:C【解析】试题分析:解:选项A、添加AB=DE可用AAS进行判定,故本选项错误;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选C.考点:全等三角形的判定.15.B解析:B【解析】【分析】由题意可得线段AB平移的方式,然后根据平移的性质解答即可.【详解】解:∵A(﹣1,﹣1)平移后得到点A′的坐标为(3,1),∴线段AB先向右平移4个单位,再向上平移2个单位,∴B(1,2)平移后的对应点B′的坐标为(1+4,2+2),即(5,4).故选:B.【点睛】本题考查了平移变换的性质,一般来说,坐标系中点的平移遵循:上加下减,左减右加的规律,熟练掌握求解的方法是解题关键.二、填空题16.(3,1)【解析】【分析】关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C(-3,1)的对应点C′的坐标是(3,1).考点:关于y轴对称的点的坐标【点睛解析:(3,1)【解析】关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C(-3,1)的对应点C′的坐标是(3,1).考点:关于y轴对称的点的坐标【点睛】本题属于基础题,只需学生熟练掌握关于y轴对称的点的坐标的特征,即可完成. 17.【解析】∵∠ABC=90°,AB=2,BC=1,∴AC= = ,∵CD=CB=1,∴AD=AC-CD= -1,∴AE= -1,∴点E表示的实数是 -1.【解析】∵∠ABC=90°,AB=2,BC=1,∴,∵CD=CB=1,∴ -1,∴,∴点E18.【解析】【分析】【详解】试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10. ∴斜边上的中线长=×10=5.考点:1.勾股定理;2. 直角三角形斜边上的中线性质.解析:【解析】【分析】【详解】试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.∴斜边上的中线长=1×10=5.2考点:1.勾股定理;2. 直角三角形斜边上的中线性质.19.(3,2)【解析】试题分析:点A(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为(3,2).考点:关于x轴、y轴对称的点的坐标.解析:(3,2)【解析】试题分析:点A(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为(3,2).考点:关于x轴、y轴对称的点的坐标.20.3【分析】根据(、均为正实数),对代数式进行化简求最小值.【详解】解:由题中结论可得即:当时,有最小值为3,故答案为:3.【点睛】准确理解阅读内容,灵活运用题中结论,解析:3【解析】【分析】根据a b +≥(a 、b进行化简求最小值. 【详解】1=1111m m m111m=111m1211=31m m即:当1m 时,m m 3, 故答案为:3.【点睛】 准确理解阅读内容,灵活运用题中结论,求出代数式的最小值.21.±2.【解析】试题分析:∵,∴4的平方根是±2.故答案为±2.考点:平方根.解析:±2.【解析】试题分析:∵2(2)4±=,∴4的平方根是±2.故答案为±2.考点:平方根.22.(-1,0)【解析】【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【详解】解:点先向右平移个单位长度, 再向下平移个单位长度后所得到的点坐标为(-3+2,2-2),即(解析:(-1,0)【解析】【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【详解】解:点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为(-3+2,2-2),即(-1,0)故答案为:(-1,0)【点睛】此题主要考查了坐标与图形的变化-平移:向右平移a 个单位,坐标P (x ,y )得到P '(x+a ,y);向左平移a 个单位,坐标P (x ,y )得到P '(x-a ,y);向上平移a 个单位,坐标P (x ,y )得到P '(x ,y+a);向下平移a 个单位,坐标P (x ,y )得到P '(x ,y-a). 23.40°【解析】【分析】根据等腰三角形的性质和三角形的内角和定理计算即可.【详解】解:∵等腰三角形的顶角为∴这个等腰三角形的底角为(180°-100°)=40°故答案为:40°.【点睛解析:40°【解析】【分析】根据等腰三角形的性质和三角形的内角和定理计算即可.【详解】解:∵等腰三角形的顶角为100︒∴这个等腰三角形的底角为12(180°-100°)=40°故答案为:40°.【点睛】此题考查的是等腰三角形的性质和三角形的内角和,掌握等边对等角和三角形的内角和定理是解决此题的关键.24.<【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小即可判断.【详解】∵一次函数中k=<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点睛解析:<【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小即可判断.【详解】∵一次函数312y x=-+中k=32-<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.25..【解析】【分析】作PM⊥AB于M,PN⊥AC于N,根据角平分线的性质得出PM=PN,由三角形面积公式得出,从而得到,即可求得CP的值.【详解】作PM⊥AB于M,PN⊥AC于N,∵AP是解析:45 11.【解析】【分析】作PM⊥AB于M,PN⊥AC于N,根据角平分线的性质得出PM=PN,由三角形面积公式得出162152APBAPCAB PMS ABS ACAC PN⋅===⋅,从而得到162152APBAPCPB hS PBS PCPC h⋅===⋅,即可求得CP的值.【详解】作PM⊥AB于M,PN⊥AC于N,∵AP是∠BAC的角平分线,∴PM=PN,∴162152APBAPCAB PMS ABS ACAC PN⋅===⋅,设A到BC距离为h,则162152APBAPCPB hS PBS PCPC h⋅===⋅,∵PB+PC=BC=9,∴CP=9×511=4511,故答案为:45 11.【点睛】本题主要考查三角形的角平分线的性质,结合面积法,推出ABACPBPC=,是解题的关键.三、解答题26.(1)△ADP是等腰直角三角形.证明见解析;(2)①补图见解析;10【解析】(1)先判断出PC=AB,再用同角的余角相等判断出∠APB=∠PDC,得出△ABP≌△PCD (AAS),即可得出结论;(2)①利用对称的性质画出图形;②过点C'作C'Q⊥BA交BA的延长线于Q,先求出CP=4,AB=AP,∠CPD=45°,进而得出C'P=CP=4,∠C'PD=∠CPD=45°,再判断出四边形BQC'P是矩形,进而求出AQ=BQ﹣AB=3,最后用勾股定理即可得出结论.【详解】(1)△ADP是等腰直角三角形.证明如下:∵BC=5,BP=4,∴PC=1.∵AB=1,∴PC=AB.∵AB⊥BC,CM⊥BC,DP⊥AP,∴∠B=∠C=90°,∠APB+∠DPC=90°,∠PDC+∠DPC=90°,∴∠APB=∠PDC.在△ABP和△PCD中,∵B CAPB PDCAB PC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABP≌△PCD(AAS),∴AP=PD.∵∠APD=90°,∴△ADP是等腰直角三角形.(2)①依题意补全图2;②过点C'作C'Q⊥BA交BA的延长线于Q.∵BP=1,AB=1,BC=5,∴CP=4,AB=AP.∵∠ABP=90°,∴∠APB=45°.∵∠APD=90°,∴∠CPD=45°,连接C'P.∵点C与C'关于DP对称,∴C'P=CP=4,∠C'PD=∠CPD=45°,∴∠CPC'=90°,∴∠BPC'=90°,∴∠Q=∠ABP=∠BPC'=90°,∴四边形BQC'P是矩形,∴C'Q=BP=1,BQ=C'P=4,∴AQ=BQ﹣AB=3.在Rt△AC'Q中,AC′10=.【点睛】本题考查了矩形的判定与性质以及全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理,构造出直角三角形是解答本题的关键.27.(1)2500,100;(2)100500y x=+;(3)见解析【解析】(1)看图得到小明家与学校距离为2500米,小明步行路程为(2500-1000)米,步行时间为(20-5)分,从而求出小明的步行速度;(2)用待定系数法求函数解析式;(3)由题意分析,爸爸在点(5,1000)处返回家中,再至爸爸到达学校共用时15分,行驶2500+1000=3500米,所以可以求出此时爸爸的速度为3500700153=米/分,然后求出爸爸返回家中时间为70030100037÷=分,所以爸爸于开始出发后的3065577+=分到达家中,从而画出爸爸离家的距离()ym 与所用时间()min x 的关系的图像.【详解】 解:(1)有图可知:小明家与学校距离为2500米,小明步行路程为(2500-1000)米,步行时间为(20-5)分∴小明的步行速度为25001000100205-=-米/分 故答案为:2500;100 (2)设AB 的表达式为y kx b =+,将A 、B 分别代入AB 的表达式得到51000202500k b k b +=⎧⎨+=⎩,解得100500k b =⎧⎨=⎩. ∴表达式100500y x =+.(3)由题意,爸爸在点(5,1000)处返回家中,∵最后两人同时达到学校所以爸爸从开始返回家中至到达学校共用时15分,行驶2500+1000=3500米,所以此时爸爸的速度为3500700153=米/分,爸爸返回家中时间为70030100037÷=分, 所以爸爸于开始出发后的3065577+=分到达家中 即函数图像过点(657,0)(20,2500) 如图:【点睛】本题考查一次函数的实际应用,理清图中每个关键点的实际含义,利用数形结合思想解题是本题的解题关键.28.(1)6;(2)3. 【解析】【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用二次根式的乘除法则计算,合并即可得到结果.【详解】解:(1)原式=5﹣2+3=6;(2)原式=3 =3. 【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.29.(1)x >2;(2)x <4 ;(3)2<x <4;(4)2(平方单位)【解析】【分析】利用图象可解决(1)、(2)、(3);利用图象写出两函数图象的交点坐标,然后根据三角形面积公式计算函数y 1=2x -4与y 2=-2x +8的图象与x 轴所围成的三角形的面积.【详解】由图可知:(1)当x >2时,2x−4>0;(2)当x <4时,-2x +8>0;(3)由(1)(2)可知当2<x <4时,2x−4>0与−2x +8>0同时成立;(4)联立y 1=2x -4与y 2=-2x +8,解得x=3,y=2,∴函数y 1=2x -4与y 2=-2x +8的图象的交点坐标为(3,2),所以函数y 1=2x -4与y 2=-2x +8的图象与x 轴所围成的三角形的面积=12×(4−2)×2=2(平方单位).【点睛】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y =kx +b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.解决本题的关键是准确画出两函数图象.30.(1)5;(2);(3)见解析【解析】【分析】(1)根据22242()4x x x x+=+-代入可得结果;(2)先根据2x x +=22242()4x x x x +=+-的值,再由2x x -=解;(3)由224xx +=+可知题目错误,由错误题目求解可以得出结果错误. 【详解】解:(1)当3k =时,23x x +=, 222242()4345x x x x+=+-=-=;(2)当k =2x x +=222242()446x x x x+=+-=-=,2x x ∴-===(3)由题可知x>0,∴2244xx +=+≥,42x x∴+,即使当2x x +时,22242()42x x x x +=+-=, ∴224+x x 的值也不对; ∴题干错误,答案错误,故老师指出了两个错误.【点睛】此题考查了完全平方公式的运用.将所求式子进行适当的变形是解本题的关键.31.(1)见解析;(2)3944y x =--;(3)点P 坐标为(4,0)或(﹣4,0) 【解析】【分析】(1)由“AAS ”可证△CDA ≌△BEC ;(2)如图2,在l 2上取D 点,使AD =AB ,过D 点作DE ⊥OA ,垂足为E ,由(1)可知△BOA ≌△AED ,可得DE =OA =3,AE =OB =4,可求点D 坐标,由待定系数法可求解析式;(3)分两种情况讨论,通过证明△OAP ≌△CPB ,可得OP =BC =4,即可求点P 坐标.【详解】(1)证明:∵AD ⊥DE ,BE ⊥DE ,∴∠D =∠E =90°,∴∠BCE+∠CBE=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠ACD=∠CBE,又CA=BC,∠D=∠E=90°∴△CDA≌△BEC(AAS)(2)如图2,在l2上取D点,使AD=AB,过D点作DE⊥OA,垂足为E∵直线y=43x+4与坐标轴交于点A、B,∴A(﹣3,0),B(0,4),∴OA=3,OB=4,由(1)得△BOA≌△AED,∴DE=OA=3,AE=OB=4,∴OE=7,∴D(﹣7,3)设l2的解析式为y=kx+b,得3703k bk b=-+⎧⎨=-+⎩解得3494kb⎧=-⎪⎪⎨⎪=-⎪⎩∴直线l2的函数表达式为:3944y x=--(3)若点P在x轴正半轴,如图3,过点B作BE⊥OC,∵BE=2,∠BCO=30°,BE⊥OC∴BC=4,∵将线段AP绕点P顺时针旋转30°得到BP,∴AP=BP,∠APB=30°,∵∠APC=∠AOC+∠OAP=∠APB+∠BPC,∴∠OAP=∠BPC,且∠OAC=∠PCB=30°,AP=BP,∴△OAP≌△CPB(AAS)∴OP=BC=4,∴点P(4,0)若点P在x轴负半轴,如图4,过点B作BE⊥OC,∵BE=2,∠BCO=30°,BE⊥OC∴BC=4,∵将线段AP绕点P顺时针旋转30°得到BP,∴AP=BP,∠APB=30°,∵∠APE+∠BPE=30°,∠BCE=30°=∠BPE+∠PBC,∴∠APE=∠PBC,∵∠AOE=∠BCO=30°,∴∠AOP=∠BCP=150°,且∠APE=∠PBC,PA=PB ∴△OAP≌△CPB(AAS)∴OP=BC=4,∴点P(﹣4,0)综上所述:点P坐标为(4,0)或(﹣4,0)【点睛】本题是一道关于一次函数的综合题目,涉及到的知识点有全等三角形的判定定理及其性质、一次函数图象与坐标轴的交点、用待定系数法求一次函数解析式、旋转的性质等,掌握以上知识点是解此题的关键.。

苏科版第一学期八年级数学第三次月考试卷(含解析)

苏科版第一学期八年级数学第三次月考试卷(含解析)

苏科版第一学期八年级数学第三次月考试卷(含解析) 一、选择题1.在▱ABCD 中,已知∠A ﹣∠B=20°,则∠C=( )A .80°B .90°C .100°D .110°2.在平面直角坐标系中,把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为( )A .31y x =-+B .32y x =-+C .31y x =--D .32y x =--3.已知实数,a b 满足2|2|(4)0a b -+-=,则以,a b 的值为两边的等腰三角形的周长是( )A .10B .8或10C .8D .以上都不对 4.下列无理数中,在﹣1与2之间的是( ) A .﹣3B .﹣2C .2D .5 5.如图,△ABC 中,AB =AC ,AD 是∠BAC 的平分线.已知AB =5,AD =3,则BC 的长为( )A .5B .6C .8D .106.如图,∠AOB=60°,OA=OB ,动点C 从点O 出发,沿射线OB 方向移动,以AC 为边在右侧作等边△ACD ,连接BD ,则BD 所在直线与OA 所在直线的位置关系是( )A .平行B .相交C .垂直D .平行、相交或垂直7.若分式242x x -+的值为0,则x 的值为( ) A .-2 B .0 C .2 D .±28.下列交通标识中,是轴对称图形的是( )A .B .C .D .9.正比例函数y kx =的图象经过第一、三象限,则一次函数y x k =+的图象大致是()A .B .C .D .10.下列实数中,无理数是( )A .227B .3πC .4-D 32711.点P (3,﹣4)关于y 轴的对称点P′的坐标是( )A .(﹣3,﹣4)B .(3,4)C .(﹣3,4)D .(﹣4,3) 12.下列各数中,无理数的是( ) A .0B .1.01001C .πD 4 13.变量x 与y 之间的关系是y =2x+1,当y =5时,自变量x 的值是( )A .13B .5C .2D .3.5 14.关于等腰三角形,以下说法正确的是( )A .有一个角为40°的等腰三角形一定是锐角三角形B .等腰三角形两边上的中线一定相等C .两个等腰三角形中,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等D .等腰三角形两底角的平分线的交点到三边距离相等15.下列各点中,在第四象限且到x 轴的距离为3个单位的点是( )A .(﹣2,﹣3)B .(2,﹣3)C .(﹣4,3)D .(3,﹣4)二、填空题16.2x -x 可以取的最小整数为______.17.对于分式23x a b a b x ++-+,当1x =时,分式的值为零,则a b +=__________. 18.计算222m m m+--的结果是___________ 19.如图,长方形OABC 中,8OA =,6AB =,点D 在边BC 上,且3CD DB =,点E 是边OA 上一点,连接DE ,将四边形ABDE 沿DE 折叠,若点A 的对称点'A 恰好落在边OC 上,则OE 的长为____.20.在△ABC 中,AB=AC ,∠BAC=100°,点D 在BC 边上,连接AD ,若△ABD 为直角三角形,则∠ADC 的度数为_____.21.如图,已知直线y =ax ﹣b ,则关于x 的方程ax ﹣1=b 的解x =_____.22.化简:23(3)2716--+=_____.23.如图,在△ABC 中,AB =5,AC =13,BC 边上的中线AD =6,则△ABD 的面积是______.24.如图,在坐标系中,一次函数21y x =-+与一次函数y x k =+的图像交于点(2,5)A -,则关于x 的不等式21x k x +>-+的解集是__________.25.已知A (x 1,y 1)、B (x 2,y 2)是一次函数y =(2﹣m )x +3图象上两点,且(x 1﹣x 2)(y 1﹣y 2)<0,则m 的取值范围为_____.三、解答题2623(3)812-27.已知一次函数y =3x +m 的图象经过点A (1,4).(1)求m 的值;(2)若点B (﹣2,a )在这个函数的图象上,求点B 的坐标.28.如图,在平面直角坐标系中,点(1,3)A ,点(3,1)B ,点(4,5)C .(1)画出ABC ∆关于y 轴的对称图形111A B C ∆,并写出点A 的对称点1A 的坐标; (2)若点P 在x 轴上,连接PA 、PB ,则PA PB +的最小值是 ;(3)若直线//MN y 轴,与线段AB 、AC 分别交于点M 、N (点M 不与点A 重合),若将AMN ∆沿直线MN 翻折,点A 的对称点为点'A ,当点'A 落在ABC ∆的内部(包含边界)时,点M 的横坐标m 的取值范围是 .29.已知△ABC .(1)在图①中用直尺和圆规作出B 的平分线和BC 边的垂直平分线交于点O (保留作图痕迹,不写作法).(2)在(1)的条件下,若点D 、E 分别是边BC 和AB 上的点,且CD BE =,连接OD OE 、求证:OD OE =;(3)如图②,在(1)的条件下,点E 、F 分别是AB 、BC 边上的点,且△BEF 的周长等于BC 边的长,试探究ABC ∠与EOF ∠的数量关系,并说明理由.30.客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,需付的行李费y (元)是行李质量x (kg )的一次函数,这个函数的图象如图所示.(1)求y 关于x 的函数表达式;(2)求旅客最多可免费携带行李的质量.31.(1)求式中x 的值:2(1)16x -=;(2)计算:2020312527--【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由四边形ABCD 是平行四边形,可得∠A+∠B=180°,又由∠A-∠B=20°,即可求得∠A 的度数,继而求得答案.【详解】解:∵四边形ABCD 是平行四边形,∴∠A+∠B=180°,∵∠A-∠B=20°,∴∠A=100°,∴∠C=∠A=100°.故选:C .【点睛】此题考查了平行四边形的性质.注意平行四边形的对角相等,邻角互补.2.D解析:D【解析】【分析】根据左加右减,上加下减的平移规律解题.【详解】解:把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为3(2)4y x =-++,整理得:32y x =--,故选D.【点睛】本题考查了直线的平移变换,属于简单题,熟悉直线的平移规律是解题关键.3.A解析:A【解析】【分析】先根据非负数的性质求出a 和b 的值,然后分两种情况求解即可.【详解】∵2|2|(4)0a b -+-=,∴a-2=0,b-4=0,∴a=2,b=4,当a 为腰时,2+2=4,不合题意,舍去;当b 为腰时,2+4>4,符合题意,∴周长=4+4+2=10.故选A.【点睛】此题主要考查了等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键. 4.C解析:C【解析】试题分析:A 1,故错误;B <﹣1,故错误;C .﹣1<2,故正确;2,故错误;故选C .【考点】估算无理数的大小.5.C解析:C【解析】【分析】根据等腰三角形的三线合一得出∠ADB=90°,再根据勾股定理得出BD 的长,即可得出BC 的长.【详解】在△ABC 中,AB =AC ,AD 是∠BAC 的平分线,∴AD ⊥BC ,BC=2BD.∴∠ADB=90°在Rt△ABD中,根据勾股定理得:=4∴BC=2BD=2×4=8.故选C.【点睛】本题考查了等腰三角形的性质及勾股定理,熟练掌握性质定理是解题的关键.6.A解析:A【解析】【分析】先判断出OA=OB,∠OAB=∠ABO,分两种情况判断出△AOC≌△ABD,进而判断出∠ABD=∠AOB=60°,即可得出结论.【详解】∵∠AOB=60°,OA=OB,∴△OAB是等边三角形,∴OA=AB,∠OAB=∠ABO=60°①当点C在线段OB上时,如图1,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,OA BAOAC BAD AC AD=⎧⎪∠=∠⎨⎪=⎩,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA;②当点C在OB的延长线上时,如图2,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,OA BAOAC BAD AC AD=⎧⎪∠=∠⎨⎪=⎩,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,故选A.【点睛】本题考查了等边三角形的判定和性质,全等三角形的判定和性质,求出∠ABD=60°是解本题的关键.7.C解析:C【解析】由题意可知:24020x x =⎧-⎨+≠⎩, 解得:x=2,故选C.8.B解析:B【解析】某个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形,以上图形中,B 是轴对称图形,故选B9.A解析:A【解析】【分析】根据正比例函数的图象及性质即可求出k 的取值范围,然后根据一次函数的图象及性质即可判断.【详解】解:∵正比例函数y kx =的图象经过第一、三象限,∴0k >∵一次函数y x k =+中,1>0, 0k >∴一次函数y x k =+经过一、二、三象限故选A .【点睛】此题考查的是正比例函数的图象及性质和一次函数的图象及性质,掌握一次函数的图象及性质与各项系数的关系是解决此题的关键.10.B解析:B【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】A.227是有理数,不符合题意;B.3π是无理数,符合题意;C.=-2,是有理数,不符合题意;是有理数,不符合题意.故选:B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.11.A解析:A【解析】试题解析:∵点P(3,-4)关于y轴对称点P′,∴P′的坐标是:(-3,-4).故选A.12.C解析:C【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】解:A.0是整数,属于有理数;B.1.01001是有限小数,属于有理数;C.π是无理数;2=,是整数,属于有理数.故选:C.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有ππ的数.13.C解析:C【解析】【分析】直接把y=5代入y=2x+1,解方程即可.【详解】解:当y=5时,5=2x+1,解得:x=2,故选:C.【点睛】此题主要考查了函数值,关键是掌握已知函数解析式,给出函数值时,求相应的自变量的值就是解方程.14.D解析:D【解析】【分析】根据全等三角形的判定定理,等腰三角形的性质,三角形的内角和判断即可.【详解】解:A:如果40︒的角是底角,则顶角等于100︒,故三角形是钝角三角形,此选项错误;B、当两条中线为两腰上的中线时,可知两条中线相等,当两条中线一条为腰上的中线,一条为底边上的中线时,则这两条中线不一定相等,∴等腰三角形的两条中线不一定相等,此选项错误;C、如图,△ABC和△ABD中,AB=AC=AD,CD∥AB,DG是△ABD 的AB边高,CH是是△ABC 的AB边高,则DG=CH,但△ABC和△ABD不全等;故此选项错误;D、三角形的三个内角的角平分线交于一点,该点叫做三角形的内心.内心到三边的距离相等.故此选项正确;故选:D.【点睛】本题考查了全等三角形的判定,等腰三角形的性质,三角形的内角和,熟练掌握各知识点是解题的关键.15.B解析:B【解析】【分析】首先确定各点所在象限,再根据到x轴的距离为3个单位可得此点的纵坐标的绝对值为3,进而可得答案.【详解】A、(﹣2,﹣3)在第三象限,故此选项不合题意;B、(2,﹣3)在第四象限,到x轴的距离为3个单位,故此选项符合题意;C、(﹣4,3)在第二象限,故此选项不合题意;D、(3,﹣4)在第四象限,到x轴的距离为4个单位,故此选项不符合题意;故选:B.【点睛】此题主要考查根据象限判定坐标,熟练掌握,即可解题.二、填空题16.2【解析】【分析】根据被开方数大于等于0列式求解即可.【详解】根据题意得,x-2≥0,解得x≥2,∴x可以取的最小整数为2.故填:2.【点睛】本题考查了二次根式有意义的条件,根据解析:2【解析】【分析】根据被开方数大于等于0列式求解即可.【详解】根据题意得,x-2≥0,解得x≥2,∴x可以取的最小整数为2.故填:2.【点睛】本题考查了二次根式有意义的条件,根据被开方数大于等于列式求解即可,比较简单.17.-1且.【解析】【分析】根据分式的值为零的条件为0的条件可得且,则可求出的值.【详解】解:∵分式,当时,分式的值为零,∴且,∴,且故答案为:-1且.【点睛】此题主要考查了分式值为解析:-1且5233ab ,. 【解析】【分析】 根据分式的值为零的条件为0的条件可得10a b且230a b ,则可求出+a b 的值.【详解】解:∵分式23x a b a b x ++-+,当1x =时,分式的值为零, ∴10a b 且230a b ,∴1a b +=-,且5233a b , 故答案为:-1且5233ab ,. 【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少.18.-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】=故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分解析:-1.【解析】 【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】222m m m +--=222 1.2222m m m m m m m ---==-=----- 故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分母.19.【解析】【分析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD,A′E=AE,可证明Rt△A′CD≌Rt△DBA, 解析:【解析】【分析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD ,A′E=AE ,可证明Rt △A′CD ≌Rt △DBA ,根据全等三角形的性质得到A′C=BD=2,A′O=4,然后在Rt △A′OE 中根据勾股定理列出方程求解即可.【详解】解:如图,∵四边形OABC 是矩形,∴BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,∵CD=3DB ,∴CD=6,BD=2,∴CD=AB ,∵将四边形ABDE 沿DE 折叠,若点A 的对称点A′恰好落在边OC 上,∴A′D=AD ,A′E=AE ,在Rt △A′CD 与Rt △DBA 中,CD AB A D AD'=⎧⎨=⎩, ∴Rt △A′CD ≌Rt △DBA (HL ),∴A′C=BD=2,∴A′O=4,∵A′O 2+OE 2=A′E 2,∴42+OE 2=(8-OE )2,∴OE=3,故答案是:3.【点睛】本题考查了轴对称变换(折叠问题),矩形的性质,全等三角形的判定和性质,掌握相关性质是解题的关键.20.130°或90°.【解析】分析:根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.详解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°解析:130°或90°.【解析】分析:根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC 的度数.详解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为130°或90°.点睛:本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.21.4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax﹣1=b的解是x=4.故答案为4.【点睛】此题考查一次函解析:4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax﹣1=b的解是x=4.故答案为4.【点睛】此题考查一次函数与一元一次方程的联系,渗透数形结合的解题思想.22.4【解析】【分析】根据算数平方根和立方根的运算法则计算即可.【详解】解:故答案为4.【点睛】本题主要考查了算数平方根和立方根的计算,熟记运算法则是解题的关键.解析:4【解析】【分析】根据算数平方根和立方根的运算法则计算即可.【详解】=-+=3344故答案为4.【点睛】本题主要考查了算数平方根和立方根的计算,熟记运算法则是解题的关键.23.15【解析】【分析】延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△A解析:15【解析】【分析】延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△ABD的面积.【详解】解:延长AD 到点E ,使DE =AD =6,连接CE ,∵AD 是BC 边上的中线,∴BD =CD ,在△ABD 和△CED 中,BD CD ADB EDC AD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△CED (SAS ),∴CE =AB =5,∠BAD =∠E ,∵AE =2AD =12,CE =5,AC =13,∴CE 2+AE 2=AC 2,∴∠E =90°,∴∠BAD =90°,即△ABD 为直角三角形,∴△ABD 的面积=12AD •AB =15. 故答案为15.【点睛】本题考查了全等三角形的判定和性质、勾股定理的逆定理的运用,解题的关键是添加辅助线,构造全等三角形. 24.【解析】【分析】根据图像解答即可.【详解】由图像可知,关于的不等式的解集是.故答案为:.【点睛】本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细解析:2x >-【解析】【分析】根据图像解答即可.【详解】由图像可知,关于x 的不等式21x k x +>-+的解集是2x >-.故答案为:2x >-.【点睛】本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.函数y 1>y 2时x 的范围是函数y 1的图象在y 2的图象上边时对应的未知数的范围,反之亦然.25.m >2.【解析】【分析】根据(x1﹣x2)(y1﹣y2)<0,得出y 随x 的增大而减小,再根据2﹣m <0,求出其取值范围即可.【详解】(x1﹣x2)(y1﹣y2)<0,即:或,也就是,y解析:m >2.【解析】【分析】根据(x 1﹣x 2)(y 1﹣y 2)<0,得出y 随x 的增大而减小,再根据2﹣m <0,求出其取值范围即可.【详解】(x 1﹣x 2)(y 1﹣y 2)<0,即:121200x x y y >⎧⎨<⎩﹣﹣或121200x x y y <⎧⎨>⎩﹣﹣, 也就是,y 随x 的增大而减小,因此,2﹣m <0,解得:m >2,故答案为:m >2.【点睛】本题主要考查了一次函数的图象和性质,掌握一次函数的增减性以及适当的转化是解决问题的关键.三、解答题26【解析】【分析】首先根据二次根式、立方根、绝对值的性质将各项化简,最后再进行加减运算即可.【详解】1321=-+,=【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解题的关键.27.(1)1;(2)(﹣2,﹣5).【解析】【分析】(1)把点A (1,4)的坐标代入一次函数y =3x+m 可求出m 的值,(2)确定函数的关系式,再把B 的坐标代入,求出a 的值,进而确定点B 的坐标.【详解】解:(1)把点A (1,4)的坐标代入一次函数y =3x+m 得:3×1+m =4,解得:m =1,(2)由(1)得:一次函数的关系式为y =3x+1.把B (﹣2,a )代入得:a =3×(﹣2)+1=﹣5,∴B 的坐标为(﹣2,﹣5)【点睛】考查一次函数图象上点的坐标特征,把点的坐标代入函数关系式是常用的方法.28.(1)详见解析;1A 的坐标(-1,3);(2)3)1<m ≤1.25【解析】【分析】(1)根据轴对称定义画图,写出坐标;(2)作点B 根据x 轴的对称点B ',连接A B ',与x 轴交于点P ,此时PA+PB=A B ',且值最小. (3)证AE//x 轴,再求线段AE 中点的横坐标,根据轴对称性质可得.【详解】解:(1)如图,111A B C ∆为所求,1A 的坐标(-1,3);(2)如图,作点B 根据x 轴的对称点B ',连接A B ',与x 轴交于点P ,此时PA+PB=A B ',且值最小.即PA+PB=A B '==(3)由已知可得,BC 的中点坐标是(3415,22++),即(3.5,3) 所以AE//x 轴,所以线段AE 中点的横坐标是:3.51 1.252-= 所以根据轴对称性质可得,m 的取值范围是1<m≤1.25【点睛】考核知识点:轴对称,勾股定理.数形结合分析问题,理解轴对称关系是关键.29.(1)见解析;(2)见解析;(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由见解析.【解析】【分析】(1)利用基本作图作∠ABC 的平分线;利用基本作图作BC 的垂直平分线,即可完成; (2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,用角平分线的性质证明OH=OG ,BH=BG ,继而证明EH =DG ,然后可证明OEH ODG ∆≅∆,于是可得到OE=OD ;(3)作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,利用(2)得到 CD=BE ,OEH ODG ∆≅∆,OE=OD ,EOH DOG ∠=∠,180ABC HOG ∠+∠=,可证明EOD HOG ∠=∠,故有180ABC EOD ∠+∠=,由△BEF 的周长=BC 可得到DF=EF,于是可证明OEF OGF ∆≅∆,所以有EOF DOF ∠=∠,然后可得到ABC ∠与EOF ∠的数量关系.【详解】解:(1)如图,就是所要求作的图形;(2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,∵BO 平分∠ABC ,OH ⊥AB ,OG 垂直平分BC ,∴OH=OG ,CG=BG ,∵OB=OB,∴OBH OBG ∆≅∆,∴BH=BG ,∵BE=CD ,∴EH=BH-BE=BG-CD=CG-CD=DG ,在OEH ∆和ODG ∆中,90OH OG OHE OGD EH DG =⎧⎪∠=∠=⎨⎪=⎩, ∴OEH ODG ∆≅∆,∴OE=OD .(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由如下; 如图 ,作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,由(2)可知,因为 CD=BE ,所以OEH ODG ∆≅∆且OE=OD ,∴EOH DOG ∠=∠,180ABC HOG ∠+∠=,∴EOD EOG DOG EOG EOH HOG ∠=∠+∠=∠+∠=∠,∴180ABC EOD ∠+∠=,∵△BEF 的周长=BE+BF+EF=CD+BF+EF=BC∴DF=EF,在△OEF 和△OGF 中,OE OD EF FD OF OF =⎧⎪=⎨⎪=⎩, ∴OEF OGF ∆≅∆,∴EOF DOF ∠=∠,∴2EOD EOF ∠=∠,∴2180ABC EOF ∠+∠=.【点睛】本题考查了角平分线的性质、垂直平分线的性质及全等三角形的判定与性质,还考查了基本作图.熟练掌握相关性质作出辅助线是解题关键,属综合性较强的题目,有一定的难度,需要有较强的解题能力.30.(1)()12105y x x =->(2)10kg 【解析】【分析】(1)根据(30,4)、(40,6)利用待定系数法,即可求出当行李的质量x 超过规定时,y 与x 之间的函数表达式;(2)令y =0,求出x 值,此题得解.【详解】解:(1)设y 与x 的函数表达式为y =kx +b ,由题意可得:304406k b k b +=⎧⎨+=⎩解得:152k b ⎧=⎪⎨⎪=-⎩ ∴125y x =-(x >10); (2)当y =0,12=05x -, ∴x =10, ∴旅客最多可免费携带行李的质量为10kg .【点睛】本题主要考查求一次函数解析式,熟练掌握利用待定系数法求解函数表达式是解题的关键.31.(1)x=5或﹣3;(2)﹣9.【解析】【分析】(1)直接利用平方根的定义化简得出答案;(2)直接利用立方根以及算术平方根的定义化简得出答案.【详解】(1)(x﹣1)2=16,x﹣1=±4,解得:x=5或﹣3;1-(2)2020=﹣1﹣5﹣3=﹣9.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.。

苏科版苏州市第一学期八年级数学第三次月考试卷(含解析)

苏科版苏州市第一学期八年级数学第三次月考试卷(含解析)

苏科版苏州市第一学期八年级数学第三次月考试卷(含解析)一、选择题1.如图,直线(0)y x b b =+>分别交x 轴、y 轴于点A 、B ,直线(0)y kx k =<与直线(0)y x b b =+>交于点C ,点C 在第二象限,过A 、B 两点分别作AD OC ⊥于D ,BE OC ⊥于E ,且8BE BO +=,4=AD ,则ED 的长为( )A .2B .32 C .52D .1 2.下列四组线段a 、b 、c ,不能组成直角三角形的是( ) A .4,5,3a b c === B . 1.5,2, 2.5a b c === C .5,12,13a b c === D .1,2,3a b c ===3.如图,两个一次函数图象的交点坐标为(2,4),则关于x ,y 的方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为( )A .2,4x y =⎧⎨=⎩B .4,2x y =⎧⎨=⎩C .4,0x y =-⎧⎨=⎩D .3,0x y =⎧⎨=⎩4.已知:△ABC ≌△DCB ,若BC=10cm ,AB=6cm ,AC=7cm ,则CD 为( )A .10cmB .7cmC .6cmD .6cm 或7cm5.如图,在ABC ∆中,AB AC =,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若76BEC ∠=,则ABC ∠=( )A .70B .71C .74D .766.我们定义:如果一个等腰三角形有一条边长是3,那么这个三角形称作帅气等腰三角形.已知ABC ∆中,32AB =,5AC =,7BC =,在ABC ∆所在平面内画一条直线,将ABC ∆分割成两个三角形,若其中一个三角形是帅气等腰三角形,则这样的直线最多可画( )A .0条B .1条C .2条D .3条7.64的立方根是( )A .4B .±4C .8D .±88.已知一次函数y=kx+b ,函数值y 随自变置x 的增大而减小,且kb <0,则函数y=kx+b 的图象大致是( )A .B .C .D .9.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为( )A .1B .5C .7D .49 10.在下列黑体大写英文字母中,不是轴对称图形的是( ) A . B . C . D .11.下列四组线段中,可以构成直角三角形的是( )A .4,5,6B .1.5,2,2.5C .2,3,4D .12, 312.关于等腰三角形,以下说法正确的是( )A .有一个角为40°的等腰三角形一定是锐角三角形B .等腰三角形两边上的中线一定相等C .两个等腰三角形中,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等D .等腰三角形两底角的平分线的交点到三边距离相等13.如图,在ABC 中,,904C AC ︒∠==cm ,3BC =cm ,点D 、E 分别在AC 、BC 上,现将DCE 沿DE 翻折,使点C 落在点'C 处,连接AC ',则AC '长度的最小值 ( )A.不存在B.等于 1cmC.等于 2 cm D.等于 2.5 cm14.工人师傅常用角尺平分一个任意角做法如下:如图所示,在∠AOB的两边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC即是∠AOB的平分线画法中用到三角形全等的判定方法是()A.SSS B.SAS C.ASA D.HL15.2的算术平方根是()A.4 B.±4 C.2D.2二、填空题16.4的算术平方根是.17.一次函数y=2x+b的图象沿y轴平移3个单位后得到一次函数y=2x+1的图象,则b 值为_____.18.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′处,那么CD=_____.19.一次函数y=kx+b的图像如图所示,则关于x的不等式kx-m+b>0的解集是____.20.如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F 处,折痕为MN .连接FN ,并求FN 的长__________.21.若正实数,m n 满足等式222(1)(1)(1)m n m n +-=-+-,则m n ⋅=__________. 22. 如图,在正三角形ABC 中,AD ⊥BC 于点D ,则∠BAD= °.23.如图,在ABC ∆和EDB ∆中,90C EBD ∠=∠=︒,点E 在AB 上.若ABC EDB ∆∆≌,4AC =,3BC =,则DE =______.24.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点F ,过F 作//DE BC ,交AB 于点D ,交AC 于点E .若3,5BD DE ==,则线段EC 的长为______.25.等腰三角形的顶角为76°,则底角等于__________.三、解答题26.(1)计算:03( 3.14)98|3|π--+-(2)求x 的值:228x =.27.如图,CA CD =,12∠=∠,BC EC =.(1)求证:AB DE =;(2)当21A ∠=︒,39E ∠=°时,求ACB ∠的度数.28.客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,需付的行李费y (元)是行李质量x (kg )的一次函数,这个函数的图象如图所示.(1)求y 关于x 的函数表达式;(2)求旅客最多可免费携带行李的质量.29.某商场计划购进A 、B 两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:类型价格进价/(元/盏) 售价/(元/盏) A 型30 45 B 型 50 70(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B 型台灯的进货数量不超过A 型台灯进货数量的4倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?30.已知:如图,在四边形ABCD 中,90ABC ADC ∠=∠=︒,点E 是AC 的中点.(1)求证:BED ∆是等腰三角形:(2)当BCD ∠= ° 时,BED ∆是等边三角形.31.如图,有一个长方形花园,对角线AC 是一条小路,现要在AD 边上找一个位置建报亭H ,使报亭H 到小路两端点A 、C 的距离相等.(1)用尺规作图的方法,在图中找出报亭H的位置(不写作法,但需保留作图痕迹,交代作图结果)(2)如果AD=80m,CD=40m,求报亭H到小路端点A的距离.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】图中直线y=x+b与x轴负半轴,y轴正半轴分别交于A,B两点,可以根据两点的坐标得出OA=OB,由此可证明△AOD≌△OBE,证出OC=AD,BE=OD,在Rt△OBE中,运用勾股定理可求出BE的长,再根据线段的差可求出DE的长.【详解】直线y=x+b(b>0)与x轴的交点坐标A为(-b,0)与y轴的交点坐标B为(0,-b),所以,OA=OB,又∵AD⊥OC,BE⊥OC,∴∠ADO=∠BEO=90°,∵∠DOA+∠DAO=90°,∠DOA+∠DOB=90°,∴∠DAO=∠DOB,在△DAO和△BOE中,DAO BOEADO BEOOA OB∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DAO≌EOB,∴OD=BE.AD=OE,∵AD=4,∴OE=4,∵BE+BO=8,∴B0=8-BE,在Rt△OBE中,222BO BE OE=+,∴222(8)BE BE OE-=+解得,BE=3,∴OD=3,∴ED=OE-OD=4-3=1.【点睛】此题主要考查了一次函数的应用以及全等三角形的判定与性质,根据全等三角形的性质求出OD=BE 是解题的关键.2.D解析:D【解析】【分析】根据勾股定理逆定理,即若三角形中两边到的平方和等于第三边的平方,那么这个三角形是直角三角形,对每项进行计算判断即可.【详解】解:A.2222223491625,525,a b c +=+==+=,B.222221.52 2.254 6.25,2.5 6.25,a b c +=+==+=,C.22222251225144169,13169,a b c +=+==+=,222222123,39,.1D a b c +=+==+≠.【点睛】本题考查了勾股定理的逆定理,解决本题的关键是熟练掌握勾股定理逆定理,正确计算出每项的结果.3.A解析:A【解析】【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.【详解】解:∵直线y 1=k 1x+b 1与y 2=k 2x+b 2的交点坐标为(2,4),∴二元一次方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为2,4.x y =⎧⎨=⎩故选A.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.4.C解析:C【解析】【分析】全等图形中的对应边相等.【详解】根据△ABC ≌△DCB ,所以AB=CD,所以CD=6,所以答案选择C 项.【点睛】本题考查了全等,了解全等图形中对应边相等是解决本题的关键.5.B解析:B【解析】【分析】由垂直平分线的性质可得AE=BE ,进而可得∠EAB=∠ABE ,根据三角形外角性质可求出∠A 的度数,利用等腰三角形性质求出∠ABC 的度数.【详解】∵DE 是AC 的垂直平分线,∴AE=BE ,∴∠A=∠ABE ,∵76BEC ∠=,∠BEC=∠EAB+∠ABE ,∴∠A=76°÷2=38°,∵AB=AC ,∴∠C=∠ABC=(180°-38°)÷2=71°,故选B.【点睛】本题考查线段垂直平分线的性质、等腰三角形的性质及外角性质.线段垂直平分线上的点到线段两端的距离相等;等腰三角形的两个底角相等;三角形的外角定义和它不相邻的两个内角的和,熟练掌握相关性质是解题关键.6.B解析:B【解析】【分析】先根据各边的长度画出三角形ABC ,作AD ⊥BC ,根据勾股定理求出AD ,BD ,结合图形可分析出结果.【详解】已知如图,所做三角形是钝角三角形,作AD ⊥BC ,根据勾股定理可得:AC 2-CD 2=AB 2-BD 2所以设CD=x,则BD=7-x所以52-x 2=(2-(7-x )2解得x=4所以CD=4,BD=3,所以,在直角三角形ADC中AD=2222-=-=AC CD543所以AD=BD=3所以三角形ABD是帅气等腰三角形假如从点C或B作直线,不能作出含有边长为3的等腰三角形故符合条件的直线只有直线AD故选:B【点睛】本题考查设计与作图、等腰三角形的定义、正确的理解题意是解决问题的关键;并注意第二问的分类讨论的思想,不要丢解.7.A解析:A【解析】试题分析:∵43=64,∴64的立方根是4,故选A考点:立方根.8.A解析:A【解析】试题分析:根据一次函数的性质得到k<0,而kb<0,则b>0,所以一次函数y=kx+b的图象经过第二、四象限,与y轴的交点在x轴是方.解:∵一次函数y=kx+b,y随着x的增大而减小,∴k<0,∴一次函数y=kx+b的图象经过第二、四象限;∵kb<0,∴b>0,∴图象与y轴的交点在x轴上方,∴一次函数y=kx+b的图象经过第一、二、四象限.故选A.考点:一次函数的图象.9.B解析:B【解析】【分析】根据等腰三角形的性质可知BC上的中线AD同时是BC上的高线,根据勾股定理求出AB的长即可.【详解】∵等腰三角形ABC中,AB=AC,AD是BC上的中线,∴BD=CD=12BC=3,AD同时是BC上的高线,∴2222345BD AD+=+=.故它的腰长为5.故选:B.【点睛】本题考查了勾股定理及等腰三角形的性质.解题关键是得出中线AD同时是BC上的高线.10.C解析:C【解析】【分析】根据轴对称图形的概念对各个大写字母判断即可得解.【详解】A.“E”是轴对称图形,故本选项不合题意;B.“M”是轴对称图形,故本选项不合题意;C.“N”不是轴对称图形,故本选项符合题意;D.“H”是轴对称图形,故本选项不合题意.故选:C.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.11.B解析:B【解析】试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可: A 、42+52=41≠62,不可以构成直角三角形,故本选项错误;B 、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C 、22+32=13≠42,不可以构成直角三角形,故本选项错误;D 、()2221233+=≠,不可以构成直角三角形,故本选项错误.故选B .考点:勾股定理的逆定理.12.D解析:D【解析】【分析】根据全等三角形的判定定理,等腰三角形的性质,三角形的内角和判断即可.【详解】解:A :如果40︒的角是底角,则顶角等于100︒,故三角形是钝角三角形,此选项错误; B 、当两条中线为两腰上的中线时,可知两条中线相等,当两条中线一条为腰上的中线,一条为底边上的中线时,则这两条中线不一定相等, ∴等腰三角形的两条中线不一定相等,此选项错误;C 、如图,△ABC 和△ABD 中,AB=AC=AD ,CD ∥AB ,DG 是△ABD 的AB 边高,CH 是是△ABC 的AB 边高,则DG=CH ,但△ABC 和△ABD 不全等;故此选项错误;D 、三角形的三个内角的角平分线交于一点,该点叫做三角形的内心.内心到三边的距离相等.故此选项正确;故选:D .【点睛】本题考查了全等三角形的判定,等腰三角形的性质,三角形的内角和,熟练掌握各知识点是解题的关键.13.C解析:C【解析】【分析】当C ′落在AB 上,点B 与E 重合时,AC'长度的值最小,根据勾股定理得到AB=5cm ,由折叠的性质知,BC ′=BC=3cm ,于是得到结论.【详解】解:当C′落在AB上,点B与E重合时,AC'长度的值最小,∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm,由折叠的性质知,BC′=BC=3cm,∴AC′=AB-BC′=2cm.故选:C.【点睛】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.14.A解析:A【解析】【分析】根据全等三角形的判定方法即可解决问题.【详解】由题意:OM=ON,CM=CN,OC=OC,∴△COM≌△CON(SSS),∴∠COM=∠CON,故选:A.【点睛】此题主要考查三角形全等判定的应用,熟练掌握,即可解题.15.C解析:C【解析】【分析】根据算术平方根的定义求解即可.【详解】解:22故选C.【点睛】本题主要考查了算术平方根的定义,熟练掌握概念是解题的关键.二、填空题16.【解析】试题分析:∵,∴4算术平方根为2.故答案为2.考点:算术平方根.解析:【解析】试题分析:∵224,∴4算术平方根为2.故答案为2.考点:算术平方根.17.﹣2或4【解析】【分析】由于题目没说平移方向,所以要分两种情况求解,然后根据直线的平移规律:上加下减,左加右减解答即可.【详解】解:由题意得:平移后的直线解析式为y=2x+b±3=2x+1解析:﹣2或4【解析】【分析】由于题目没说平移方向,所以要分两种情况求解,然后根据直线的平移规律:上加下减,左加右减解答即可.【详解】解:由题意得:平移后的直线解析式为y=2x+b±3=2x+1.∴b±3=1,解得:b=﹣2或4.故答案为:﹣2或4.【点睛】本题考查了直线的平移,属于基本题型,熟练掌握直线的平移规律是解答的关键.18.3cm.【解析】【分析】利用勾股定理列式求出AB,根据翻折变换的性质可得BC′=BC,C′D=CD,然后求出AC′,设CD=x,表示出C′D、AD,然后利用勾股定理列方程求解即可.【详解】解析:3cm.【解析】【分析】利用勾股定理列式求出AB,根据翻折变换的性质可得BC′=BC,C′D=CD,然后求出AC′,设CD=x,表示出C′D、AD,然后利用勾股定理列方程求解即可.【详解】解:∵∠C=90°,BC=6cm,AC=8cm,∴AB 10cm ,由翻折变换的性质得,BC ′=BC =6cm ,C ′D =CD ,∴AC ′=AB ﹣BC ′=10﹣6=4cm ,设CD =x ,则C ′D =x ,AD =8﹣x ,在Rt △AC ′D 中,由勾股定理得,AC ′2+C ′D 2=AD 2,即42+x 2=(8﹣x )2,解得x =3,即CD =3cm .故答案为:3cm .【点睛】本题考查了翻折变换的性质,勾股定理,此类题目熟记性质并利用勾股定理列出方程是解题的关键.19.【解析】【分析】先根据一次函数y=kx+b 的图象经过点(,m )可知,由图像可知,当时,,即可得出结论.【详解】解:有图像可知,一次函数y=kx+b 经过点(,m ),则当时,,由图像可知,解析:3x <-【解析】【分析】先根据一次函数y=kx+b 的图象经过点(3-,m )可知,由图像可知,当x 3<-时,kx b m +>,即可得出结论.【详解】解:有图像可知,一次函数y=kx+b 经过点(3-,m ),则当x 3=-时,kx b m +=,由图像可知,当x 3<-时,kx b m +>,∴0kx m b -+>的解集是:3x <-;故答案为:3x <-.【点睛】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的取值范围是解答此题的关键.20.【解析】【分析】设,则,由翻折的性质可知,在Rt△ENC 中,由勾股定理列方程求解即可求出DN ,连接AN ,由翻折的性质可知FN=AN ,然后在Rt△ADN 中由勾股定理求得AN 的长即可.【详解】解析:89【解析】 【分析】设NC x =,则8DN x ,由翻折的性质可知8EN DN x ==-,在Rt △ENC 中,由勾股定理列方程求解即可求出DN ,连接AN ,由翻折的性质可知FN=AN ,然后在Rt △ADN 中由勾股定理求得AN 的长即可.【详解】解:如图所示,连接AN ,设NC x =,则8DN x , 由翻折的性质可知:8EN DN x ==-,在Rt ENC 中, 有222EN EC NC =+,()22284x x -=+,解得:3x =,即5DN cm .在Rt 三角形ADN 中, 22228589AN AD ND , 由翻折的性质可知89FNAN .【点睛】 本题主要考查的是翻折的性质、勾股定理,利用勾股定理的到关于x 的方程是解题的关键.21.【解析】【分析】根据整式的完全平方公式将等式两边的式子进行化简,从而求得的值.【详解】∵∴∴∴,故答案为:.【点睛】本题主要考查了整式的乘法公式,熟练掌握完全平方公式及整式的 解析:12【解析】【分析】根据整式的完全平方公式将等式两边的式子进行化简,从而求得m n ⋅的值.【详解】∵2222(1)()2()12221m n m n m n m mn n m n +-=+-++=++--+ 2222(1)(1)2121m n m m n n -+-=-++-+∴222222212121m mn n m n m m n n ++--+=-++-+∴21mn = ∴12mn =, 故答案为:12. 【点睛】本题主要考查了整式的乘法公式,熟练掌握完全平方公式及整式的化简是解决本题的关键. 22.30【解析】【分析】根据正三角形ABC 得到∠BAC=60°,因为AD ⊥BC ,根据等腰三角形的三线合一得到∠BAD 的度数.【详解】∵△ABC 是等边三角形,∴∠BAC=60°,∵AB=AC解析:30【解析】【分析】根据正三角形ABC 得到∠BAC=60°,因为AD ⊥BC ,根据等腰三角形的三线合一得到∠BAD 的度数.【详解】∵△ABC是等边三角形,∴∠BAC=60°,∵AB=AC,AD⊥BC,∴∠BAD=12∠BAC=30°,故答案为30°.23.5【解析】【分析】先根据勾股定理求得AB的长度,再由全等三角形的性质可得DE的长度.【详解】解:在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC≌解析:5【解析】【分析】先根据勾股定理求得AB的长度,再由全等三角形的性质可得DE的长度.【详解】解:在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC≌△EDB,∴DE=AB=5.【点睛】本题考查勾股定理,全等三角形的性质.熟记全等三角形对应边相等是解决此题的关键. 24.2【解析】【分析】根据角平分线的定义可得∠DBF=∠FBC,∠ECF=∠FCB,由平行线的性质可得∠DFB=∠FBC,∠EFC=∠FCB,等量代换可得∠DFB=∠DBF,∠EFC=∠ECF,根解析:2【解析】【分析】根据角平分线的定义可得∠DBF=∠FBC,∠ECF=∠FCB,由平行线的性质可得∠DFB=∠FBC,∠EFC=∠FCB,等量代换可得∠DFB=∠DBF,∠EFC=∠ECF,根据等角对等边可得到DF=DB,EF=EC,再由ED=DF+EF结合已知即可求得答案.【详解】∵BF、CF分别是∠ABC和∠ACB的角平分线,∴∠DBF=∠FBC ,∠ECF=∠FCB ,∵DE ∥ BC ,∴∠DFB=∠FBC ,∠EFC=∠FCB ,∴∠DFB=∠DBF ,∠EFC=∠ECF ,∴DF=DB ,EF=EC ,∵ED=DF+EF ,3,5BD DE ==,∴EF=2,∴EC=2故答案为:2【点睛】本题考查了等腰角形的判定与性质,平行线的性质,角平分线的定义等,准确识图,熟练掌握和灵活运用相关知识是解题的关键.25.52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可.【详解】解:∵等腰三角形的顶角为76°,∴底角为:,故答案为:52°. 【点睛】本题考查了等腰三角形性解析:52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可.【详解】解:∵等腰三角形的顶角为76°, ∴底角为:11=104=5222⨯︒︒⨯︒︒(180-76), 故答案为:52°.【点睛】 本题考查了等腰三角形性质,以及三角形内角和定理,解题的关键是掌握等腰三角形等边对等角计算角度.三、解答题26.(1)3;(2)2x =±【解析】【分析】(1)先根据零指数幂、算术平方根、立方根、绝对值的意义逐项化简,再算加减即可; (2)根据平方根的意义求解即可.【详解】解:(1)原式1323=-++3=;(2)∵228x =,∴24x =,∴2x =±.【点睛】本题考查了实数的混合运算,熟练掌握零指数幂、算术平方根、立方根、绝对值的意义是解答本题的关键.27.(1)详见解析;(2)120°【解析】【分析】(1)根据题意,由“SAS ”证明ABC DEC ∆≅∆即可得解;(2)由ABC DEC ∆≅∆及三角形的内角和定理即可求解.【详解】(1)∵12∠=∠∴12ACE ACE ∠+∠=∠+∠∴ACB DCE ∠=∠在ABC ∆与DEC ∆中CA CD ACB DCE BC EC =⎧⎪∠=∠⎨⎪=⎩∴ABC DEC ∆≅∆(SAS )∴AB DE =;(2)∵ABC DEC ∆≅∆,39E ∠=°∴39B ∠=︒∵21A ∠=︒∴1801803921120ACB B A ∠=︒-∠-∠=︒-︒-︒=︒.【点睛】本题主要考查了三角形全等的判定及性质、三角形的内角和定理,熟练掌握三角形全等的证明方法是解决本题的关键.28.(1)()12105y x x =->(2)10kg 【解析】【分析】(1)根据(30,4)、(40,6)利用待定系数法,即可求出当行李的质量x 超过规定时,y与x之间的函数表达式;(2)令y=0,求出x值,此题得解.【详解】解:(1)设y与x的函数表达式为y=kx+b,由题意可得:304 406k bk b+=⎧⎨+=⎩解得:152 kb⎧=⎪⎨⎪=-⎩∴125y x=-(x>10);(2)当y=0,12=0 5x-,∴x=10,∴旅客最多可免费携带行李的质量为10kg.【点睛】本题主要考查求一次函数解析式,熟练掌握利用待定系数法求解函数表达式是解题的关键.29.(1)75盏;25盏(2)购进A型台灯20盏,B型台灯80盏;1900元【解析】【分析】(1)设商场应购进A型台灯x盏,表示出B型台灯为(100﹣x)盏,然后根据进货款=A 型台灯的进货款+B型台灯的进货款列出方程求解即可;(2)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.【详解】解:(1)设购进A型台灯x盏,则购进B型台灯(100﹣x)盏,由题意可得:30x+50(100﹣x)=3500∴x=75∴100﹣x=25答:购进A型台灯75盏,购进B型台灯25盏;(2)设商场销售完这批台灯可获利y元,y=15x+20(100﹣x)=﹣5x+2000又∵100﹣x≤4x,∴x≥20∵k=﹣5<0,∴y随x的增大而减小∴当x=20时,y取得最大值,最大值是1900.答:购进A型台灯20盏,购进B型台灯80盏时获利最多,此时利润为1900元.【点睛】本题考查了一次函数的应用,主要利用了一次函数的增减性,(2)题中理清题目数量关系并列式求出x的取值范围是解题的关键.30.(1)证明见解析;(2)150.【解析】试题分析:(1)根据直角三角形斜边上的中线等于斜边的一半可得BE=12AC,DE=12AC,从而得到BE=DE.(2)利用等边对等角以及三角形外角的性质得出12∠DEB=∠DAB,即可得出∠DAB=30°,然后根据四边形内角和即可求得答案.试题解析:证明:(1)∵∠ABC=∠ADC=90°,点E是AC边的中点,∴BE=12AC,DE=12AC,∴BE=DE,∴△BED是等腰三角形;(2)∵AE=ED,∴∠DAE=∠EDA,∵AE=BE,∴∠EAB=∠EBA,∵∠DAE+∠EDA=∠DEC,∠EAB+∠EBA=∠BEC,∴∠DAB=12∠DEB,∵△BED是等边三角形,∴∠DEB=60°,∴∠BAD=30°,∴∠BCD=360°-90°-90°-30°=150°.31.(1)详见解析;(2)报亭到小路端点A的距离50m.【解析】【分析】(1)作AC的垂直平分线交AD与点H,进而得出答案;(2)利用勾股定理以及线段垂直平分线的性质得出即可.【详解】(1)如图所示:H点即为所求;(2)根据作图可知:A H =H C ,设AH =xm ,则DH =(80﹣x )m ,HC =xm ,在Rt △DHC 中,222DH CD HC +=,∴222(80)40x x +=﹣, 解得:x =50,答:报亭到小路端点A 的距离50m .【点睛】本题主要考查了应用设计与作图以及勾股定理和线段垂直平分线的性质和作法等知识,得出A H =H C ,进而利用勾股定理得出是解题关键.。

苏科版八年级上学期第三次月考数学试卷 (解析版)

苏科版八年级上学期第三次月考数学试卷 (解析版)

苏科版八年级上学期第三次月考数学试卷 (解析版)一、选择题1.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .362B .332C .6D .32.下列四组线段a 、b 、c ,不能组成直角三角形的是( )A .4,5,3a b c ===B . 1.5,2, 2.5a b c ===C .5,12,13a b c ===D .1,2,3a b c ===3.下列四个图形中,不是轴对称图案的是( )A .B .C .D .4.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点F ,过F 作//DE BC ,交AB 于点D ,交AC 于点E ,若4BD =,7DE =,则线段EC 的长为( )A .3B .4C .3.5D .25.下列等式从左到右的变形,属于因式分解的是( )A .()a x y ax ay -=-B .()()311x x x x x -=+-C .()()21343x x x x ++=++D .()22121x x x x ++=++6.由四舍五入得到的近似数48.0110⨯,精确到( ) A .万位 B .百位 C .百分位 D .个位 7.已知点P (1+m ,3)在第二象限,则m 的取值范围是( ) A .1m <- B .1m >- C .1m ≤- D .1m ≥- 8.64的立方根是( )A .4B .±4C .8D .±89.若点Α()m,n 在一次函数y=3x+b 的图象上,且3m-n>2,则b 的取值范围为 ( ) A .b>2 B .b>-2 C .b<2 D .b<-2 10.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为( ) A .1 B .5 C .7 D .49 11.变量x 与y 之间的关系是y =2x+1,当y =5时,自变量x 的值是( )A .13B .5C .2D .3.5 12.我们知道,平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为( ) A .1B .2C .4D .无数13.如图,平面直角坐标系中,长方形OABC ,点A ,C 分别在x 轴,y 轴的正半轴上,点B (6,3),现将△OAB 沿OB 翻折至△OA ′B 位置,OA ′交BC 于点P .则点P 的坐标为( )A .(94,3) B .(32,3) C .(125,3) D .(5,32) 14.已知一次函数y =kx +b 的图象经过第一、二、三象限,则b 的值可以是( ) A .﹣2B .﹣1C .0D .215.如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC 的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P 1,第二次碰到正方形的边时的点为P 2…,第n 次碰到正方形的边时的点为P n ,则P 2020的坐标是( )A .(5,3)B .(3,5)C .(0,2)D .(2,0)二、填空题16.49的平方根为_______ 17.地球的半径约为6371km ,用科学记数法表示约为_____km .(精确到100km ) 18.如图,在正方形ABCD 的外侧,作等边三角形CDE ,连接,AE BE ,试确定AEB ∠的度数.19.如图,在平面直角坐标系中,点P (﹣1,a )在直线y =2x +2与直线y =2x +4之间,则a 的取值范围是_____.20.在ABC ∆中,13AC BC ==, 10AB =,则ABC ∆面积为_______. 21.如图,点P 为∠AOB 内任一点,E ,F 分别为点P 关于OA ,OB 的对称点.若∠AOB =30°,则∠E +∠F =_____°.22.在△ABC 中,AB=AC ,∠BAC=100°,点D 在BC 边上,连接AD ,若△ABD 为直角三角形,则∠ADC 的度数为_____.23.点()2,3A 关于y 轴对称点的坐标是______.24.将一次函数2y x =-的图象平移,使其经过点(2,3),则所得直线的函数解析式是______.25.在△ABC 中,已知AB =15,AC =11,则BC 边上的中线AD 的取值范围是____.三、解答题26.A ,B 两地相距200千米,甲车从A 地出发匀速行驶到B 地,乙车从B 地出发匀速行驶到A 地.乙车行驶1小时后,甲车出发,两车相向而行.设行驶时间为x 小时(0≤x ≤5),甲、乙两车离A 地的距离分别为y 1,y 2千米,y 1,y 2与x 之间的函数关系图象如图1所示.根据图象解答下列问题: (1)求y 1,y 2与x 的函数关系式;(2)乙车出发几小时后,两车相遇?相遇时,两车离A 地多少千米?(3)设行驶过程中,甲、乙两车之间的距离为s 千米,在图2的直角坐标系中,已经画出了s 与x 之间的部分函数图象.①图中点P 的坐标为(1,m ),则m = ;②求s 与x 的函数关系式,并在图2中补全整个过程中s 与x 之间的函数图象.27.阅读下列材料,然后解答问题: 问题:分解因式:3245x x +-.解答:把1x =带入多项式3245x x +-,发现此多项式的值为0,由此确定多项式3245x x +-中有因式()1x -,于是可设()()322451x x x x mx n +-=-++,分别求出m ,n 的值.再代入()()322451x x x x mx n +-=-++,就容易分解多项式3245x x +-,这种分解因式的方法叫做“试根法”.(1)求上述式子中m ,n 的值;(2)请你用“试根法”分解因式:3299x x x +--.28.王阿姨到超市购买大米,元旦前按原价购买,用了105元,元旦后,这种大米8折出售,她用168元又买了一些,两次一共购买了45kg ,这种大米的原价是多少? 29.求下列各式中x 的值:(1)240x -=; (2)3216x =- 30.(模型建立)(1)如图1,等腰直角三角形ABC 中,∠ACB =90°,CA =CB ,直线ED 经过点C ,过A 作AD ⊥ED 于点D ,过B 作BE ⊥ED 于点E . 求证:△CDA ≌△BEC . (模型运用)(2)如图2,直线l 1:y =43x +4与坐标轴交于点A 、B ,将直线l 1绕点A 逆时针旋转90°至直线l 2,求直线l 2的函数表达式. (模型迁移)如图3,直线l 经过坐标原点O ,且与x 轴正半轴的夹角为30°,点A 在直线l 上,点P 为x 轴上一动点,连接AP ,将线段AP 绕点P 顺时针旋转30°得到BP ,过点B 的直线BC 交x 轴于点C ,∠OCB =30°,点B 到x 轴的距离为2,求点P 的坐标.31.一辆汽车在某次行驶过程中,油箱中的剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,其部分图象如图所示.(1)求y 关于x 的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,OP=OD=OC=3,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.详解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=3,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+MC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=12OC=32,CH=3OH=3 2 ,∴CD=2CH=3.故选D.点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.2.D【解析】 【分析】根据勾股定理逆定理,即若三角形中两边到的平方和等于第三边的平方,那么这个三角形是直角三角形,对每项进行计算判断即可. 【详解】解:A.2222223491625,525,a b c +=+==+=,B.222221.52 2.254 6.25,2.5 6.25,a b c +=+==+=,C.22222251225144169,13169,a b c +=+==+=,222222123,39,.1D a b c +=+==+≠.【点睛】本题考查了勾股定理的逆定理,解决本题的关键是熟练掌握勾股定理逆定理,正确计算出每项的结果.3.A解析:A 【解析】 【分析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形. 【详解】A 不是轴对称图形,B 、C 、D 都是轴对称图形. 故选A. 【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.4.A解析:A 【解析】 【分析】根据△ABC 中,∠ABC 和∠ACB 的平分线相交于点F.求证∠DBF=∠FBC,∠ECF=∠BCF,再利用两直线平行内错角相等,求证出∠DFB=∠DBF ,∠CFE=∠BCF,即BD=DF,FE=CE ,然后利用等量代换即可求出线段CE 的长. 【详解】解:∵∠ABC 和∠ACB 的平分线相交于点F, ∴∠DBF=∠FBC ,∠ECF=∠BCF, ∵DF//BC,交AB 于点D,交AC 于点E. ∴∠DFB=∠DBF ,∠CFE=∠BCF , ∴BD=DF=4,FE=CE, ∴CE=DE-DF=7-4=3.【点睛】本题考查了平行线的性质和角平分线的性质,解决本题的关键是正确理解题意,熟练掌握平行线和角平分线的性质,能够找到相等的量.5.B解析:B 【解析】 【分析】根据因式分解的定义逐个判断即可. 【详解】解:A 、不是因式分解,故本选项不符合题意; B 、是因式分解,故本选项符合题意; C 、不是因式分解,故本选项不符合题意; D 、不是因式分解,故本选项不符合题意; 故选:B . 【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.6.B解析:B 【解析】 【分析】由于48.0110⨯=80100,观察数字1所在的数位即可求得答案. 【详解】解:∵48.0110⨯=80100,数字1在百位上, ∴ 近似数48.0110⨯精确到百位, 故选 B. 【点睛】此题主要考查了近似数和有效数字,熟记概念是解题的关键.7.A解析:A 【解析】 【分析】令点P 的横坐标小于0,列不等式求解即可. 【详解】解:∵点P P (1+m ,3)在第二象限, ∴1+m <0, 解得: m <-1.故选:A . 【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8.A解析:A 【解析】试题分析:∵43=64,∴64的立方根是4, 故选A 考点:立方根.9.D解析:D 【解析】分析:由点(m,n )在一次函数3y x b =+的图像上,可得出3m+b=n ,再由3m-n >2,即可得出b <-2,此题得解. 详解:∵点A (m ,n )在一次函数y=3x+b 的图象上, ∴3m+b=n . ∵3m-n >2,∴3m-(3m+b)>2,即-b>2, ∴b <-2. 故选D .点睛:考查了一次函数图象上点的坐标特征:点的坐标满足函数的解析式,根据一次函数图象上点的坐标特征,再结合3m-n >2,得出-b >2是解题的关键.10.B解析:B 【解析】 【分析】根据等腰三角形的性质可知BC 上的中线AD 同时是BC 上的高线,根据勾股定理求出AB 的长即可. 【详解】∵等腰三角形ABC 中,AB=AC ,AD 是BC 上的中线,∴BD=CD=12BC=3,AD 同时是BC 上的高线,∴AB=2222BD AD+=+=.345故它的腰长为5.故选:B.【点睛】本题考查了勾股定理及等腰三角形的性质.解题关键是得出中线AD同时是BC上的高线.11.C解析:C【解析】【分析】直接把y=5代入y=2x+1,解方程即可.【详解】解:当y=5时,5=2x+1,解得:x=2,故选:C.【点睛】此题主要考查了函数值,关键是掌握已知函数解析式,给出函数值时,求相应的自变量的值就是解方程.12.B解析:B【解析】【分析】直接利用轴对称图形的性质画出对称轴即可.【详解】解:如图所示:平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为2条.故选:B.【点睛】此题主要考查了轴对称图形的性质,正确掌握轴对称图形的性质是解题关键.13.A解析:A【解析】【分析】由折叠的性质和矩形的性质证出OP=BP,设OP=BP=x,则PC=6﹣x,再用勾股定理建立方程9+(6﹣x)2=x2,求出x即可.∵将△OAB沿OB翻折至△OA′B位置,OA′交BC于点P,∴∠A'OB=∠AOB,∵四边形OABC是矩形,∴BC∥OA,∴∠OBC=∠AOB,∴∠OBC=∠A'OB,∴OP=BP,∵点B的坐标为(6,3),∴AB=OC=3,OA=BC=6,设OP=BP=x,则PC=6﹣x,在Rt△OCP中,根据勾股定理得,OC2+PC2=OP2,∴32+(6﹣x)2=x2,解得:x=154,∴PC=6﹣154=94,∴P(94,3),故选:A.【点睛】此题主要考查折叠和矩形的性质以及利用勾股定理构建方程,熟练掌握,即可解题. 14.D解析:D【解析】【分析】根据一次函数的图象经过第一、二、三象限判断出b的符号,再找出符合条件的b的可能值即可.【详解】∵一次函数的图象经过第一、二、三象限,∴b>0,∴四个选项中只有2符合条件.故选:D.【点睛】本题考查了一次函数图象与系数的关系:对于一次函数y=kx+b:当k>0,b>0⇔y=kx+b 的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.15.D解析:D【分析】根据轴对称的性质分别写出点P1的坐标为、点P2的坐标、点P3的坐标、点P4的坐标,从中找出规律,根据规律解答.【详解】解:由题意得,点P1的坐标为(5,3),点P2的坐标为(3,5),点P3的坐标为(0,2),点P4的坐标为(2,0),点P5的坐标为(5,3),2020÷4=505,∴P2020的坐标为(2,0),故选:D.【点睛】本题主要考查了点的坐标、坐标与图形变化−−对称,正确找出点的坐标的变化规律是解题的关键.二、填空题16.【解析】【分析】利用平方根立方根定义计算即可.【详解】∵,∴的平方根是±,故答案为±.【点睛】本题考查了方根的定义,熟练掌握平方根的定义是解本题的关键.注意:区别平方根和算术平方根解析:2 3【解析】【分析】利用平方根立方根定义计算即可.【详解】∵224=39⎛⎫±⎪⎝⎭,∴49的平方根是±23,故答案为±2 3 .【点睛】本题考查了方根的定义,熟练掌握平方根的定义是解本题的关键.注意:区别平方根和算术平方根.一个非负数的平方根有两个,互为相反数,正值为算术平方根.17.4×103.【解析】【分析】先把原数写成科学记数法,再根据精确度四舍五入取近似数,即可.【详解】6371 km =6.371×103 km≈6.4×103 km(精确到100km).故答解析:4×103.【解析】【分析】先把原数写成科学记数法,再根据精确度四舍五入取近似数,即可.【详解】6371 km =6.371×103 km≈6.4×103 km(精确到100km).故答案为:6.4×103【点睛】本题主要考查科学记数法和近似数,掌握科学记数法的定义和近似数精确度的意义是解题的关键.18.【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB的度数.【详解】解:∵在正方形中,,,在解析:30AEB∠=【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB的度数.【详解】解:∵在正方形ABCD 中,AD DC =,90ADC ∠=,在等边三角形CDE 中,CD DE =,60CDE DEC ∠=∠=,∴150ADE ADC CDE ∠=∠+∠= ,AD DE =,在等腰三角形ADE 中1801801501522ADE DEA ︒-∠︒-︒∠===︒, 同理得:15BEC ∠=,则60151530AEB DEC DEA BEC ∠=∠-∠-∠=--=.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形内角和定理;熟练掌握正方形和等边三角形的性质是解决问题的关键.19.【解析】【分析】计算出当P 在直线上时a 的值,再计算出当P 在直线上时a 的值,即可得答案.【详解】解:当P 在直线上时,,当P 在直线上时,,则.故答案为【点睛】此题主要考查了一次函数与解析:0a 2<<【解析】【分析】计算出当P 在直线y 2x 2=+上时a 的值,再计算出当P 在直线y 2x 4=+上时a 的值,即可得答案.【详解】解:当P 在直线y 2x 2=+上时,()a 212220=⨯-+=-+=,当P 在直线y 2x 4=+上时,()a 214242=⨯-+=-+=,则0a 2<<.故答案为0a 2<<【点睛】此题主要考查了一次函数与一元一次不等式,关键是掌握函数图象经过的点,必能使解析式左右相等.20.60【解析】【分析】根据题意可以判断为等腰三角形,利用勾股定理求出AB 边的高,即可得到答案.【详解】如图作出AB 边上的高CD∵AC=BC=13, AB=10,∴△ABC 是等腰三角形,解析:60【解析】【分析】根据题意可以判断ABC ∆为等腰三角形,利用勾股定理求出AB 边的高,即可得到答案.【详解】 如图作出AB 边上的高CD∵AC=BC=13, AB=10,∴△ABC 是等腰三角形,∴AD=BD=5,根据勾股定理 CD 2=AC 2-AD 2,22135-,12ABC SCD AB =⋅=112102⨯⨯=60, 故答案为:60.【点睛】 此题主要考查了等腰三角形的判定及勾股定理,关键是判断三角形的形状,利用勾股定理求出三角形的高.21.150【解析】【分析】连接OP ,根据轴对称的性质得到,再利用四边形的内角和是计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点故答案为:1解析:150【解析】【分析】连接OP ,根据轴对称的性质得到60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠再利用四边形的内角和是360︒计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点,,EOA POA POB FOB ∴∠=∠∠=∠30EOA FOB POA POB ∴∠+∠=∠+∠=︒60EOF ∴∠=︒,,E EPO F FPO ∴∠=∠∠=∠360E EPO F FPO EOF ∴∠+∠+∠+∠+∠=︒2()300E F ∴∠+∠=︒150E F ∴∠+∠=︒故答案为:150.【点睛】本题考查了轴对称的性质,四边形的内角和性质,证得60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠解本题的关键.22.130°或90°.【解析】分析:根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.详解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°解析:130°或90°.【解析】分析:根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC 的度数.详解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为130°或90°.点睛:本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.23.(−2,3)【解析】【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(−x,y),即关于y轴的对称点,纵坐标不变,横坐标变成相反数.【详解】解:点(2,3)关于y轴对解析:(−2,3)【解析】【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(−x,y),即关于y 轴的对称点,纵坐标不变,横坐标变成相反数.【详解】解:点(2,3)关于y轴对称的点的坐标是(−2,3),故答案为(−2,3).【点睛】本题主要考查了平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数,关于x轴对称的点,横坐标相同,纵坐标互为相反数.24.【解析】试题分析:解:设y=x+b ,∴3=2+b ,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析:1y x =+【解析】试题分析:解:设y=x+b ,∴3=2+b ,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k 的值不变.25.2<AD<13【解析】【分析】延长AD 至E ,使得DE=AD ,连接CE ,然后根据“边角边”证明△ABD 和△ECD 全等,再根据全等三角形对应边相等可得AB=CE ,然后利用三角形任意两边之和大于第三解析:2<AD <13【解析】【分析】延长AD 至E ,使得DE=AD ,连接CE ,然后根据“边角边”证明△ABD 和△ECD 全等,再根据全等三角形对应边相等可得AB =CE ,然后利用三角形任意两边之和大于第三边,两边之和小于第三边求出AE 的取值范围,从而得解.【详解】解:如图,延长AD 至E ,使得DE=AD ,连接CE ,∵AD 是△ABC 的中线,∴BD=CD ,在△ABD 和△ECD 中,∵AD =DE ,∠ADB =∠EDC ,BD =CD∴△ABD ≌△ECD (SAS ),∴AB=CE ,∵AB=15,∴CE=15,∵AC=11,∴在△ACE 中,15-11=4,15+11=26,∴4<AE<26,∴2<AD<13;故答案为:2<AD<13.【点睛】本题既考查了全等三角形的性质与判定,也考查了三角形的三边的关系,解题的关键是将中线AD延长得AD=DE,构造全等三角形,然后利用三角形的三边的关系解决问题.三、解答题26.(1)y1=50x﹣50,y2=﹣40x+200;(2)乙车出发259小时后,两年相遇,相遇时,两车离A地8009千米;(3)①160;②当1≤x≤259时,s=250﹣90x;当259<x≤5时,s=90x﹣250;图象详见解析.【解析】【分析】(1)用待定系数法可求解析式;(2)将两个函数表达式组成方程组可求解;(3)①由点P表达的意义可求m的值;②分相遇前和相遇后两种情况分别求解析式.【详解】解:(1)如图1,甲的图象过点(1,0),(5,200),∴设甲的函数表达式为:y1=kx+b,∴2005k bk b =+⎧⎨=+⎩解得:5050 kb=⎧⎨=-⎩∴甲的函数表达式为:y1=50x﹣50,如图1,乙的图象过点(5,0),(0,200),∴设乙的函数表达式为:y2=mx+200,∴0=5m+200∴m=﹣40,∴乙的函数表达式为:y2=﹣40x+200,(2)由题意可得:505040200yx y x =-⎧⎨=-+⎩解得:2598009x y ⎧=⎪⎪⎨⎪=⎪⎩答:乙车出发259小时后,两年相遇,相遇时,两车离A 地8009千米. (3)①由题意可得乙先出发1小时,且速度为40千米/小时,∴m =200﹣40×1=160, 故答案为160; ②当1≤x ≤259时,s =200﹣40×1﹣(40+50)(x ﹣1)=250﹣90x ; 当259<x ≤5时,s =90x ﹣250; 图象如下:【点睛】本题考查了一次函数的应用,用待定系数法求解析式,理解函数图象是本题的关键.27.(1)5m =,5n =;(2)()()()133x x x ++-【解析】【分析】(1)先找出一个x 的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论;(2)先找出x=-1时,得出多项式的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论.【详解】解:(1)把1x =带入多项式3245x x +-,发现此多项式的值为0,∴多项式3245x x +-中有因式()1x -,于是可设322451xx x x mx n , 得出:3232451x x x m x n m x n ,∴14m ,0n m,∴5m =,5n =, (2)把1x =-代入3299x x x +--,多项式的值为0,∴多项式3299x x x +--中有因式()1x +,于是可设322329911x x x x x mx n x m x n m x n ,∴11m +=,9n m,9n =- ∴0m =,9n =-,∴3229133991x x x x x x x x【点睛】此题是分解因式,主要考查了试根法分解因式的理解和掌握,解本题的关键是理解试根法分解因式.28.7元/千克【解析】【分析】设这种大米原价是每千克x 元,根据题意列出分式方程,解出并检验即可.【详解】解:设这种大米原价是每千克x 元,根据题意得: 105168450.8x x+=, 解得x=7 经检验x=7是原分式方程的解,答:这种大米的原价是7元/千克.【点睛】此题主要考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.29.(1)2x =-或2x =;(2)2x =-【解析】【分析】(1)根据平方根的性质解方程即可;(2)根据立方根的性质解方程即可.【详解】解:(1)240x -=24x =解得:2x =-或2x =(2)3216x =-38x =-解得:2x =-【点睛】此题考查的是含平方和立方的方程,掌握平方根的性质和立方根的性质是解决此题的关键.30.(1)见解析;(2)3944y x=--;(3)点P坐标为(4,0)或(﹣4,0)【解析】【分析】(1)由“AAS”可证△CDA≌△BEC;(2)如图2,在l2上取D点,使AD=AB,过D点作DE⊥OA,垂足为E,由(1)可知△BOA≌△AED,可得DE=OA=3,AE=OB=4,可求点D坐标,由待定系数法可求解析式;(3)分两种情况讨论,通过证明△OAP≌△CPB,可得OP=BC=4,即可求点P坐标.【详解】(1)证明:∵AD⊥DE,BE⊥DE,∴∠D=∠E=90°,∴∠BCE+∠CBE=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠ACD=∠CBE,又CA=BC,∠D=∠E=90°∴△CDA≌△BEC(AAS)(2)如图2,在l2上取D点,使AD=AB,过D点作DE⊥OA,垂足为E∵直线y=43x+4与坐标轴交于点A、B,∴A(﹣3,0),B(0,4),∴OA=3,OB=4,由(1)得△BOA≌△AED,∴DE=OA=3,AE=OB=4,∴OE=7,∴D(﹣7,3)设l2的解析式为y=kx+b,得3703k bk b =-+⎧⎨=-+⎩解得3494k b ⎧=-⎪⎪⎨⎪=-⎪⎩∴直线l 2的函数表达式为:3944y x =-- (3)若点P 在x 轴正半轴,如图3,过点B 作BE ⊥OC ,∵BE =2,∠BCO =30°,BE ⊥OC∴BC =4,∵将线段AP 绕点P 顺时针旋转30°得到BP ,∴AP =BP ,∠APB =30°,∵∠APC =∠AOC +∠OAP =∠APB +∠BPC ,∴∠OAP =∠BPC ,且∠OAC =∠PCB =30°,AP =BP ,∴△OAP ≌△CPB (AAS )∴OP =BC =4,∴点P (4,0)若点P 在x 轴负半轴,如图4,过点B 作BE ⊥OC ,∵BE =2,∠BCO =30°,BE ⊥OC∴BC =4,∵将线段AP 绕点P 顺时针旋转30°得到BP ,∴AP =BP ,∠APB =30°,∵∠APE +∠BPE =30°,∠BCE =30°=∠BPE +∠PBC ,∴∠APE =∠PBC ,∵∠AOE =∠BCO =30°,∴∠AOP =∠BCP =150°,且∠APE =∠PBC ,PA =PB∴△OAP ≌△CPB (AAS )∴OP =BC =4,∴点P (﹣4,0)综上所述:点P 坐标为(4,0)或(﹣4,0)【点睛】本题是一道关于一次函数的综合题目,涉及到的知识点有全等三角形的判定定理及其性质、一次函数图象与坐标轴的交点、用待定系数法求一次函数解析式、旋转的性质等,掌握以上知识点是解此题的关键.31.(1)该一次函数解析式为y=﹣110x+60.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【解析】【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式; (2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.【详解】(1)设该一次函数解析式为y=kx+b ,将(150,45)、(0,60)代入y=kx+b 中,得1504560k b b +=⎧⎨=⎩,解得:11060k b ⎧=-⎪⎨⎪=⎩, ∴该一次函数解析式为y=﹣110x+60; (2)当y=﹣110x+60=8时, 解得x=520,即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米,∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.。

苏科版八年级(上)第三次月考数学试卷(含答案)

苏科版八年级(上)第三次月考数学试卷(含答案)

苏科版八年级(上)第三次月考数学试卷(含答案)一、选择题1.正方形具有而矩形不一定具有的性质是 ( )A .对角线互相垂直B .对角线互相平分C .对角线相等D .四个角都是直角 2.已知实数,a b 满足2|2|(4)0a b -+-=,则以,a b 的值为两边的等腰三角形的周长是( )A .10B .8或10C .8D .以上都不对3.对函数31y x =-,下列说法正确的是( )A .它的图象过点(3,1)-B .y 值随着x 值增大而减小C .它的图象经过第二象限D .它的图象与y 轴交于负半轴 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四 5.如图,∠A =30°,∠C ′=60°,△ABC 与△A′B′C′关于直线l 对称,则∠B 度数为( )A .30B .60︒C .90︒D .120︒6.已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,两函数y =x +5与y =﹣12x ﹣1的图像的交点坐标为( ) A .(﹣4,1)B .(1,﹣4)C .(4,﹣1)D .(﹣1,4) 7.1(1)1a a -- ) A .1- B 1a -C .1a --D .1a --8.在下列分解因式的过程中,分解因式正确的是( )A .-xz +yz =-z(x +y)B .3a 2b -2ab 2+ab =ab(3a -2b)C .6xy 2-8y 3=2y 2(3x -4y)D .x 2+3x -4=(x +2)(x -2)+3x9.某种产品的原料提价,因而厂家决定对产品提价,现有三种方案:方案(一):第一次提价%p ,第二次提价%q ;方案(二):第一次提价%q ,第二次提价%p ;方案(三):第一、二次提价均为2%p q +; 其中p ,q 是不相等的正数.有以下说法: ①方案(一)、方案(二)提价一样; ②方案(一)的提价也有可能高于方案(二)的提价;③三种方案中,以方案(三)的提价最多; ④方案(三)的提价也有可能会低于方案(一)或方案(二)的提价.其中正确的有( )A .②③B .①③C .①④D .②④10.如图,在ABC ∆中,90C ∠=︒,2AC =,点D 在BC 上,5AD =,ADC 2B ∠=∠,则BC 的长为( )A .51-B .51+C .31-D .31+11.正比例函数y kx =的图象经过第一、三象限,则一次函数y x k =+的图象大致是() A . B .C .D .12.下列标志中,不是轴对称图形的是( )A .B .C .D . 13.如果m 是任意实数,则点()P m 4m 1-+,一定不在A .第一象限B .第二象限C .第三象限D .第四象限14.关于等腰三角形,以下说法正确的是( )A .有一个角为40°的等腰三角形一定是锐角三角形B .等腰三角形两边上的中线一定相等C .两个等腰三角形中,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等D .等腰三角形两底角的平分线的交点到三边距离相等15.如图:若△ABE ≌△ACD ,且AB =6,AE =2,则EC 的长为( )A .2B .3C .4D .6二、填空题16.如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为(-1,4).将△ABC 沿y 轴翻折到第一象限,则点C 的对应点C′的坐标是_____.17.矩形ABCD 中,其中三个顶点的坐标分别是(0,0)、(5,0)、(5,3),则第四个顶点的坐标是______.18.已知3a b +=,2ab =,代数式32232a b a b ab ++=__________.19.若分式293x x --的值为0,则x 的值为_______. 20.在平面直角坐标系中,把直线y=-2x+3沿y 轴向上平移两个单位后,得到的直线的函数关系式为_____.21.如图,已知直线l 1:y=kx+4交x 轴、y 轴分别于点A (4,0)、点B (0,4),点C 为x 轴负半轴上一点,过点C 的直线l 2:12y x n =+经过AB 的中点P ,点Q (t ,0)是x 轴上一动点,过点Q 作QM ⊥x 轴,分别交l 1、l 2于点M 、N ,当MN=2MQ 时,t 的值为_____.22.如图,等边三角形的顶点A (1,1)、B (3,1),规定把等边△ABC “先沿y 轴翻折,再向下平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC 的顶点C 的坐标为____.23.当x =_____时,分式22x x x-+值为0. 24.如图,在△ABC 中,AB =5,AC =13,BC 边上的中线AD =6,则△ABD 的面积是______.25.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是10,频率是0.2,那么该班级的人数是_____人.三、解答题26.如图是88⨯的正方形网格,每个小方格都是边长为1的正方形,在网格中建立平面直角坐标系xOy ,使点A 坐标为()2,3-,点B 坐标为()41-,.(1)试在图中画出这个直角坐标系;(2)标出点()1,1C ,连接AB 、AC ,画出ABC ∆关于y 轴对称的111A B C ∆.27.如图,在77⨯网格中,每个小正方形的边长都为1,画图请加粗加黑.(1)图中格点ABC ∆的面积为______.(2)在图中建立适当的平面直角坐标系,使点(1,3)A ,(2,1)C .(3)画出ABC ∆关于y 轴对称的图形A B C ∆'''.28.已知,如图,//AB CD ,E 是AB 的中点,CE DE =,求证:AC BD =.29.2|3|0a b -+-=,(164a b+的值; (2)设x b a ,y +b a 11x y +的值. 30.某商店准备购进,A B 两种商品,A 种商品毎件的进价比B 种商品每件的进价多20元,用3000元购进A 种商品和用1800元购进B 种商品的数量相同.商店将A 种商品每件的售价定为80元,B 种商品每件的售价定为45元.(1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进,A B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3)端午节期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠m(1020m <<)元,B 种商品售价不变,在(2)条件下,请设计出销售这40件商品获得总利润最大的进货方案.31.如图,△ABC 中,∠ABC =30°,∠ACB =50°,DE 、FG 分别为AB 、AC 的垂直平分线,E 、G 分别为垂足.(1)求∠DAF 的度数;(2)若△DAF 的周长为10,求BC 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题分析:正方形四个角都是直角,对角线互相垂直平分且相等;矩形四个角都是直角,对角线互相平分且相等.考点:(1)、正方形的性质;(2)、矩形的性质2.A解析:A【解析】【分析】先根据非负数的性质求出a 和b 的值,然后分两种情况求解即可.【详解】∵2|2|(4)0a b -+-=,∴a-2=0,b-4=0,∴a=2,b=4,当a 为腰时,2+2=4,不合题意,舍去;当b 为腰时,2+4>4,符合题意,∴周长=4+4+2=10.故选A.【点睛】此题主要考查了等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.3.D解析:D【解析】【分析】根据一次函数的性质,对每一项进行判断筛选即可.【详解】A 将x=3代入31y x =-得:3×3-1=8,A 选项错;B .一次函数k >0,y 值随着x 值增大而增大,B 选项错;C .一次函数k >0,y 值随着x 值增大而增大,当x=0时,y=-1,故此函数的图像经过一、三、四象限,C 选项错;D .当x=0时,y=-1,一次函数的图象与y 轴交于负半轴,D 项正确.故选D.【点睛】本题考查了一次函数的性质,解决本题的关键是正确理解题意,熟练掌握一次函数的性质. 4.C解析:C【解析】试题分析:直线y=﹣5x+3与y 轴交于点(0,3),因为k=-5,所以直线自左向右呈下降趋势,所以直线过第一、二、四象限.故选C .考点:一次函数的图象和性质.5.C解析:C【解析】【分析】由已知条件,根据轴对称的性质可得∠C =∠C ′=30°,利用三角形的内角和等于180°可求答案.【详解】∵△ABC 与△A ′B ′C ′关于直线l 对称,∴∠A =∠A ′=30°,∠C =∠C ′=60°;∴∠B =180°−30°-60°=90°.故选:C .【点睛】主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是180°.6.A解析:A【解析】【分析】根据一次函数与二元一次方程组的关系进行解答即可.【详解】解:∵二元一次方程组522x yx y-=-⎧⎨+=-⎩的解为41xy=-⎧⎨=⎩∴在同一平面直角坐标系中,两函数y=x+5与y=﹣12x﹣1的图像的交点坐标为:(-4,1)故选:A.【点睛】本题考查的是一次函数与二元一次方程组的关系,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.7.C解析:C【解析】【分析】先根据二次根式有意义有条件得出1-a>0,再由此利用二次根式的性质化简得出答案.【详解】11a-有意义,10a∴->,10a∴-<,(a∴-==故选C.【点睛】考查了二次根式的性质与化简,正确化简二次根式是解题关键.8.C解析:C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】-xz+yz=-z(x-y),故此选项错误;3a2b-2ab2+ab=ab(3a-2b+1),故此选项错误;6xy2-8y3=2y2(3x-4y)故此选项正确;x 2+3x -4=(x +2)(x -2)+3x ,此选项没把一个多项式转化成几个整式积的形式,此选项错误.故选:C .【点睛】因式分解的意义.9.B解析:B【解析】【分析】根据提价方案求出提价后三种方案的价格,得到方案(一)、方案(二)、方案(三)提价情况,进行对比即可得解.【详解】∵方案(一):(1%)(1%)1%%%%p q p q p q ++=+++方案(二):(1%)(1%)1%%%%q p q p q p ++=+++∴方案(一)、方案(二)提价一样∴①对,②错; ∵方案(三):2(1%)(1%)1%%(%)222p q p q p q p q +++++=+++ ∴可知: 21%%(%)(1%%%%)2p q p q p q p q ++++-+++2(%)%%2p q p q +=-2(%)2p q -= ∵p ,q 是不相等的正数 ∴2(%)02p q -> ∴方案(三)提价最多∴③对,④错∴①③对故选:B.【点睛】本题主要考查了销售问题中的增长率问题,熟练掌握增长率的相关知识及整式的乘法化简是解决本题的关键.10.B解析:B【解析】【分析】根据ADC 2B ∠=∠,可得∠B=∠DAB ,即BD AD ==Rt △ADC 中根据勾股定理可得DC=1,则1.【详解】解:∵∠ADC 为三角形ABD 外角∴∠ADC=∠B+∠DAB∵ADC 2B ∠=∠∴∠B=∠DAB∴BD AD ==在Rt △ADC 中,由勾股定理得:DC 1===∴1故选B【点睛】 本题考查勾股定理的应用以及等角对等边,关键抓住ADC 2B ∠=∠这个特殊条件.11.A解析:A【解析】【分析】根据正比例函数的图象及性质即可求出k 的取值范围,然后根据一次函数的图象及性质即可判断.【详解】解:∵正比例函数y kx =的图象经过第一、三象限,∴0k >∵一次函数y x k =+中,1>0, 0k >∴一次函数y x k =+经过一、二、三象限故选A .【点睛】此题考查的是正比例函数的图象及性质和一次函数的图象及性质,掌握一次函数的图象及性质与各项系数的关系是解决此题的关键.12.B解析:B【解析】【分析】根据轴对称图形的性质对各项进行判断即可.【详解】A. 是轴对称图形;B. 不是轴对称图形;C. 是轴对称图形;D. 是轴对称图形;故答案为:B .【点睛】本题考查了轴对称图形的问题,掌握轴对称图形的性质是解题的关键.13.D解析:D【解析】【分析】求出点P 的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.【详解】∵()()m 1m 4m 1m 450+--=+-+=>,∴点P 的纵坐标一定大于横坐标..∵第四象限的点的横坐标是正数,纵坐标是负数,∴第四象限的点的横坐标一定大于纵坐标.∴点P 一定不在第四象限.故选D .14.D解析:D【解析】【分析】根据全等三角形的判定定理,等腰三角形的性质,三角形的内角和判断即可.【详解】解:A :如果40︒的角是底角,则顶角等于100︒,故三角形是钝角三角形,此选项错误; B 、当两条中线为两腰上的中线时,可知两条中线相等,当两条中线一条为腰上的中线,一条为底边上的中线时,则这两条中线不一定相等, ∴等腰三角形的两条中线不一定相等,此选项错误;C 、如图,△ABC 和△ABD 中,AB=AC=AD ,CD ∥AB ,DG 是△ABD 的AB 边高,CH 是是△ABC 的AB 边高,则DG=CH ,但△ABC 和△ABD 不全等;故此选项错误;D 、三角形的三个内角的角平分线交于一点,该点叫做三角形的内心.内心到三边的距离相等.故此选项正确;故选:D .【点睛】本题考查了全等三角形的判定,等腰三角形的性质,三角形的内角和,熟练掌握各知识点是解题的关键.15.C解析:C【解析】【分析】根据全等三角形的对应边相等解答即可.【详解】解:∵△ABE≌△ACF,∴AC=AB=6,∴EC=AC﹣AE=6-2=4,故选:C.【点睛】本题考查的知识点是全等三角形的性质,熟记性质内容是解此题的关键.二、填空题16.(3,1)【解析】【分析】关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同. 【详解】由题意得点C(-3,1)的对应点C′的坐标是(3,1).考点:关于y轴对称的点的坐标【点睛解析:(3,1)【解析】【分析】关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C(-3,1)的对应点C′的坐标是(3,1).考点:关于y轴对称的点的坐标【点睛】本题属于基础题,只需学生熟练掌握关于y轴对称的点的坐标的特征,即可完成. 17.(0,3)【解析】【分析】画图分析,由矩形的性质求得第四点的坐标,再解答.【详解】如图,根据图形易知第四点的坐标是(0,3).故填:(0,3).【点睛】用到的知识点为:矩形的邻边垂直解析:(0,3)【解析】【分析】画图分析,由矩形的性质求得第四点的坐标,再解答.【详解】如图,根据图形易知第四点的坐标是(0,3).故填:(0,3).【点睛】用到的知识点为:矩形的邻边垂直,对边平行.本题画出图后可很快求解.18.18【解析】【分析】先提取公因式ab,然后利用完全平方公式进行因式分解,最后将已知等式代入计算即可求出值.【详解】解:=当,时,原式,故答案为:18【点睛】此题考查了整式的混解析:18【解析】【分析】先提取公因式ab,然后利用完全平方公式进行因式分解,最后将已知等式代入计算即可求出值.【详解】解:32232a b a b ab ++=222ab a ab b2=ab a b当3a b +=,2ab =时,原式2=23=18,故答案为:18【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.19.-3【解析】【分析】根据分式的值为零的条件可以求出x 的值.【详解】解:根据题意得:,解得:x=-3.故答案为:-3.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2解析:-3【解析】【分析】根据分式的值为零的条件可以求出x 的值.【详解】解:根据题意得:29=030x x ⎧-⎨-≠⎩, 解得:x=-3.故答案为:-3.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.20.y=-2x+5.【解析】【分析】根据平移法则上加下减可得出平移后的解析式.【详解】解:由题意得:平移后的解析式为:y=-2x+3+2=-2x+5.故答案为y=-2x+5.【点睛】本题解析:y=-2x+5.【解析】【分析】根据平移法则上加下减可得出平移后的解析式.【详解】解:由题意得:平移后的解析式为:y=-2x+3+2=-2x+5.故答案为y=-2x+5.【点睛】本题考查一次函数图形的平移变换和函数解析式之间的关系,解题关键是在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.21.10或【解析】【分析】先求出的值,确定的关系式,然后根据一次函数图象上点的坐标特征求得点M 、N 的坐标,由两点间的距离公式求得MN ,MQ 的代数式,由已知条件,列出方程,借助于方程求得t 的值即可;解析:10或227 【解析】【分析】先求出k n ,的值,确定12l l ,的关系式,然后根据一次函数图象上点的坐标特征求得点M 、N 的坐标,由两点间的距离公式求得MN ,MQ 的代数式,由已知条件,列出方程,借助于方程求得t 的值即可;【详解】解:把()40A ,代入到4y kx =+中得:440k +=,解得:1k =-, ∴1l 的关系式为:4y x =-+,∵P 为AB 的中点,()40A ,,()0,4B ∴由中点坐标公式得:()2,2P ,把()2,2P 代入到12y x n =+中得:1222n ⨯+=,解得:1n =, ∴2l 的关系式为:112y x =+,∵QM x ⊥轴,分别交直线1l ,2l 于点M N 、,()0Q t ,, ∴(),4M t t -+,1,12N t t ⎛⎫+ ⎪⎝⎭,∴()1341322MN t t t ⎛⎫=-+-+=- ⎪⎝⎭,44MQ t t =-+=-, ∵2MN MQ =, ∴33242t t -=-, 分情况讨论得:①当4t ≥时,去绝对值得:()33=242t t --, 解得:10t =;②当24t ≤<时,去绝对值得:()33=242t t --, 解得:227t =; ③当2t <时,去绝对值得:()33=242t t --, 解得:102t =>,故舍去;综上所述:10t =或227t =; 故答案为:10或227. 【点睛】本题属于一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,两点间的距离公式等知识点,能够表示出线段的长度表达式,合理的使用分类讨论思想是解决本题的关键,有一定的难度.22.(2,).【解析】【分析】据轴对称判断出点C 变换后在y 轴的右侧,根据平移的距离求出点C 变换后的纵坐标,最后写出即可.【详解】∵△ABC 是等边三角形,AB=3﹣1=2,∴点C到y轴的距离为解析:(22019).【解析】【分析】据轴对称判断出点C变换后在y轴的右侧,根据平移的距离求出点C变换后的纵坐标,最后写出即可.【详解】∵△ABC是等边三角形,AB=3﹣1=2,∴点C到y轴的距离为1+2×1=2,点C到AB,2∴C(2,把等边△ABC先沿y轴翻折,得C’(-2,再向下平移1个单位得C’’( -2故经过一次变换后,横坐标变为相反数,纵坐标减1,故第2020次变换后的三角形在y轴右侧,点C的横坐标为2,+1﹣﹣2019,所以,点C的对应点C'的坐标是(22019).故答案为:(22019).【点睛】本题考查了坐标与图形变化−平移,等边三角形的性质,读懂题目信息,确定出连续2020次这样的变换得到三角形在y轴右侧是解题的关键.23.2【解析】【分析】分母为0没意义,分式的值为0的条件是:(1)分子=0;(2)分母≠0,两个条件需同时具备,缺一不可,据此可以解答本题.【详解】要使分式有意义,则分母不为0,即x2+x=x解析:2【解析】【分析】分母为0没意义,分式的值为0的条件是:(1)分子=0;(2)分母≠0,两个条件需同时具备,缺一不可,据此可以解答本题.【详解】要使分式有意义,则分母不为0,即x2+x=x(x+1)≠0,所以x≠0或x≠﹣1;而分式值为0,即分子2﹣x=0,解得:x=2,符合题意故答案为:2.【点睛】此题主要考查分式有意义的条件,熟练掌握,即可解题.24.15【解析】【分析】延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△A解析:15【解析】【分析】延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△ABD的面积.【详解】解:延长AD到点E,使DE=AD=6,连接CE,∵AD是BC边上的中线,∴BD=CD,在△ABD和△CED中,BD CDADB EDCAD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△CED(SAS),∴CE=AB=5,∠BAD=∠E,∵AE=2AD=12,CE=5,AC=13,∴CE2+AE2=AC2,∴∠E=90°,∴∠BAD=90°,即△ABD为直角三角形,∴△ABD的面积=12AD•AB=15.故答案为15.【点睛】本题考查了全等三角形的判定和性质、勾股定理的逆定理的运用,解题的关键是添加辅助线,构造全等三角形.25.50【解析】【分析】利用数据的总数=该组的频数÷该组的频率解答即可.【详解】解:该班级的人数为:10÷0.2=50.故答案为:50.【点睛】本题考查了频数与频率,熟练掌握数据的总数与解析:50【解析】【分析】利用数据的总数=该组的频数÷该组的频率解答即可.【详解】解:该班级的人数为:10÷0.2=50.故答案为:50.【点睛】本题考查了频数与频率,熟练掌握数据的总数与频数、频率的关系是解题的关键.三、解答题26.(1)详见解析;(2)详见解析.【解析】【分析】(1)由点A的坐标可建立平面直角坐标系;(2)先作出点C,再分别作出点A、B、C关于y轴的对称点,顺次连接即可得.【详解】如图所示;(2)如图所示.【点睛】本题考查了作图﹣轴对称变换,熟知轴对称变换的性质是解答此题的关键.27.(1)5;(2)见解析;(3)见解析.【解析】【分析】(1)图中格点△ABC的面积=矩形的面积减去3个直角三角形的面积,即可得出结果;(2)由已知点的坐标即可得出点B为坐标原点,即可得出结果;(3)根据关于y轴成轴对称的特点,即对应点到对称轴的距离相等,确定对应点,然后依次连线即可解决.【详解】图中格点△ABC的面积=4×4-11143-21-42=5 222⨯⨯⨯⨯⨯⨯根据点(1,3)A的坐标,向左平移一个单位,向下平移3个单位确定原点坐标,建立坐标系,如图所示根据成轴对称的图形的特点,到对称轴的距离相等,找到对应点并连线如图所示:【点睛】本题考查了割补法求三角形面积,通过坐标找坐标原点确定坐标系,作轴对称图形,解决本题的关键是熟练掌握割补法,将非规则图形转化为规则易解的图形,熟练掌握坐标平移的规律.28.见解析【解析】【分析】由CE=DE 易得∠ECD=∠EDC ,结合AB ∥CD 易得∠AEC=∠BED ,由此再结合AE=BE ,CE=DE 即可证得△AEC ≌△BED ,由此即可得到AC=BD.【详解】∵CE DE =,∴ECD EDC ∠=∠,∵//AB CD ,∴AEC ECD ∠=∠,BED EDC ∠=∠,∴AEC BED ∠=∠,又∵E 是AB 的中点,∴AE BE =,在AEC 和BED 中,AE BE AEC BED CE DE =⎧⎪∠=∠⎨⎪=⎩,∴AEC ≌BED .∴AC BD =.【点睛】熟悉“等腰三角形的性质、平行线的性质和全等三角形的判定方法”是解答本题的关键.29.(1)524;(2)23 【解析】【分析】(1)由算术平方根及绝对值的非负性可得a ,b 的值,将a ,b+利用二次根式的除法法则计算即可;(2)将a ,b 的值代入x ,y x ,y 的值,再将x ,y 的值代入11x y+,利用平方差公式使分母有理化,最后合并即可. 【详解】解:(1|3|0b -=,∴a ﹣2=0,b ﹣3=0,∴a =2,b =3,4===(2)∵x y ∴11x y +== 【点睛】本题考查了二次根式的化简,熟练的掌握二次根式分母有理化的方法是化简的关键.30.(1A 种商品每件的进价是50元,B 种商品每件的进价是30元;(2)商店共有5种进货方案;(3)①当18a =时,获利最大,即买18件A 商品,22件B 商品,②当15m =时,150m -=,(2)问中所有进货方案获利相同,③当14a =时,获利最大,即买14件A 商品,26件B 商品.【解析】【分析】(1)设A 商品每件进价为x 元,B 商品每件的进价为(x-20)元,根据A 种商品毎件的进价比B 种商品每件的进价多20元,用3000元购进A 种商品和用1800元购进B 种商品的数量相同,列方程求解;(2)设购买A 种商品a 件,则购买B 商品(40a -)件,根据商店计划用不超过1560元的资金购进,A B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,列出不等式组即可(3)先设销售,A B 两种商品共获利y 元,然后分析求解新的进货方案【详解】(1)设A 种商品每件的进价是x 元,则B 种商品每件的进价是()20x -元, 由题意得:3000180020x x =-, 解得:50x =,经检验,50x =是原方程的解,且符合题意,502030-=,答:A 种商品每件的进价是50元,B 种商品每件的进价是30元;(2)设购买A 种商品a 件,则购买B 商品(40a -)件,由题意得:()5030401560402a a a a ⎧+-⎪⎨-≥⎪⎩, 解得:40183a ≤≤, ∵a 为正整数,∴a =14、15、16、17、18, ∴商店共有5种进货方案;(3)设销售,A B 两种商品共获利y 元,由题意得:()()()8050453040y m a a =--+--()15600m a =-+,①当1015m <<时,150m ->,y 随a 的增大而增大,∴当18a =时,获利最大,即买18件A 商品,22件B 商品,②当15m =时,150m -=,y 与a 的值无关,即(2)问中所有进货方案获利相同,③当1520m <<时,150m -<,y 随a 的增大而减小,∴当14a =时,获利最大,即买14件A 商品,26件B 商品.【点睛】此题考查一元一次不等式组的应用,分式方程的应用,解题关键在于根据题意列出方程31.(1)20°;(2)10.【解析】【分析】(1)根据三角形内角和定理求出∠BAC ,根据线段垂直平分线的性质得到DA =DB ,FA =FC ,得到∠DAB =∠ABC =30︒,∠FAC =∠ACB =50︒,结合图形计算,得到答案;(2)根据三角形的周长公式计算即可.【详解】(1)∠BAC =180︒﹣∠ABC ﹣∠ACB =180︒﹣30︒﹣50︒=100︒,∵DE 是AB 的垂直平分线,∴DA =DB ,∴∠DAB =∠ABC =30︒,∵FG 是AC 的垂直平分线,∴FA =FC ,∴∠FAC =∠ACB =50︒,∴∠DAF =∠BAC ﹣(∠DAB +∠FAC )=20︒;(2)∵△DAF的周长为10,∴AD+DF+FC=10,∴BC=BD+DF+FC=AD+DF+FC=10.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.。

苏科版八年级上学期第三次月考数学试卷 (解析版)

苏科版八年级上学期第三次月考数学试卷 (解析版)

苏科版八年级上学期第三次月考数学试卷(解析版)一、选择题1.在平面直角坐标系中,下列各点位于第四象限的点是( ) A .(2,3)-B .()4,5-C .(1,0)D .(8,1)--2.如图,在ABC ∆中,AB AC =,AD 是边BC 上的中线,若5AB =,6BC =,则AD的长为( )A .3B .7C .4D .113.如图,两个一次函数图象的交点坐标为(2,4),则关于x ,y 的方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为( )A .2,4x y =⎧⎨=⎩B .4,2x y =⎧⎨=⎩C .4,0x y =-⎧⎨=⎩D .3,0x y =⎧⎨=⎩4.如图,我们知道数轴上的点与实数一一对应,由图中的信息可知点P 表示的数是( )A .132-B .132C 132D .13-5.在直角坐标系中,函数y kx =与12y x k =-的图像大数是( )A .B .C .D .6.下列条件中,不能判断△ABC 是直角三角形的是( ) A .a :b :c =3:4:5 B .∠A :∠B :∠C =3:4:5 C .∠A +∠B =∠C D .a :b :c =1:237.若分式12xx -+的值为0,则x 的值为( ) A .1 B .2-C .1-D .28.在-227,-π,0,3.14, 0.1010010001,-313中,无理数的个数有 ( ) A .1个B .2个C .3个D .4个9.如果0a b -<,且0ab <,那么点(),a b 在( ) A .第一象限B .第二象限C .第三象限D .第四象限10.一辆货车早晨7∶00出发,从甲地驶往乙地送货.如图是货车行驶路程y (km )与行驶时间x (h )的完整的函数图像(其中点B 、C 、D 在同一条直线上),小明研究图像得到了以下结论:①甲乙两地之间的路程是100 km ; ②前半个小时,货车的平均速度是40 km/h ; ③8∶00时,货车已行驶的路程是60 km ; ④最后40 km 货车行驶的平均速度是100 km/h ; ⑤货车到达乙地的时间是8∶24, 其中,正确的结论是( )A .①②③④B .①③⑤C .①③④D .①③④⑤11.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( ) A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)12.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,013.已知:如图,点P 在线段AB 外,且PA=PB ,求证:点P 在线段AB 的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A .作∠APB 的平分线PC 交AB 于点C B .过点P 作PC ⊥AB 于点C 且AC=BC C .取AB 中点C ,连接PCD .过点P 作PC ⊥AB ,垂足为C14.为了解我区八年级学生的身高情况,教育局抽查了1000名学生的身高进行了统计分析所抽查的1000名学生的身高是这个问题的( ) A .总体B .个体C .样本D .样本容量15.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( )A .B .C .D .二、填空题16.如图,在平面直角坐标系中,点P (﹣1,a )在直线y =2x +2与直线y =2x +4之间,则a 的取值范围是_____.17.如图,点P 为∠AOB 内任一点,E ,F 分别为点P 关于OA ,OB 的对称点.若∠AOB =30°,则∠E +∠F =_____°.18.若分式293x x --的值为0,则x 的值为_______.19.如图,在ABC ∆和EDB ∆中,90C EBD ∠=∠=︒,点E 在AB 上.若ABC EDB ∆∆≌,4AC =,3BC =,则DE =______.20.如图①,四边形ABCD 中,//,90BC AD A ∠=︒,点P 从A 点出发,沿折线AB BC CD →→运动,到点D 时停止,已知PAD △的面积s 与点P 运动的路程x 的函数图象如图②所示,则点P 从开始到停止运动的总路程为________.21.若某个正数的两个平方根分别是21a +与25a -,则a =_______.22.如图,已知直线l 1:y=kx+4交x 轴、y 轴分别于点A (4,0)、点B (0,4),点C 为x 轴负半轴上一点,过点C 的直线l 2:12y x n =+经过AB 的中点P ,点Q (t ,0)是x 轴上一动点,过点Q 作QM ⊥x 轴,分别交l 1、l 2于点M 、N ,当MN=2MQ 时,t 的值为_____.23.如图,一次函数y kx b =+与y mx n =+的图像交于点(2,1)P -,则由函数图像得不等式kx b mx n +≥+的解集为________.24.若分式2223x x -+的值为零,则x 的值等于___. 25.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是10,频率是0.2,那么该班级的人数是_____人.三、解答题26.小红驾车从甲地到乙地,她出发第xh 时距离乙地ykm ,已知小红驾车中途休息了1小时,图中的折线表示她在整个驾车过程中y 与x 之间的函数关系. (1)B 点的坐标为( , );(2)求线段AB 所表示的y 与x 之间的函数表达式;(3)小红休息结束后,以60km/h 的速度行驶,则点D 表示的实际意义是 .27.甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y (千米)与轿车所用的时间x (小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是_______千米/小时;轿车的速度是_______千米/小时;t 值为_______. (2)求轿车距其出发地的距离y (千米)与所用时间x (小时)之间的函数关系式并写出自变量x 的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.28.求下列各式中的x:x-=;(1)()2116x+=.(2)32129.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1沿x轴向右平移4个单位长度后得到的△A2B2C2;(3)如果AC上有一点M(a,b)经过上述两次变换,那么对应A2C2上的点M2的坐标是______.30.已知一次函数y=kx+b的图象经过点A(—1,—5),且与正比例函数的图象相交于点B(2,a).(1)求a的值;(2)求一次函数y=kx+b的表达式;(3)在同一坐标系中,画出这两个函数的图象,并求这两条直线与y轴围成的三角形的面积.31.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示(1)根据图象信息,当t=分钟时甲乙两人相遇,甲的速度为米/分钟;(2)求出线段AB所表示的函数表达式(3)甲、乙两人何时相距400米?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据平面直角坐标系中各象限内点的坐标特征对各选项分析判断即可得解. 【详解】解:A.(2,-3)在第四象限,故本选项正确; B.(-4,5)在第二象限,故本选项错误; C.(1,0)在x 轴正半轴上,故本选项错误; D.(-8,-1)在第三象限,故本选项错误. 故选A. 【点睛】本题考查了平面直角坐标系中象限内点的坐标特征,解决本题的关键是熟练掌握每个象限的坐标特征.2.C解析:C 【解析】 【分析】首先根据等腰三角形的性质:等腰三角形的三线合一,求出DB =DC 12=CB ,AD ⊥BC ,再利用勾股定理求出AD 的长. 【详解】∵AB =AC ,AD 是边BC 上的中线, ∴DB =DC 12=CB =3,AD ⊥BC , 在Rt △ABD 中, ∵AD 2+BD 2=AB 2, ∴AD ==4. 故选:C . 【点睛】本题考查了等腰三角形的性质与勾股定理的应用,做题的关键是根据等腰三角形的性质证出△ADB 是直角三角形.3.A解析:A 【解析】 【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案. 【详解】解:∵直线y 1=k 1x+b 1与y 2=k 2x+b 2的交点坐标为(2,4), ∴二元一次方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为2,4.x y =⎧⎨=⎩故选A. 【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.4.A解析:A 【解析】 【分析】根据可知AP=AB ,在直角三角形ABC 中,由勾股定理可求AB 的长度,由点P 在0的左边,即可得到答案. 【详解】 解:如图所示,由图可知,AP=AB ,△ABC 是直角三角形, ∵AC=2,BC=3,由勾股定理,得:22222313AB AC BC -+=,∴13AP AB == ∴132PC =,∵点P 在点C 的左边,点C 表示的数为0, ∴点P 表示的数为:132)132-=; 故选择:A. 【点睛】本题考查了利用数轴表示无理数,解题的关键是掌握利用数轴表示有理数,依据掌握勾股定理计算长度.5.B解析:B 【解析】 【分析】根据四个选项图像可以判断y kx = 过原点且k <0,12y x k =- ,-k >0 即可判断. 【详解】解:A .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0故错误;B .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0 故正确;C .y kx = 与12y x k =-图像增减相反,12y x k =-为递增一次函数且不过原点,故错误;D .y kx =过原点,而图中两条直线都不过原点,故错误.故选 B【点睛】此题主要考查了一次函数图像的性质,熟记k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小;常数项为0,函数过原点.6.B解析:B【解析】【分析】A 、根据比值结合勾股定理的逆定理即可判断出三角形的形状;B 、根据角的比值求出各角的度数,便可判断出三角形的形状;C 、根据三角形的内角和为180度,即可计算出∠C 的值;D 、根据比值结合勾股定理的逆定理即可判断出三角形的形状.【详解】A 、因为a :b :c=3:4:5,所以设a=3x ,b=4x ,c=5x ,则(3x )2+(4x )2=(5x )2,故为直角三角形,故A 选项不符合题意;B 、因为∠A :∠B :∠C=3:4:5,所以设∠A=3x ,则∠B=4x ,∠C=5x ,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形,故B 选项符合题意;C 、因为∠A+∠B=∠C ,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形,故C 选项不符合题意;D 、因为a :b :c=1:2,所以设a=x ,b=2x ,x ,则x 2+x )2=(2x )2,故为直角三角形,故D 选项不符合题意,故选B.【点睛】本题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.7.A解析:A【解析】【分析】根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.【详解】根据题意得,1-x=0且x+2≠0,解得x=1且x≠-2,所以x=1.故选:A .【点睛】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.8.A解析:A【解析】【分析】根据无理数的定义进行求解.【详解】解:无理数有:−π,共1个.故选:A .【点睛】本题考查了无理数,解答本题的关键是掌握无理数常见的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.9.B解析:B【解析】【分析】根据0a b -<,且0ab <可确定出a 、b 的正负情况,再判断出点(),a b 的横坐标与纵坐标的正负性,然后根据各象限内点的坐标特征解答.【详解】解:∵0a b -<,且0ab <,∴a 0,0b <>∴点(),a b 在第二象限故选:B【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10.D解析:D【解析】【分析】根据折线图,把货车从甲地驶往乙地分为三段,再根据图象的时间和路程进行计算判断.【详解】①甲乙两地之间的路程是100 km ,①正确;②前半个小时,货车的平均速度是:400.580?km/h ÷=,②错误;③8∶00时,货车已行驶了一个小时,路程是60 km ,③正确;④最后40 km 货车行驶的平均速度就是求BC 段的速度,时间为1.3-1=0.3小时,路程为90-60=30km ,平均速度是300.3100?km /h ÷=,④正确;⑤货车走完BD 段所用时间为:401000.4÷=小时,即0.46024⨯=分钟∴货车走完全程所花时间为:1小时24分钟,∴货车到达乙地的时间是8∶24,⑤正确;综上:①③④⑤正确;故选:D【点睛】本题考查了一次函数的应用,能够正确理解函数图象的横、纵坐标表示的意义,理解问题的过程,并能通过图象得到自变量和函数值之间的数量关系是解题的关键.11.B解析:B【解析】【分析】先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案.【详解】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+, 此时与x 轴相交,则0y =,∴360x +=,即2x =-,∴点坐标为(-2,0),故选B.【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.12.B解析:B【解析】【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论.【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自∵20204505=⨯∴2020P 点的坐标为()2020,0.故选: B.【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.13.B解析:B【解析】【分析】利用判断三角形全等的方法判断即可得出结论.【详解】A 、利用SAS 判断出△PCA ≌△PCB ,∴CA=CB ,∠PCA=∠PCB=90°,∴点P 在线段AB 的垂直平分线上,符合题意;B 、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;C 、利用SSS 判断出△PCA ≌△PCB ,∴CA=CB ,∠PCA=∠PCB=90°,∴点P 在线段AB 的垂直平分线上,符合题意;D 、利用HL 判断出△PCA ≌△PCB ,∴CA=CB ,∴点P 在线段AB 的垂直平分线上,符合题意,故选B .【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.14.C解析:C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.根据概念进行判断即可.【详解】解:了解我区八年级学生的身高情况,抽查了1000名学生的身高进行统计分析.所抽查的1000名学生的身高是这个问题的样本,故选:C .【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不带单位.15.A【解析】【分析】根据自正比例函数的性质得到k <0,然后根据一次函数的性质得到一次函数y=x+k 的图象经过第一、三象限,且与y 轴的负半轴相交.【详解】解:∵正比例函数y=kx (k≠0)的函数值y 随x 的增大而减小,∴k <0,∵一次函数y=x+k 的一次项系数大于0,常数项小于0,∴一次函数y=x+k 的图象经过第一、三象限,且与y 轴的负半轴相交.故选A .【点睛】本题考查了一次函数图象:一次函数y=kx+b (k 、b 为常数,k≠0)是一条直线,当k >0,图象经过第一、三象限,y 随x 的增大而增大;当k <0,图象经过第二、四象限,y 随x 的增大而减小;图象与y 轴的交点坐标为(0,b ).二、填空题16.【解析】【分析】计算出当P 在直线上时a 的值,再计算出当P 在直线上时a 的值,即可得答案.【详解】解:当P 在直线上时,,当P 在直线上时,,则.故答案为【点睛】此题主要考查了一次函数与解析:0a 2<<【解析】【分析】计算出当P 在直线y 2x 2=+上时a 的值,再计算出当P 在直线y 2x 4=+上时a 的值,即可得答案.【详解】解:当P 在直线y 2x 2=+上时,()a 212220=⨯-+=-+=,当P 在直线y 2x 4=+上时,()a 214242=⨯-+=-+=,则0a 2<<.故答案为0a 2<<【点睛】此题主要考查了一次函数与一元一次不等式,关键是掌握函数图象经过的点,必能使解析式左右相等.17.150【解析】【分析】连接OP ,根据轴对称的性质得到,再利用四边形的内角和是计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点故答案为:1解析:150【解析】【分析】连接OP ,根据轴对称的性质得到60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠再利用四边形的内角和是360︒计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点,,EOA POA POB FOB ∴∠=∠∠=∠30EOA FOB POA POB ∴∠+∠=∠+∠=︒60EOF ∴∠=︒,,E EPO F FPO ∴∠=∠∠=∠360E EPO F FPO EOF ∴∠+∠+∠+∠+∠=︒2()300E F ∴∠+∠=︒150E F ∴∠+∠=︒故答案为:150.【点睛】本题考查了轴对称的性质,四边形的内角和性质,证得60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠解本题的关键.18.-3【解析】【分析】根据分式的值为零的条件可以求出x 的值.【详解】解:根据题意得:,解得:x=-3.故答案为:-3.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2解析:-3【解析】【分析】根据分式的值为零的条件可以求出x 的值.【详解】解:根据题意得:29=030x x ⎧-⎨-≠⎩, 解得:x=-3.故答案为:-3.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.19.5【解析】【分析】先根据勾股定理求得AB 的长度,再由全等三角形的性质可得DE 的长度.【详解】解:在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC≌解析:5【解析】【分析】先根据勾股定理求得AB的长度,再由全等三角形的性质可得DE的长度.【详解】解:在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC≌△EDB,∴DE=AB=5.【点睛】本题考查勾股定理,全等三角形的性质.熟记全等三角形对应边相等是解决此题的关键. 20.11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【解析:11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【详解】解:作CE⊥AD于点E,如下图所示,由图象可知,点P从A到B运动的路程是3,当点P与点B重合时,△PAD的面积是21,由B到C运动的路程为3,2∴321 222 AD AB AD⨯⨯==解得,AD=7,又∵BC//AD,∠A=90°,CE⊥AD,∴∠B=90°,∠CEA=90°,∴四边形ABCE是矩形,∴AE=BC=3,∴DE=AD-AE=7-3=4,∴5,CD===∴点P从开始到停止运动的总路程为: AB+BC+CD=3+3+5=11.故答案为:11【点睛】本题考查了根据函数图象获取信息,解题的关键是明确题意,能从函数图象中找到准确的信息,利用数形结合的思想解答问题.21.1【解析】【分析】根据一个正数的两个平方根互为相反数可得2a+1+2a-5=0,解方程求出a值即可.【详解】∵某个正数的两个平方根分别是2a+1与2a-5,∴2a+1+2a-5=0,解解析:1【解析】【分析】根据一个正数的两个平方根互为相反数可得2a+1+2a-5=0,解方程求出a值即可.【详解】∵某个正数的两个平方根分别是2a+1与2a-5,∴2a+1+2a-5=0,解得:a=1故答案为:1【点睛】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.22.10或【解析】【分析】先求出的值,确定的关系式,然后根据一次函数图象上点的坐标特征求得点M 、N 的坐标,由两点间的距离公式求得MN ,MQ 的代数式,由已知条件,列出方程,借助于方程求得t 的值即可;解析:10或227 【解析】【分析】先求出k n ,的值,确定12l l ,的关系式,然后根据一次函数图象上点的坐标特征求得点M 、N 的坐标,由两点间的距离公式求得MN ,MQ 的代数式,由已知条件,列出方程,借助于方程求得t 的值即可;【详解】解:把()40A ,代入到4y kx =+中得:440k +=,解得:1k =-, ∴1l 的关系式为:4y x =-+,∵P 为AB 的中点,()40A ,,()0,4B ∴由中点坐标公式得:()2,2P ,把()2,2P 代入到12y x n =+中得:1222n ⨯+=,解得:1n =, ∴2l 的关系式为:112y x =+, ∵QM x ⊥轴,分别交直线1l ,2l 于点M N 、,()0Q t ,, ∴(),4M t t -+,1,12N t t ⎛⎫+ ⎪⎝⎭,∴()1341322MN t t t ⎛⎫=-+-+=- ⎪⎝⎭,44MQ t t =-+=-, ∵2MN MQ =, ∴33242t t -=-, 分情况讨论得:①当4t ≥时,去绝对值得:()33=242t t --, 解得:10t =;②当24t ≤<时,去绝对值得:()33=242t t --,解得:227t =; ③当2t <时,去绝对值得:()33=242t t --, 解得:102t =>,故舍去;综上所述:10t =或227t =; 故答案为:10或227. 【点睛】本题属于一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,两点间的距离公式等知识点,能够表示出线段的长度表达式,合理的使用分类讨论思想是解决本题的关键,有一定的难度.23.【解析】【分析】观察函数图象得到,当x2时,一次函数y=kx+b 的图象都在一次函数y=mx+n 的图象的上方,由此得到不等式kx+bmx+n 的解集.【详解】∵当x2时,一次函数y=kx+b 的解析:2x ≥【解析】【分析】观察函数图象得到,当x ≥2时,一次函数y=kx+b 的图象都在一次函数y=mx+n 的图象的上方,由此得到不等式kx+b ≥mx+n 的解集.【详解】∵当x ≥2时,一次函数y=kx+b 的图象都在一次函数y=mx+n 的图象的上方,∴不等式kx+b ≥mx+n 的解集为x ≥2.故答案是:x ≥2.【点睛】考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.24.【解析】【分析】当分式的值为0时,分式的分子为0,分母不为0,由此求解即可.【详解】解:∵分式的值为零,且∴x﹣2=0,解得:x =2.故答案为:2.【点睛】本题考查了分式值为0的解析:【解析】【分析】当分式的值为0时,分式的分子为0,分母不为0,由此求解即可.【详解】 解:∵分式2223x x -+的值为零,且2230x +≥ ∴x ﹣2=0,解得:x =2.故答案为:2.【点睛】 本题考查了分式值为0的条件,灵活利用分式值为0的条件是解题的关键.25.50【解析】【分析】利用数据的总数=该组的频数÷该组的频率解答即可.【详解】解:该班级的人数为:10÷0.2=50. 故答案为:50.【点睛】本题考查了频数与频率,熟练掌握数据的总数与解析:50【解析】【分析】利用数据的总数=该组的频数÷该组的频率解答即可.【详解】解:该班级的人数为:10÷0.2=50.故答案为:50.【点睛】本题考查了频数与频率,熟练掌握数据的总数与频数、频率的关系是解题的关键.三、解答题26.(1)点B 的坐标为(3,120);(2)y 与x 之间的函数表达式:y=-100x+420;(3)D 点表示此时小红距离乙地0km ,即小红到达乙地.【解析】分析:(1)由图象可知C 点坐标,根据小红驾车中途休息了1小时可得B 点坐标; (2)利用待定系数法,由A 、B 两点坐标可求出函数关系式;(3)D 点表示小红距离乙地0km ,即小红到达乙地.本题解析:(1)由图象可知,C (4,120),∵小红驾车中途休息了1小时,∴点B 的坐标为(3,120);(2)设y 与x 之间的函数表达式为y=kx+b .根据题意,当x=0时,y=420;当x=3时,y=120.∴42001203k b k b =+⎧⎨=+⎩ ,∴100420k b =-⎧⎨=⎩, ∴y 与x 之间的函数表达式:y=-100x+420.(3)D 点表示此时小红距离乙地0km ,即小红到达乙地.点睛:本题主要考查学生结合题意读懂图象的基本能力和待定系数法求函数表达式的技能,属基础题.27.(1)50;80;3(2)()()()8003240348056047x x y x x x ⎧≤≤⎪=≤≤⎨⎪-+≤≤⎩(3)货车出发3小时或5小时后两车相距90千米【解析】【分析】(1)观察图象即可解决问题;(2)分别求出得A 、B 、C 的坐标,运用待定系数法解得即可;(3)根据题意列方程解答即可.【详解】解:(1)车的速度是50千米/小时;轿车的速度是:()4007280÷-=千米/小时;240803t =÷=.故答案为:50;80;3;(2)由题意可知:()3,240A ,()4,240B ,()7,0C ,设直线OA 的解析式为()110y k x k =≠,∴()8003y x x =≤≤,当34x ≤≤时,240y =,设直线BC 的解析式为()20y k x b k =+≠,把()4,240B ,()7,0C 代入得:22424070k b k b +=⎧⎨+=⎩,解得280560k b =-⎧⎨=⎩, ∴80560y =-+,∴()()()8003240348056047x x y x x x ⎧≤≤⎪=≤≤⎨⎪-+≤≤⎩; (3)设货车出发x 小时后两车相距90千米,根据题意得:()5080140090x x +-=-或()5080240090x x +-=+,解得3x =或5.答:货车出发3小时或5小时后两车相距90千米.【点睛】本题主要考查根据图象的信息来解答问题,关键在于函数的解析式的解答,这是这类题的一个难度,必须分段研究.28.(1)5x =或-3;(2)1x =-【解析】【分析】(1)根据平方根的定义求解;(2)先移项,再根据立方根的定义求解.【详解】解:(1)(x-1)2=16,x-1=±4,x=5或x=-3;(2)321x +=,x 3=-1,x=-1.【点睛】本题考查平方根与立方根,解题的关键是正确理解平方根与立方根的定义,本题属于基础题型.29.(1)画图见解析;(2)画图见解析;(3)(a +4,-b )【解析】分析:(1)直接利用关于x 轴对称点的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)直接利用平移变换的性质得出点M2的坐标.本题解析:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)由(1)(2)轴对称以及平移的性质得出对应A2C2上的点M2的坐标是:(a+4,−b).故答案为(a+4,−b).30.(1)a=1 (2)y=2x-3 (3)3【解析】【分析】(1)将点(2,a)代入正比例函数解析式求出a的值;(2)将(-1,-5)和(2,1)代入一次函数解析式求出k和b的值,从而得出函数解析式;(3)根据描点法画出函数图象.【详解】解:(1)∵正比例函数y=12x的图象过点(2,a)∴ a=1(2)∵一次函数y=kx+b的图象经过两点(-1,-5)(2,1)∴5 21k bk b-+=-⎧⎨+=⎩解得23 kb=⎧⎨=-⎩∴y=2x-3(3)函数图像如图【点睛】本题考查待定系数法求函数解析式;描点法画函数图象31.(1)24,40;(2)y=40t(40≤t≤60);(3)出发20分钟或28分钟后,甲、乙两人何时相距400米【解析】【分析】(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲60分钟行驶2400米,根据速度=路程÷时间可得甲的速度;(2)由t=24分钟时甲乙两人相遇,可得甲、乙两人的速度和为2400÷24=100米/分钟,减去甲的速度得出乙的速度,再求出乙从图书馆回学校的时间即A点的横坐标,用A点的横坐标乘以甲的速度得出A点的纵坐标,再将A、B两点的坐标代入,利用待定系数法即可求出线段AB所表示的函数表达式;(3)分相遇前后两种情况列方程解答即可.【详解】解:(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲的速度为2400÷60=40(米/分钟).故答案为24,40;(2)∵甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,t=24分钟时甲乙两人相遇,∴甲、乙两人的速度和为2400÷24=100米/分钟,∴乙的速度为100﹣40=60(米/分钟).乙从图书馆回学校的时间为2400÷60=40分钟,40×40=1600,∴A点的坐标为(40,1600).设线段AB所表示的函数表达式为y=kt+b,∵A(40,1600),B(60,2400),∴401600602400k bk b+=⎧⎨+=⎩,解得k40b0=⎧⎨=⎩,∴线段AB所表示的函数表达式为y=40t(40≤t≤60);(3)设出发t分钟后两人相距400米,根据题意得(40+60)t=2400﹣400或(40+60)t=2400+400,解得t=20或t=28,答:出发20分钟或28分钟后,甲、乙两人何时相距400米.【点睛】本题考查了一次函数的应用,路程、速度、时间的关系,用待定系数法确定函数的解析式,属于中考常考题型.读懂题目信息,从图象中获取有关信息是解题的关键.。

苏科版八年级(上)第三次月考数学试卷(含答案)

苏科版八年级(上)第三次月考数学试卷(含答案)

苏科版八年级(上)第三次月考数学试卷(含答案)一、选择题1.在平面直角坐标系中,下列各点在第二象限的是( )A .(3,1)B .(3,-1)C .(-3,1)D .(-3,-1)2.在平面直角坐标系中,把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为( )A .31y x =-+B .32y x =-+C .31y x =--D .32y x =--3.下列调查中适合采用普查的是( )A .了解“中国达人秀第六季”节目的收视率B .调查某学校某班学生喜欢上数学课的情况C .调查我市市民知晓“礼让行人”交通新规的情况D .调查我国目前“垃圾分类”推广情况4.下列四组线段a 、b 、c ,不能组成直角三角形的是( )A .4,5,3a b c === B . 1.5,2, 2.5a b c === C .5,12,13a b c === D .1,2,3a b c ===5.如图,在ABC ∆中,AB AC =,AD 是边BC 上的中线,若5AB =,6BC =,则AD 的长为( )A .3B .7C .4D .116.在平面直角坐标系中,点()23P -,关于x 轴的对称点的坐标是( ) A .()23-,B .()23,C .()23--,D .()23-, 7.如图,AB =AC ,D ,E 分别是AB ,AC 上的点,下列条件不能判断△ABE ≌△ACD 的是( )A .∠B =∠C B .BE =CD C .AD =AE D .BD =CE8.1(1)1a a --变形正确的是( ) A .1- B .1a - C .1a -- D .1a -- 9.一次函数112y x =-+的图像不经过的象限是:( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限10.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030x x -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x--=2 11. 4的平方根是( ) A .2 B .±2 C .16D .±16 12.若点Α()m,n 在一次函数y=3x+b 的图象上,且3m-n>2,则b 的取值范围为 ( ) A .b>2B .b>-2C .b<2D .b<-2 13.给出下列实数:227、25-、39、 1.44、2π、0.16、0.1010010001-⋯(每相邻两个1之间依次多一个0),其中无理数有( )A .2个B .3个C .4个D .5个14.已知正比例函数y =kx 的图象经过点(﹣2,1),则k 的值( )A .﹣2B .﹣12C .2D .1215.若关于x 的分式方程211x a x -=+的解为负数,则字母a 的取值范围为( ) A .a ≥﹣1 B .a ≤﹣1且a ≠﹣2C .a >﹣1D .a <﹣1且a ≠﹣2 二、填空题16.如图,在ABC ∆中,AB AC =,点P 为边AC 上一动点,过点P 作PD BC ⊥,垂足为点D ,延长DP 交BA 的延长线于点E ,若10AC =,设CP 长为x ,BE 长为y ,则y 关于x 的函数关系式为__________.(不需写出x 的取值范围)17.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2.则最大的正方形E 的面积是___.18.4的平方根是 .19.等腰三角形中有一个角的度数为40°,则底角为_____________.20.如果点P 在第二象限内,点P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为______.21.若某个正数的两个平方根分别是21a +与25a -,则a =_______.22.若函数y=kx +3的图象经过点(3,6),则k=_____.23.比较大小:-2______-3.24.如图,在△ABC 中,AB = AC ,∠BAC = 120º,AD ⊥BC ,则∠BAD = _____°.25.某人一天饮水1679mL ,精确到100mL 是_____.三、解答题26.如图1,在平面直角坐标系xOy 中,点A 的坐标是(0,2),点C 是x 轴上的一个动点.当点C 在x 轴上移动时,始终保持ACP ∆是等腰直角三角形(90ACP ︒∠=,点A 、C 、P 按逆时针方向排列);当点C 移动到点O 时,得到等腰直角三角形AOB (此时点P 与点B 重合).(初步探究)(1)写出点B 的坐标________;(2)点C 在x 轴上移动过程中,作PD x ⊥轴,垂足为点D ,都有AOC CDP ∆∆≌,请在图2中画出当等腰直角AOP ∆的顶点P 在第四象限时的图形,并求证:AOC CDP ∆∆≌.(深入探究)(3)当点C 在x 轴上移动时,点P 也随之运动.探究点P 在怎样的图形上运动,请直接写出结论,并求出这个图形所对应的函数表达式;(4)直接写出2AP 的最小值为________.27.解方程:21142x x x x --=-+ 28.阅读下列材料,然后解答问题:问题:分解因式:3245x x +-.解答:把1x =带入多项式3245x x +-,发现此多项式的值为0,由此确定多项式3245x x +-中有因式()1x -,于是可设()()322451x x x x mx n +-=-++,分别求出m ,n 的值.再代入()()322451x x x x mx n +-=-++,就容易分解多项式3245x x +-,这种分解因式的方法叫做“试根法”.(1)求上述式子中m ,n 的值;(2)请你用“试根法”分解因式:3299x x x +--.29.在如图所示的正方形网格中,每个小正方形的边长都为1,△ABC 的顶点都在格点上(网格线的交点).(1)请在如图所示的网格平面内建立适当的平面直角坐标系,使点A坐标为(﹣1,2),点B的坐标为(﹣5,2);(画出直角坐标系)(2)点C的坐标为(,)(直接写出结果)(3)把△ABC先向下平移6个单位后得到对应的△A1B1C1,再将△A1B1C1沿y轴翻折至△A2B2C2;①请在坐标系中画出△A2B2C2;②若点P(m,n)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,写出点P2的坐标为(,);(直接写出结果)③试在y轴上找一点Q,使得点Q到A2,C2两点的距离之和最小,此时,QA2+QC2的长度之和最小值为.(在图中画出点Q的位置,并直接写出最小值答案)30.已知:如图点A、B、C、D在一条直线上,EA∥FB,EC∥FD,AB=CD,求证:EA=FB.31.一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由第二象限中坐标特点为,横坐标为负,纵坐标为正,由此即可判断.【详解】A. (3,1)位于第一象限;B. (3,-1)位于第四象限;C. (-3,1)位于第二象限;D. (-3,-1)位于第三象限;故选C.【点睛】此题主要考察直角坐标系的各象限坐标特点.2.D解析:D【解析】【分析】根据左加右减,上加下减的平移规律解题.【详解】解:把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为3(2)4y x =-++,整理得:32y x =--,故选D.【点睛】本题考查了直线的平移变换,属于简单题,熟悉直线的平移规律是解题关键.3.B解析:B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A 、了解“中国达人秀第六季”节目的收视率适合采用抽样调查的方式;B 、调查某学校某班学生喜欢上数学课的情况适合采用全面调查的方式;C 、调查我市市民知晓“礼让行人”交通新规的情况适合采用抽样调查的方式;D 、调查我国目前“垃圾分类”推广情况适合采用抽样调查的方式;【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.D解析:D【解析】【分析】根据勾股定理逆定理,即若三角形中两边到的平方和等于第三边的平方,那么这个三角形是直角三角形,对每项进行计算判断即可.【详解】解:A.2222223491625,525,a b c +=+==+=,B.222221.52 2.254 6.25,2.5 6.25,a b c +=+==+=,C.22222251225144169,13169,a b c +=+==+=,222222123,39,.1D a b c +=+==+≠.【点睛】本题考查了勾股定理的逆定理,解决本题的关键是熟练掌握勾股定理逆定理,正确计算出每项的结果.5.C解析:C【解析】【分析】首先根据等腰三角形的性质:等腰三角形的三线合一,求出DB =DC 12=CB ,AD ⊥BC ,再利用勾股定理求出AD 的长.【详解】∵AB =AC ,AD 是边BC 上的中线,∴DB =DC 12=CB =3,AD ⊥BC , 在Rt △ABD 中,∵AD 2+BD 2=AB 2,∴AD ==4.故选:C .【点睛】本题考查了等腰三角形的性质与勾股定理的应用,做题的关键是根据等腰三角形的性质证出△ADB 是直角三角形.6.B【解析】【分析】根据关于x轴对称的点的坐标与原坐标横坐标相等,纵坐标互为相反数的性质解答即可.【详解】∵P(2,-3)关于x轴对称,∴对称点与点P横坐标相同,纵坐标互为相反数,∴对称点的坐标为(-2,-3).故答案为(-2,-3).【点睛】本题考查的是坐标与图形的变换,关于y轴对称的点的坐标与原坐标纵坐标相等,横坐标互为相反数;关于x轴对称的点的坐标与原坐标横坐标相等,纵坐标互为相反数;掌握轴对称的性质是解题的关键,7.B解析:B【解析】【分析】根据全等三角形的性质和判定即可求解.【详解】解:选项A,∠B=∠C 利用 ASA 即可说明△ABE≌△ACD ,说法正确,故此选项错误;选项B,BE=CD 不能说明△ABE≌△ACD ,说法错误,故此选项正确;选项C,AD=AE 利用 SAS 即可说明△ABE≌△ACD ,说法正确,故此选项错误;选项D,BD=CE 利用 SAS 即可说明△ABE≌△ACD ,说法正确,故此选项错误;故选B.【点睛】本题考查全等三角形的性质和判定,熟悉掌握判定方法是解题关键.8.C解析:C【解析】【分析】先根据二次根式有意义有条件得出1-a>0,再由此利用二次根式的性质化简得出答案.【详解】1有意义,-1a∴->,10a∴-<,a10∴-==(a【点睛】考查了二次根式的性质与化简,正确化简二次根式是解题关键.9.C解析:C【解析】试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.这个一次函数的k=12-<0与b=1>0,因此不经过第三象限.答案为C考点:一次函数的图像10.A解析:A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:1000100030x x-+=2,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.11.B解析:B【解析】【分析】根据平方根的意义求解即可,正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.【详解】∵(±2)2=4,∴4的平方根是±2,即2±.故选B.【点睛】本题考查了平方根的意义,如果个一个数x的平方等于a,即x2=a,那么这个数x叫做a的平方根.12.D解析:D分析:由点(m,n )在一次函数3y x b =+的图像上,可得出3m+b=n ,再由3m-n >2,即可得出b <-2,此题得解.详解:∵点A (m ,n )在一次函数y=3x+b 的图象上,∴3m+b=n .∵3m-n >2,∴3m-(3m+b)>2,即-b>2,∴b <-2.故选D .点睛:考查了一次函数图象上点的坐标特征:点的坐标满足函数的解析式,根据一次函数图象上点的坐标特征,再结合3m-n >2,得出-b >2是解题的关键.13.B解析:B【解析】【分析】根据无理数是无限不循环小数,可得答案.【详解】解:−5,实数:227、2π、0.16、0.1010010001-⋯(每相邻两个1之间依次多一个02π、-0.1010010001…(每相邻两个1之间依次多一个0)共3个.故选:B .【点睛】 本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.14.B解析:B【解析】【分析】将点(﹣2,1)代入y =kx 即可求出k 的值.【详解】解:∵正比例函数y =kx 的图象经过点(﹣2,1),∴1=﹣2k ,解得k =﹣12, 故选:B .【点睛】本题考查了正比例函数,熟练掌握求正比例函数解析式的方法是解题的关键.15.D解析:D【解析】【分析】先求出分式方程的解,由分式方程有意义的条件可知1x ≠-,即方程的解1≠-,由解为负数可知分式方程的解小于0,可得字母a 的取值范围.【详解】解:方程两边同时乘以(x +1),得2x ﹣a =x +1,解得:x =a +1,∵解为负数,∴a +1<0,∴a <﹣1,因为分式有意义,则10x +≠,1x ≠-,即11a +≠-,解得2a ≠-∴a <﹣1且a ≠﹣2,故选:D .【点睛】本题考查了分式方程,根据分式方程解的情况确定参数的取值范围,解题过程中易忽视分式有意义的条件,熟练掌握分式方程的解法是解题的关键.二、填空题16.【解析】【分析】根据等腰三角形的性质和直角三角形两锐角互余得到∠E=∠CPD ,再根据对顶角相等得到∠E=∠APE ,根据等角对等边得到AE=AP ,即可得到结论.【详解】∵AB=AC ,∴∠B解析:20y x =-【解析】【分析】根据等腰三角形的性质和直角三角形两锐角互余得到∠E =∠CPD ,再根据对顶角相等得到∠E =∠APE ,根据等角对等边得到AE =AP ,即可得到结论.【详解】∵AB =AC ,∴∠B =∠C .∵PD ⊥BC ,∴∠EDB =∠PDC =90°,∴∠B+∠E=90°,∠C+∠CPD=90°,∴∠E=∠CPD.∵∠APE=∠CPD,∴∠E=∠APE,∴AE=AP.∵AB=AC=10,PC=x,∴AP=AE=10-x.∵BE=AB+AE,∴y=10+10-x=20-x.故答案为:y=20-x.【点睛】本题考查了等腰三角形的性质和判定以及直角三角形的性质.解题的关键是得到∠E=∠CPD.17.10【解析】试题分析:如图,根据勾股定理的几何意义,可得A、B的面积和为S1,C、D 的面积和为S2,S1+S2=S3,∵正方形A、B、C、D的面积分别为2,5,1,2,∵最大的正方形E的面解析:10【解析】试题分析:如图,根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1+S2=S3,∵正方形A、B、C、D的面积分别为2,5,1,2,∵最大的正方形E的面积S3=S1+S2=2+5+1+2=10.18.±2.【解析】试题分析:∵,∴4的平方根是±2.故答案为±2.考点:平方根.解析:±2.试题分析:∵2(2)4±=,∴4的平方根是±2.故答案为±2.考点:平方根.19.40°或70°【解析】解:当40°的角为等腰三角形的顶角时,底角的度数=(180°-40°)÷2=70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故解析:40°或70°【解析】解:当40°的角为等腰三角形的顶角时,底角的度数=(180°-40°)÷2=70°; 当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°. 故答案为:40°或70°.点睛:此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,由于不明确40°的角是等腰三角形的底角还是顶角,所以要采用分类讨论的思想.20.【解析】试题分析:由点P 在第二象限内,可知横坐标为负,纵坐标为正,又因为点P 到x 轴的距离是4,到y 轴的距离是3,可知横坐标为-3,纵坐标为4,所以点P 的坐标为(-3,4).考点:象限内点的坐标解析:()3,4-【解析】试题分析:由点P 在第二象限内,可知横坐标为负,纵坐标为正,又因为点P 到x 轴的距离是4,到y 轴的距离是3,可知横坐标为-3,纵坐标为4,所以点P 的坐标为(-3,4). 考点:象限内点的坐标特征.21.1【解析】【分析】根据一个正数的两个平方根互为相反数可得2a+1+2a-5=0,解方程求出a 值即可.【详解】∵某个正数的两个平方根分别是2a+1与2a-5,∴2a+1+2a-5=0,解解析:1【解析】根据一个正数的两个平方根互为相反数可得2a+1+2a-5=0,解方程求出a值即可.【详解】∵某个正数的两个平方根分别是2a+1与2a-5,∴2a+1+2a-5=0,解得:a=1故答案为:1【点睛】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.22.1【解析】∵函数y=kx+3的图象经过点(3,6),∴,解得:k=1.故答案为:1.解析:1【解析】∵函数y=kx+3的图象经过点(3,6),k+=,解得:k=1.∴336故答案为:1.23.>【解析】, .解析:>【解析】<,>2324.60°【解析】【分析】根据等腰三角形三线合一的性质得:AD平分∠BAC,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC,AD⊥BC,∴AD平分∠BAC,∴∠BAD=∠BA解析:60°【分析】根据等腰三角形三线合一的性质得:AD 平分∠BAC ,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC ,AD ⊥BC ,∴AD 平分∠BAC ,∴∠BAD=12∠BAC , ∵∠BAC=120°,∴∠BAD=12×120°=60°, 故答案为:60°.【点睛】 本题考查的知识点是等腰三角形的性质,解题关键是熟记等腰三角形三线合一的性质. 25.7×103ml【解析】【分析】先用科学记数法表示,再根据精确度求解.【详解】解:1679mL=1.679×103mL ,所以1679mL 精确到100mL 是1.7×103mL . 故答案为:1.解析:7×103ml【解析】【分析】先用科学记数法表示,再根据精确度求解.【详解】解:1679mL =1.679×103mL ,所以1679mL 精确到100mL 是1.7×103mL .故答案为:1.7×103mL .【点睛】本题考查了近似数和有效数字,属于基本题型,掌握求解的方法是解题关键.三、解答题26.(1)()2,0B ;(2)证明见解析;(3)点P 在直线上运动;2y x =-;(4)8.【解析】【分析】(1)根据等腰三角形的性质即可求解;(2)根据题意作图,再根据等腰直角三角形的性质判定AOC CDP ∆∆≌;(3)根据题意去特殊点,再利用待定系数法即可求解;(4)当P在B点时,AP最小,故可求解.【详解】(1)∵点A的坐标是(0,2),△AOB为等腰直角三角形,∴AO=BO∴()2,0B(2)如图,∵ACP∆是等腰直角三角形,且90ACP∠=︒∴AC PC=∵PD BC⊥∴90PDC∠=︒∴90AOC PDC∠=∠=︒,90DPC PCD∠+∠=︒∵90ACP∠=︒∴90ACB PCD∠+∠=︒∴DPC ACB∠=∠在AOC∆和CDP∆中,,,.AOC PDCDPC ACBAC PC∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AOC CDP AAS∆∆≌(3)点P在直线上运动;∵两点确定一条直线∴可以取两个特殊点当P在y轴上时,2OP OC OA===,∴()0,2P-当P在x轴上时,2OP OA==,∴()2,0P设所求函数关系式为y kx b=+;将()2,0和()0,2-代入,得20,2.k bb+=⎧⎨=-⎩220bk b=-⎧⎨+=⎩解得1,2.kb=⎧⎨=-⎩21bk=-⎧⎨=⎩所以所求的函数表达式为2y x=-;(4)如图,作AP⊥直线2y x=-,即P与B点重合,∴AP2=22+22=8.【点睛】此题主要考查一次函数的几何综合,解题的关键是熟知一次函数的性质。

苏科版八年级(上)第三次月考数学试卷(含答案)

苏科版八年级(上)第三次月考数学试卷(含答案)

苏科版八年级(上)第三次月考数学试卷(含答案)一、选择题1.下列四个图标中,是轴对称图形的是()A.B.C.D.2.估计11的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间3.7的平方根是()A.±7 B.7 C.-7 D.±74.如图,点P在长方形OABC的边OA上,连接BP,过点P作BP的垂线,交射线OC于点Q,在点P从点A出发沿AO方向运动到点O的过程中,设AP=x,OQ=y,则下列说法正确的是()A.y随x的增大而增大B.y随x的增大而减小C.随x的增大,y先增大后减小D.随x的增大,y先减小后增大5.如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B.相交C.垂直D.平行、相交或垂直6.下列根式中是最简二次根式的是()A 23B3C9D127.在平面直角坐标系中,点(1,2)P到原点的距离是()A.1 B3C.2 D58.在22、0.3•、227-38()A.1个B.2个C.3个D.4个9.如图,已知△ABC的三条边和三个角,则甲、乙、丙三个三角形中和△ABC全等的是()A.甲和乙B.甲和丙C.乙和丙D.只有乙10.用科学记数法表示0.000031,结果是()A.53.110-⨯B.63.110-⨯C.60.3110-⨯D.73110-⨯11.关于三角形中边与角之间的不等关系,提出如下命题:命题1:在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大;命题2:在一个三角形中,如果两个角不等,那么它们所对的边也不等,大角所对的边较大;命题3:如果一个三角形中最大的边所对的角是锐角,这个三角形一定是锐角三角形;命题4:直角三角形中斜边最长;以上真命题的个数是()A.1 B.2 C.3 D.412.下列实数中,无理数是()A.227B.3πC.4-D.32713.下列说法正确的是()A.(﹣3)2的平方根是3 B.16=±4C.1的平方根是1 D.4的算术平方根是214.以下问题,不适合用普查的是()A.旅客上飞机前的安检B.为保证“神州9号”的成功发射,对其零部件进行检查C.了解某班级学生的课外读书时间D.了解一批灯泡的使用寿命15.如图,在R△ABC中,∠ACB=90°,AC=6,BC=8,E为AC上一点,且AE=85,AD平分∠BAC交BC于D.若P是AD上的动点,则PC+PE的最小值等于()A.185B.245C.4 D.265二、填空题16.若点(1,35)P m m +-在x 轴上,则m 的值为________.17.已知点(,5)A m -和点(2,)B n 关于x 轴对称,则m n +的值为______.18.4的平方根是 .19.等边三角形有_____条对称轴.20.已知直角三角形的两边长分别为3、4.则第三边长为________.21.如图,等腰直角三角形ABC 中, AB=4 cm.点是BC 边上的动点,以AD 为直角边作等腰直角三角形ADE.在点D 从点B 移动至点C 的过程中,点E 移动的路线长为________cm.22.如图,△ABC 中,AB =AC ,AB 的垂直平分线分别交边AB ,BC 于D ,E 点,且AC =EC ,则∠BAC =_____.23.若一次函数y x a =-+与y x b =+的图像的交点坐标(,1010)m ,则a b +=__________.24.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是10,频率是0.2,那么该班级的人数是_____人.25.如图,在△ABC 中,AB =6,AC =5,BC =9,∠BAC 的角平分线AP 交BC 于点P ,则CP 的长为_____.三、解答题26.如图是88⨯的正方形网格,每个小方格都是边长为1的正方形,在网格中建立平面直角坐标系xOy ,使点A 坐标为()2,3-,点B 坐标为()41-,.(1)试在图中画出这个直角坐标系;(2)标出点()1,1C ,连接AB 、AC ,画出ABC ∆关于y 轴对称的111A B C ∆.27.如图,Rt ABC ∆中,90ACB ∠=︒.(1)尺规作图(保留作图痕迹,不写作法与证明):①作B 的平分线BD 交边AC 于点D ;②过点D 作DE AB ⊥于点E ;(2)在(1)所画图中,若3CD =,8AC =,则AB 长为________________.28.如图,ABC ∆的三个顶点都在格点上.(1)直接写出点B 的坐标;(2)画出ABC ∆关于x 轴对称的111A B C ∆,(3)直接写出点1A 的坐标29.如图,在等腰直角三角形ABC 中,∠ACB =90°,AC=BC ,AD 平分∠BAC ,BD ⊥AD 于点D ,E 是AB 的中点,连接CE 交AD 于点F ,BD =3,求BF 的长.30.(模型建立)(1)如图1,等腰直角三角形ABC 中,90ACB ∠=,CB CA =,直线ED 经过点C ,过A 作AD ED ⊥于点D ,过B 作BE ED ⊥于点E .求证:BEC CDA ∆≅∆; (模型应用)(2)已知直线1l :443y x =+与坐标轴交于点A 、B ,将直线1l 绕点A 逆时针旋转45至直线2l ,如图2,求直线2l 的函数表达式;(3)如图3,长方形ABCO ,O 为坐标原点,点B 的坐标为()8,6-,点A 、C 分别在坐标轴上,点P 是线段BC 上的动点,点D 是直线26y x =-+上的动点且在第四象限.若APD ∆是以点D 为直角顶点的等腰直角三角形,请直接..写出点D 的坐标.31.如图,在等腰△ABC 中,AB =AC ,BC =5.点D 为AC 上一点,且BD =4,CD =3.(1)求证:BD ⊥AC ;(2)求AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】直接根据轴对称图形的概念分别解答得出答案.【详解】A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不合题意.故选:B.【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B解析:B【解析】【分析】直接利用32=9,42=16的取值范围.【详解】∵32=9,42=16,在3和4之间.故选:B.【点睛】本题考查了估算无理数的大小,正确得出接近无理数的有理数是解题的关键.3.D解析:D【解析】【分析】根据乘方运算,可得一个正数的平方根.【详解】)2=7,∴7.故选:D.本题考查了平方根,利用了乘方运算求一个正数的平方根,注意一个正数有两个平方根.4.C解析:C【解析】【分析】连接BQ ,由矩形的性质,设BC=AO=a ,AB=OC=b ,利用勾股定理得到222PQ PB BQ +=,然后得到y 与x 的关系式,判断关系式,即可得到答案.【详解】解,如图,连接BQ ,由题意可知,△OPQ ,△QPB ,△ABP 是直角三角形,在矩形ABCO 中,设BC=AO=a ,AB=OC=b ,则OP=a x -,CQ b y =-,由勾股定理,得:222()PQ y a x =+-,222PB x b =+,222()BQ a b y =+-,∵222PQ PB BQ +=,∴222222()()y a x x b a b y +-++=+-,整理得:2by x ax =-+, ∴221()24a a y x b b=--+, ∵10b-<, ∴当2a x =时,y 有最大值24a b; ∴随x 的增大,y 先增大后减小;故选择:C.【点睛】本题考查了矩形的性质,勾股定理,解题的关键是利用勾股定理找到y 与x 的关系式,从而得到答案.5.A解析:A【分析】先判断出OA=OB ,∠OAB=∠ABO ,分两种情况判断出△AOC ≌△ABD ,进而判断出∠ABD=∠AOB=60°,即可得出结论.【详解】∵∠AOB=60°,OA=OB ,∴△OAB 是等边三角形,∴OA=AB ,∠OAB=∠ABO=60°①当点C 在线段OB 上时,如图1,∵△ACD 是等边三角形,∴AC=AD ,∠CAD=60°,∴∠OAC=∠BAD ,在△AOC 和△ABD 中,OA BA OAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩, ∴△AOC ≌△ABD ,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO ﹣∠ABD=60°=∠AOB ,∴BD ∥OA ;②当点C 在OB 的延长线上时,如图2,∵△ACD 是等边三角形,∴AC=AD ,∠CAD=60°,∴∠OAC=∠BAD ,在△AOC 和△ABD 中,OA BA OAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩, ∴△AOC ≌△ABD ,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO ﹣∠ABD=60°=∠AOB ,∴BD ∥OA ,故选A .【点睛】本题考查了等边三角形的判定和性质,全等三角形的判定和性质,求出∠ABD=60°是解本题的关键.6.B解析:B【分析】【详解】ABC ,故此选项错误;D =故选B .考点:最简二次根式.7.D解析:D【解析】【分析】根据:(1)点P(x ,y)到x 轴的距离等于|y|; (2)点P(x ,y)到y 轴的距离等于|x|;利用勾股定理可求得.【详解】在平面直角坐标系中,点(1,2)P =故选:D【点睛】考核知识点:勾股定理.理解点的坐标意义是关键.8.A解析:A【解析】【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合题意判断即可.【详解】、•0.3、227-中,•0.3循环小数,是有理数;227-是分数,是有理数;=2,是整数,是有理数;所以无理数共1个.【点睛】此题考查了无理数的概念,解答本题的关键是掌握无理数的定义,属于基础题,要熟练掌握无理数的三种形式,难度一般.9.B解析:B【解析】【分析】根据三角形全等的判定定理SSS 、SAS 、 AAS 、ASA 、HL 逐个进行分析即可.【详解】解:甲三角形有两条边及夹角与△ABC 对应相等,根据SAS 可以判断甲三角形与△ABC 全等;乙三角形只有一条边及对角与△ABC 对应相等,不满足全等判定条件,故乙三角形与△ABC 不能判定全等;丙三角形有两个角及夹边与△ABC 对应相等,根据ASA 可以判定丙三角形与△ABC 全等; 所以与△ABC 全等的有甲和丙,故选:B .【点睛】本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.10.A解析:A【解析】【分析】根据科学记数法的表示形式10(1||10)n a a ⨯≤<(n 为整数)即可求解【详解】0.000031-5=3.110⨯,故选:A .【点睛】本题主要考查了绝对值小于1的数的科学记数法,熟练掌握科学记数法的表示方法是解决本题的关键.11.D解析:D【解析】【分析】根据三角形边与角的关系逐一分析即可得解.【详解】假设它们所对的边相等,则根据等腰三角形的性质定理,“等边对等角”知它们所对的角也相等,这就与题设两个角不等相矛盾,因此假设不成立,故原结论成立,同时根据三角形中大边对大角,大角对大边可知命题1,2正确;因为三角形中大边对大角,大角对大边,所以当最大边所对角是锐角时,可知另外两个角也为锐角,则命题3正确;因为直角三角形中,直角所对的边时斜边,而另外两个角为锐角,所以直角所对斜边最大,所以命题4正确,故选:D.【点睛】本题主要考查了三角形边与角的关系,熟练掌握相关知识点是解决本题的关键.12.B解析:B【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】A.227是有理数,不符合题意;B.3π是无理数,符合题意;C.=-2,是有理数,不符合题意;是有理数,不符合题意.故选:B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.13.D解析:D【解析】【分析】根据平方根和算术平方根的定义解答即可.【详解】A、(﹣3)2的平方根是±3,故该项错误;B4,故该项错误;C、1的平方根是±1,故该项错误;D、4的算术平方根是2,故该项正确.故选D.【点睛】本题考查了平方根、算术平方根的定义,解决本题的关键是熟记平方根、算术平方根的定义.14.D解析:D【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:旅客上飞机前的安检适合用普查;为保证“神州9号”的成功发射,对其零部件进行检查适合用普查;了解某班级学生的课外读书时间适合用普查;了解一批灯泡的使用寿命不适合用普查.故选D.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.15.D解析:D【解析】【分析】如图,作点E关于AD的对称点E′,连接CE′交AD于P′,连接EP′,此时EP′+CP′的值最小,作CH⊥AB于H.求出CE′即可.【详解】如图,作点E关于AD的对称点E′,连接CE′交AD于P′,连接EP′,此时EP′+CP′的值最小,作CH⊥AB于H.∵∠ACB=90°,AC=6,BC=8,∴AB22AC BC+2268+,∴CH=AC BCAB⋅=245,∴AH22AC CH-=222465⎛⎫- ⎪⎝⎭185,∴AE=AE′=85,∴E′H=AH-AE′=2,∴P′C+P′E=CP′+P′E′=CE22CH E H'+222425⎛⎫+⎪⎝⎭=265,故选:D.【点睛】此题主要考查利用对称性以及勾股定理的运用,解题关键是做好辅助线,转换等量关系.二、填空题16.【解析】【分析】根据x 轴上点的纵坐标为0列方程求解即可.【详解】∵点在x 轴上,∴3m−5=0,解得m =.故答案为:.【点睛】本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关 解析:53【解析】【分析】根据x 轴上点的纵坐标为0列方程求解即可.【详解】∵点(1,35)P m m +-在x 轴上,∴3m−5=0,解得m =53. 故答案为:53. 【点睛】本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关键.17.7【解析】【分析】根据关于x 轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m ,n 即可解决.【详解】解:∵和点关于轴对称,∴m=2,-5+n=0,∴m=2,n=5,∴m+解析:7【解析】【分析】根据关于x 轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m ,n 即可解决.【详解】解:∵(,5)A m -和点(2,)B n 关于x 轴对称,∴m=2,-5+n=0,∴m=2,n=5,∴m+n=7.故答案为7.【点睛】本题考查了点的坐标特征,解决本题的关键是熟练掌握关于x 轴对称的点的坐标特征,要与关于y 轴对称的点的坐标特征相区别.18.±2.【解析】试题分析:∵,∴4的平方根是±2.故答案为±2. 考点:平方根.解析:±2.【解析】试题分析:∵2(2)4±=,∴4的平方根是±2.故答案为±2.考点:平方根.19.3【解析】试题解析:等边三角形有3条对称轴.考点:轴对称图形.解析:3【解析】试题解析:等边三角形有3条对称轴.考点:轴对称图形.20.5或【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:;②长为3、4的边都是直角边时:第三边的解析:5或7【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:22437-=; ②长为3、4的边都是直角边时:第三边的长为:22435;∴第三边的长为:7或5.考点:1.勾股定理;2.分类思想的应用. 21.【解析】试题解析:连接CE ,如图:∵△ABC 和△ADE 为等腰直角三角形,∴AC=AB ,AE=AD ,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°, ∴∠1=解析:42【解析】试题解析:连接CE ,如图:∵△ABC 和△ADE 为等腰直角三角形,∴2AB ,2AD ,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°, ∴∠1=∠3,∵2AC AE AB AD== ∴△ACE ∽△ABD ,∴∠ACE=∠ABC=90°, ∴点D 从点B 移动至点C 的过程中,总有CE ⊥AC ,即点E 运动的轨迹为过点C 与AC 垂直的线段,22,当点D 运动到点C 时,2,∴点E 移动的路线长为2cm .22.108°【解析】【分析】连接AE,多次利用等腰三角形的等边对等角的性质得到相等的角,然后在三角形ABC中利用三角形内角和求得∠C的度数,从而求得答案.【详解】连接AE,如图所示:∵AB解析:108°【解析】【分析】连接AE,多次利用等腰三角形的等边对等角的性质得到相等的角,然后在三角形ABC中利用三角形内角和求得∠C的度数,从而求得答案.【详解】连接AE,如图所示:∵AB=AC,∴∠B=∠C,∵AB的垂直平分线分别交边AB,BC于D,E点,∴AE=BE,∴∠B=∠BAE,∵AC=EC,∴∠EAC=∠AEC,设∠B=x°,则∠EAC=∠AEC=2x°,则∠BAC=3x°,在△AEC中,x+2x+2x=180,解得:x=36,∴∠BAC=3x°=108°,故答案为:108°.【点睛】此题主要考查等腰三角形的性质,解题关键是利用三角形内角和构建方程.23.2020【解析】【分析】把分别代入与,然后把两个式子相加即可求解.把分别代入与,得-m+a=1010①,m+b=1010②,①+②得a+b=2020.故答案为:2020.解析:2020【解析】【分析】把(,1010)m 分别代入y x a =-+与y x b =+,然后把两个式子相加即可求解.【详解】把(,1010)m 分别代入y x a =-+与y x b =+,得-m+a=1010①,m+b=1010②,①+②得a+b=2020.故答案为:2020.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适应此函数的解析式是解答此题的关键.24.50【解析】【分析】利用数据的总数=该组的频数÷该组的频率解答即可.【详解】解:该班级的人数为:10÷0.2=50.故答案为:50.【点睛】本题考查了频数与频率,熟练掌握数据的总数与解析:50【解析】【分析】利用数据的总数=该组的频数÷该组的频率解答即可.【详解】解:该班级的人数为:10÷0.2=50.故答案为:50.【点睛】本题考查了频数与频率,熟练掌握数据的总数与频数、频率的关系是解题的关键.【解析】【分析】作PM⊥AB于M,PN⊥AC于N,根据角平分线的性质得出PM=PN,由三角形面积公式得出,从而得到,即可求得CP的值.【详解】作PM⊥AB于M,PN⊥AC于N,∵AP是解析:45 11.【解析】【分析】作PM⊥AB于M,PN⊥AC于N,根据角平分线的性质得出PM=PN,由三角形面积公式得出162152APBAPCAB PMS ABS ACAC PN⋅===⋅,从而得到162152APBAPCPB hS PBS PCPC h⋅===⋅,即可求得CP的值.【详解】作PM⊥AB于M,PN⊥AC于N,∵AP是∠BAC的角平分线,∴PM=PN,∴162152APBAPCAB PMS ABS ACAC PN⋅===⋅,设A到BC距离为h,则162152APBAPCPB hS PBS PCPC h⋅===⋅,∵PB+PC=BC=9,∴CP=9×511=4511,故答案为:45 11.本题主要考查三角形的角平分线的性质,结合面积法,推出ABACPBPC,是解题的关键.三、解答题26.(1)详见解析;(2)详见解析.【解析】【分析】(1)由点A的坐标可建立平面直角坐标系;(2)先作出点C,再分别作出点A、B、C关于y轴的对称点,顺次连接即可得.【详解】如图所示;(2)如图所示.【点睛】本题考查了作图﹣轴对称变换,熟知轴对称变换的性质是解答此题的关键.27.(1)①详见解析;②详见解析;(2)10.【解析】【分析】(1)①按角的平分线的作法步骤作图即可;②按垂线的作法步骤作图即可;(2)根据角平分线的性质得到DE=CD.在△AED中利用勾股定理得到AE的长.设AB=x,则BE=AB-AE=x-4.证明Rt△BDC≌Rt△BDE,得到BC=DE=x-4.在Rt△ABC中,利用勾股定理列方程即可得到结论.【详解】(1)①如图,BD就是所要求作的图形.②如图,DE就是所要求作的图形.(2)∵∠C =90°,DE ⊥AB ,BD 平分∠ABC ,∴DE =CD =3.∵AC =8,∴AD =AC -DC =8-3=5,∴AE =222253AD DE -=-=4.设AB =x ,则BE =AB -AE =x -4.在Rt △BDC 和Rt △BDE 中,∵BD =BD ,DC =DE ,∴Rt △BDC ≌Rt △BDE ,∴BC =DE =x -4.在Rt △ACB 中,∵222AC BC AB +=,∴2228(4)x x +-=,解得:x =10.∴AB =10.【点睛】本题考查了基本作图和角平分线的性质以及勾股定理.掌握角平分线的性质是解答本题的关键.28.(1)(2,3)-;(2)画图见解析;(3)(1,1)-【解析】【分析】(1)根据平面直角坐标系中点与有序数对的对应关系解答即可;(2)ABC ∆各顶点关于x 轴对称的点A 1,B 1,C 1,然后用线段顺次连接即可; (3)根据平面直角坐标系中点与有序数对的对应关系解答即可.【详解】解:(1)点B 的坐标是(2,3)-;(2)如图,(3)点1A的坐标是(1,1)-.【点睛】本题考查了作图-轴对称变换,熟练掌握网格结构准确找出对应点的位置是解题的关键.29.BF的长为32【解析】【分析】先连接BF,由E为中点及AC=BC,利用三线合一可得CE⊥AB,进而可证△AFE≌△BFE,再利用AD为角平分线以及三角形外角定理,即可得到∠BFD为45°,△BFD为等腰直角三角形,利用勾股定理即可解得BF.【详解】解:连接BF.∵CA=CB,E为AB中点∴AE=BE,CE⊥AB,∠FEB=∠FEA=90°在Rt△FEB与Rt△FEA中,BE AEBEF AEFFE FE=⎧⎪∠=∠⎨⎪=⎩∴Rt△FEB≌Rt△FEA又∵AD平分∠BAC,在等腰直角三角形ABC中∠CAB=45°∴∠FBE=∠FAE=12∠CAB=22.5°在△BFD中,∠BFD=∠FBE+∠FAE=45°又∵BD⊥AD,∠D=90°∴△BFD为等腰直角三角形,BD=FD=3∴222232BF BD FD BD=+==【点睛】本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.30.(1)见解析;(2)y=−7x−21;(3)D(4,−2)或(203,223-).【解析】【分析】(1)根据△ABC为等腰直角三角形,AD⊥ED,BE⊥ED,可判定BEC CDA∆≅∆;(2)①过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,根据△CBD≌△BAO,得出BD =AO=3,CD=OB=4,求得C(−4,7),最后运用待定系数法求直线l2的函数表达式;(3)根据△APD是以点D为直角顶点的等腰直角三角形,当点D是直线y=−2x+6上的动点且在第四象限时,分两种情况:当点D在矩形AOCB的内部时,当点D在矩形AOCB的外部时,设D(x,−2x+6),分别根据△ADE≌△DPF,得出AE=DF,据此列出方程进行求解即可.【详解】解:(1)证明:∵△ABC为等腰直角三角形,∴CB=CA,∠ACD+∠BCE=90°,又∵AD⊥ED,BE⊥ED,∴∠D=∠E=90°,∠EBC+∠BCE=90°,∴∠ACD=∠EBC,在△ACD与△CBE中,D EACD EBCCA CB∠∠⎧⎪∠∠⎨⎪⎩===,∴BEC CDA∆≅∆(AAS);(2)①如图2,过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,∵∠BAC=45°,∴△ABC为等腰直角三角形,由(1)可知:△CBD≌△BAO,∴BD=AO,CD=OB,∵直线l1:y=43x+4中,若y=0,则x=−3;若x=0,则y=4,∴A(−3,0),B(0,4),∴BD=AO=3,CD=OB=4,∴OD=4+3=7,∴C(−4,7),设l2的解析式为y=kx+b,则7403k bk b=-+⎧⎨=-+⎩,解得:721 kb=-⎧⎨=-⎩,∴l2的解析式为:y=−7x−21;(3)D(4,−2)或(203,223-).理由:当点D是直线y=−2x+6上的动点且在第四象限时,分两种情况:当点D在矩形AOCB的内部时,如图,过D作x轴的平行线EF,交直线OA于E,交BC于F,设D(x,−2x+6),则OE=2x−6,AE=6−(2x−6)=12−2x,DF=EF−DE=8−x,由(1)可得,△ADE≌△DPF,则DF=AE,即:12−2x=8−x,解得x=4,∴−2x+6=−2,∴D(4,−2),此时,PF=ED=4,CP=6=CB,符合题意;当点D在矩形AOCB的外部时,如图,过D作x轴的平行线EF,交直线OA于E,交直线BC于F,设D(x,−2x+6),则OE=2x−6,AE=OE−OA=2x−6−6=2x−12,DF=EF−DE=8−x,同理可得:△ADE≌△DPF,则AE=DF,即:2x−12=8−x,解得x=203,∴−2x +6=223-, ∴D (203,223-), 此时,ED =PF =203,AE =BF =43,BP =PF−BF =163<6,符合题意, 综上所述,D 点坐标为:(4,−2)或(203,223-) 【点睛】本题属于一次函数综合题,主要考查了点的坐标、矩形的性质、待定系数法、等腰直角三角形的性质以及全等三角形等相关知识的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行计算,解题时注意分类思想的运用.31.证明见解析;(2)AB=256. 【解析】【分析】(1)根据勾股定理逆定理判断即可;(2)设AB =x ,则AC =x ,AD =x -3,根据AB 2=AD 2+BD 2列方程求解即可.【详解】(1)证明:在△BDC 中,∵22291625CD BD BC +=+==,∴∠BDC=90° ,即BD ⊥AC ,(2)解:设AB =x ,则AC =x ,AD =x -3,∵BD ⊥AC ,∴∠ADB=90°.在Rt△ABD 中∴222AB BD AD =+,即 ()22163x x =+-, 解得:256x =, ∴AB=256. 【点睛】 本题考查了勾股定理及其逆定理的应用,直角三角形两条直角边的平方和等于斜边的平方;如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.。

苏科版八年级上学期第三次月考数学试卷 (解析版)

苏科版八年级上学期第三次月考数学试卷 (解析版)

苏科版八年级上学期第三次月考数学试卷 (解析版) 一、选择题 1.下列各组数中互为相反数的是( )A .2-与2B .2-与38-C .2-与12-D .2-与()22-2.如图,已知O 为ABC ∆三边垂直平分线的交点,且50A ∠=︒,则BOC ∠的度数为( )A .80︒B .100︒C .105︒D .120︒3.如图,数轴上的点P 表示的数可能是( )A .3B .21+C .71-D .51+4.在一次800米的长跑比赛中,甲、乙两人所跑的路程s (米)与各自所用时间t (秒)之间的函数图像分别为线段OA 和折线OBCD ,则下列说法不正确的是( )A .甲的速度保持不变B .乙的平均速度比甲的平均速度大C .在起跑后第180秒时,两人不相遇D .在起跑后第50秒时,乙在甲的前面 5.以下列各组线段为边作三角形,不能构成直角三角形的是( )A .1,25B .3,4,5C .3,6,9D .3761 6.如图,在△ABC 中,AB="AC," AB +BC=8.将△ABC 折叠,使得点A 落在点B 处,折痕DF 分别与AB 、AC 交于点D 、F ,连接BF ,则△BCF 的周长是( )A .8B .16C .4D .10 7.如图,AD 是ABC 的角平分线,DE AB ⊥于E ,已知ABC 的面积为28.6AC =,4DE =,则AB 的长为( )A .4B .6C .8D .108.下列图形是轴对称图形的是( )A .B .C .D .9.在平面直角坐标系中,点(1,2)P 到原点的距离是( )A .1B .3C .2D .510.中国传统服装历史悠远,下列服装中,是轴对称的是()A .B .C .D .11.如图,动点P 从点A 出发,按顺时针方向绕半圆O 匀速运动到点B ,再以相同的速度沿直径BA 回到点A 停止,线段OP 的长度d 与运动时间t 的函数图象大致是( )A .B .C .D .12.人的眼睛可以看见的红光的波长约为5810cm -⨯,近似数5810-⨯精确到( ) A .0.001cm B .0.0001cm C .0.00001cm D .0.000001cm13.下列各式成立的是( )A .93=±B .235+=C .()233-=±D .()233-=14.下列交通标志图案是轴对称图形的是( )A .B .C .D .15.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A .15B .13C .58D .38二、填空题16.某厂现在的年产值是15万元,计划今后每年增加2万元,年产值y 与年数x 之间的函数关系为________.17.已知y 与x 成正比例,当x=8时,y=﹣12,则y 与x 的函数的解析式为_____.18.如图,点A 的坐标为(-2,0),点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标是__________.19.将一次函数34y x =-的图象向上平移3个单位长度,相应的函数表达式为_____.20.如图,在Rt △ABO 中,∠OBA=90°,AB=OB ,点C 在边AB 上,且C (6,4),点D 为OB 的中点,点P 为边OA 上的动点,当∠APC=∠DPO 时,点P 的坐标为 ____.21.点(2,1)P关于x轴对称的点P'的坐标是__________.22.在实数2,4π,227-,3.14,16中,无理数有______个.23.等腰三角形的一个内角是100︒,则它的底角的度数为_________________.24.一次函数y1=ax+3与y2=kx﹣1的图象如图所示,则不等式kx﹣1<ax+3的解集是_____.25.如图,将一张三角形纸片折叠,使得点A、点C都与点B重合,折痕分别为DE、FG,此时测得∠EBG=36°,则∠ABC=_____°.三、解答题26.春节前小明花1200元从市场购进批发价分别为每箱30元与50元的A、B两种水果进行销售,分别以每箱35元与60元的价格出售,设购进A水果x箱,B水果y箱.(1)求y关于x的函数表达式;(2)若要求购进A水果的数量不少于B水果的数量,则应该如何分配购进A、B水果的数量并全部售出才能获得最大利润,此时最大利润是多少?27.如图,一次函数y=﹣x+7的图象与正比例函数y=34x的图象交于点A,点P(t,0)是x正半轴上的一个动点.(1)点A的坐标为(,);(2)如图1,连接PA,若△AOP是等腰三角形,求点P的坐标:(3)如图2,过点P作x轴的垂线,分别交y=34x和y=﹣x+7的图象于点B,C.是否存在正实数,使得BC =32OA ,若存在求出t 的值;若不存在,请说明理由.28.某商场计划销售甲、乙两种产品共200件,每销售1件甲产品可获得利润0.4万元, 每销售1件乙产品可获得利润0.5万元,设该商场销售了甲产品x (件),销售甲、乙两种产品获得的总利润为y (万元).(1)求y 与x 之间的函数表达式;(2)若每件甲产品成本为0.6万元,每件乙产品成本为0.8万元,受商场资金影响,该商场能提供的进货资金至多为150万元,求出该商场销售甲、乙两种产品各为多少件时,能获得最大利润.29.某商场计划购进A 、B 两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示: 类型价格进价/(元/盏) 售价/(元/盏) A 型30 45 B 型 50 70(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B 型台灯的进货数量不超过A 型台灯进货数量的4倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?30.解方程 3(1)8x -=-31.在平面直角坐标系中,直线l 1:y =kx +b (k 、b 为常数,且k ≠0)经过A 、B 两点,点A 在y 轴上.(1)若B 点坐标为(﹣1,2).①b = (用含有字母k 的代数式表示)②当△OAB 的面积为2时,求直线l 1的表达式;(2)若B 点坐标为(k ﹣2b ,b ﹣b 2),点C (﹣1,s )也在直线l 1上,①求s 的值;②如果直线l 1:y =kx +b (k ≠0)与直线l 2:y =x 交于点(x 1,y 1),且0<x 1<2,求k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据相反数的性质判断即可;【详解】A中-2=2,不是互为相反数;B中382-=-,不是相反数;C中两数互为倒数;D中两数互为相反数;故选:D.【点睛】本题主要考查了相反数的性质应用,准确分析是解题的关键.2.B解析:B【解析】【分析】延长AO交BC于D,根据垂直平分线的性质可得到AO=BO=CO,再根据等边对等角的性质得到∠OAB=∠OBA,∠OAC=∠OCA,再由三角形的外角性质可求得∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA,从而不难求得∠BOC的度数.【详解】延长AO交BC于D.∵点O在AB的垂直平分线上.∴AO=BO.同理:AO=CO.∴∠OAB=∠OBA,∠OAC=∠OCA.∵∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA.∴∠BOD=2∠OAB,∠COD=2∠OAC.∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2(∠OAB+∠OAC)=2∠BAC.∵∠A=50°.∴∠BOC=100°.故选:B.【点睛】此题主要考查:(1)线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.3.B解析:B【解析】【分析】先换算出每项的值,全部保留三位小数,然后观察数轴上P点的位置,逐项判断即可开.【详解】≈1.732≈1.414 2.236≈2.646,所以A项≈1.732,B项≈2.414,C项≈1.646,D项≈3.236观察数轴上P点的位置,B项正确.故选B.【点睛】本题主要考查实数与数轴上的点的对应关系,掌握实数与数轴之间一一对应的关系,估算出每个二次根式的值是解题的关键.4.B解析:B【解析】【分析】A、由于线段OA表示甲所跑的路程S(米)与所用时间t(秒)之间的函数图象,由此可以确定甲的速度是没有变化的;B、甲比乙先到,由此可以确定甲的平均速度比乙的平均速度快;C、根据图象可以知道起跑后180秒时,两人的路程确定是否相遇;D、根据图象知道起跑后50秒时OB在OA的上面,由此可以确定乙是否在甲的前面.【详解】解:A、∵线段OA表示甲所跑的路程S(米)与所用时间t(秒)之间的函数图象,∴甲的速度是没有变化的,故不选A;B、∵甲比乙先到,∴乙的平均速度比甲的平均速度慢,故选B;C、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故不选C;D、∵起跑后50秒时OB在OA的上面,∴乙是在甲的前面,故不选D.故选:B.【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.5.C解析:C【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【详解】解:A、∵12+222,故A选项能构成直角三角形;B、∵32+42=52,故B选项能构成直角三角形;C、∵32+62≠92,故C选项不能构成直角三角形;D、∵72+()22,故D选项能构成直角三角形.故选:C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6.A解析:A【解析】【分析】由将△ABC折叠,使得点A落在点B处,折痕DF分别与AB、AC交于点D、F,可得BF=AF,又由在△ABC中,AB=AC,AB+BC=8,易得△BCF的周长等于AB+BC,则可求得答案.【详解】解:由将△ABC折叠,使得点A落在点B处,折痕DF分别与AB、AC交于点D、F,可得BF=AF,又由在△ABC中,AB=AC,AB+BC=8,所以△BCF的周长等于BC+CF+BF=BC+CF+AF=AB+BC=8.故答案选A.【点睛】此题考查了折叠的性质.此题难度不大,解题的关键是掌握折叠前后图形的对应关系,注意等量代换,注意数形结合思想的应用.7.C解析:C【解析】【分析】作DF⊥AC于F,根据角平分线的性质求出DF,根据三角形的面积公式计算即可.【详解】解:作DF⊥AC于F,∵AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DF=DE=4, ∴112228AB DE AC DF 即112246428AB 解得,AB=8,故选:C .【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.B解析:B【解析】【分析】根据轴对称图形的概念,一个图形沿一条直线对折后,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形. 据此进行选择即可.【详解】根据轴对称图形定义,图形A 、C 、D 中不是轴对称图形,而B 是轴对称图形.故选B【点睛】本题主要考查了轴对称图形的辨识,解答本题的关键是熟练掌握轴对称图形的概念.9.D解析:D【解析】【分析】根据:(1)点P(x ,y)到x 轴的距离等于|y|; (2)点P(x ,y)到y 轴的距离等于|x|;利用勾股定理可求得.【详解】 在平面直角坐标系中,点(1,2)P 22125+=故选:D【点睛】考核知识点:勾股定理.理解点的坐标意义是关键.10.B解析:B【解析】【分析】直接利用轴对称图形的定义判断即可.【详解】解:A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不合题意;D、不是轴对称图形,不合题意;故选:B.【点睛】此题主要考查了轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,11.B解析:B【解析】【分析】根据P点半圆O、线段OB、线段OA这三段运动的情况分析即可.【详解】解:①当P点半圆O匀速运动时,OP长度始终等于半径不变,对应的函数图象是平行于横轴的一段线段,排除A答案;②当P点在OB段运动时,OP长度越来越小,当P点与O点重合时OP=0,排除C答案;③当P点在OA段运动时,OP长度越来越大,B答案符合.故选B.【点睛】本题主要考查动点问题的函数图象,熟练掌握是解题的关键.12.C解析:C【解析】【分析】把数还原后,再看首数8的最后一位数字8所在的位数是十万分位,即精确到十万分位.【详解】∵5⨯=0.00008,810-∴近似数5⨯是精确到十万分位,即0.00001.810-故选:C.【点睛】此题主要考查了科学记数法与有效数字,正确还原数据是解题关键.13.D解析:D【解析】【分析】根据算术平方根的定义对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的性质对C、D进行判断.【详解】解:A3=,所以A选项错误;B B选项错误;C3=,所以C选项错误;D、(23=,所以D选项正确.故选D.【点睛】此题考查了算术平方根和二次根式的性质以及二次根式的加减,熟练掌握二次根式的性质是解题的关键.14.B解析:B【解析】【分析】【详解】A图形中三角形和三角形内部图案的对称轴不一致,所以不是轴对称图形;B为轴对称图形,对称轴为过长方形两宽中点的直线;C外圈的正方形是轴对称图形,但是内部图案不是轴对称图形,所以也不是;D图形中圆内的两个箭头不是轴对称图象,而是中心对称图形,所以也不是轴对称图形.故选B.15.C解析:C【解析】【分析】先求出球的所有个数与红球的个数,再根据概率公式解答即可.【详解】解:共8球在袋中,其中5个红球,故摸到红球的概率为58,故选:C.【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= mn,难度适中.二、填空题16.y=15+2x【解析】【分析】根据年产值y(万元)=现在的年产值+以后每年增加的年产值求解.【详解】解:∵某厂现在的年产值是15万元,计划今后每年增加2万元,∴年产值y与年数x之间的函数解析:y=15+2x【解析】【分析】根据年产值y(万元)=现在的年产值+以后每年增加的年产值求解.【详解】解:∵某厂现在的年产值是15万元,计划今后每年增加2万元,∴年产值y与年数x之间的函数关系为:y=15+2x,故答案为:y=15+2x.【点睛】此题主要考查一次函数在实际问题的应用,找到所求量的等量关系是解决问题的关键.17.y=-x【解析】【分析】根据题意可得y=kx,再把x=8时,y=-12代入函数,可求k,进而可得y与x 的关系式.【详解】设y=kx,∵当x=8时,y=-12,∴-12=8k,解得k=解析:y=-3 2 x【解析】【分析】根据题意可得y=kx,再把x=8时,y=-12代入函数,可求k,进而可得y与x的关系式.【详解】设y=kx,∵当x=8时,y=-12,∴-12=8k,解得k=-32,∴所求函数解析式是y=-32 x;故答案为:y=-32 x.【点睛】本题考查了待定系数法求函数解析式,解题的关键是理解成正比例的关系的含义.18.【解析】【分析】过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,推出AC=OC,求出AC、OC长,根据三角形面积公式求出CD,推出CD=OD,即可求出B的坐标.解析:(1,1)--【解析】【分析】过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,推出AC=OC,求出AC、OC长,根据三角形面积公式求出CD,推出CD=OD,即可求出B的坐标.【详解】解:过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,∵直线y=x,∴∠AOC=45°,∴∠OAC=45°=∠AOC,∴AC=OC,由勾股定理得:2AC2=OA2=4,∴2,由三角形的面积公式得:AC×OC=OA×CD,22=2CD,∴CD=1,∴OD=CD=1,∴B(-1,-1).故答案为:(-1,-1).【点睛】本题考查的是一次函数的性质,涉及到垂线段最短,等腰直角三角形的判定与性质,勾股定理等知识点的应用,关键是得出当B 和C 重合时,线段AB 最短,题目比较典型,主要培养了学生的理解能力和计算能力.19.【解析】【分析】根据函数图像平移规律:上加下减常数项,左加右减自变量,变形即可.【详解】解:一次函数的图象向上平移3个单位长度可得:.故答案为:【点睛】本题考查了函数图像平移,解决本解析:31y x =-【解析】【分析】根据函数图像平移规律:上加下减常数项,左加右减自变量,变形即可.【详解】解:一次函数34y x =-的图象向上平移3个单位长度可得:34331y x x =-+=-. 故答案为:31y x =-【点睛】本题考查了函数图像平移,解决本题的关键是熟练掌握函数图像的平移规律,要与点的坐标平移区别开.20.(,)【解析】【分析】根据题意,△ABO 为等腰直角三角形,由点C 坐标为(6,4),可知点B 为(6,0),点A 为(6,6),则直线OA 为,作点D 关于OA 的对称点E ,点E 恰好落在y 轴上,连接CE ,解析:(185,185) 【解析】【分析】 根据题意,△ABO 为等腰直角三角形,由点C 坐标为(6,4),可知点B 为(6,0),点A 为(6,6),则直线OA 为y x =,作点D 关于OA 的对称点E ,点E 恰好落在y 轴上,连接CE ,交OA 于点P ,则点E 坐标为(0,3),然后求出直线CE 的解析式,联合y x =,即可求出点P 的坐标.【详解】解:在Rt △ABO 中,∠OBA=90°,AB=OB ,∴△ABO是等腰直角三角形,∵点C在边AB上,且C(6,4),∴点B为(6,0),∴OB=6=AB,∴点A坐标为:(6,6),∴直线OA的解析式为:y x=;作点D关于OA的对称点E,点E恰好落在y轴上,连接CE,交OA于点P,∴∠APC=∠OPE=∠DPO,OD=OE,∵点D是OB的中点,∴点D的坐标为(3,0),∴点E的坐标为:(0,3);设直线CE的解析式为:y kx b=+,把点C、E代入,得:643k bb+=⎧⎨=⎩,解得:163kb⎧=⎪⎨⎪=⎩,∴直线CE的解析式为:136y x=+;∴136y xy x⎧=+⎪⎨⎪=⎩,解得:185185xy⎧=⎪⎪⎨⎪=⎪⎩,∴点P的坐标为:(185,185);故答案为:(185,185).【点睛】本题考查了一次函数的图像和性质,等腰直角三角形的性质,以及线段动点问题,正确的找到P点的位置是解题的关键.21.(2,-1)【解析】【分析】关于轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】点关于轴对称的点的坐标是(2,-1)故答案为:(2,-1)【点睛】考核知识点:用坐标表示轴对称.解析:(2,-1)【解析】【分析】关于x轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】点(2,1)P关于x轴对称的点P'的坐标是(2,-1)故答案为:(2,-1)【点睛】考核知识点:用坐标表示轴对称. 理解:关于x轴对称的点的坐标的特点是:横坐标不变,纵坐标互为相反数;22.2【解析】【分析】初中阶段无理数包括三方面的数:①类似于π,2π这样的数,②开方开不尽的数,③无限不循环小数,据此作出判断即可.【详解】解:根据无理数的定义,属于无理数,所以无理数有2个.解析:2【解析】【分析】初中阶段无理数包括三方面的数:①类似于π,2π这样的数,②开方开不尽的数,③无限不循环小数,据此作出判断即可.【详解】解:根据无理数的定义2,4属于无理数,所以无理数有2个.故答案为:2.【点睛】本题考查无理数的定义.熟记无理数的定义并理解初中阶段无理数的几种表现形式是解决此题的关键.23.【解析】【分析】由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.【详解】①当这个角是顶角时,底角=(180°﹣100°)÷2=40°;②当这个角是解析:40【解析】【分析】由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.【详解】①当这个角是顶角时,底角=(180°﹣100°)÷2=40°;②当这个角是底角时,另一个底角为100°,因为100°+100°=200°,不符合三角形内角和定理,所以舍去.故答案为:40°.【点睛】本题考查了等腰三角形的性质,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件.24.x<1.【解析】【分析】结合图象,写出直线y1=ax+3在直线y2=kx﹣1上方所对应的自变量的范围即可.【详解】∵一次函数y1=ax+3与y2=kx﹣1的图象的交点坐标为(1,2),∴解析:x<1.【解析】【分析】结合图象,写出直线y1=ax+3在直线y2=kx﹣1上方所对应的自变量的范围即可.【详解】∵一次函数y1=ax+3与y2=kx﹣1的图象的交点坐标为(1,2),∴当x<1时,y1>y2,∴不等式kx﹣1<ax+3的解集为x<1.故答案为:x<1.【点睛】本题考查了一次函数与一元一次不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.25.【解析】【分析】根据折叠的性质得到∠ABE=∠A,∠CBG=∠C,根据三角形的内角和定理,得到∠A+∠C=180°﹣∠ABC,列方程即可得到结论.【详解】∵把一张三角形纸片折叠,使点A、点解析:【解析】【分析】根据折叠的性质得到∠ABE=∠A,∠CBG=∠C,根据三角形的内角和定理,得到∠A+∠C =180°﹣∠ABC,列方程即可得到结论.【详解】∵把一张三角形纸片折叠,使点A、点C都与点B重合,∴∠ABE=∠A,∠CBG=∠C,∵∠A+∠C=180°﹣∠ABC,∵∠ABC=∠ABE+∠CBG+∠EBG,∴∠ABC=∠A+∠C+36°=180°﹣∠ABC+36°,∴∠ABC=108°,故答案为:108.【点睛】本题主要考查三角形的内角和定理与图形折叠的性质,根据角的和差关系,列出关于∠ABC的方程,是解题的关键.三、解答题26.(1)3245y=-+;(2)应购进A水果15箱、B水果15箱能够获得最大利润,最大利润为225元【解析】【分析】(1)根据A水果总价+B水果总价=1200列出关于x、y的二元一次方程,对方程进行整理变形即可得出结论;(2)设利润为W元,找出利润W关于x的函数关系式,由购进A水果的数量不得少于B 水果的数量找出关于x的一元一次不等式,解不等式得出x的取值范围,再利用一次函数的性质即可解决最值问题.【详解】(1)∵30501200x y∴y关于x的函数表达式为:3245y=-+.(2)设获得的利润为w 元,根据题意得510wx y , ∴240w x =-+∵A 水果的数量不得少于B 水果的数量,∴x y ≥,解得15x ≥.∵10-<,∴w 随x 的增大而减小,∴当15x =时,w 最大225=,此时120315155y -⨯==. 即应购进A 水果15箱、B 水果15箱能够获得最大利润,最大利润为225元.【点睛】本题考查了二元一次方程的应用、一次函数的应用;根据题意得出等量关系列出方程组或得出函数关系式或由不等关系得出不等式是解决问题的关键.27.(1)(4,3);(2)P (5,0)或(8,0)或(258,0);(3)t =587. 【解析】【分析】(1)解方程组即可得到结论;(2)根据勾股定理得到OA5,当OP =OA =5时,△AOP 是等腰三角形,当AP =OA =5时,△AOP 是等腰三角形,当OP =PA 时,△AOP 是等腰三角形,于是得到结论;(3)由P (t ,0),得到B (t ,34t ),C (t ,﹣t+7),根据BC =32OA ,解方程即可得到结论.【详解】 解:(1)解734y x y x =-+⎧⎪⎨=⎪⎩得43x y =⎧⎨=⎩, ∴点A 的坐标为(4,3),故答案为:(4,3);(2)∵A (4,3),∴OA5,当OP =OA =5时,△AOP 是等腰三角形,∴P (5,0),当AP =OA =5时,△AOP 是等腰三角形,则OP =8,∴P (8,0);当OP =PA 时,△AOP 是等腰三角形,则点P 在OA 的垂直平分线上,如图1,设OA 的垂直平分线交OA 于H ,∴OH=12OA=52,过A作AG⊥x轴于G,∴△OPH∽△OAG,∴OH OP OG OA=,∴5245OP =,∴OP=25 8,∴P(258,0),综上所述,P(5,0)或(8,0)或(258,0);(3)∵P(t,0),∴B(t,34t),C(t,﹣t+7),∵BC=32 OA,∴﹣t+7﹣34t=32×5或34t+t﹣7=32×5,解得:t=﹣27或t=587,∵t>0,∴t=587.【点睛】本题考查了一次函数的综合题,解方程组求点的坐标,等腰三角形的性质,相似三角形的判定和性质,正确的识别图形是解题的关键.28.(1) y=-0.1x+100 (2) 该商场销售甲50件,乙150件时,能获得最大利润.【解析】【分析】(1) 根据题意即可列出一次函数,化简即可;(2) 设甲的件数为x,那么乙的件数为:200-x,根据题意列出不等式0.6x+0.8(200-x)≤150,解出,根据y=-0.1x+100的性质,即可求出.【详解】解:(1)由题意可得:y=0.4x+0.5×(200-x)得到:y=-0.1x+100所以y与x之间的函数表达式为y=-0.1x+100(2)设甲的件数为x,那么乙的件数为:200-x,依题意可得:0.6x+0.8(200-x)≤150解得:x≥50由y=-0.1x+100得到y随x的增大而减小所以当利润最大时,x值越小利润越大所以甲产品x=50 乙产品200-x=150答:该商场销售甲50件,乙150件时,能获得最大利润.【点睛】此题主要考查了一次函数及一元一次不等式,熟练掌握实际生活转化为数学模式是解题的关键.29.(1)75盏;25盏(2)购进A型台灯20盏,B型台灯80盏;1900元【解析】【分析】(1)设商场应购进A型台灯x盏,表示出B型台灯为(100﹣x)盏,然后根据进货款=A 型台灯的进货款+B型台灯的进货款列出方程求解即可;(2)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.【详解】解:(1)设购进A型台灯x盏,则购进B型台灯(100﹣x)盏,由题意可得:30x+50(100﹣x)=3500∴x=75∴100﹣x=25答:购进A型台灯75盏,购进B型台灯25盏;(2)设商场销售完这批台灯可获利y元,y=15x+20(100﹣x)=﹣5x+2000又∵100﹣x≤4x,∴x≥20∵k=﹣5<0,∴y随x的增大而减小∴当x=20时,y取得最大值,最大值是1900.答:购进A型台灯20盏,购进B型台灯80盏时获利最多,此时利润为1900元.【点睛】本题考查了一次函数的应用,主要利用了一次函数的增减性,(2)题中理清题目数量关系并列式求出x的取值范围是解题的关键.30.x=-1【解析】【分析】把(x-1)看作一个整体,利用立方根的定义解答即可.【详解】解:∵(x-1)3=-8,∴x-1=-2,∴x=-1.【点睛】本题考查了利用立方根的定义求未知数的值,熟记概念是解题的关键.31.(1)①2+k;②y=2x+4;(2)①0;②12 23k<<.【解析】【分析】(1)①把B(﹣1,2)代入y=kx+b即可求得b的值;②根据三角形的面积即可求得k的值,从而可得直线解析式;(2)①把点B和点C代入函数解析式即可求得s的值;②根据两条直线的交点坐标的横坐标的取值范围即可求得k的取值范围.【详解】(1)①把B(﹣1,2)代入y=kx+b,得b=2+k.故答案为:2+k;②∵S△OAB=12(2+k)×1=2解得:k=2,所以直线l1的表达式为:y=2x+4;(2)①∵直线l1:y=kx+b经过点B(k﹣2b,b﹣b2)和点C(﹣1,s).∴k(k﹣2b)+b=b﹣b2,﹣k+b=s整理得,(b﹣k)2=0,所以s=b﹣k=0;②∵直线l1:y=kx+b(k≠0)与直线l2:y=x交于点(x1,y1),∴kx1+b=x1(1﹣k)x1=b,∵b﹣k=0,∴b=k,∴x1=1k k -∵0<x1<2,∴1kk->0或1kk-<2解得:12 23k<<.答:k的取值范围是12 23k<<.【点睛】本题考查了待定系数法求一次函数解析式,交点坐标适合两个解析式是解题的关键.。

苏科版八年级上学期第三次月考数学试卷 (解析版)

苏科版八年级上学期第三次月考数学试卷 (解析版)

苏科版八年级上学期第三次月考数学试卷 (解析版)一、选择题1.对函数31y x =-,下列说法正确的是( )A .它的图象过点(3,1)-B .y 值随着x 值增大而减小C .它的图象经过第二象限D .它的图象与y 轴交于负半轴 2.如图,AD 是ABC 的角平分线,DE AB ⊥于E ,已知ABC 的面积为28.6AC =,4DE =,则AB 的长为( )A .4B .6C .8D .103.下列标志中属于轴对称图形的是( )A .B .C .D .4.由四舍五入得到的近似数48.0110⨯,精确到( )A .万位B .百位C .百分位D .个位 5.若等腰三角形的两边长分别为5和11,则这个等腰三角形的周长为( ) A .21 B .22或27 C .27 D .21或27 6.若2149x kx ++是完全平方式,则实数k 的值为( ) A .43 B .13 C .43± D .13± 7.在22、0.3•、227-38( ) A .1个 B .2个C .3个D .4个 8.用科学记数法表示0.000031,结果是( )A .53.110-⨯B .63.110-⨯C .60.3110-⨯D .73110-⨯ 9.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法:①乙车的速度是120km/h ;②m =160;③点H 的坐标是(7,80);④n =7.5.其中说法正确的是( )A .①②③B .①②④C .①③④D .①②③④ 10. 4的平方根是( )A .2B .±2C .16D .±16 11.如图,一次函数(0)y kx b k =+>的图象过点(0,2),则不等式20kx b +->的解集是( )A .0x >B .0x <C .2x <D .2x > 12.下列四组线段中,可以构成直角三角形的是( ) A .4,5,6 B .1.5,2,2.5 C .2,3,4D .1,2, 3 13.若2x -在实数范围内有意义,则x 的取值范围( ) A .x≥2 B .x≤2C .x >2D .x <2 14.我们知道,平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为( ) A .1B .2C .4D .无数 15.已知点(,)P a b 在第四象限,且点P 到x 轴的距离为3,到y 轴的距离为6,则点P 的坐标是( )A .(3,6)-B .(6,3)-C .(3,6)-D .()3,3-或(6,6)- 二、填空题16.9的平方根是_________.17.如图,已知函数y =x +b 和y =ax +3的图象交点为P ,则不等式x +b <ax +3的解集为_____.18.已知3a b +=,2ab =,代数式32232a b a b ab ++=__________.19.若3a 的整数部分为2,则满足条件的奇数a 有_______个.20.点(−1,3)关于x 轴对称的点的坐标为____.21.化简 2(0,0)3b a b a>≥结果是_______ . 22.已知函数y=x+m-2019 (m 是常数)是正比例函数,则m= ____________23.如图,ABC ∆中,B C ∠=∠,D ,E ,F 分别是BC ,AC ,AB 上的点,且BF CD =,BD CE =,55FDE ∠=︒,则A ∠=__________︒.24.如图,已知正方形ABCD 的边长为4cm ,则图中阴影部分的面积为__________2cm .25.某人一天饮水1679mL ,精确到100mL 是_____.三、解答题26.如图,一次函数1y x b =+的图像与x 轴y 轴分别交于点A 、点B ,函数1y x b =+,与243y x =-的图像交于第二象限的点C ,且点C 横坐标为3-. (1)求b 的值;(2)当120y y <<时,直接写出x 的取值范围;(3)在直线243y x =-上有一动点P ,过点P 作x 轴的平行线交直线1y x b =+于点Q ,当145PQ OC =时,求点P 的坐标.27.某天早上爸爸骑车从家送小明去上学.途中小明发现忘带作业本,于是他立即下车,下车后的小明匀速步行继续赶往学校,同时爸爸加快骑车速度,按原路匀速返回家中取作业本(拿作业本的时间忽略不计),紧接着以返回时的速度追赶小明.最后两人同时达到学校. 如图是小明离家的距离()y m 与所用时间()min x 的函数图像.请结合图像回答下列问题:(1)小明家与学校距离为______m ,小明步行的速度为______/min m ;(2)求线段AB 所表示的y 与x 之间的函数表达式;(3)在同一坐标系中画出爸爸离家的距离()y m 与所用时间()min x 的关系的图像.(标注..相关数据....) 28.如图,在ABC ∆中,110ACB ∠=,B A ∠>∠,D ,E 为边AB 上的两个点,且BD BC =,AE AC =.(1)若30A ∠=,求DCE ∠的度数;(2)DCE ∠的度数会随着A ∠度数的变化而变化吗?请说明理由.29.某商场计划购进A 、B 两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示: 类型价格进价/(元/盏) 售价/(元/盏) A 型30 45 B 型 50 70(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B 型台灯的进货数量不超过A 型台灯进货数量的4倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?30.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC 的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A 坐标为(1,3)点B 坐标为(2,1);(2)请作出△ABC 关于y 轴对称的△A 'B 'C ',并写出点C '的坐标;(3)判断△ABC 的形状.并说明理由.31.如图,在7×7网格中,每个小正方形的边长都为1.(1)建立适当的平面直角坐标系后,若点A(1,3)、C(2,1),则点B 的坐标为______;(2)△ABC 的面积为______;(3)判断△ABC 的形状,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据一次函数的性质,对每一项进行判断筛选即可.【详解】A 将x=3代入31y x =-得:3×3-1=8,A 选项错;B .一次函数k >0,y 值随着x 值增大而增大,B 选项错;C .一次函数k >0,y 值随着x 值增大而增大,当x=0时,y=-1,故此函数的图像经过一、三、四象限,C 选项错;D .当x=0时,y=-1,一次函数的图象与y 轴交于负半轴,D 项正确.【点睛】本题考查了一次函数的性质,解决本题的关键是正确理解题意,熟练掌握一次函数的性质. 2.C解析:C【解析】【分析】作DF⊥AC于F,根据角平分线的性质求出DF,根据三角形的面积公式计算即可.【详解】解:作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DF=DE=4,∴112228 AB DE AC DF即112246428 AB解得,AB=8,故选:C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.3.C解析:C【解析】【分析】根据对称轴的定义,关键是找出对称轴即可得出答案.【详解】解:根据对称轴定义A、没有对称轴,所以错误B、没有对称轴,所以错误C、有一条对称轴,所以正确D、没有对称轴,所以错误故选 C【点睛】此题主要考查了对称轴图形的判定,寻找对称轴是解题的关键.解析:B【解析】【分析】由于48.0110⨯=80100,观察数字1所在的数位即可求得答案.【详解】解:∵48.0110⨯=80100,数字1在百位上,∴ 近似数48.0110⨯精确到百位,故选 B.【点睛】此题主要考查了近似数和有效数字,熟记概念是解题的关键.5.C解析:C【解析】【分析】分两种情况分析:当腰取5,则底边为11;当腰取11,则底边为5;根据三角形三边关系分析.【详解】当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在; 当腰取11,则底边为5,则三角形的周长=11+11+5=27.故选C .【点睛】考核知识点:等腰三角形定义.理解等腰三角形定义和三角形三边关系是关键.6.C解析:C【解析】【分析】本题是已知平方项求乘积项,根据完全平方式的形式可得出k 的值.【详解】由完全平方式的形式(a±b )2=a 2±2ab+b 2可得: kx=±2•2x•13, 解得k=±43. 故选:C【点睛】本题关键是有平方项求乘积项,掌握完全平方式的形式(a±b )2=a 2±2ab+b 2是关键. 7.A【解析】【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合题意判断即可.【详解】解:在实数2、•0.3、227-中,2是无理数; •0.3循环小数,是有理数;227-是分数,是有理数;=2,是整数,是有理数;所以无理数共1个.故选:A .【点睛】此题考查了无理数的概念,解答本题的关键是掌握无理数的定义,属于基础题,要熟练掌握无理数的三种形式,难度一般.8.A解析:A【解析】【分析】根据科学记数法的表示形式10(1||10)na a ⨯≤<(n 为整数)即可求解【详解】0.000031-5=3.110⨯,故选:A .【点睛】本题主要考查了绝对值小于1的数的科学记数法,熟练掌握科学记数法的表示方法是解决本题的关键. 9.A解析:A【解析】【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B 点所用时间可确定m 的值,即可判断②,根据乙休息1h 甲所行驶的路程可判断③,由乙返回时,甲乙相距80km ,可求出两车相遇的时间即可判断④.【详解】由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.所以正确的有①②③,故选A.【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键.10.B解析:B【解析】【分析】根据平方根的意义求解即可,正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.【详解】∵(±2)2=4,∴4的平方根是±2,即2±.故选B.【点睛】本题考查了平方根的意义,如果个一个数x的平方等于a,即x2=a,那么这个数x叫做a的平方根.11.A解析:A【解析】【分析】由图知:一次函数y=kx+b的图象与y轴的交点为(0,2),且y随x的增大而增大,由此得出当x>0时,y>2,进而可得解.【详解】根据图示知:一次函数y=kx+b的图象与y轴的交点为(0,2),且y随x的增大而增大;即当x>0时函数值y的范围是y>2;因而当不等式kx+b-2>0时,x的取值范围是x>0.故选:A.【点睛】本题主要考查的是一次函数与一元一次不等式,在解题时,认真体会一次函数与一元一次不等式(组)之间的内在联系.理解一次函数的增减性是解决本题的关键.12.B解析:B【解析】试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可: A 、42+52=41≠62,不可以构成直角三角形,故本选项错误;B 、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C 、22+32=13≠42,不可以构成直角三角形,故本选项错误;D 、()2221233+=≠,不可以构成直角三角形,故本选项错误.故选B .考点:勾股定理的逆定理.13.A解析:A【解析】【分析】二次根式有意义,被开方数为非负数,即x-2≥0,解不等式求x 的取值范围.【详解】∵2x -在实数范围内有意义,∴x−2≥0,解得x≥2.故答案选A.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.14.B解析:B【解析】【分析】直接利用轴对称图形的性质画出对称轴即可.【详解】解:如图所示:平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为2条. 故选:B .【点睛】此题主要考查了轴对称图形的性质,正确掌握轴对称图形的性质是解题关键.15.B解析:B【解析】【分析】根据第四象限的点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度确定出点的横坐标与纵坐标,即可得解.【详解】∵点在第四象限且到x轴距离为3,到y轴距离为6,∴点的横坐标是6,纵坐标是-3,∴点的坐标为(6,-3).故选B.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.二、填空题16.±3【解析】分析:根据平方根的定义解答即可.详解:∵(±3)2=9,∴9的平方根是±3.故答案为±3.点睛:本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是解析:±3【解析】分析:根据平方根的定义解答即可.详解:∵(±3)2=9,∴9的平方根是±3.故答案为±3.点睛:本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.17.x<1【解析】【分析】当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b>ax+3成立;【详解】由于两直线的交点横坐标为:x=1,观察图象可知,当x<1时,x+b<ax+3;解析:x <1【解析】【分析】当直线y=x+b 的图象在直线y=ax+3的上方时,不等式x+b >ax+3成立;【详解】由于两直线的交点横坐标为:x=1,观察图象可知,当x<1时,x+b<ax+3;故答案为x<1.考点: 一次函数与一元一次不等式.18.18【解析】【分析】先提取公因式ab ,然后利用完全平方公式进行因式分解,最后将已知等式代入计算即可求出值.【详解】解:=当,时,原式,故答案为:18【点睛】此题考查了整式的混解析:18【解析】【分析】先提取公因式ab ,然后利用完全平方公式进行因式分解,最后将已知等式代入计算即可求出值.【详解】解:32232a b a b ab ++=222ab a ab b2=ab a b当3a b +=,2ab =时,原式2=23=18,故答案为:18【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.【解析】【分析】的整数部分为,则可求出a的取值范围,即可得到答案.【详解】解:的整数部分为,则a的取值范围 8<a<27所以得到奇数有:9、11、13、15、17、19、21、23、2解析:9【解析】【分析】的整数部分为2,则可求出a的取值范围,即可得到答案.【详解】2,则a的取值范围 8<a<27所以得到奇数a有:9、11、13、15、17、19、21、23、25 共9个故答案为:9【点睛】此题主要考查了估算无理数的大小,估算是我们具备的数学能力,“夹逼法”是估算的一般方法.20.(-1,-3).【解析】【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x轴对称的点的坐标为(-1,-3),故答案是:(-1,解析:(-1,-3).【解析】【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x轴对称的点的坐标为(-1,-3),故答案是:(-1,-3).【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标变化规律.21.【解析】【分析】首先将被开方数的分子和分母同时乘以3a,然后再依据二次根式的性质化简即【详解】解:原式=,故答案为:.【点睛】本题主要考查的是二次根式的性质与化简,熟练掌握相关知【解析】【分析】首先将被开方数的分子和分母同时乘以3a,然后再依据二次根式的性质化简即可.【详解】解:原式=.【点睛】本题主要考查的是二次根式的性质与化简,熟练掌握相关知识是解题的关键.22.2019【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.【详解】解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.【点睛】本题主要考查了正比解析:2019【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.【详解】解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.本题主要考查了正比例函数的定义,形如y =kx (k 是常数,k ≠0)的函数,其中k 叫做比例系数.正比例函数一定是一次函数,但一次函数不一定是正比例函数.23.【解析】【分析】根据SAS 定理判定△FBD ≌△DCE ,然后根据全等三角形的性质求得∠FDB=∠DEC ,从而求得∠DEC+∠EDC 的度数,然后求出∠C 的度数,最后利用等腰三角形的性质求∠A.【解析:70︒【解析】【分析】根据SAS 定理判定△FBD ≌△DCE ,然后根据全等三角形的性质求得∠FDB=∠DEC ,从而求得∠DEC+∠EDC 的度数,然后求出∠C 的度数,最后利用等腰三角形的性质求∠A.【详解】解:∵BF CD =,B C ∠=∠,BD CE =∴△FBD ≌△DCE∴∠FDB=∠DEC∵55FDE ∠=︒∴∠FDB++∠EDC=∠DEC+∠EDC=180°-55°=125°∴∠C=180°-125°=55°∴∠A=180°-2×55°=70°【点睛】本题考查全等三角形的判定和性质及等腰三角形的性质,掌握判定定理正确推理论证是本题的解题关键.24.8【解析】【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S 阴影=×4×4=8cm2.故答案为:8.解析:8【解析】【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S 阴影=12×4×4=8cm 2. 故答案为:8.【点睛】本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键. 25.7×103ml【解析】【分析】先用科学记数法表示,再根据精确度求解.【详解】解:1679mL=1.679×103mL,所以1679mL 精确到100mL 是1.7×103mL. 故答案为:1.解析:7×103ml【解析】【分析】先用科学记数法表示,再根据精确度求解.【详解】解:1679mL =1.679×103mL ,所以1679mL 精确到100mL 是1.7×103mL .故答案为:1.7×103mL .【点睛】本题考查了近似数和有效数字,属于基本题型,掌握求解的方法是解题关键.三、解答题26.(1)7b =(2)73x -<<-(3)点P 坐标为(3,4)-或(9,12)-【解析】【分析】(1)将点C 横坐标代入243y x =-求得点C 的纵坐标为4,再把(-3,4)代入1y x b =+求出b 即可;(2)求出点A 坐标,结合点C 坐标即可判断出当120y y <<时, x 的取值范围; (3)设P (a,-43a ),可求出Q (473a --,43a -),即可得PQ=773a +,再求出OC=5,根据145PQ OC =求出a 的值即可得出结论. 【详解】(1)把3x =-代入243y x =-, 得4y =.∴C (-3,4) 把点(3,4)C -代入1y x b =+,得7b =.(2)∵b=7∴y=x+7,当y=0时,x=-7,x=-3时,y=4,∴当120y y <<时,73x -<<-.(3)点P 为直线43y x =-上一动点, ∴设点P 坐标为4(,)3a a -. //PQ x ∵轴,∴把43y a =-代入7y x =+,得473x a =--. ∴点Q 坐标为447,33a a ⎛⎫--- ⎪⎝⎭, 477733PQ a a a ∴=++=+ 又点C 坐标为()3,4-,5OC ∴==14145PQ OC ∴== 77143a ∴+= 解之,得3a =或9a =-.∴点P 坐标为(3,4)-或(9,12)-.【点睛】理解点在直线上则它的坐标满足直线的解析式.学会用坐标表示线段的长.27.(1)2500,100;(2)100500y x =+;(3)见解析【解析】【分析】(1)看图得到小明家与学校距离为2500米,小明步行路程为(2500-1000)米,步行时间为(20-5)分,从而求出小明的步行速度;(2)用待定系数法求函数解析式;(3)由题意分析,爸爸在点(5,1000)处返回家中,再至爸爸到达学校共用时15分,行驶2500+1000=3500米,所以可以求出此时爸爸的速度为3500700153=米/分,然后求出爸爸返回家中时间为70030100037÷=分,所以爸爸于开始出发后的3065577+=分到达家中,从而画出爸爸离家的距离()ym 与所用时间()min x 的关系的图像.【详解】 解:(1)有图可知:小明家与学校距离为2500米,小明步行路程为(2500-1000)米,步行时间为(20-5)分∴小明的步行速度为25001000100205-=-米/分 故答案为:2500;100 (2)设AB 的表达式为y kx b =+,将A 、B 分别代入AB 的表达式得到51000202500k b k b +=⎧⎨+=⎩,解得100500k b =⎧⎨=⎩. ∴表达式100500y x =+.(3)由题意,爸爸在点(5,1000)处返回家中,∵最后两人同时达到学校所以爸爸从开始返回家中至到达学校共用时15分,行驶2500+1000=3500米,所以此时爸爸的速度为3500700153=米/分,爸爸返回家中时间为70030100037÷=分, 所以爸爸于开始出发后的3065577+=分到达家中 即函数图像过点(657,0)(20,2500) 如图:【点睛】本题考查一次函数的实际应用,理清图中每个关键点的实际含义,利用数形结合思想解题是本题的解题关键.28.(1)35°;(2)DCE ∠的度数不会随着A ∠度数的变化而变化,是35°.【解析】【分析】(1)根据等腰三角形性质求出∠ACE=∠AEC ,∠BCD=∠BDC ,得∠BCE=∠ACB-∠ACE =110°-75°=35°;再根据∠DCE=∠BCD-∠BCE 可得;(2)解题方法如(1),求∠ACE=∠AEC=180∠2A ;∠BCD=∠BDC=()1807018022A B --∠-∠=,∠BCE=∠ACB-∠ACE ,所以∠DCE=∠BCD-∠BCE=1102A +∠-(110°-180∠2A ). 【详解】因为BD BC =,AE AC =所以∠ACE=∠AEC=180180307522A -∠-== ; ∠BCD=∠BDC=180180407022B -∠-==所以∠BCE=∠ACB-∠ACE=110°-75°=35°所以∠DCE=∠BCD-∠BCE=70°-35°=35°;(2)DCE ∠的度数不会随着A ∠度数的变化而变化,理由:因为在ABC ∆中,110ACB ∠=,所以18011070;B A A ∠=--∠=-∠因为BD BC =,AE AC =所以∠ACE=∠AEC=180∠2A ;∠BCD=∠BDC=()18070180110222A B A --∠-∠+∠== 所以∠BCE=∠ACB-∠ACE=110°-180∠2A 所以∠DCE=∠BCD-∠BCE=1102A +∠-(110°-180∠2A )=35° 故DCE ∠的度数不会随着A ∠度数的变化而变化,是35°.【点睛】考核知识点:等腰三角形.理解等腰三角形边角关系是关键.29.(1)75盏;25盏 (2)购进A 型台灯20盏,B 型台灯80盏;1900元【解析】【分析】(1)设商场应购进A 型台灯x 盏,表示出B 型台灯为(100﹣x )盏,然后根据进货款=A 型台灯的进货款+B 型台灯的进货款列出方程求解即可;(2)设商场销售完这批台灯可获利y 元,根据获利等于两种台灯的获利总和列式整理,再求出x 的取值范围,然后根据一次函数的增减性求出获利的最大值.【详解】解:(1)设购进A 型台灯x 盏,则购进B 型台灯(100﹣x )盏,由题意可得:30x +50(100﹣x )=3500∴x =75∴100﹣x =25答:购进A 型台灯75盏,购进B 型台灯25盏;(2)设商场销售完这批台灯可获利y 元,y =15x +20(100﹣x )=﹣5x +2000又∵100﹣x ≤4x ,∴x ≥20∵k =﹣5<0,∴y 随x 的增大而减小∴当x =20时,y 取得最大值,最大值是1900.答:购进A 型台灯20盏,购进B 型台灯80盏时获利最多,此时利润为1900元.【点睛】本题考查了一次函数的应用,主要利用了一次函数的增减性,(2)题中理清题目数量关系并列式求出x 的取值范围是解题的关键.30.(1)如图见解析;(2)如图见解析,C'的坐标为(﹣5,5);(3)△ABC 是直角三角形.【解析】试题分析:(1)根据A B 、两点的坐标建立平面直角坐标系即可;(2)作出各点关于y 轴的对称点,顺次连接即可;(3)根据勾股定理的逆定理判断出ABC 的形状即可.试题解析:(1)如图所示:(2)如图所示:'''A B C 即为所求:C '的坐标为()55-,;(3)2221454162091625AB AC BC =+==+==+=,,,∴222AB AC BC +=,∴ABC 是直角三角形.点睛:一个三角形两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.31.(1)(-2,-1);(2)5;(3)△ABC 是直角三角形,∠ACB=90°.【解析】【分析】(1)首先根据A和C的坐标确定坐标轴的位置,然后确定B的坐标;(2)利用矩形的面积减去三个直角三角形的面积求解;(3)利用勾股定理的逆定理即可作出判断.【详解】解:(1)则B的坐标是(-2,-1).故答案是(-2,-1);(2)S△ABC=4×4-12×4×2-12×3×4-12×1×2=5,故答案是:5;(3)∵AC2=22+12=5,BC2=22+42=20,AB2=42+32=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°.【点睛】本题考查了平面直角坐标系确定点的位置以及勾股定理的逆定理,正确确定坐标轴的位置是关键.。

苏科版八年级上学期第三次月考数学试卷 (解析版)

苏科版八年级上学期第三次月考数学试卷 (解析版)

苏科版八年级上学期第三次月考数学试卷 (解析版) 一、选择题 1.变量x 、y 有如下的关系,其中y 是x 的函数的是( )A .28y x =B .||y x =C .1y x =D .412x y = 2.下列四组数,可作为直角三角形三边长的是A .456cm cm cm 、、B .123cm cm cm 、、C .234cm cm cm 、、D .123cm cm cm 、、3.估计11的值应在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间 4.如图,△ABC 中,AB =AC ,AD 是∠BAC 的平分线.已知AB =5,AD =3,则BC 的长为( )A .5B .6C .8D .105.如图,我们知道数轴上的点与实数一一对应,由图中的信息可知点P 表示的数是( )A .132--B .132-+C .132-D .13-6.下列根式中是最简二次根式的是( )A .23B .3C .9D .127.下列各组数不是勾股数的是( )A .3,4,5B .6,8,10C .4,6,8D .5,12,138.下列图案中,属于轴对称图形的是( )A .B .C .D .9.若分式12x x -+的值为0,则x 的值为( )A.1 B.2-C.1-D.210.下列标志中,不是轴对称图形的是()A.B.C.D.11.如图,若BD是等边△ABC的一条中线,延长BC至点E,使CE=CD=x,连接DE,则DE 的长为()A.32x B.23x C.33x D.3x12.如果等腰三角形两边长是5cm和2cm,那么它的周长是()A.7cm B.9cm C.9cm或12cm D.12cm13.下列以a、b、c为边的三角形中,是直角三角形的是()A.a=4,b=5,c=6 B.a=5,b=6,c=8C.a=12,b=13,c=5 D.a=1,b=1,c=314.满足下列条件的△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5 B.a:b:c=1:2:3C.∠A=∠B=2∠C D.a=1,b=2,c=315.2的算术平方根是()A.4 B.±4 C.2D.2±二、填空题16.在一个不透明的袋子中装有2个黄球和3个红球,每个除颜色外完全相同,将球摇匀从中任取一球:①恰好取出白球;②恰好取出红球;③恰好取出黄球,根据你的判断,将这些事件按发生的可能性从小到大顺序排列___________(只需填写序号).17.如图①的长方形ABCD中, E在AD上,沿BE将A点往右折成如图②所示,再作AF⊥CD于点F,如图③所示,若AB=2,BC=3,∠BEA=60°,则图③中AF的长度为_______.18.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是_____.19.在平面直角坐标系中,将点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为_________.20.如图,正比例函数y=kx 与反比例函数y=6x的图象有一个交点A(2,m),AB ⊥x 轴于点B ,平移直线y=kx 使其经过点B ,得到直线l ,则直线l 对应的函数表达式是_________ .21.在平面直角坐标系中,已知一次函数312y x =-+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x >,则1y ______________2y 22.等腰三角形的顶角为76°,则底角等于__________.23.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB 绕点B 顺时针旋转90°至CB ,那么点C 的坐标是 .24.如图,等边三角形的顶点A (1,1)、B (3,1),规定把等边△ABC “先沿y 轴翻折,再向下平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC 的顶点C 的坐标为____.25.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,点点F作DE∥BC,交AB于点D,交AC于点E。

苏科版八年级(上)第三次月考数学试卷(含答案)

苏科版八年级(上)第三次月考数学试卷(含答案)

苏科版八年级(上)第三次月考数学试卷(含答案) 一、选择题 1.将直角三角形的三条边的长度都扩大同样的倍数后得到的三角形( )A .仍是直角三角形B .一定是锐角三角形C .可能是钝角三角形D .一定是钝角三角形2.如图所示的两个三角形全等,图中的字母表示三角形的边长,则1∠的度数为( )A .82°B .78°C .68°D .62°3.下列实数中,无理数是( )A .227B .3πC .4-D .3274.估计11的值应在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间5.对函数31y x =-,下列说法正确的是( )A .它的图象过点(3,1)-B .y 值随着x 值增大而减小C .它的图象经过第二象限D .它的图象与y 轴交于负半轴6.7的平方根是( )A .±7B .7C .-7D .±7 7.已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,两函数y =x +5与y =﹣12x ﹣1的图像的交点坐标为( ) A .(﹣4,1) B .(1,﹣4) C .(4,﹣1) D .(﹣1,4)8.如图,将△ABC 折叠,使点A 与BC 边中点D 重合,折痕为MN ,若AB=9,BC=6,则△DNB 的周长为( )A .12B .13C .14D .15 9.已知一次函数y=kx+b ,函数值y 随自变置x 的增大而减小,且kb <0,则函数y=kx+b的图象大致是( )A .B .C .D .10.如图(1),在四边形ABCD 中,AB CD ∥,90ABC ∠=︒,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,ABP ∆的面积为y ,如果y 关于x 的函数图象如图(2)所示,则BCD ∆的面积是( )A .6B .5C .4D .3 11.点(2,-3)关于原点对称的点的坐标是( )A .(-2,3)B .(2,3)C .(-3,-2)D .(2,-3) 12.如图所示,三角形纸片被正方形纸板遮住了一部分,小明根据所学知识画出了一个与该三角形完全重合的三角形,那么这两个三角形完全重合的依据是( )A .SSSB .SASC .AASD .ASA13.估算x =5值的大小正确的是( )A .0<x <1B .1<x <2C .2<x <3D .3<x <414.如图,在一张长方形纸片上画一条线段AB ,将右侧部分纸片四边形ABCD 沿线段AB 翻折至四边形ABC 'D ',若∠ABC =58°,则∠1=( )A .60°B .64°C .42°D .52°15.4,﹣3.14,227,2π3 )A .1个B .2个C .3个D .4个二、填空题16.若关于x 的方程233x m x +=-的解不小于1,则m 的取值范围是_______. 17.因式分解:24ax ay -=__________.18.点(2,1)P 关于x 轴对称的点P'的坐标是__________.19.若直线y x m =+与直线24y x =-+的交点在y 轴上,则m =_______.20.甲、乙二人做某种机械零件.已知甲每小时比乙多做4个,甲做60个所用的时间比乙做40个所用的时间相等,则乙每小时所做零件的个数为_____.21.如图,在Rt △ABC 中,∠A=90°,∠ABC 的平分线BD 交AC 于点D ,AD=3,BC=10,则△BDC 的面积是_____.22.若一次函数y x a =-+与y x b =+的图像的交点坐标(,1010)m ,则a b +=__________.23.如图,在坐标系中,一次函数21y x =-+与一次函数y x k =+的图像交于点(2,5)A -,则关于x 的不等式21x k x +>-+的解集是__________.24.已知A (x 1,y 1)、B (x 2,y 2)是一次函数y =(2﹣m )x +3图象上两点,且(x 1﹣x 2)(y 1﹣y 2)<0,则m 的取值范围为_____.25.若等腰三角形的顶角为30°,那么这个等腰三角形的底角为_____°三、解答题26.在如图所示的正方形网格中,每个小正方形的边长都是1,已知三角形ABC 的三个顶点的坐标分别为(3,6)A -,(1,2)B -,(5,4)C -(1)作出三角形ABC 关于y 轴对称的三角形111A B C(2)点1A 的坐标为 .(3)①利用网络画出线段AB 的垂直平分线L ;②P 为直线上L 上一动点,则PA PC +的最小值为 .27.已知函数y 1=2x -4与y 2=-2x +8的图象,观察图象并回答问题:(1)x 取何值时,2x -4>0?(2)x 取何值时,-2x +8>0?(3)x 取何值时,2x -4>0与-2x +8>0同时成立?(4)求函数y 1=2x -4与y 2=-2x +8的图象与x 轴所围成的三角形的面积?28.已知一次函数y =kx +3的图象经过点(1,4).(1)求这个一次函数的解析式;(2)求关于x 的不等式kx +3≤6的解集.29.已知一次函数y kx b =+的图象经过点()3,3P ,()1,3Q -.(1)求这个一次函数表达式;(2)若函数y kx b =+的图象与x 轴的交点是A ,与y 轴交于点B ,求ABO ∆的面积(其中O 为坐标原点).30.客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,需付的行李费y (元)是行李质量x (kg )的一次函数,这个函数的图象如图所示.(1)求y 关于x 的函数表达式;(2)求旅客最多可免费携带行李的质量.31.计算或求值(1)计算:(2a+3b)(2a﹣b);(2)计算:(2x+y﹣1)2;(3)当a=2,b=﹣8,c=5时,求代数式242b b aca-+-的值;(4)先化简,再求值:(m+252m--)243mm-⨯-,其中m=12-.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】由于三角形是直角三角形,所以三边满足勾股定理,当各边扩大或者缩小k倍时,再利用勾股定理的逆定理判断三角形的形状.【详解】设直角三角形的直角边分别为a、b,斜边为c.则满足a2+b2=c2.若各边都扩大k倍(k>0),则三边分别为ak、bk、ck(ak)2+(bk)2=k2(a2+b2)=(ck)2∴三角形仍为直角三角形.故选:A.【点睛】本题主要考查了勾股定理和勾股定理的逆定理.勾股定理:直角三角形的两直角边的平方和等于斜边的平方;勾股定理的逆定理:若三角形两边的平方和等于第三边的平方,则该三角形是直角三角形.2.B解析:B【解析】直接利用全等三角形的性质得出∠1=∠2进而得出答案.【详解】∵如图是两个全等三角形,∴∠1=∠2=180°−40°−62°=78°.故选:B.【点睛】此题主要考查了全等三角形的性质,正确得出对应角是解题关键.3.B解析:B【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】A.227是有理数,不符合题意;B.3π是无理数,符合题意;C.4-=-2,4-是有理数,不符合题意;327327是有理数,不符合题意.故选:B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π2,0.8080080008…(每两个8之间依次多1个0)等形式.4.B解析:B【解析】【分析】直接利用32=9,42=1611的取值范围.【详解】∵32=9,42=16,11在3和4之间.【点睛】本题考查了估算无理数的大小,正确得出接近无理数的有理数是解题的关键.5.D解析:D【解析】【分析】根据一次函数的性质,对每一项进行判断筛选即可.【详解】A 将x=3代入31y x =-得:3×3-1=8,A 选项错;B .一次函数k >0,y 值随着x 值增大而增大,B 选项错;C .一次函数k >0,y 值随着x 值增大而增大,当x=0时,y=-1,故此函数的图像经过一、三、四象限,C 选项错;D .当x=0时,y=-1,一次函数的图象与y 轴交于负半轴,D 项正确.故选D.【点睛】本题考查了一次函数的性质,解决本题的关键是正确理解题意,熟练掌握一次函数的性质. 6.D解析:D【解析】【分析】根据乘方运算,可得一个正数的平方根.【详解】)2=7,∴7.故选:D .【点睛】本题考查了平方根,利用了乘方运算求一个正数的平方根,注意一个正数有两个平方根.7.A解析:A【解析】【分析】根据一次函数与二元一次方程组的关系进行解答即可.【详解】解:∵二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩∴在同一平面直角坐标系中,两函数y =x +5与y =﹣12x ﹣1的图像的交点坐标为:(-4,1)故选:A.【点睛】本题考查的是一次函数与二元一次方程组的关系,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.8.A解析:A【解析】【分析】根据中点的定义可得BD=3,由折叠的性质可知DN=AN,即DN+BN=AB=9,可得△DNB的周长.【详解】解:∵D是BC的中点,BC=6,∴BD=3,由折叠的性质可知DN=AN,∴△DNB的周长=DN+BN+BD=AN+BN+BD=AB+BD=9+3=12.故选A.【点睛】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等9.A解析:A【解析】试题分析:根据一次函数的性质得到k<0,而kb<0,则b>0,所以一次函数y=kx+b的图象经过第二、四象限,与y轴的交点在x轴是方.解:∵一次函数y=kx+b,y随着x的增大而减小,∴k<0,∴一次函数y=kx+b的图象经过第二、四象限;∵kb<0,∴b>0,∴图象与y轴的交点在x轴上方,∴一次函数y=kx+b的图象经过第一、二、四象限.故选A.考点:一次函数的图象.10.D解析:D【解析】【分析】根据图1可知,可分P在BC上运动和P在CD上运动分别讨论,由此可得BC和CD的值,进而利用三角形面积公式可得BCD∆的面积.【详解】解:动点P从直角梯形ABCD的直角顶点B出发,沿BC,CD的顺序运动,当P在BC段运动,△ABP面积y随x的增大而增大;当P在CD段运动,因为△ABP的底边不变,高不变,所以面积y不变化.由图2可知,当0<x<2时,y随x的增大而增大;当2<x<5时,y的值不随x变化而变化.综上所述,BC=2,CD=5-2=3,故1123322BCDS CD BC∆.故选:D.【点睛】本题考查动点问题的函数图象,动点的图象问题是中考的常考题型,做此类题需要弄清横纵坐标的代表量,并观察确定图象分为几段,弄清每一段自变量与因变量的变化情况及变化的趋势,主要是正负增减及变化的快慢等. 匀速变化呈现直线段的形式,平行于x轴的直线代表未发生变化.11.A解析:A【解析】【分析】根据关于原点对称点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:在平面直角坐标系中,关于原点对称的两点横坐标和纵坐标均满足互为相反数,∴点(2,-3)关于原点对称的点的坐标是(-2,3).故选A.【点睛】本题考查了关于原点对称点的坐标,熟练掌握坐标特征是解题的关键.12.D解析:D【解析】【分析】图中三角形没被污染的部分有两角及夹边,根据全等三角形的判定方法解答即可.【详解】解:由图可知,三角形两角及夹边还存在,∴根据可以根据三角形两角及夹边作出图形,所以,依据是ASA.故选:D.【点睛】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.13.C解析:C【解析】【分析】.【详解】∴23,故选:C.【点睛】此题主要考查无理数的估值,熟练掌握,即可解题.14.B解析:B【解析】【分析】由平行线的性质可得∠BAD=122°,由折叠的性质可得∠BAD=∠BAD'=122°,即可求解.【详解】∵AD∥BC,∴∠ABC+∠BAD=180°,且∠ABC=58°,∴∠BAD=122°,∵将右侧部分纸片四边形ABCD沿线段AB翻折至四边形ABC'D',∴∠BAD=∠BAD'=122°,∴∠1=122°-58°=64°,故选:B.【点睛】此题主要考查平行的性质和折叠的性质,解题关键是借助等量关系进行转换.15.B解析:B【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】无理数有2π2个.故选:B.【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.二、填空题16.m≥-8 且m≠-6【解析】【分析】首先求出关于x 的方程的解,然后根据解不小于1列出不等式,即可求出.【详解】解:解关于x 的方程得x=m+9因为的方程的解不小于,且x≠3所以m+解析:m ≥-8 且m≠-6【解析】【分析】首先求出关于x 的方程233x m x +=-的解,然后根据解不小于1列出不等式,即可求出. 【详解】解:解关于x 的方程233x m x +=- 得x=m+9 因为x 的方程233x m x +=-的解不小于1,且x ≠3 所以m+9≥1 且m+9≠3解得m ≥-8 且m≠-6 .故答案为:m ≥-8 且m≠-6【点睛】 此题主要考查了分式方程的解,是一个方程与不等式的综合题目,重点注意分式方程存在的意义分母不为零.17.【解析】【分析】运用提公因式法求解,公因式是2a.【详解】故答案为:【点睛】考核知识点:因式分解.掌握提公因式法是关键.解析:()22a x y -【分析】运用提公因式法求解,公因式是2a.【详解】()2422ax ay a x y -=-故答案为:()22a x y -【点睛】考核知识点:因式分解.掌握提公因式法是关键.18.(2,-1)【解析】【分析】关于轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】点关于轴对称的点的坐标是(2,-1)故答案为:(2,-1)【点睛】考核知识点:用坐标表示轴对称.解析:(2,-1)【解析】【分析】关于x 轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】点(2,1)P 关于x 轴对称的点P'的坐标是(2,-1)故答案为:(2,-1)【点睛】考核知识点:用坐标表示轴对称. 理解:关于x 轴对称的点的坐标的特点是:横坐标不变,纵坐标互为相反数;19.4【解析】【分析】先求出直线与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入即可求出m 的值.【详解】解:当x=0时,=4,则直线与y 轴的交点坐标为(0,4),把(解析:4【解析】先求出直线24y x =-+与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入y x m =+即可求出m 的值.【详解】解:当x=0时,24y x =-+=4,则直线24y x =-+与y 轴的交点坐标为(0,4), 把(0,4)代入y x m =+得m=4,故答案为:4.【点睛】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.20.8【解析】【分析】【详解】解:设乙每小时做x 个,则甲每小时做(x+4)个,甲做60个所用的时间为,乙做40个所用的时间为,列方程为:=,解得:x=8,经检验:x=8是原分式方程的解,解析:8【解析】【分析】【详解】解:设乙每小时做x 个,则甲每小时做(x+4)个,甲做60个所用的时间为604x +,乙做40个所用的时间为40x , 列方程为:604x +=40x, 解得:x=8,经检验:x=8是原分式方程的解,且符合题意,所以乙每小时做8个,故答案为8.【点睛】本题考查了列分式方程解实际问题的运用,解答时甲做60个零件所用的时间与乙做90个零件所用的时间相等建立方程是关键.21.15【分析】试题分析:过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【详解】解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分解析:15【解析】【分析】试题分析:过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【详解】解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,∴AD=DE=3,∴△BDC的面积是:12×DE×BC=12×10×3=15,故答案为15.考点:角平分线的性质.22.2020【解析】【分析】把分别代入与,然后把两个式子相加即可求解. 【详解】把分别代入与,得-m+a=1010①,m+b=1010②,①+②得故答案为:2020.解析:2020【解析】【分析】把(,1010)m 分别代入y x a =-+与y x b =+,然后把两个式子相加即可求解.【详解】把(,1010)m 分别代入y x a =-+与y x b =+,得-m+a=1010①,m+b=1010②,①+②得a+b=2020.故答案为:2020.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适应此函数的解析式是解答此题的关键.23.【解析】【分析】根据图像解答即可.【详解】由图像可知,关于的不等式的解集是.故答案为:.【点睛】本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细解析:2x >-【解析】【分析】根据图像解答即可.【详解】由图像可知,关于x 的不等式21x k x +>-+的解集是2x >-.故答案为:2x >-.【点睛】本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.函数y 1>y 2时x 的范围是函数y 1的图象在y 2的图象上边时对应的未知数的范围,反之亦然.24.m >2.【解析】【分析】根据(x1﹣x2)(y1﹣y2)<0,得出y 随x 的增大而减小,再根据2﹣m <0,求出其取值范围即可.【详解】(x1﹣x2)(y1﹣y2)<0,即:或,也就是,y解析:m >2.【解析】【分析】根据(x 1﹣x 2)(y 1﹣y 2)<0,得出y 随x 的增大而减小,再根据2﹣m <0,求出其取值范围即可.【详解】(x 1﹣x 2)(y 1﹣y 2)<0,即:121200x x y y >⎧⎨<⎩﹣﹣或121200x x y y <⎧⎨>⎩﹣﹣, 也就是,y 随x 的增大而减小,因此,2﹣m <0,解得:m >2,故答案为:m >2.【点睛】本题主要考查了一次函数的图象和性质,掌握一次函数的增减性以及适当的转化是解决问题的关键.25.75【解析】【分析】根据等腰三角形两个底角相等可得解.【详解】依题意知,等腰三角形两个底角相等.当顶角=30°时,两底角的和=180°-30°=150°.所以每个底角=75°.故答案解析:75【解析】【分析】根据等腰三角形两个底角相等可得解.【详解】依题意知,等腰三角形两个底角相等.当顶角=30°时,两底角的和=180°-30°=150°.所以每个底角=75°.故答案为75.考点:三角形内角和与等腰三角形性质.点评:本题难度较低.已知角为顶角,根据等腰三角形性质与三角形内角和性质计算即可.三、解答题26.(1)见解析(2)点1A 的坐标为(3,6);(3)①见解析②20.【解析】【分析】(1)首先确定A 、B 、C 三点关于y 轴的对称点位置A 1、B 1、C 1,再连接即可得到△ABC 关于y 轴对称的△A 1B 1C 1;(2)根据平面直角坐标系写出点1A 的坐标;(3)①根据垂直平分线的定义画图即可;②根据轴对称的性质以及两点之间线段最短得PA PC +的最小值为BC 的长,再由勾股定理求解即可.【详解】(1)如图所示:(2)点1A 的坐标为(3,6);(3)①如图所示:②PA PC +的最小值为BC 的长,即2224+=20【点睛】此题主要考查了作图--轴对称变换,以及三角形的面积,关键是掌握几何图形都可看作是由点组成,画一个图形的轴对称图形时,就是确定一些特殊的对称点.27.(1)x >2;(2)x <4 ;(3)2<x <4;(4)2(平方单位)【解析】【分析】利用图象可解决(1)、(2)、(3);利用图象写出两函数图象的交点坐标,然后根据三角形面积公式计算函数y 1=2x -4与y 2=-2x +8的图象与x 轴所围成的三角形的面积.【详解】由图可知:(1)当x >2时,2x−4>0;(2)当x <4时,-2x +8>0;(3)由(1)(2)可知当2<x <4时,2x−4>0与−2x +8>0同时成立;(4)联立y 1=2x -4与y 2=-2x +8,解得x=3,y=2,∴函数y 1=2x -4与y 2=-2x +8的图象的交点坐标为(3,2),所以函数y 1=2x -4与y 2=-2x +8的图象与x 轴所围成的三角形的面积=12×(4−2)×2=2(平方单位).【点睛】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y =kx +b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.解决本题的关键是准确画出两函数图象.28.(1)y =x +3;(2)x ≤3.【解析】 试题分析:()1把14x y ==,代入3y kx =+, 求出k 的值是多少,即可求出这个一次函数的解析式.()2首先把()1中求出的k 的值代入36kx +≤,然后根据一元一次不等式的解法,求出关于x 的不等式36kx +≤,的解集即可.试题解析:(1)∵一次函数y =kx +3的图象经过点(1,4),∴ 4=k +3,∴ k =1,∴ 这个一次函数的解析式是:y =x +3.(2)∵ k =1,∴ x +3≤6,∴ x ≤3,即关于x 的不等式kx +3≤6的解集是:x ≤3.29.(1)36y x =-;(2)6.【解析】【分析】(1)将P 点和Q 点分别代入,直接利用待定系数法即可求得一次函数解析式;(2)先分别求得A 、B 的坐标,由坐标即可求得AO 和BO 的长度,继而求得ABO ∆的面【详解】解:(1)分别将()3,3P ,()1,3Q -代入y kx b =+得333k b k b =+⎧⎨-=+⎩,解得33k b =⎧⎨=-⎩, ∴一次函数的表达式为:36y x =-;(2)当y=0时,036x =-,解得2x =,故(2,0)A ,OA=2,当x=0时,066y =-=-,故(0,6)B -,OB=6,∴ABO ∆的面积为:1126 6.22OA OB ⋅=⨯⨯= 【点睛】本题考查待定系数法求一次函数解析式,熟知待定系数法求一次函数解析式一般步骤是解决此题的关键.30.(1)()12105y x x =->(2)10kg 【解析】【分析】(1)根据(30,4)、(40,6)利用待定系数法,即可求出当行李的质量x 超过规定时,y 与x 之间的函数表达式;(2)令y =0,求出x 值,此题得解.【详解】解:(1)设y 与x 的函数表达式为y =kx +b ,由题意可得:304406k b k b +=⎧⎨+=⎩解得:152k b ⎧=⎪⎨⎪=-⎩ ∴125y x =-(x >10); (2)当y =0,12=05x -, ∴x =10, ∴旅客最多可免费携带行李的质量为10kg .【点睛】本题主要考查求一次函数解析式,熟练掌握利用待定系数法求解函数表达式是解题的关键.31.(1)4a 2+4ab ﹣3b 2;(2)4x 2+4xy+y 2﹣4x ﹣2y ﹣1;(34)﹣2m ﹣6,-【解析】【分析】(1)利用多项式乘多项式展开,然后合并即可;(2)利用完全平方公式计算;(3)先计算出24b ac -,然后计算代数式的值;(4)先把括号内通分,再把分子分母因式分解后约分得到原式26m =--,然后把m 的值代入计算即可.【详解】解:(1)原式224263a ab ab b =-+-22443a ab b =+-;(2)原式2(2)2(2)1x y x y =+-+-2244421x xy y x y =++---;(3)224(8)42524b ac -=--⨯⨯=,= (4)原式(2)(2)52(2)[]23m m m m m +---=--- (3)(3)2(2)23m m m m m +--=--- 2(3)m =-+26m =--,当12m =-时,原式12()652=-⨯--=-. 【点睛】本题考查了多项式乘法和、分式的化简求值以及代数式求值.掌握整式乘法和分式运算法则熟练运算是解题关键.。

苏科版八年级(上)第三次月考数学试卷(含答案)

苏科版八年级(上)第三次月考数学试卷(含答案)

苏科版八年级(上)第三次月考数学试卷(含答案)一、选择题1.在▱ABCD 中,已知∠A ﹣∠B=20°,则∠C=( ) A .80°B .90°C .100°D .110°2.如图,直线(0)y x b b =+>分别交x 轴、y 轴于点A 、B ,直线(0)y kx k =<与直线(0)y x b b =+>交于点C ,点C 在第二象限,过A 、B 两点分别作AD OC ⊥于D ,BE OC ⊥于E ,且8BE BO +=,4=AD ,则ED 的长为( )A .2B .32C .52D .13.下列长度的三条线段能组成直角三角形的是( ) A .3,4,4B .3,4,5C .3,4,6D .3,4,84.下列四组线段a ,b ,c ,能组成直角三角形的是( ) A .1a =,2b =,3c = B .1a =,2b =,3c =C .2a =,3b =,4c =D .4a =,5b =,6c =5.如图,矩形ABCD 中,AB =6,BC =12,如果将该矩形沿对角线BD 折叠,那么图中阴影部分△BED 的面积是 ( )A .18B .22.5C .36D .456.如图,D 为ABC ∆边BC 上一点,AB AC =,56BAC ∠=︒,且BF DC =,EC BD =,则EDF ∠等于( )A .62︒B .56︒C .34︒D .124︒7.以下列各组线段为边作三角形,不能构成直角三角形的是( )A .1,25B .3,4,5C .3,6,9D .37618.如图,给出下列四组条件:①AB =DE ,BC =EF ,AC =DF ;②AB =DE ,∠B =∠E ,BC =EF ;③∠B =∠E ,BC =EF ,∠C =∠F ;④AB =DE ,AC =DF ,∠B =∠E .其中能使△ABC ≌△DEF 的条件有( )A .1组B .2组C .3组D .4组 9.当12(1)a -+与13(2)a --的值相等时,则( )A .5a =-B .6a =-C .7a =-D .8a =-10.下列各点中,在函数y=-8x图象上的是( ) A .(﹣2,4) B .(2,4) C .(﹣2,﹣4) D .(8,1) 11.在直角坐标系中,将点(-2, -3)向左平移2个单位长度得到的点的坐标是( ) A .(-2,-5)B .(-4,-3)C .(0,-3)D .(-2,1)12.下列四个图形中轴对称图形的个数是( )A .1B .2C .3D .413.下列说法正确的是( ) A .(﹣3)2的平方根是3 B .16=±4 C .1的平方根是1D .4的算术平方根是214.甲、乙两地相距80km ,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20km/h ,并继续匀速行驶至乙地,汽车行驶的路程y (km )与时间x (h )之间的函数关系如图所示,该车到达乙地的时间是当天上午( )A .10:35B .10:40C .10:45D .10:5015.已知点(,)P a b 在第四象限,且点P 到x 轴的距离为3,到y 轴的距离为6,则点P 的坐标是( ) A .(3,6)-B .(6,3)-C .(3,6)-D .()3,3-或(6,6)-二、填空题16.若点(1,35)P m m +-在x 轴上,则m 的值为________.17.在△ABC 中,AB=AC ,∠BAC=100°,点D 在BC 边上,连接AD ,若△ABD 为直角三角形,则∠ADC 的度数为_____.18.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点F ,过F 作//DE BC ,交AB 于点D ,交AC 于点E .若3,5BD DE ==,则线段EC 的长为______.19.点A (2,-3)关于x 轴对称的点的坐标是______.20.用四舍五入法,对3.5952取近似值,精确到0.01,结果为______.21.如图,在平面直角坐标系xOy 中,点A 的坐标为(1,3),点B 的坐标为(2,-1),点C 在同一坐标平面中,且△ABC 是以AB 为底的等腰三角形,若点C 的坐标是(x ,y ),则x 、y 之间的关系为y =______(用含有x 的代数式表示).22.已知x =a 时,多项式x 2+6x+k 2的值为﹣9,则x =﹣a 时,该多项式的值为_____. 23.如图,等腰直角三角形ABC 中, AB=4 cm.点 是BC 边上的动点,以AD 为直角边作等腰直角三角形ADE.在点D 从点B 移动至点C 的过程中,点E 移动的路线长为________cm.24.平行四边形的周长是20,两条对角线相交于O ,△AOB 的周长比△BOC 的周长大2,则AB 的长为_____.25.如图,点 P 是∠AOB 内一点,PE ⊥OA ,PF ⊥OB ,垂足分别为 E 、F ,若 PE =PF ,且∠OPF =72°,则∠AOB 的度数为__________.三、解答题26.小丽骑车从甲地到乙地,小明骑车从乙地到甲地,小丽的速度小于小明的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离(km)y与小丽的行驶时间(h)x之间的函数关系.请你根据图像进行探究:(1)小丽的速度是______km/h,小明的速度是_________km/h;(2)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;(3)若两人相距20km,试求小丽的行驶时间?27.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1沿x轴向右平移4个单位长度后得到的△A2B2C2;(3)如果AC上有一点M(a,b)经过上述两次变换,那么对应A2C2上的点M2的坐标是______.28.如图,在△ABC中,∠ACB=90°,∠B=30°,CD,CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2,求△CDE的周长.29.计算或求值(1)计算:(2a+3b)(2a﹣b);(2)计算:(2x+y﹣1)2;(3)当a=2,b=﹣8,c=5时,求代数式242b b aca-+-的值;(4)先化简,再求值:(m+252m --)243m m -⨯-,其中m =12-. 30.如图,△ABC 中,∠ABC =30°,∠ACB =50°,DE 、FG 分别为AB 、AC 的垂直平分线,E 、G 分别为垂足. (1)求∠DAF 的度数;(2)若△DAF 的周长为10,求BC 的长.31.已知:如图,ABC △和ADE △均为等腰直角三角形,90BAC DAE ∠=∠=︒,连结AC ,BD ,且D 、E 、C 三点在一直线上,2AD =,2DE EC =.(1)求证:ADB AEC △≌△; (2)求线段BC 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】由四边形ABCD 是平行四边形,可得∠A+∠B=180°,又由∠A-∠B=20°,即可求得∠A 的度数,继而求得答案. 【详解】解:∵四边形ABCD 是平行四边形, ∴∠A+∠B=180°, ∵∠A-∠B=20°, ∴∠A=100°, ∴∠C=∠A=100°. 故选:C . 【点睛】此题考查了平行四边形的性质.注意平行四边形的对角相等,邻角互补.2.D解析:D 【解析】 【分析】图中直线y=x+b 与x 轴负半轴,y 轴正半轴分别交于A ,B 两点,可以根据两点的坐标得出OA=OB ,由此可证明△AOD ≌△OBE ,证出OC=AD ,BE=OD ,在Rt △OBE 中,运用勾股定理可求出BE 的长,再根据线段的差可求出DE 的长. 【详解】直线y=x+b(b >0)与x 轴的交点坐标A 为(-b ,0)与y 轴的交点坐标B 为(0,-b ), 所以,OA=OB , 又∵AD ⊥OC ,BE ⊥OC , ∴∠ADO=∠BEO=90°,∵∠DOA+∠DAO=90°,∠DOA+∠DOB=90°, ∴∠DAO=∠DOB , 在△DAO 和△BOE 中,DAO BOE ADO BEO OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DAO ≌EOB , ∴OD=BE.AD=OE , ∵AD=4, ∴OE=4, ∵BE+BO=8, ∴B0=8-BE ,在Rt △OBE 中,222BO BE OE =+, ∴222(8)BE BE OE -=+ 解得,BE=3, ∴OD=3, ∴ED=OE-OD=4-3=1. 【点睛】此题主要考查了一次函数的应用以及全等三角形的判定与性质,根据全等三角形的性质求出OD=BE 是解题的关键.3.B解析:B 【解析】 【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可. 【详解】解:A 、∵2223+44≠,∴三条线段不能组成直角三角形,错误; B 、∵2223+4=5,∴三条线段能组成直角三角形,正确; C 、∵2223+46≠,∴三条线段不能组成直角三角形,错误; D 、∵2223+48≠,∴∴三条线段不能组成直角三角形,错误; 故选:B . 【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.4.B解析:B 【解析】 【分析】根据如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形进行分析即可. 【详解】A .12+22≠32,不能组成直角三角形,故此选项错误;B .2221+,能组成直角三角形,故此选项正确;C .32+22≠42,不能组成直角三角形,故此选项错误;D .42+52≠62,不能组成直角三角形,故此选项错误. 故选:B . 【点睛】本题考查了勾股定理逆定理,关键是掌握判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.5.B解析:B 【解析】 【分析】易得BE =DE ,利用勾股定理求得DE 的长,利用三角形的面积公式可得阴影部分的面积. 【详解】根据翻折的性质可知:∠EBD =∠DBC .又∵AD ∥BC ,∴∠ADB =∠DBC ,∴∠ADB =∠EBD ,∴BE =DE .设BE =DE =x ,∴AE =12﹣x . ∵四边形ABCD 是矩形,∴∠A =90°,∴AE 2+AB 2=BE 2,即(12﹣x )2+62=x 2,x =7.5,∴S △EDB =12×7.5×6=22.5. 故选B . 【点睛】本题考查了折叠的性质:折叠前后的两个图形全等,即对应线段相等,对应角相等.同时也考查了勾股定理,利用勾股定理得到DE 的长是解决本题的关键.6.A解析:A 【解析】 【分析】由AB=AC ,利用等边对等角得到一对角相等,再由BF=CD ,BD=CE ,利用SAS 得到三角形FBD 与三角形DEC 全等,利用全等三角形对应角相等得到一对角相等,再根据三角形内角和定理以及外角的性质,可以找出∠EDF 与∠A 之间的等量关系,进而求解. 【详解】解:∵AB=AC ,∴∠B=∠C , 在△BFD 和△EDC 中,,,,BF DC B C BD CE ⎧⎪∠∠⎨⎪⎩=== ∴△BFD ≌△EDC (SAS ), ∴∠BFD=∠EDC ,∴∠FDB+∠EDC=∠FDB+∠BFD=180°-∠B=180°-1802A ︒-∠=90°+12∠A , 则∠EDF=180°-(∠FDB+∠EDC )=90°-12∠A=62°. 故选:A . 【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.7.C解析:C 【解析】 【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可. 【详解】解:A 、∵12+222,故A 选项能构成直角三角形; B 、∵32+42=52,故B 选项能构成直角三角形; C 、∵32+62≠92,故C 选项不能构成直角三角形;D 、∵72+()22,故D 选项能构成直角三角形. 故选:C . 【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.8.C解析:C 【解析】 【分析】根据全等三角形的判定方法:SSS 、SAS 、ASA 及AAS ,即可判定. 【详解】①满足SSS ,能判定三角形全等; ②满足SAS ,能判定三角形全等; ③满足ASA ,能判定三角形全等;④的条件是两边及其一边的对角分别对应相等,不能判定三角形全等. ∴能使ABC DEF △≌△全等的条件有3组. 故选:C . 【点睛】本题考查全等三角形的判定,解题关键是熟练掌握各种判定方法并注意“两边及其一边的对角分别对应相等”不能判定三角形全等.9.C解析:C 【解析】 【分析】根据题意列出等式,由负整数指数幂的运算法则将分式方程转化为一元一次方程求解即可. 【详解】 依题意,112(1)3(2)a a --+=-,即3(1)2(2)a a +=-,解得7a =-,经检验7a =-是原分式方程的解,故选:C. 【点睛】本题主要考查了负整数指数幂的运算及分式方程的解,熟练掌握相关运算知识及运算能力是解决本题的关键.10.A解析:A 【解析】【分析】所有在反比例函数上的点的横纵坐标的积应等于比例系数.本题只需把所给点的横纵坐标相乘,结果是﹣8的,就在此函数图象上【详解】解:-2×4=-8故选:A【点睛】本题考查反比例函数图象上点的坐标特征,掌握反比例函数性质是本题的解题关键.11.B解析:B【解析】【分析】直接利用平移的性质得出答案.【详解】(−2,−3)向左平移2个单位长度得到的点的坐标是:(−4,−3).故选B.【点睛】考查点的平移,掌握上下改变纵坐标,左右横左标变化是解题的关键.12.C解析:C【解析】【分析】根据轴对称图形的概念求解.【详解】解:根据轴对称图形的定义可知:第1,2,3个图形为轴对称图形,第4个图形不是轴对称图形,轴对称图共3个,故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.13.D解析:D【解析】【分析】根据平方根和算术平方根的定义解答即可.【详解】A、(﹣3)2的平方根是±3,故该项错误;B4,故该项错误;C、1的平方根是±1,故该项错误;D、4的算术平方根是2,故该项正确.故选D.【点睛】本题考查了平方根、算术平方根的定义,解决本题的关键是熟记平方根、算术平方根的定义.14.B解析:B【解析】【分析】根据图象可知走前一半路程用了1小时,由此可得走前一半路程的速度为40km/h,从而可得走后一半路程的速度为60km/h,根据时间=路程÷速度即可求得答案.【详解】由图象知走前一半路程用的时间为1小时,所以走前一半路程时的速度为40km/h,因为匀速行驶了一半的路程后将速度提高了20km/h,所以以后的速度为20+40=60km/h,时间为4060×60=40分钟,故该车到达乙地的时间是当天上午10:40,故选B.【点睛】本题考查了函数的图象,读懂图象,从中找到必要的信息是解题的关键.15.B解析:B【解析】【分析】根据第四象限的点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度确定出点的横坐标与纵坐标,即可得解.【详解】∵点在第四象限且到x轴距离为3,到y轴距离为6,∴点的横坐标是6,纵坐标是-3,∴点的坐标为(6,-3).故选B.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.二、填空题16.【解析】【分析】根据x轴上点的纵坐标为0列方程求解即可.【详解】∵点在x 轴上,∴3m −5=0,解得m =.故答案为:.【点睛】本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关 解析:53【解析】【分析】根据x 轴上点的纵坐标为0列方程求解即可.【详解】∵点(1,35)P m m +-在x 轴上,∴3m−5=0,解得m =53. 故答案为:53. 【点睛】本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关键.17.130°或90°.【解析】分析:根据题意可以求得∠B 和∠C 的度数,然后根据分类讨论的数学思想即可求得∠ADC 的度数.详解:∵在△ABC 中,AB=AC ,∠BAC=100°,∴∠B=∠C=40°解析:130°或90°.【解析】分析:根据题意可以求得∠B 和∠C 的度数,然后根据分类讨论的数学思想即可求得∠ADC 的度数.详解:∵在△ABC 中,AB=AC ,∠BAC=100°,∴∠B=∠C=40°,∵点D 在BC 边上,△ABD 为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为130°或90°.点睛:本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.18.2【解析】【分析】根据角平分线的定义可得∠DBF=∠FBC,∠ECF=∠FCB,由平行线的性质可得∠DFB=∠FBC,∠EFC=∠FCB,等量代换可得∠DFB=∠DBF,∠EFC=∠ECF,根 解析:2【解析】【分析】根据角平分线的定义可得∠DBF=∠FBC ,∠ECF=∠FCB ,由平行线的性质可得∠DFB=∠FBC ,∠EFC=∠FCB ,等量代换可得∠DFB=∠DBF ,∠EFC=∠ECF ,根据等角对等边可得到DF=DB ,EF=EC ,再由ED=DF+EF 结合已知即可求得答案.【详解】∵BF 、CF 分别是∠ABC 和∠ACB 的角平分线,∴∠DBF=∠FBC ,∠ECF=∠FCB ,∵DE ∥ BC ,∴∠DFB=∠FBC ,∠EFC=∠FCB ,∴∠DFB=∠DBF ,∠EFC=∠ECF ,∴DF=DB ,EF=EC ,∵ED=DF+EF ,3,5BD DE ==,∴EF=2,∴EC=2故答案为:2【点睛】本题考查了等腰角形的判定与性质,平行线的性质,角平分线的定义等,准确识图,熟练掌握和灵活运用相关知识是解题的关键.19.(2,3)【解析】【分析】根据 “关于x 轴对称的点,横坐标相同, 纵坐标互为相反数” 解答.【详解】解:点A (2,-3)关于x 轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛解析:(2,3)【解析】【分析】根据“关于x轴对称的点,横坐标相同, 纵坐标互为相反数”解答.【详解】解:点A(2,-3)关于x轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛】本题考查了关于x轴,y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数:(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3) 关于原点对称的点, 横坐标与纵坐标都互为相反数.20.60【解析】【分析】根据近似数的精确度把千分位上的数字5进行四舍五入即可.【详解】解:3.5952≈3.60(精确到0.01).故答案为3.60.【点睛】本题考查近似数和有效数字:经解析:60【解析】【分析】根据近似数的精确度把千分位上的数字5进行四舍五入即可.【详解】解:3.5952≈3.60(精确到0.01).故答案为3.60.【点睛】本题考查近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.21.【解析】【分析】设的中点为,过作的垂直平分线,通过待定系数法求出直线的函数表达式,根据可以得到直线的值,再求出中点坐标,用待定系数法求出直线的函数表达式即可.【详解】解:设的中点为,过作的解析:1548x+【解析】【分析】设AB的中点为D,过D作AB的垂直平分线EF,通过待定系数法求出直线AB的函数表达式,根据EF AB⊥可以得到直线EF的k值,再求出AB中点坐标,用待定系数法求出直线EF的函数表达式即可.【详解】解:设AB的中点为D,过D作AB的垂直平分线EF∵A(1,3),B(2,-1)设直线AB的解析式为11y k x b=+,把点A和B代入得:321k bk b+=⎧⎨+=-⎩解得:1147kb=-⎧⎨=⎩∴47y x=-+∵D为AB中点,即D(122+,312-)∴D(32,1)设直线EF的解析式为22y k x b=+∵EF AB⊥∴121k k=-∴214k=∴把点D和2k代入22y k x b=+可得:213142b=⨯+∴258b=∴1548y x=+∴点C(x ,y )在直线1548y x =+上 故答案为1548x + 【点睛】 本题主要考查了等腰三角形的性质,中垂线的性质,待定系数法求一次函数的表达式,根据题意作出中垂线,再用待定系数法求出一次函数的解析式是解题的关键.22.27【解析】【分析】把代入多项式,得到的式子进行移项整理,得,根据平方的非负性把和求出,再代入求多项式的值.【详解】解:将代入,得:移项得:,,即,时,故答案为:27【点睛解析:27【解析】【分析】把x a =代入多项式,得到的式子进行移项整理,得22(3)a k +=-,根据平方的非负性把a 和k 求出,再代入求多项式的值.【详解】解:将x a =代入2269x x k ++=-,得:2269a a k ++=-移项得:2269a a k ++=-22(3)a k ∴+=-2(3)0a +,20k -30a ∴+=,即3a =-,0k =x a ∴=-时,222636327x x k ++=+⨯=故答案为:27【点睛】本题考查了代数式求值,平方的非负性.把a 代入多项式后进行移项整理是解题关键.23.【解析】试题解析:连接CE ,如图:∵△ABC 和△ADE 为等腰直角三角形,∴AC=AB,AE=AD ,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°,∴∠1=解析:42【解析】试题解析:连接CE ,如图:∵△ABC 和△ADE 为等腰直角三角形,∴2AB ,2AD ,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°, ∴∠1=∠3,∵2AC AE AB AD== ∴△ACE ∽△ABD ,∴∠ACE=∠ABC=90°, ∴点D 从点B 移动至点C 的过程中,总有CE ⊥AC ,即点E 运动的轨迹为过点C 与AC 垂直的线段,22,当点D 运动到点C 时,2,∴点E 移动的路线长为2cm .24.6【解析】【分析】由已知可得到AB 比BC 长2,根据平行四边形的周长可得到AB 与BC 的和,从而不难求得AB 的长.【详解】解:∵△AOB 的周长比△BOC 的周长大2,∴OA+OB+AB-OB-解析:6【解析】【分析】由已知可得到AB比BC长2,根据平行四边形的周长可得到AB与BC的和,从而不难求得AB的长.【详解】解:∵△AOB的周长比△BOC的周长大2,∴OA+OB+AB-OB-OC-BC=2,∵ABCD是平行四边形,∴OA=OC,∴AB-BC=2,∵平行四边形ABCD的周长是20,∴AB+BC=10,∴AB=6.故答案为:6.【点睛】此题主要考查学生对平行四边形的性质的理解及运用,熟记性质是解题的关键.25.36°【解析】【分析】利用角平分线的判定及直角三角形的性质解答即可.【详解】解:∵PE⊥OA,PF⊥OB,PE=PF∴OP是∠AOB的平分线,∠OEP=90°, ∴∠AOP=∠AOB,解析:36°【解析】【分析】利用角平分线的判定及直角三角形的性质解答即可.【详解】解:∵PE⊥OA,PF⊥OB,PE=PF∴OP是∠AOB的平分线,∠OEP=90°, ∴∠AOP=12∠AOB,∵∠AOP=90°-∠OPE,∠OPE=72°,∴∠AOP=18°, ∴∠AOB=2∠AOP=36°故答案为36°.【点睛】本题考查了角平分线的判定与直角三角形的性质,关键是熟练掌握角平分线的判定.三、解答题26.(1)10;20;(2)3030y x =-(1 1.5)x ≤≤;(3)13小时或2小时 【解析】【分析】(1)根据题意和函数图象中的数据可以分别求得小丽和小明的速度;(2)根据(1)中的结果和图象中的数据可以求得点C 的坐标,从而可以解答本题 (3)根据题意分情况讨论即可求解.【详解】(1)从AB 可以看出:两人从相距30千米的两地相遇用了1个小时时间,则30V V +=小丽小明千米/时,小丽用了3个小时走完了30千米的全程,∴10V =小丽千米/时,∴20V =小明千米/时;故答案为:10;20;(2)C 点的意义是小明骑车从乙地到甲地用了3020 1.5÷=小时,此时小丽和小明的距离是()1.513015-⨯=∴C 点坐标是(1.5,15).设BC 对应的函数表达式为y kx b =+, 则将点()10B ,,()1.5,15C 分别代入表达式得01.515k b k b +=⎧⎨+=⎩, 解得:3030k b =⎧⎨=-⎩, ∴BC 解析式为3030y x =-,(1 1.5)x ≤≤ (3)①当两人相遇前:1(3020)(2010)3-÷+=(小时); ②当两人相遇后:1.55102+÷=(小时). 答:小丽出发13小时或2小时时,两人相距20公里. 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.27.(1)画图见解析;(2)画图见解析;(3)(a +4,-b )【解析】分析:(1)直接利用关于x 轴对称点的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)直接利用平移变换的性质得出点M2的坐标.本题解析:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)由(1)(2)轴对称以及平移的性质得出对应A2C2上的点M2的坐标是:(a+4,−b).故答案为(a+4,−b).28.(1)证明见解析;(2)33+【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半,得CD=AD ,根据直角三角形的两个锐角互余,得∠A=60°,从而判定△ACD 是等边三角形,再根据等腰三角形的三线合一的性质即可证明;(2)结合(1)中的结论,求得CD=2,DE=1,只需根据勾股定理求得CE 的长即可.【详解】(1)证明:∵∠ACB=90°,CD 是AB 边上的中线,∴CD=AD=DB .∵∠B=30°,∴∠A=60°.∴△ACD 是等边三角形.∵CE 是斜边AB 上的高,∴AE=ED .(2)解:由(1)得AC=CD=AD=2ED ,又AC=2,∴CD=2,ED=1. ∴2213CE =-=.∴△CDE 的周长=21333CD ED CE ++=+=.29.(1)4a 2+4ab ﹣3b 2;(2)4x 2+4xy+y 2﹣4x ﹣2y ﹣1;(346+4)﹣2m ﹣6,-5【解析】【分析】(1)利用多项式乘多项式展开,然后合并即可;(2)利用完全平方公式计算;(3)先计算出24b ac -,然后计算代数式的值;(4)先把括号内通分,再把分子分母因式分解后约分得到原式26m =--,然后把m 的值代入计算即可.【详解】解:(1)原式224263a ab ab b =-+-22443a ab b =+-;(2)原式2(2)2(2)1x y x y =+-+-2244421x xy y x y =++---;(3)224(8)42524b ac -=--⨯⨯=,= (4)原式(2)(2)52(2)[]23m m m m m +---=--- (3)(3)2(2)23m m m m m +--=--- 2(3)m =-+26m =--,当12m =-时,原式12()652=-⨯--=-. 【点睛】本题考查了多项式乘法和、分式的化简求值以及代数式求值.掌握整式乘法和分式运算法则熟练运算是解题关键.30.(1)20°;(2)10.【解析】【分析】(1)根据三角形内角和定理求出∠BAC ,根据线段垂直平分线的性质得到DA =DB ,FA =FC ,得到∠DAB =∠ABC =30︒,∠FAC =∠ACB =50︒,结合图形计算,得到答案;(2)根据三角形的周长公式计算即可.【详解】(1)∠BAC =180︒﹣∠ABC ﹣∠ACB =180︒﹣30︒﹣50︒=100︒,∵DE 是AB 的垂直平分线,∴DA =DB ,∴∠DAB =∠ABC =30︒,∵FG 是AC 的垂直平分线,∴FA =FC ,∴∠FAC =∠ACB =50︒,∴∠DAF =∠BAC ﹣(∠DAB +∠FAC )=20︒;(2)∵△DAF 的周长为10,∴AD +DF +FC =10,∴BC =BD +DF +FC =AD +DF +FC =10.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.31.(1)详见解析;(2)BC =【解析】【分析】(1)根据等式的基本性质可得∠DAB =∠EAC ,然后根据等腰直角三角形的性质可得DA =EA ,BA =CA ,再利用SAS 即可证出结论;(2)根据等腰直角三角形的性质和勾股定理即可求出DE ,从而求出EC 和DC ,再根据全等三角形的性质即可求出DB ,∠ADB=∠AEC ,从而求出∠BDC=90°,最后根据勾股定理即可求出结论.【详解】证明:(1)∵90BAC DAE ∠=∠=︒∴∠DAE -∠BAE =∠BAC -∠BAE∴∠DAB =∠EAC∵ABC ∆和ADE ∆均为等腰直角三角形∴DA =EA ,BA =CA在△ADB 和△AEC 中DA EA DAB EAC BA CA =⎧⎪∠=∠⎨⎪=⎩∴△ADB ≌△AEC(2)∵ADE △是等腰直角三角形,AD AE ==∴2=,∵2DE EC =∴EC=112DE =, ∴DC=DE +EC=3∵△ADB ≌△AEC ∴DB=EC=3,∠ADB=∠AEC∵∠ADB=∠ADE +∠BDC ,∠AEC=∠ADE +∠DAE=∠ADE +90°∴∠BDC=90°在Rt △BDC中,BC ==【点睛】此题考查的是等腰直角三角形的性质、全等三角形的判定及性质和勾股定理,掌握等腰直角三角形的性质、全等三角形的判定及性质和利用勾股定理解直角三角形是解决此题的关键.。

苏科版八年级(上)第三次月考数学试卷解析版

苏科版八年级(上)第三次月考数学试卷解析版

苏科版八年级(上)第三次月考数学试卷解析版一、选择题1.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( )A .1-B .0C .1D .2 2.若1(2,)A y ,2(3,)B y 是一次函数31y x =-+的图象上的两个点,则1y 与2y 的大小关系是( )A .12y y <B .12y y =C .12y y >D .不能确定 3.在平面直角坐标系中,点()23P -,关于x 轴的对称点的坐标是( ) A .()23-, B .()23, C .()23--, D .()23-,4.如图,点P 在长方形OABC 的边OA 上,连接BP ,过点P 作BP 的垂线,交射线OC 于点Q ,在点P 从点A 出发沿AO 方向运动到点O 的过程中,设AP=x ,OQ=y ,则下列说法正确的是( )A .y 随x 的增大而增大B .y 随x 的增大而减小C .随x 的增大,y 先增大后减小D .随x 的增大,y 先减小后增大 5.下列标志中属于轴对称图形的是( )A .B .C .D . 6.一次函数112y x =-+的图像不经过的象限是:( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限7.估计(130246的值应在( ) A .1和2之间 B .2和3之间C .3和4之间D .4和5之间 8.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法:①乙车的速度是120km/h ;②m =160;③点H 的坐标是(7,80);④n =7.5.其中说法正确的是( )A .①②③B .①②④C .①③④D .①②③④ 9.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为( )A .1B .5C .7D .49 10.下列各点中,位于平面直角坐标系第四象限的点是( )A .(1,2)B .(﹣1,2)C .(1,﹣2)D .(﹣1,﹣2)11.下列四组线段中,可以构成直角三角形的是( )A .4,5,6B .1.5,2,2.5C .2,3,4D .1,2, 3 12.变量x 与y 之间的关系是y =2x+1,当y =5时,自变量x 的值是( )A .13B .5C .2D .3.5 13.下列图形中:①线段,②角,③等腰三角形,④有一个角是30°的直角三角形,其中一定是轴对称图形的个数( )A .1个B .2个C .3个D .4个14.下列二次根式中属于最简二次根式的是( )A .32B .24x yC .y xD .24+x y15.如图,直线(0)y kx b k =+≠经过点(1,3)-,则不等式3kx b +≥的解集为( )A .1x >-B .1x <-C .3x ≥D .1x ≥-二、填空题16.如图,直线I I :1y x =+与直线2I :y mx n =+相交于点(,2)P a ,则关于x 的不等式1x mx n +≥+的解集为______.17.若关于x 的分式方程122x x a x x--=--有增根,则a 的值_____________. 18.比较大小:10_____3.(填“>”、“=”或“<”)19.在ABC ∆中,13AC BC ==, 10AB =,则ABC ∆面积为_______. 20.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间比原计划生产450台机器所需时间相同,现在平均每天生产___台机器.21.如图,点P 为∠AOB 内任一点,E ,F 分别为点P 关于OA ,OB 的对称点.若∠AOB =30°,则∠E +∠F =_____°.22.点()2,3A 关于y 轴对称点的坐标是______.23.已知点(,)P m n 在一次函数31y x =-的图像上,则2296m mn n -+=___________.24.在平面直角坐标系中,已知一次函数312y x =-+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x >,则1y ______________2y25.如图,在平面直角坐标系中,点A 、B 的坐标分别为()1,4、()3,4,若直线y kx =与线段AB 有公共点,则k 的取值范围为__________.三、解答题26.小丽骑车从甲地到乙地,小明骑车从乙地到甲地,小丽的速度小于小明的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离(km)y 与小丽的行驶时间(h)x之间的函数关系.请你根据图像进行探究:(1)小丽的速度是______km/h,小明的速度是_________km/h;(2)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;(3)若两人相距20km,试求小丽的行驶时间?27.小明用30元买水笔,小红用45元买圆珠笔,已知每支圆珠笔比水笔贵2元,那么小明和小红能买到相同数量的笔吗?28.如图,在四边形ABCD中,AB=DC,延长线段CB到E,使BE=AD,连接AE、AC,且AE=AC,求证:(1)△ABE≌△CDA;(2)AD∥EC.29.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?30.如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.(1)判断∠D是否是直角,并说明理由.(2)求四边形ABCD的面积.31.如图,将一张边长为8的正方形纸片OABC放在直角坐标系中,使得OA与y轴重合,OC与x轴重合,点P为正方形AB边上的一点(不与点A、点B重合).将正方形纸片折叠,使点O落在P处,点C落在G处,PG交BC于H,折痕为EF.连接OP、OH.初步探究(1)当AP=4时①直接写出点E的坐标;②求直线EF的函数表达式.深入探究(2)当点P在边AB上移动时,∠APO与∠OPH的度数总是相等,请说明理由.拓展应用(3)当点P在边AB上移动时,△PBH的周长是否发生变化?并证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可.【详解】∵点P(a,2a-1)在一、三象限的角平分线上,∴a=2a-1,解得a=1.故选:C.【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.2.C解析:C【解析】【分析】根据一次函数的性质,此一次函数系数k<0,y随x增大而减小,然后观察A、B两点的坐标,据此判断即可.【详解】解:∵一次函数31y x =-+的系数k <0,y 随x 增大而减小,又∵两点的横坐标2<3,∴12y y >故选C.【点睛】本题考查了一次函数的性质,解决本题的关键是理解本题题意,熟练掌握一次函数的增减性.3.B解析:B【解析】【分析】根据关于x 轴对称的点的坐标与原坐标横坐标相等,纵坐标互为相反数的性质解答即可.【详解】∵P (2,-3)关于x 轴对称,∴对称点与点P 横坐标相同,纵坐标互为相反数,∴对称点的坐标为(-2,-3).故答案为(-2,-3).【点睛】本题考查的是坐标与图形的变换,关于y 轴对称的点的坐标与原坐标纵坐标相等,横坐标互为相反数;关于x 轴对称的点的坐标与原坐标横坐标相等,纵坐标互为相反数;掌握轴对称的性质是解题的关键,4.C解析:C【解析】【分析】连接BQ ,由矩形的性质,设BC=AO=a ,AB=OC=b ,利用勾股定理得到222PQ PB BQ +=,然后得到y 与x 的关系式,判断关系式,即可得到答案.【详解】解,如图,连接BQ ,由题意可知,△OPQ ,△QPB ,△ABP 是直角三角形,在矩形ABCO 中,设BC=AO=a ,AB=OC=b ,则OP=a x -,CQ b y =-,由勾股定理,得:222()PQ y a x =+-,222PB x b =+,222()BQ a b y =+-,∵222PQ PB BQ +=,∴222222()()y a x x b a b y +-++=+-,整理得:2by x ax =-+, ∴221()24a a y x b b=--+, ∵10b-<, ∴当2a x =时,y 有最大值24a b; ∴随x 的增大,y 先增大后减小;故选择:C.【点睛】本题考查了矩形的性质,勾股定理,解题的关键是利用勾股定理找到y 与x 的关系式,从而得到答案.5.C解析:C【解析】【分析】根据对称轴的定义,关键是找出对称轴即可得出答案.【详解】解:根据对称轴定义A 、没有对称轴,所以错误B 、没有对称轴,所以错误C 、有一条对称轴,所以正确D 、没有对称轴,所以错误故选 C【点睛】此题主要考查了对称轴图形的判定,寻找对称轴是解题的关键.6.C解析:C【解析】试题分析:根据一次函数y=kx+b (k≠0,k 、b 为常数)的图像与性质可知:当k >0,b >0时,图像过一二三象限;当k >0,b <0时,图像过一三四象限;当k <0,b >0时,图像过一二四象限;当k <0,b <0,图像过二三四象限.这个一次函数的k=12-<0与b=1>0,因此不经过第三象限.答案为C考点:一次函数的图像7.B解析:B【解析】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围.【详解】(==2,而,-<3,所以2<2所以估计(2和3之间,故选B.【点睛】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.8.A解析:A【解析】【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B点所用时间可确定m 的值,即可判断②,根据乙休息1h甲所行驶的路程可判断③,由乙返回时,甲乙相距80km,可求出两车相遇的时间即可判断④.【详解】由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.所以正确的有①②③,故选A.【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键.9.B解析:B【解析】【分析】根据等腰三角形的性质可知BC上的中线AD同时是BC上的高线,根据勾股定理求出AB的长即可.【详解】∵等腰三角形ABC中,AB=AC,AD是BC上的中线,∴BD=CD=12BC=3,AD同时是BC上的高线,∴2222345BD AD+=+=.故它的腰长为5.故选:B.【点睛】本题考查了勾股定理及等腰三角形的性质.解题关键是得出中线AD同时是BC上的高线.10.C解析:C【解析】【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【详解】A、(1,2)在第一象限,故本选项错误;B、(﹣1,2)在第二象限,故本选项错误;C、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).11.B解析:B【解析】试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可:A、42+52=41≠62,不可以构成直角三角形,故本选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C、22+32=13≠42,不可以构成直角三角形,故本选项错误;D、222133+=≠,不可以构成直角三角形,故本选项错误.故选B.考点:勾股定理的逆定理.12.C解析:C【解析】【分析】直接把y=5代入y=2x+1,解方程即可.【详解】解:当y=5时,5=2x+1,解得:x=2,故选:C.【点睛】此题主要考查了函数值,关键是掌握已知函数解析式,给出函数值时,求相应的自变量的值就是解方程.13.C解析:C【解析】【分析】直接利用轴对称图形的性质分别分析得出答案.【详解】解:①线段,是轴对称图形;②角,是轴对称图形;③等腰三角形,是轴对称图形;④有一个角是30°的直角三角形,不是轴对称图形.故选:C.【点睛】本题考查的知识点是轴对称图形的定义,理解定义内容是解此题的关键.14.D解析:D【解析】【分析】最简二次根式即被开方数不含分母且不含能开得尽方的因数或因式,由此判断即可.【详解】解:AB 2CD故选:D .【点睛】本题考查了最简二次根式,熟练掌握最简二次根式的概念是解题的关键.15.D解析:D【解析】【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【详解】解:观察图象知:当1x ≥-时,3kx b +≥,故选:D .【点睛】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.二、填空题16.x≥1.【解析】【分析】把点P 坐标代入y=x+1中,求得两直线交点坐标,然后根据图像求解.【详解】解:∵与直线:相交于点,∴把y=2代入y=x+1中,解得x=1,∴点P 的坐标为(1,2解析:x≥1.【解析】【分析】把点P 坐标代入y=x+1中,求得两直线交点坐标,然后根据图像求解.【详解】解:∵1y x =+与直线2I :y mx n =+相交于点(,2)P a ,∴把y=2代入y=x+1中,解得x=1,∴点P 的坐标为(1,2);由图可知,x≥1时,1x mx n +≥+.故答案为:x≥1.【点睛】本题考查了一次函数与一元一次不等式,待定系数法求一次函数解析式,联立两直线解析式求交点坐标的方法,求一次函数与一元一次不等式关键在于准确识图,确定出两函数图象的对应的函数值的大小.17.4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】方程变形得:,去分母得:x+x-a=x-2,解得:x=a-解析:4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】 方程变形得:+122x x a x x -=--, 去分母得:x+x-a=x-2,解得:x=a-2, ∵方程122x x a x x--=--有增根, ∴x=2,即a-2=2,解得:a=4,故答案为:4.【点睛】 此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.18.>.【解析】【分析】先求出3=,再比较即可.【详解】∵32=9<10,∴>3,故答案为:>.【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.解析:>.【解析】【分析】先求出3=9,再比较即可.【详解】∵32=9<10,∴10>3,故答案为:>.【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.19.60【解析】【分析】根据题意可以判断为等腰三角形,利用勾股定理求出AB边的高,即可得到答案. 【详解】如图作出AB边上的高CD∵AC=BC=13, AB=10,∴△ABC是等腰三角形,解析:60【解析】【分析】为等腰三角形,利用勾股定理求出AB边的高,即可得到答案.根据题意可以判断ABC【详解】如图作出AB边上的高CD∵AC=BC=13, AB=10,∴△ABC是等腰三角形,∴AD=BD=5,根据勾股定理 CD2=AC2-AD2,,12ABC SCD AB =⋅=112102⨯⨯=60, 故答案为:60.【点睛】 此题主要考查了等腰三角形的判定及勾股定理,关键是判断三角形的形状,利用勾股定理求出三角形的高.20.200【解析】【分析】【详解】设现在平均每天生产x 台机器,则原计划可生产(x ﹣50)台,根据现在生产600台机器的时间与原计划生产450台机器的时间相同,等量关系为:现在生产600台机器时解析:200【解析】【分析】【详解】设现在平均每天生产x 台机器,则原计划可生产(x ﹣50)台,根据现在生产600台机器的时间与原计划生产450台机器的时间相同,等量关系为:现在生产600台机器时间=原计划生产450台时间,从而列出方程:600450x x 50=-, 解得:x=200.检验:当x=200时,x (x ﹣50)≠0.∴x=200是原分式方程的解.∴现在平均每天生产200台机器. 21.150【解析】【分析】连接OP ,根据轴对称的性质得到,再利用四边形的内角和是计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点故答案为:1解析:150【解析】【分析】连接OP ,根据轴对称的性质得到60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠再利用四边形的内角和是360︒计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点,,EOA POA POB FOB ∴∠=∠∠=∠30EOA FOB POA POB ∴∠+∠=∠+∠=︒60EOF ∴∠=︒,,E EPO F FPO ∴∠=∠∠=∠360E EPO F FPO EOF ∴∠+∠+∠+∠+∠=︒2()300E F ∴∠+∠=︒150E F ∴∠+∠=︒故答案为:150.【点睛】本题考查了轴对称的性质,四边形的内角和性质,证得60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠解本题的关键.22.(−2,3)【解析】【分析】平面直角坐标系中任意一点P (x ,y ),关于y 轴的对称点的坐标是(−x ,y ),即关于y 轴的对称点,纵坐标不变,横坐标变成相反数.【详解】解:点(2,3)关于y 轴对解析:(−2,3)【解析】【分析】平面直角坐标系中任意一点P (x ,y ),关于y 轴的对称点的坐标是(−x ,y ),即关于y 轴的对称点,纵坐标不变,横坐标变成相反数.【详解】解:点(2,3)关于y 轴对称的点的坐标是(−2,3),故答案为(−2,3).【点睛】本题主要考查了平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y 轴对称的点,纵坐标相同,横坐标互为相反数,关于x 轴对称的点,横坐标相同,纵坐标互为相反数.23.1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入===.故答案为:1.【解析:1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入2296m mn n -+=223196())31(m m m m -+--=2229186196m m m m m -++-+=1.故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标性质,正确代入点的坐标求出是解题关键.24.<【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小即可判断.【详解】∵一次函数中k=<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点睛解析:<【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小即可判断.【详解】∵一次函数312y x=-+中k=32-<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.25.【解析】【分析】由直线与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于k的一元一次不等式,解之即可得出k 的取值范围.【详解】解:∵点A、B解析:44 3k≤≤【解析】【分析】由直线y kx =与线段AB 有公共点,可得出点B 在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】解:∵点A 、B 的坐标分别为()1,4、()3,4,∴令y=4时, 解得:4x k= , ∵直线y=kx 与线段AB 有公共点,∴1≤4k≤3, 解得:443k ≤≤. 故答案为:443k ≤≤. 【点睛】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于k 的一元一次不等式是解题的关键.三、解答题26.(1)10;20;(2)3030y x =-(1 1.5)x ≤≤;(3)13小时或2小时 【解析】【分析】(1)根据题意和函数图象中的数据可以分别求得小丽和小明的速度;(2)根据(1)中的结果和图象中的数据可以求得点C 的坐标,从而可以解答本题 (3)根据题意分情况讨论即可求解.【详解】(1)从AB 可以看出:两人从相距30千米的两地相遇用了1个小时时间,则30V V +=小丽小明千米/时,小丽用了3个小时走完了30千米的全程,∴10V =小丽千米/时,∴20V =小明千米/时;故答案为:10;20;(2)C 点的意义是小明骑车从乙地到甲地用了3020 1.5÷=小时,此时小丽和小明的距离是()1.513015-⨯=∴C 点坐标是(1.5,15).设BC 对应的函数表达式为y kx b =+,则将点()10B ,,()1.5,15C 分别代入表达式得01.515k b k b +=⎧⎨+=⎩, 解得:3030k b =⎧⎨=-⎩, ∴BC 解析式为3030y x =-,(1 1.5)x ≤≤(3)①当两人相遇前:1(3020)(2010)3-÷+=(小时); ②当两人相遇后:1.55102+÷=(小时). 答:小丽出发13小时或2小时时,两人相距20公里. 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.27.小明和小红不能买到相同数量的笔【解析】【分析】首先设每支水笔x 元,则每支圆珠笔(x+2)元,根据题意可得等量关系:30元买水笔的数量=用45元买圆珠笔的数量,求出每支水笔的价钱,再算出购买的水笔的数量,数量是整数就可以,不是整数就不合题意.【详解】设每支水笔x 元,则每支圆珠笔(2)x +元. 假设能买到相同数量的笔,则30452x x =+. 解这个方程,得4x =.经检验,4x =是原方程的解.但是,3047.5÷=,7.5不是整数,不符合题意,答:小明和小红不能买到相同数量的笔.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出分式方程,注意要检验.28.(1)证明见解析;(2)证明见解析.【解析】【分析】试题分析:(1)直接根据SSS 就可以证明△ABE ≌△CDA ;(2)由△ABE ≌△CDA 可以得出∠E=∠CAD ,就可以得出∠ACE=∠CAD ,从而得出结论. 试题解析:(1)在△ABE 和△CDA 中{AE AC AB CD BE AD===∵△ABE≌△CDA(SSS);(2)∵△ABE≌△CDA,∴∠E=∠CAD.∵AE=AC,∴∠E=∠ACE∴∠ACE=∠CAD,∴AD∥EC.考点:全等三角形的判定与性质.【详解】请在此输入详解!29.(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.【解析】【分析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为3 2 x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作12006040m-天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为3 2 x米,根据题意得:360360332x x-=,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴32x=32×40=60,答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;(2)设安排甲队工作m天,则安排乙队工作12006040m-天,根据题意得:7m+5×12006040m-≤145,解得:m≥10,答:至少安排甲队工作10天.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.30.(1)∠D是直角.理由见解析;(2)234.【解析】【分析】(1)连接AC,先根据勾股定理求得AC的长,再根据勾股定理的逆定理,求得∠D=90°即可;(2)根据△ACD和△ACB的面积之和等于四边形ABCD的面积,进行计算即可.【详解】(1)∠D是直角.理由如下:连接AC.∵AB=20,BC=15,∠B=90°,∴由勾股定理得AC2=202+152=625.又∵CD=7,AD=24,∴CD2+AD2=625,∴AC2=CD2+AD2,∴∠D=90°.(2)四边形ABCD的面积=12AD•DC+12AB•BC=12×24×7+12×20×15=234.【点睛】考查了勾股定理以及勾股定理的逆定理的综合运用,解决问题时需要区别勾股定理及其逆定理.通过作辅助线,将四边形问题转化为三角形问题是关键.31.(1)①(0,5);②152y x=-+;(2)理由见解析;(3)周长=16,不会发生变化,证明见解析.【解析】【分析】(1)①设:OE=PE=a,则AE=8﹣a,AP=4,在Rt△AEP中,由勾股定理得:PE2=AE2+AP2,即可求解;②证明△AOP≌△FRE(AAS),则ER=AP=4,故点F(8,1),即可求解;(2)∠EOP=∠EPO,而∠EPH=∠EOC=90°,故∠EPH﹣∠EPO=∠EOC﹣∠EOP,即∠POC=∠OPH,又因为AB∥OC,故∠APO=∠POC,即可求解;(3)证明△AOP≌△QOP(AAS)、△OCH≌△OQH(SAS),则CH=QH,即可求解.【详解】(1)①设:OE=PE=a,则AE=8﹣a,AP=4,在Rt△AEP中,由勾股定理得:PE2=AE2+AP2,即a2=(8﹣a)2+16,解得:a=5,故点E(0,5).故答案为:(0,5);②过点F作FR⊥y轴于点R,折叠后点O落在P处,则点O、P关于直线EF对称,则OP⊥EF,∴∠EFR+∠FER=90°,而∠FER+∠AOP=90°,∴∠AOP=∠EFR,而∠OAP=∠FRE,RF=AO,∴△AOP≌△FRE(AAS),∴ER=AP=4,OR=EO﹣OR=5﹣4=1,故点F(8,1),将点E、F的坐标代入一次函数表达式:y=kx+b得:185k bb=+⎧⎨=⎩,解得:125kb⎧=-⎪⎨⎪=⎩,故直线EF的表达式为:y=﹣12x+5;(2)∵PE=OE,∴∠EOP=∠EPO.又∵∠EPH=∠EOC=90°,∴∠EPH﹣∠EPO=∠EOC﹣∠EOP.即∠POC=∠OPH.又∵AB∥OC,∴∠APO=∠POC,∴∠APO=∠OPH;(3)如图,过O作OQ⊥PH,垂足为Q.由(1)知∠APO =∠OPH ,在△AOP 和△QOP 中,APO OPH A OQPOP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AOP ≌△QOP (AAS),∴AP =QP ,AO =OQ .又∵AO =OC ,∴OC =OQ .又∵∠C =∠OQH =90°,OH =OH ,∴△OCH ≌△OQH (SAS),∴CH =QH ,∴△PHB 的周长=PB +BH +PH =AP +PB +BH +HC =AB +CB =16.故答案为:16.【点睛】此题主要考查了翻折变换的性质、正方形的性质以及全等三角形的判定与性质和勾股定理等知识,熟练利用全等三角形的判定得出对应相等关系是解题关键.。

苏科版八年级(上)第三次月考数学试卷(含答案)

苏科版八年级(上)第三次月考数学试卷(含答案)

苏科版八年级(上)第三次月考数学试卷(含答案)一、选择题1.如图,一次函数图象经过点A ,且与正比例函数y=-x 的图象交于点B ,则该一次函数的表达式为( )A .y=-x+2B .y=x+2C .y=x-2D .y=-x-22.下列四组数,可作为直角三角形三边长的是A .456cm cm cm 、、B .123cm cm cm 、、C .234cm cm cm 、、D .123cm cm cm 、、3.如图,ABC ∆中,90ACB ∠=︒,4AC =,3BC =,点E 是AB 中点,将CAE ∆沿着直线CE 翻折,得到CDE ∆,连接AD ,则线段AD 的长等于( )A .4B .165C .245D .54.下列四个图形中,不是轴对称图案的是( )A .B .C .D .5.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .6.已知:△ABC ≌△DCB ,若BC=10cm ,AB=6cm ,AC=7cm ,则CD 为( ) A .10cm B .7cmC .6cmD .6cm 或7cm7.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( ) A .(﹣5,3) B .(1,﹣3) C .(2,2) D .(5,﹣1) 8.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限9.下列四个图形中轴对称图形的个数是( )A .1B .2C .3D .410.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,011.如图,若BD 是等边△ABC 的一条中线,延长BC 至点E ,使CE=CD=x ,连接DE ,则DE的长为( )A 3xB .23xC 3xD 3x12.已知一次函数y=kx+b ,函数值y 随自变置x 的增大而减小,且kb <0,则函数y=kx+b 的图象大致是( )A.B.C.D.13.点M(3,-4)关于y轴的对称点的坐标是()A.(3,4)B.(-3,4)C.(-3,-4)D.(-4,3)14.在平面直角坐标系中,点M(﹣3,2)关于y轴对称的点的坐标为()A.(﹣3,﹣2)B.(﹣2,﹣3)C.(3,2)D.(3,﹣2)15.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm,则这只铅笔的长度可能是()A.9cm B.12cm C.15cm D.18cm二、填空题16.将一次函数y=2x的图象向上平移1个单位,所得图象对应的函数表达式为__________.17.17.85精确到十分位是_____.18.如图,在平面直角坐标系中,长方形OABC的顶点O在坐标原点,顶点A、C分别在x、y轴的正半轴上:OA=3,OC=4,D为OC边的中点,E是OA边上的一个动点,当△BDE的周长最小时,E点坐标为_____.19.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.20.如果等腰三角形的一个外角是80°,那么它的底角的度数为__________.21.点A(3,-2)关于x轴对称的点的坐标是________.22.如图,在正三角形ABC中,AD⊥BC于点D,则∠BAD= °.23.将一次函数y =2x +2的图象向下平移2个单位长度,得到相应的函数表达式为____. 24.在平面直角坐标系中,已知线段AB 的两个端点坐标分别是A (-4,-1),B (1,1),将线段AB 平移后得到线段A B ''(点A 的对应点为A '),若点A '的坐标为(-2,2)则点B '的坐标为________________25.如图,一次函数y kx b =+与y mx n =+的图像交于点(2,1)P -,则由函数图像得不等式kx b mx n +≥+的解集为________.三、解答题26.如图,在四边形ABCD 中,90ABC ∠=︒,过点B 作BE CD ⊥,垂足为点E ,过点A 作AF BE ⊥,垂足为点F ,且BE AF =.(1)求证:ABF BCE ∆≅∆;(2)连接BD ,且BD 平分ABE ∠交AF 于点G .求证:BCD ∆是等腰三角形. 27.已知21a -的算术平方根是3,31a b +-的平方根是4±,c 是25的整数部分,求2a b c +-的平方根.28.甲、乙两个工程队同时挖掘两段长度相等的隧道,如图是甲、乙两队挖掘隧道长度y (米)与挖掘时间x (时)之间关系的部分图象.请解答下列问题:()1在前2小时的挖掘中,甲队的挖掘速度为 米/小时,乙队的挖掘速度为 米/小时. ()2①当26x <<时,求出y 乙与x 之间的函数关系式;②开挖几小时后,两工程队挖掘隧道长度相差5米?29.如图①,在A、B两地之间有汽车站C,客车由A地驶往C站,货车由B地驶往A 地,两车同时出发,匀速行驶,图②是客车、货车离 C站的路程1y、2y(km)与行驶时间x(h)之间的函数图像.(1)客车的速度是 km/h;(2)求货车由 B地行驶至 A地所用的时间;(3)求点E的坐标,并解释点 E的实际意义.30.如图,已知直线y=kx+6经过点A(4,2),直线与x轴,y轴分别交于B、C两点.(1)求点B的坐标;(2)求△OAC的面积.31.解方程:323 22xx x-= +-【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】解:设一次函数的解析式y=kx+b(k≠0),∵一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,∴在直线y=-x中,令x=-1,解得:y=1,则B的坐标是(-1,1).把A(0,2),B(-1,1)的坐标代入一次函数的解析式y=kx+b得:2{1bk b=-+=,解得2{1bk==,该一次函数的表达式为y=x+2.故选B.2.D解析:D【解析】【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可.【详解】A、∵52+42≠62,∴此组数据不能构成直角三角形,故本选项错误;B、12+22≠32,∴此组数据不能构成直角三角形,故本选项错误;C、∵22+32≠42,∴此组数据不能构成直角三角形,故本选项错误;D、∵12+(2)2=(3)2,∴此组数据能构成直角三角形,故本选项正确.故选:D.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.C解析:C【解析】【分析】延长CE交AD于F,连接BD,先判定△ABC∽△CAF,即可得到CF=6.4,EF=CF-CE=1.4,再依据EF为△ABD的中位线,即可得出BD=2EF=2.8,最后根据∠ADB=90°,即可运用勾股定理求得AD的长.【详解】解:如图,延长CE交AD于F,连接BD,∵∠ACB=90°,AC=4,BC=3,∴AB=5,∵∠ACB=90°,CE为中线,∴CE=AE=BE=12.5 2AB=,∴∠ACF=∠BAC,又∵∠AFC=∠BCA=90°,∴△ABC∽△CAF,∴CF ACAC BA=,即445CF=,∴CF=3.2,∴EF=CF-CE=0.7,由折叠可得,AC=DC,AE=DE,∴CE垂直平分AD,又∵E为AB的中点,∴EF为△ABD的中位线,∴BD=2EF=1.4,∵AE=BE=DE,∴∠DAE=∠ADE,∠BDE=∠DBE,又∵∠DAE+∠ADE+∠BDE+∠DBE=180°,∴∠ADB=∠ADE+∠BDE=90°,∴Rt△ABD中,245==,故选:C.【点睛】本题考查了翻折变换、相似三角形的判定和性质、勾股定理、直角三角形斜边中线的性质等知识的综合运用,解题的关键是作辅助线构造相似三角形,灵活运用所学知识解决问题.4.A解析:A【解析】【分析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A不是轴对称图形,B、C、D都是轴对称图形.故选A.【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.5.D解析:D【解析】试题分析:A.是轴对称图形,故本选项错误;B.是轴对称图形,故本选项错误;C.是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项正确.故选D.考点:轴对称图形.6.C解析:C【解析】【分析】全等图形中的对应边相等.【详解】根据△ABC≌△DCB,所以AB=CD,所以CD=6,所以答案选择C项.【点睛】本题考查了全等,了解全等图形中对应边相等是解决本题的关键.7.C解析:C【解析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣45<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=32>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.8.B解析:B【解析】【分析】【详解】∵-20,2x+10,∴点P (-2,2x+1)在第二象限,故选B.解析:C 【解析】 【分析】根据轴对称图形的概念求解. 【详解】解:根据轴对称图形的定义可知:第1,2,3个图形为轴对称图形,第4个图形不是轴对称图形,轴对称图共3个, 故选:C . 【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.10.B解析:B 【解析】 【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论. 【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0. 故选: B. 【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.11.D解析:D 【解析】 【分析】根据等腰三角形和三角形外角性质求出BD=DE ,求出BC ,在Rt △BDC 中,由勾股定理求出BD 即可.解:∵△ABC 为等边三角形, ∴∠ABC=∠ACB=60°,AB=BC , ∵BD 为中线,1302DBC ABC ︒∴∠=∠= ∵CD=CE ,∴∠E=∠CDE , ∵∠E+∠CDE=∠ACB , ∴∠E=30°=∠DBC , ∴BD=DE ,∵BD 是AC 中线,CD=x , ∴AD=DC=x ,∵△ABC 是等边三角形, ∴BC=AC=2x ,BD ⊥AC ,在Rt △BDC 中,由勾股定理得:BD ==DE BD ∴==故选:D . 【点睛】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD 和求出BD 的长.12.A解析:A 【解析】试题分析:根据一次函数的性质得到k <0,而kb <0,则b >0,所以一次函数y=kx+b 的图象经过第二、四象限,与y 轴的交点在x 轴是方. 解:∵一次函数y=kx+b ,y 随着x 的增大而减小, ∴k <0,∴一次函数y=kx+b 的图象经过第二、四象限; ∵kb <0, ∴b >0,∴图象与y 轴的交点在x 轴上方,∴一次函数y=kx+b 的图象经过第一、二、四象限. 故选A .考点:一次函数的图象.13.C解析:C 【解析】【分析】根据关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P (x ,y )关于y 轴的对称点P ′的坐标是(−x ,y ).【详解】∵点M (3,−4),∴关于y 轴的对称点的坐标是(−3,−4).故选:C .【点睛】此题主要考查了关于x 轴、y 轴对称点的坐标特点,熟练掌握关于坐标轴对称的特点是解题关键.14.C解析:C【解析】【分析】直接利用关于y 轴对称则纵坐标相等横坐标互为相反数进而得出答案.【详解】解:点M (﹣3,2)关于y 轴对称的点的坐标为:(3,2).故选:C .【点睛】本题考查的知识点是关于x 轴、y 轴对称的点的坐标,属于基础题目,易于掌握.15.D解析:D【解析】【分析】首先根据题意画出图形,利用勾股定理计算出AC 的长.【详解】根据题意可得图形:AB=12cm ,BC=9cm ,在Rt △ABC 中:2222=129AB BC ++(cm ),则这只铅笔的长度大于15cm .故选D .【点睛】此题主要考查了勾股定理的应用,正确得出笔筒内铅笔的最短长度是解决问题的关键.二、填空题16.y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.解析:y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.17.9.【解析】【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效解析:9.【解析】【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.18.(1,0)【解析】【分析】本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B 交x轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD解析:(1,0)【解析】【分析】本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B交x轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD'的解析式,然后求直线BD'与x轴的交点即得答案.【详解】解:如图,作D关于x轴的对称点D′,连接D′B交x轴于点E,连接DE,则DE= D′E,此时△BDE的周长最小,∵D为CO的中点,∴CD=OD=2,∵D和D′关于x轴对称,∴D′(0,﹣2),由题意知:点B(3,4),∴设直线BD'的解析式为y=kx+b,把B(3,4),D′(0,﹣2)代入解析式,得:342k bb+=⎧⎨=-⎩,解得,22kb=⎧⎨=-⎩,∴直线BD'的解析式为y=2x﹣2,当y=0时,x=1,故E点坐标为(1,0).故答案为:(1,0).【点睛】本题考查的是利用待定系数法求直线的解析式和两线段之和最小问题,属于常考题型,熟练掌握求解的方法是解题关键.19.【解析】【分析】【详解】试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10. ∴斜边上的中线长=×10=5.考点:1.勾股定理;2. 直角三角形斜边上的中线性质.解析:【解析】【分析】试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.∴斜边上的中线长=1×10=5.2考点:1.勾股定理;2. 直角三角形斜边上的中线性质.20.40°【解析】【分析】根据三角形的外角性质和等腰三角形的性质求解.【详解】解:∵等腰三角形的一个外角为80°,∴相邻角为180°-80°=100°,∵三角形的底角不能为钝角,∴100解析:40°【解析】【分析】根据三角形的外角性质和等腰三角形的性质求解.【详解】解:∵等腰三角形的一个外角为80°,∴相邻角为180°-80°=100°,∵三角形的底角不能为钝角,∴100°角为顶角,∴底角为:(180°-100°)÷2=40°.故答案为40°.【点睛】本题考查等腰三角形的性质,解题的关键是掌握三角形的内角和定理以及等腰三角形的性质.21.(3,2)【解析】试题分析:点A(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为(3,2).考点:关于x轴、y轴对称的点的坐标.解析:(3,2)【解析】试题分析:点A(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为(3,2).考点:关于x轴、y轴对称的点的坐标.22.30【分析】根据正三角形ABC得到∠BAC=60°,因为AD⊥BC,根据等腰三角形的三线合一得到∠BAD的度数.【详解】∵△ABC是等边三角形,∴∠BAC=60°,∵AB=AC解析:30【解析】【分析】根据正三角形ABC得到∠BAC=60°,因为AD⊥BC,根据等腰三角形的三线合一得到∠BAD 的度数.【详解】∵△ABC是等边三角形,∴∠BAC=60°,∵AB=AC,AD⊥BC,∴∠BAD=12∠BAC=30°,故答案为30°.23.y=2x【解析】【分析】直接利用一次函数平移规律:左右平移,x左加右减;上下平移,b上加下减,得出答案.【详解】解:将函数y=2x+2的图象向下平移2个单位长度后,所得图象的函数关系式为y解析:y=2x【解析】【分析】直接利用一次函数平移规律:左右平移,x左加右减;上下平移,b上加下减,得出答案.【详解】解:将函数y=2x+2的图象向下平移2个单位长度后,所得图象的函数关系式为y=2x+2﹣2=2x.故答案为:y=2x.【点睛】本题考查的知识点是一次函数图象与几何变换,掌握一次函数图象平移的规律“左右平移,x左加右减;上下平移,b上加下减”是解此题的关键.24.(3,4)【解析】分析:首先根据点A和点A′的坐标得出平移的方向和平移的数量,然后根据平移法则得出点B′的坐标.详解:∵A的坐标为(-4,-1),A′的坐标为(-2,2),∴平移法则为:先向解析:(3,4)【解析】分析:首先根据点A和点A′的坐标得出平移的方向和平移的数量,然后根据平移法则得出点B′的坐标.详解:∵A的坐标为(-4,-1),A′的坐标为(-2,2),∴平移法则为:先向右平移2个单位,再向上平移3个单位,∴点B′的坐标为(3,4).点睛:本题主要考查的是线段的平移法则,属于基础题型.线段的平移法则就是点的平移法则,属于基础题型.25.【解析】【分析】观察函数图象得到,当x2时,一次函数y=kx+b的图象都在一次函数y=mx+n的图象的上方,由此得到不等式kx+bmx+n的解集.【详解】∵当x2时,一次函数y=kx+b的x≥解析:2【解析】【分析】观察函数图象得到,当x≥2时,一次函数y=kx+b的图象都在一次函数y=mx+n的图象的上方,由此得到不等式kx+b≥mx+n的解集.【详解】∵当x≥2时,一次函数y=kx+b的图象都在一次函数y=mx+n的图象的上方,∴不等式kx+b≥mx+n的解集为x≥2.故答案是:x≥2.【点睛】考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.三、解答题26.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据ASA 证明ΔABF ≌ΔBCE 即可;(2)根据直角三角形两锐角互余、角平分线的性质以及余角的性质可得∠DBC =∠BDE ,根据等角对等边即可得到BC =CD ,从而得到结论.【详解】(1)∵BE ⊥CD ,AF ⊥BE ,∴∠BEC =∠AFB =90°,∴∠ABE +∠BAF =90°.∵∠ABC =90°,∴∠ABE +∠EBC =90°,∴∠BAF =∠EBC .在ΔABF 和ΔBCE 中,∵∠AFB =∠BEC ,AF =BE ,∠BAF =∠EBC ,∴ΔABF ≌ΔBCE .(2)∵∠ABC =90°,∴∠ABD +∠DBC =90°.∵∠BED =90°,∴∠DBE +∠BDE =90°.∵BD 分∠ABE ,∴∠ABD =∠DBE ,∴∠DBC =∠BDE ,∴BC =CD ,即ΔBCD 是等腰三角形.【点睛】本题考查了等腰三角形的判定与全等三角形的判定与性质.解题的关键是证明ΔABF ≌ΔBCE .27.【解析】【分析】根据算术平方根的定义求出a 的值,根据平方根的定义求出b 的值,根据微粒数的估算求出c 的值,然后代入计算,即可得到答案.【详解】解:∵21a -的算术平方根是3,∴21=9a -,∴5a =;∵31a b +-的平方根是4±,∴31=16a b +-,∴351=16b ⨯+-,∴2b =;∵又45<<,∴4,∴4c =,∴252245a b c +-=+⨯-=,∴2a b c +-的平方根为:【点睛】本题考查了算术平方根、平方根、估算无理数的大小等知识点,能根据已知得出a 、b 、c 的值是解此题的关键.28.(1)10;15; (2) ①520z y x =+;②挖掘1小时或3小时或5小时后两工程队相距5米.【解析】【分析】(1)分别根据速度=路程除以时间列式计算即可得解;(2)①设,y kx b =+乙 然后利用待定系数法求一次函数解析式解答即可;②求出甲队的函数解析式,然后根据-=5-=5y y y y 甲乙乙甲, 列出方程求解即可.【详解】()1甲队:60610÷=米/小时,乙队: 30215÷=米/小时:故答案为:10,15;()2①当26x <<时,设z y kx b =+,则230650k b k b +=⎧⎨+=⎩, 解得520k b =⎧⎨=⎩, ∴当26x <<时,520z y x =+;②易求得:当02x ≤≤时,15z y x =, 当26x ≤≤时,520z y x =+;当06x ≤≤时=10y x 甲,由()10520x x =+解得4x =,1° 当02x ≤≤, 15105x x -=,解得:1x =,2°当24x <≤,()520105x x +-=解得:3x =,3°当46x <≤,()105205x x -+=,解得: 5x=答:挖掘1小时或3小时或5小时后,两工程队相距5米.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一-次函数解析式,准确识图获取必要的信息是解题的关键,也是解题的难点.29.(1)60;(2)14h;(3)点E代表的实际意义是在行驶143h时,客车和货车相遇,相遇时两车离C站的距离为80km.【解析】【分析】(1)由图象可知客车6小时行驶的路程是360km,从而可以求得客车的速度;(2)由图象可以得到货车行驶的总的路程,前2h行驶的路程是60km,从而可以起求得货车由B地行驶至A地所用的时间;(3)根据图象利用待定系数法分别求得EF和DP所在直线的解析式,然后联立方程组即可求得点E的坐标,根据题意可以得到点E代表的实际意义.【详解】解:(1)由图象可得,客车的速度是:360÷6=60(km/h),故答案为:60;(2)由图象可得,货车由B地到A地的所用的时间是:(60+360)÷(60÷2)=14(h),即货车由B地到A地的所用的时间是14h;(3)设客车由A到C对应的函数解析式为y=kx+b,则36060bk b=⎧⎨+=⎩,得60360kb=-⎧⎨=⎩,即客车由A到C对应的函数解析式为y=-60x+360;根据(2)知点P的坐标为(14,360),设货车由C到A对应的函数解析式为y=mx+n,则2014360m nm n+=⎧⎨+=⎩,得3060mn=⎧⎨=-⎩,即货车由C到A对应的函数解析式为y=30x-60;∴603603060y xy x=-+⎧⎨=-⎩,得14380xy⎧=⎪⎨⎪=⎩,∴点E的坐标为(143,80),故点E代表的实际意义是在行驶143h时,客车和货车相遇,相遇时两车离C站的距离为80km.【点睛】本题考查一次函数的应用,解答此类问题的关键是明确题意,利用待定系数法求出一次函数解析式,然后利用一次函数的性质和数形结合的思想解答.30.(1)B(6,0);(2)12【解析】【分析】(1)根据待定系数法求得直线解析式,然后根据图象上点的坐标特征即可求得B的坐标;(2)令x=0,求得C的坐标,然后根据三角形面积公式即可求得.【详解】解:(1)∵直线y=kx+6经过点A(4,2),∴2=4k+6,解得k=﹣1∴直线为y=﹣x+6令y=0,则﹣x+6=0,解得x=6,∴B(6,0);(2)令x=0,则y=6,∴C(0,6),∴CO=6,∴△OAC的面积=162×4=12.【点睛】本题考查的知识点是一次函数的图象上点的坐标特征,属于基础题目,易于掌握.31.x=1【解析】试题分析:按照解分式方程的步骤求解即可.试题解析:去分母得,3x(x-2)-2(x+2)=3(x+2)(x-2)去括号得,3x2-6x-2x-4=3x2-12移项,合并同类项得:-8x=-8∴x=1经检验:x=1是原方程的根,考点:解分式方程.。

苏科版八年级(上)第三次月考数学试卷(含答案)

苏科版八年级(上)第三次月考数学试卷(含答案)

苏科版八年级(上)第三次月考数学试卷(含答案)一、选择题1.如图,一次函数图象经过点A ,且与正比例函数y=-x 的图象交于点B ,则该一次函数的表达式为( )A .y=-x+2B .y=x+2C .y=x-2D .y=-x-2 2.如图,一次函数(0)y kx b k =+>的图象过点(0,2),则不等式20kx b +->的解集是( )A .0x >B .0x <C .2x <D .2x > 3.人的眼睛可以看见的红光的波长约为5810cm -⨯,近似数5810-⨯精确到( )A .0.001cmB .0.0001cmC .0.00001cmD .0.000001cm 4.对函数31y x =-,下列说法正确的是( )A .它的图象过点(3,1)-B .y 值随着x 值增大而减小C .它的图象经过第二象限D .它的图象与y 轴交于负半轴5.下列各点中在第四象限的是( )A .()2,3--B .()2,3-C .()3,2-D .()3,2 6.满足下列条件的△ABC ,不是直角三角形的是( )A .a :b :3c =:4:5B .A ∠:B ∠:9C ∠=:12:15 C .C A B ∠=∠-∠D .222b a c -= 7.能表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 是常数且m ≠0)的图象的是( )A .B .C .D .8.如图,折叠Rt ABC ∆,使直角边AC 落在斜边AB 上,点C 落到点E 处,已知6cm AC =,8cm BC =,则CD 的长为( )cm.A .6B .5C .4D .3 9.如图,已知O 为ABC ∆三边垂直平分线的交点,且50A ∠=︒,则BOC ∠的度数为( )A .80︒B .100︒C .105︒D .120︒10.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( )A .(2,0)B .(-2,0)C .(6,0)D .(-6,0) 11.如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长为( )A .2.8B .22C .2.4D .3.512.如图, Rt ABC 中,90,B ED ∠=︒垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长( )A .10B .14C .24D .15 13.点P(2,-3)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限14.若关于x 的分式方程211x a x -=+的解为负数,则字母a 的取值范围为( ) A .a ≥﹣1 B .a ≤﹣1且a ≠﹣2C .a >﹣1D .a <﹣1且a ≠﹣2 15.设2的整数部分用a 表示,小数部分用b 表示,4﹣2的整数部分用c 表示,小数部分用d 表示,则b d ac +值为( ) A .12 B .14 C .212- D .2+12二、填空题16.函数1y=x 2-中,自变量x 的取值范围是 ▲ . 17.已知点(,)P m n 在一次函数31y x =-的图像上,则2296m mn n -+=___________. 18.若关于x 的分式方程122x x a x x--=--有增根,则a 的值_____________. 19.已知10个数据:0,1,2,6,2,1,2,3,0,3,其中 2 出现的频数为____.20.已知22139273m ⨯⨯=,求m =__________.21.已知113-=a b ,则分式232a ab b a ab b+-=--__________. 22.如图,点C 坐标为(0,1)-,直线334y x =+交x 轴,y 轴于点A 、点B ,点D 为直线上一动点,则CD 的最小值为_________.23.如图,在△ABC 中,PH 是AC 的垂直平分线,AH =3,△ABP 的周长为11,则△ABC 的周长为_____.24.如图,一次函数y kx b =+与y mx n =+的图像交于点(2,1)P -,则由函数图像得不等式kx b mx n +≥+的解集为________.25.如图,在△ABC 中,AB =5,AC =13,BC 边上的中线AD =6,则△ABD 的面积是______.三、解答题26.某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司62辆A ,B 两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量 租金单价 A30人/辆 380元/辆 B 20人/辆 280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A 型号客车x 辆,租车总费用为y 元,求y 与x 的函数表达式,并写出x 的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?27.如图,正方形网格由边长为1的小正方形组成,ABC ∆的顶点都在格点上,平面直角坐标系的坐标轴落在网格线上,按要求完成作图:(1)作出ABC ∆关于y 轴对称的图形111A B C ∆,其中,点1A 的坐标为_______.(2)在x 轴上画出一点Q ,使得ACQ ∆的周长最小.28.先化简,再求值:(1﹣11a -)÷2244a a a a-+-,其中2.29.在△ABC 中,AB=6,AC=BC=5,将△ABC 绕点A 按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B 的对应点为点D,点C 的对应点为点E,连接BD ,BE .(1)如图,当α=60°时,延长BE 交AD 于点F .①求证:△ABD 是等边三角形;②求证:BF ⊥AD ,AF=DF ;③请直接写出BE 的长;(2)在旋转过程中,过点D 作DG 垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG 与线段AE 无公共点时,请直接写出BE+CE 的值.30.如图,一次函数1y x b =+的图像与x 轴y 轴分别交于点A 、点B ,函数1y x b =+,与243y x =-的图像交于第二象限的点C ,且点C 横坐标为3-. (1)求b 的值;(2)当120y y <<时,直接写出x 的取值范围;(3)在直线243y x =-上有一动点P ,过点P 作x 轴的平行线交直线1y x b =+于点Q ,当145PQ OC =时,求点P 的坐标.31.如图,AD 是△ABC 的中线,AB =AC =13,BC =10,求AD 长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】解:设一次函数的解析式y=kx+b(k≠0),∵一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,∴在直线y=-x中,令x=-1,解得:y=1,则B的坐标是(-1,1).把A(0,2),B(-1,1)的坐标代入一次函数的解析式y=kx+b得:2{1bk b=-+=,解得2{1bk==,该一次函数的表达式为y=x+2.故选B.2.A解析:A【解析】【分析】由图知:一次函数y=kx+b的图象与y轴的交点为(0,2),且y随x的增大而增大,由此得出当x>0时,y>2,进而可得解.【详解】根据图示知:一次函数y=kx+b的图象与y轴的交点为(0,2),且y随x的增大而增大;即当x>0时函数值y的范围是y>2;因而当不等式kx+b-2>0时,x的取值范围是x>0.故选:A.【点睛】本题主要考查的是一次函数与一元一次不等式,在解题时,认真体会一次函数与一元一次不等式(组)之间的内在联系.理解一次函数的增减性是解决本题的关键.3.C解析:C【解析】【分析】把数还原后,再看首数8的最后一位数字8所在的位数是十万分位,即精确到十万分位.【详解】∵5810-⨯=0.00008,∴近似数5810-⨯是精确到十万分位,即0.00001.故选:C .【点睛】此题主要考查了科学记数法与有效数字,正确还原数据是解题关键.4.D解析:D【解析】【分析】根据一次函数的性质,对每一项进行判断筛选即可.【详解】A 将x=3代入31y x =-得:3×3-1=8,A 选项错;B .一次函数k >0,y 值随着x 值增大而增大,B 选项错;C .一次函数k >0,y 值随着x 值增大而增大,当x=0时,y=-1,故此函数的图像经过一、三、四象限,C 选项错;D .当x=0时,y=-1,一次函数的图象与y 轴交于负半轴,D 项正确.故选D.【点睛】本题考查了一次函数的性质,解决本题的关键是正确理解题意,熟练掌握一次函数的性质. 5.C解析:C【解析】【分析】根据第四象限点的坐标特点,在选项中找到横坐标为正,纵坐标为负的点即可.【详解】解:A .(-2,-3)在第三象限;B .(-2,3)在第二象限;C .(3,-2)在第四象限;D .(3,2)在第一象限;故选:C .【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,用到的知识点为:点在第四象限内,那么横坐标大于0,纵坐标小于0.6.B解析:B【解析】分析:根据三角形的内角和定理及勾股定理的逆定理进行分析,进而得到答案.详解:A.设三边分别为3k ,4k ,5k ,因为(3k)2+(4k )2=(5k )2,所以是直角三角形;B.因为∠C=0015180909+12+15⨯<,所以不是直角三角形; C. ∠C=∠A ﹣∠B ,即∠B+∠C=∠A ,故∠A=090,所以是直角三角形;D.因为b 2﹣a 2=c 2,所以c 2+a 2= b 2,所以是直角三角形.故答案为B.点睛:此题考查勾股定理的逆定理的应用.判断三角形是不是直角三角形,已知三角形的三边的长,只要利用勾股定理的逆定理加以判断即可.7.C解析:C【解析】【分析】对于各选项:先通过一次函数的性质确定m 、n 的符合,从而得到mn 的符合,然后根据正比例函数的性质对正比例函数图象进行判断,从而可确定该选项是否正确.【详解】A 、由一次函数图象得m >0,n >0,所以mn >0,则正比例函数图象过第一、三象限,所以A 选项错误;B 、由一次函数图象得m >0,n <0,所以mn <0,则正比例函数图象过第二、四象限,所以B 选项错误;C 、由一次函数图象得m <0,n >0,所以mn <0,则正比例函数图象过第二、四象限,所以C 选项正确;D 、由一次函数图象得m <0,n >0,所以mn <0,则正比例函数图象过第二、四象限,所以D 选项错误.故选:C .【点睛】本题考查了正比例函数图象:正比例函数y =kx 经过原点,当k >0,图象经过第一、三象限;当k <0,图象经过第二、四象限.也考查了一次函数的性质.8.D解析:D【解析】【分析】在Rt ABC ∆中,根据勾股定理可求得AB 的长度,依据折叠的性质AE=AC ,DE=CD ,因此可得BE 的长度,在Rt △BDE 中根据勾股定理即可求得CD 的长度.【详解】解:∵在Rt ABC ∆中,6cm AC =,8cm BC =,∴由勾股定理得,10AB cm ===. 由折叠的性质知,AE=AC=6cm ,DE=CD ,∠AED=∠C=90°.∴BE=AB-AE=10-6=4cm ,在Rt △BDE 中,由勾股定理得,DE 2+BE 2=BD 2即CD 2+42=(8-CD)2,解得:CD=3cm .故选:D .【点睛】本题考查折叠的性质,勾股定理.理解折叠的前后对应边相等,对应角相等,并能依此判断△BDE 是直角三角形,并计算(或用CD 表示)它的三边是解决此题的关键.9.B解析:B【解析】【分析】延长AO 交BC 于D ,根据垂直平分线的性质可得到AO=BO=CO ,再根据等边对等角的性质得到∠OAB=∠OBA ,∠OAC=∠OCA ,再由三角形的外角性质可求得∠BOD=∠OAB+∠OBA ,∠COD=∠OAC+∠OCA ,从而不难求得∠BOC 的度数.【详解】延长AO 交BC 于D .∵点O 在AB 的垂直平分线上.∴AO=BO .同理:AO=CO .∴∠OAB=∠OBA ,∠OAC=∠OCA .∵∠BOD=∠OAB+∠OBA ,∠COD=∠OAC+∠OCA .∴∠BOD=2∠OAB ,∠COD=2∠OAC .∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2(∠OAB+∠OAC )=2∠BAC .∵∠A=50°.∴∠BOC=100°.故选:B .【点睛】此题主要考查:(1)线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.10.B解析:B【解析】【分析】先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案.【详解】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+, 此时与x 轴相交,则0y =,∴360x +=,即2x =-,∴点坐标为(-2,0),故选B.【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.11.B解析:B【解析】【分析】延长BG 交CH 于点E ,根据正方形的性质证明△ABG ≌△CDH ≌△BCE ,可得GE=BE-BG=2,HE=CH-CE=2,∠HEG=90°,从而由勾股定理可得GH 的长.【详解】解:如图,延长BG 交CH 于点E ,∵四边形ABCD 是正方形,∴∠ABC=90°,AB=CD=10,∵AG=8,BG=6,∴AG 2+BG 2=AB 2,∴∠AGB=90°,∴∠1+∠2=90°,又∵∠2+∠3=90°,∴∠1=∠3,同理:∠4=∠6,在△ABG 和△CDH 中,AB =CD =10AG =CH =8BG =DH =6∴△ABG ≌△CDH (SSS ),∴∠1=∠5,∠2=∠6,∴∠2=∠4,在△ABG 和△BCE 中,∵∠1=∠3,AB =BC ,∠2=∠4,∴△ABG ≌△BCE (ASA ),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE -BG=8-6=2,同理可得HE=2,在Rt △GHE 中,GH ===故选:B .【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE 为直角三角形且能够求出两条直角边的长是解题的关键.12.A解析:A【解析】【分析】首先依据线段垂直平分线的性质得到AE=CE ;接下来,依据AE=CE 可将△ABE 的周长为:14转化为AB+BC=14,求解即可.【详解】∵DE 是AC 的垂直平分线,∴AE=CE ,∴△ABE 的周长为:AB+BE+AE=AB+BE+CE=AB+BC∵ABC 的周长为24,ABE 的周长为14∴AB+BC=14∴AC=24-14=10故选:A【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键. 13.D解析:D【解析】析:应先判断出所求的点的横纵坐标的符号,进而判断点P 所在的象限.解答:解:∵点P 的横坐标为正,纵坐标为负,∴点P (2,-3)所在象限为第四象限.故选D .14.D解析:D【解析】【分析】先求出分式方程的解,由分式方程有意义的条件可知1x ≠-,即方程的解1≠-,由解为负数可知分式方程的解小于0,可得字母a 的取值范围.【详解】解:方程两边同时乘以(x +1),得2x ﹣a =x +1,解得:x =a +1,∵解为负数,∴a +1<0,∴a <﹣1,因为分式有意义,则10x +≠,1x ≠-,即11a +≠-,解得2a ≠-∴a <﹣1且a ≠﹣2,故选:D .【点睛】本题考查了分式方程,根据分式方程解的情况确定参数的取值范围,解题过程中易忽视分式有意义的条件,熟练掌握分式方程的解法是解题的关键.15.A解析:A【解析】【分析】和4的值,确定其整数部分,再用原数减去其整数部分可得小数部分,将求得的值代入求解即可.【详解】解:∵1<2<4,∴1<2.∴a =1,b ﹣1,∵2<4<3∴c =2,d =4﹣2=2.∴b +d =1,ac =2. ∴b d ac +=12. 故选:A .【点睛】本题考查了实数的估算,灵活的利用估算确定无理数的整数部分与小数部分是解题的关键.二、填空题16..【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.解析:x 2≠.【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.17.1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入===.故答案为:1.【解析:1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入2296m mn n -+=223196())31(m m m m -+--=2229186196m m m m m -++-+=1.故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标性质,正确代入点的坐标求出是解题关键. 18.4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】方程变形得:,去分母得:x+x-a=x-2,解得:x=a-解析:4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】 方程变形得:+122x x a x x -=--, 去分母得:x+x-a=x-2,解得:x=a-2, ∵方程122x x a x x--=--有增根, ∴x=2,即a-2=2,解得:a=4,故答案为:4.【点睛】 此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值. 19.3【解析】【分析】直接利用频数的定义得出答案.【详解】10个数据:0,1,2,6,2,1,2,3,0,3,其中2出现3次,所以2出现的频数为:3.故答案为:3.【点睛】此题主要考查解析:3【解析】【分析】直接利用频数的定义得出答案.【详解】10个数据:0,1,2,6,2,1,2,3,0,3,其中2出现3次,所以2出现的频数为:3.故答案为:3.【点睛】此题主要考查了频数,正确把握频数的定义是解题关键.20.8【解析】【分析】根据幂的乘方可得,,再根据同底数幂的乘法法则解答即可.【详解】∵,即,∴,解得,故答案为:8.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练解析:8【解析】【分析】根据幂的乘方可得293m m ,3273=,再根据同底数幂的乘法法则解答即可. 【详解】∵22139273m ⨯⨯=,即22321333m ,∴22321m ,解得8m =, 故答案为:8.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟练掌握幂的运算法则是解答本题的关键.21.【解析】【分析】首先把两边同时乘以,可得 ,进而可得,然后再利用代入法求值即可.【详解】解:∵,∴ ,∴,∴故答案为:【点睛】此题主要考查了分式化简求值,关键是掌握代入求值时, 解析:34【解析】【分析】 首先把113-=a b两边同时乘以ab ,可得3b a ab -= ,进而可得3a b ab -=-,然后再利用代入法求值即可.【详解】 解:∵113-=a b, ∴3b a ab -= ,∴3a b ab -=-, ∴2323263334a b ab a ab b ab ab a ab b a b ab ab ab 故答案为:34【点睛】 此题主要考查了分式化简求值,关键是掌握代入求值时,有直接代入法,整体代入法等常用方法.22.【解析】【分析】 过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD⊥AB,则CD 的长最短,如图,对于直线令y=0,则,解得x=-4,令x=0解析:165【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD ⊥AB ,则CD 的长最短,如图,对于直线334y x =+令y=0,则3304x +=,解得x=-4,令x=0,则y=3,∴A(-4,0),B(0,3),∴OA=4,OB=3,在Rt △OAB 中,222AB OA OB =+∴22435 ∵C (0,-1),∴OC=1,∴BC=3+1=4, ∴1122ABC S BC AO AB CD ==,即1144=522CD ⨯⨯⨯⨯, 解得,165CD =. 故答案为:165. 【点睛】 此题主要考查了一次函数的应用以及三角形面积公式的运用,解答此题的关键是利用三角形面积相等求出CD 的长.23.17【解析】【分析】根据线段垂直平分线的性质得到,,根据三角形的周长公式计算,得到答案.【详解】解:是的垂直平分线,,,的周长为11,,的周长,故答案为:17.【点睛】本题考解析:17【解析】【分析】根据线段垂直平分线的性质得到PA PC =,26AC AH ==,根据三角形的周长公式计算,得到答案.【详解】解:PH 是AC 的垂直平分线,PA PC ∴=,26AC AH ==,ABP ∆的周长为11, 11AB BP PA AB BP BC AB BC ∴++=++=+=,ABC ∆∴的周长17AB BC AC =++=,故答案为:17.【点睛】本题考查了线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.24.【解析】【分析】观察函数图象得到,当x2时,一次函数y=kx+b 的图象都在一次函数y=mx+n 的图象的上方,由此得到不等式kx+bmx+n 的解集.【详解】∵当x2时,一次函数y=kx+b 的解析:2x ≥【解析】【分析】观察函数图象得到,当x ≥2时,一次函数y=kx+b 的图象都在一次函数y=mx+n 的图象的上方,由此得到不等式kx+b ≥mx+n 的解集.【详解】∵当x ≥2时,一次函数y=kx+b 的图象都在一次函数y=mx+n 的图象的上方,∴不等式kx+b ≥mx+n 的解集为x ≥2.故答案是:x ≥2.【点睛】考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.25.15【解析】【分析】延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△A解析:15【解析】【分析】延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△ABD的面积.【详解】解:延长AD到点E,使DE=AD=6,连接CE,∵AD是BC边上的中线,∴BD=CD,在△ABD和△CED中,BD CDADB EDCAD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△CED(SAS),∴CE=AB=5,∠BAD=∠E,∵AE=2AD=12,CE=5,AC=13,∴CE2+AE2=AC2,∴∠E=90°,∴∠BAD=90°,即△ABD为直角三角形,∴△ABD的面积=12AD•AB=15.故答案为15.【点睛】本题考查了全等三角形的判定和性质、勾股定理的逆定理的运用,解题的关键是添加辅助线,构造全等三角形.三、解答题26.(1)y与x的函数表达式为y=100x+17360(21≤x≤62且x为整数);(2)共有25种租车方案;租用A 型号客车21辆,B 型号客车41辆时最省钱.【解析】【分析】(1)根据租车总费用=A 、B 两种车的费用之和,列出函数关系式即可;(2)列出不等式,求出自变量x 的取值范围,利用函数的性质即可解决问题;【详解】解:(1)由题意:y=380x+280(62-x )=100x+17360.∵30x+20(62-x )≥1441,∴x ≥20.1,又∵x 为整数,∴x 的取值范围为21≤x ≤62的整数.即y 与x 的函数表达式为y=100x+17360(21≤x ≤62且x 为整数).(2)由题意100x+17360≤21940,∴x ≤45.8,∴21≤x ≤45,∴共有25种租车方案,又100>0,∴y 随x 的增大而增大,∴x=21时,y 有最小值.即租用A 型号客车21辆,B 型号客车41辆时最省钱.【点睛】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.27.(1)见解析;(2)见解析.【解析】【分析】(1)分别找到三角形个顶点关于y 轴对称的对称点,再顺次连接即可,再根据直角坐标系即可得到1A 的坐标;(2)作点A 关于x 轴的对称点A’,再连接A’C ,与x 轴的交点即为所求.【详解】(1)作出ABC ∆关于y 轴对称的图形111A B C ∆如图所示.其中,点1A 的坐标为3,1().(2)如图,Q 点为所求.【点睛】此题主要考查坐标与图形,解题的关键是熟知轴对称的性质.28.原式=2a a -2. 【解析】分析:先根据分式混合运算顺序和运算法则化简原式,再将a 的值代入计算可得. 详解:原式=211(2)(11(1)a a a a a a ---÷---) =22(1)•1(2)a a a a a ---- =2a a - 当2原式2+2212+22=-. 点睛:本题主要考查分式的混合运算,解题的关键是熟练掌握分式混合运算顺序和运算法则.29.(1)①②详见解析;③3﹣4;(2)13.【解析】【分析】(1)①由旋转性质知AB=AD ,∠BAD=60°即可得证;②由BA=BD 、EA=ED 根据中垂线性质即可得证;③分别求出BF 、EF 的长即可得;(2)由∠ACB+∠BAC+∠ABC=180°、∠DAG+∠DAE+∠BAE=180°、∠DAG=∠ACB 、∠DAE=∠BAC 得∠BAE=∠BAC 且AE=AC ,根据三线合一可得CE ⊥AB 、AC=5、AH=3,继而知CE=2CH=8、BE=5,即可得答案.【详解】(1)①∵△ABC 绕点A 顺时针方向旋转60°得到△ADE ,∴AB=AD ,∠BAD=60°,∴△ABD 是等边三角形;②由①得△ABD 是等边三角形,∴AB=BD ,∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE,又∵AC=BC,∴EA=ED,∴点B、E在AD的中垂线上,∴BE是AD的中垂线,∵点F在BE的延长线上,∴BF⊥AD, AF=DF;③由②知BF⊥AD,AF=DF,∴AF=DF=3,∵AE=AC=5,∴EF=4,∵在等边三角形ABD中,BF=AB•sin∠BAF=6×3=33,∴BE=BF﹣EF=33﹣4;(2)如图所示,∵∠DAG=∠ACB,∠DAE=∠BAC,∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,又∵∠DAG+∠DAE+∠BAE=180°,∴∠BAE=∠ABC,∵AC=BC=AE,∴∠BAC=∠ABC,∴∠BAE=∠BAC,∴AB⊥CE,且CH=HE=12 CE,∵AC=BC,∴AH=BH=12AB=3,则CE=2CH=8,BE=5,∴BE+CE=13.【点睛】本题主要考查旋转的性质、等边三角形的判定与性质、中垂线的性质、三角形内角和定理等知识点,熟练掌握旋转的性质是解题的关键.30.(1)7b =(2)73x -<<-(3)点P 坐标为(3,4)-或(9,12)-【解析】【分析】(1)将点C 横坐标代入243y x =-求得点C 的纵坐标为4,再把(-3,4)代入1y x b =+求出b 即可;(2)求出点A 坐标,结合点C 坐标即可判断出当120y y <<时, x 的取值范围; (3)设P (a,-43a ),可求出Q (473a --,43a -),即可得PQ=773a +,再求出OC=5,根据145PQ OC =求出a 的值即可得出结论. 【详解】 (1)把3x =-代入243y x =-, 得4y =.∴C (-3,4)把点(3,4)C -代入1y x b =+,得7b =.(2)∵b=7∴y=x+7,当y=0时,x=-7,x=-3时,y=4,∴当120y y <<时,73x -<<-.(3)点P 为直线43y x =-上一动点, ∴设点P 坐标为4(,)3a a -. //PQ x ∵轴,∴把43y a =-代入7y x =+,得473x a =--. ∴点Q 坐标为447,33a a ⎛⎫--- ⎪⎝⎭, 477733PQ a a a ∴=++=+ 又点C 坐标为()3,4-,5OC ∴==14145PQ OC ∴== 77143a ∴+= 解之,得3a =或9a =-.∴点P 坐标为(3,4)-或(9,12)-.【点睛】理解点在直线上则它的坐标满足直线的解析式.学会用坐标表示线段的长.31.12【解析】【分析】利用勾股定理和等腰三角形的性质求得AD 的长度即可.【详解】解:∵AB =AC =13,BC =10,AD 是中线,∴AD ⊥BC ,BD =5,∴∠ADB =90°,∴AD 2=AB 2﹣BD 2=144,∴AD =12.【点睛】本题考查的知识点是等腰三角形的性质以及勾股定理,利用等腰三角形的性质求出BD 的长是解此题的关键.。

苏科版八年级上学期第三次月考数学试卷 (解析版)

苏科版八年级上学期第三次月考数学试卷 (解析版)

苏科版八年级上学期第三次月考数学试卷 (解析版) 一、选择题 1.如图,在正方形网格中,若点(1,1)A ,点(3,2)C -,则点B 的坐标为( )A .(1,2)B .(0,2)C .(2,0)D .(2,1)2.若1(2,)A y ,2(3,)B y 是一次函数31y x =-+的图象上的两个点,则1y 与2y 的大小关系是( )A .12y y <B .12y y =C .12y y >D .不能确定3.下列二次根式中属于最简二次根式的是( )A .8B .36C .a b(a >0,b >0) D .7 4.如图,在平面直角坐标系中,点,A C 在x 轴上,点C 的坐标为(1,0),2AC -=.将Rt ABC ∆先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,2)-B .(4,2)-C .(3,2)D .(2,2)5.计算3329a b a b a b a-(a >0,b >0)的结果是( ) A .53ab B .23ab C .179ab D .89ab 6.如图,一艘轮船停在平静的湖面上,则这艘轮船在湖中的倒影是( )A .B .C .D .7.中国传统服装历史悠远,下列服装中,是轴对称的是()A .B .C .D .8.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s (km),甲出发后的时间为t (h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h 9.下列条件中,不能判断△ABC 是直角三角形的是( )A .a :b :c =3:4:5B .∠A :∠B :∠C =3:4:5 C .∠A +∠B =∠CD .a :b :c =1:2:3 10.如图,正方形OACB 的边长是2,反比例函数k y x=图像经过点C ,则k 的值是( )A .2B .2-C .4D .4- 11.在-227,-π,0,3.14, 0.1010010001,-313中,无理数的个数有 ( ) A .1个B .2个C .3个D .4个 12.4 的算术平方根是( )A .16B .2C .-2D .2± 13.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( )A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)14.已知:如图,在△AOB 中,∠AOB =90°,AO =3cm ,BO =4cm ,将△AOB 绕顶点O ,按顺时针方向旋转到△A 1OB 1处,此时线段OB 1与AB 的交点D 恰好为AB 的中点,则线段B 1D 的长度为( )A .12cmB .1cmC .2cmD .32cm 15.下列各组数是勾股数的是( )A .6,7,8B .1,3,2C .5,4,3D .0.3,0.4,0.5二、填空题16.如图,在ABC ∆中,90ACB ∠=︒,点D 为AB 中点,若4AB =,则CD =_______________.17.某种型号汽车每行驶100km 耗油10L ,其油箱容量为40L .为了有效延长汽车使用寿命,厂家建议每次加油时邮箱内剩余油量不低于油箱容量的18,按此建议,一辆加满油的该型号汽车最多行驶的路程是_____km .18.9的平方根是_________.19.函数y x 3=-中,自变量x 的取值范围是 .20.如图,在ABC 中,AB AC =,AB 的垂直平分线交AB 于点D ,交AC 于点E ,且50A ∠=︒,则EBC ∠的度数是__________.21.使函数6y x =-有意义的自变量x 的取值范围是_______.22.在ABC 中,,AB AC BD =是高,若40ABD ∠=︒,则C ∠的度数为______.23.一次函数y =2x -4的图像与x 轴的交点坐标为_______.24.如图,在Rt ABC ∆中,90B =∠,6AB =,8BC =,将ABC ∆折叠,使点B 恰好落在斜边AC 上,与点'B 重合,AE 为折痕,则'EB 的长度是__________.25.一次函数y 1=ax +3与y 2=kx ﹣1的图象如图所示,则不等式kx ﹣1<ax +3的解集是_____.三、解答题26.如图,一次函数y ax b =+与正比例函数y kx =的图像交于点M .(1)求正比例函数和一次函数的解析式;(2)根据图像,写出关于x 的不等式kx ax b >+的解集;(3)求MOP ∆的面积.27.A ,B 两地相距200千米,甲车从A 地出发匀速行驶到B 地,乙车从B 地出发匀速行驶到A 地.乙车行驶1小时后,甲车出发,两车相向而行.设行驶时间为x 小时(0≤x ≤5),甲、乙两车离A 地的距离分别为y 1,y 2千米,y 1,y 2与x 之间的函数关系图象如图1所示.根据图象解答下列问题:(1)求y 1,y 2与x 的函数关系式;(2)乙车出发几小时后,两车相遇?相遇时,两车离A 地多少千米?(3)设行驶过程中,甲、乙两车之间的距离为s 千米,在图2的直角坐标系中,已经画出了s 与x 之间的部分函数图象.①图中点P 的坐标为(1,m ),则m = ;②求s 与x 的函数关系式,并在图2中补全整个过程中s 与x 之间的函数图象.28.(1)计算:3(1232)36•-+(2)因式分解:3312x x -(3)计算:2(1)(2)(3)x x x x -+-+(4)计算:2(21)2(1)(1)x x x +-+-29.在△ABC 中,AB=6,AC=BC=5,将△ABC 绕点A 按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B 的对应点为点D,点C 的对应点为点E,连接BD ,BE .(1)如图,当α=60°时,延长BE 交AD 于点F .①求证:△ABD 是等边三角形;②求证:BF ⊥AD ,AF=DF ;③请直接写出BE 的长;(2)在旋转过程中,过点D 作DG 垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG 与线段AE 无公共点时,请直接写出BE+CE 的值.30.一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的路程y 1(km )与行驶的时间x (h )之间的函数关系,如图中线段AB 所示,慢车离乙地的路程y 2(km )与行驶的时间x (h )之间的函数关系,如图中线段OC 所示,根据图像进行以下研究:(1)甲、乙两地之间的距离为 km ;线段AB 的解析式为 ;线段OC 的解析式为 ;(2)经过多长时间,快慢车相距50千米?(3)设快、慢车之间的距离为y (km ),并画出函数的大致图像.31.如图,点B 、E 、C 、F 在同一条直线上,∠A=∠D ,∠B=∠DEF ,BE=CF .求证:AC=DF .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据点(1,1)A ,点(3,2)C 建立平面直角坐标系,再结合图形即可确定出点B 的坐标.【详解】解:∵点A 的坐标是:(1,1),点C 的坐标是:(3,-2),∴点B 的坐标是:(2,0).故选:C .【点睛】本题主要考查了点的坐标,点坐标就是在平面直角坐标系中,坐标平面内的点与一对有序实数是一一对应的关系,这对有序实数则为这个点的坐标点的坐标.2.C解析:C【解析】【分析】根据一次函数的性质,此一次函数系数k <0,y 随x 增大而减小,然后观察A 、B 两点的坐标,据此判断即可.【详解】 解:∵一次函数31y x =-+的系数k <0,y 随x 增大而减小,又∵两点的横坐标2<3,∴12y y >故选C.【点睛】本题考查了一次函数的性质,解决本题的关键是理解本题题意,熟练掌握一次函数的增减性.3.D解析:D【解析】【分析】根据最简二次根式的定义即可求出答案.【详解】解:(A )原式=2,故A 不符合题意;(B )原式=6,故B 不符合题意;(C )a b是分式,故C 不符合题意; 故选:D .【点睛】本题考查最简二次根式,解题的关键是熟练运用最简二次根式的定义,本题属于基础题型.4.D解析:D【解析】【分析】先求出A 点绕点C 顺时针旋转90°后所得到的的坐标A ',再求出A '向右平移3个单位长度后得到的坐标A '',A ''即为变换后点A 的对应点坐标.【详解】将Rt ABC ∆先绕点C 顺时针旋转90°,得到点坐标为A '(-1,2),再向右平移3个单位长度,则A '点的纵坐标不变,横坐标加上3个单位长度,故变换后点A 的对应点坐标是A ''(2,2).【点睛】本题考察点的坐标的变换及平移.5.A解析:A【解析】【分析】23a b a a b a ⨯⨯即可求解.【详解】解:∵a >0,b >0,23a b a a b a ⨯⨯=故选:A .【点睛】本题考查二次根式的性质与化简;能够根据二次根式的性质,将所求式子进行正确的化简是解题的关键.6.D解析:D【解析】【分析】易得所求的图形与看到的图形关于水平的一条直线成轴对称,找到相应图形即可.【详解】解:如下图,∴正确的图像是D;故选择:D.【点睛】解决本题的关键是找到相应的对称轴;难点是作出相应的对称图形,也可根据所给图形的特征得到相应图形.7.B解析:B【解析】【分析】直接利用轴对称图形的定义判断即可.【详解】解:A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不合题意;D、不是轴对称图形,不合题意;故选:B.【点睛】此题主要考查了轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,8.C解析:C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C.9.B解析:B【解析】【分析】A、根据比值结合勾股定理的逆定理即可判断出三角形的形状;B、根据角的比值求出各角的度数,便可判断出三角形的形状;C、根据三角形的内角和为180度,即可计算出∠C的值;D 、根据比值结合勾股定理的逆定理即可判断出三角形的形状.【详解】A 、因为a :b :c=3:4:5,所以设a=3x ,b=4x ,c=5x ,则(3x )2+(4x )2=(5x )2,故为直角三角形,故A 选项不符合题意;B 、因为∠A :∠B :∠C=3:4:5,所以设∠A=3x ,则∠B=4x ,∠C=5x ,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形,故B 选项符合题意;C 、因为∠A+∠B=∠C ,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形,故C 选项不符合题意;D 、因为a :b :c=1:2,所以设a=x ,b=2x ,x ,则x 2+x )2=(2x )2,故为直角三角形,故D 选项不符合题意,故选B.【点睛】本题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.10.C解析:C【解析】【分析】根据正方形的性质,即可求出点C 的坐标,然后代入反比例函数解析式里即可.【详解】解:∵正方形OACB 的边长是2,∴点C 的坐标为(2,2)将点C 的坐标代入k y x=中,得 22k = 解得:4k =故选C .【点睛】此题考查的是求反比例函数的比例系数,掌握用待定系数法求反比例函数的比例系数是解决此题的关键.11.A解析:A【解析】【分析】根据无理数的定义进行求解.【详解】解:无理数有:−π,共1个.故选:A .【点睛】本题考查了无理数,解答本题的关键是掌握无理数常见的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.12.B解析:B【解析】【分析】根据算术平方根的定义直接求解即可.【详解】解:42=,故选B.【点睛】本题考查了算术平方根的定义,正确把握定义是解题关键.13.B解析:B【解析】【分析】先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案.【详解】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+, 此时与x 轴相交,则0y =,∴360x +=,即2x =-,∴点坐标为(-2,0),故选B.【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.14.D解析:D【解析】【分析】先在直角△AOB 中利用勾股定理求出AB =5cm ,再利用直角三角形斜边上的中线等于斜边的一半得出OD =12AB =2.5cm .然后根据旋转的性质得到OB 1=OB =4cm ,那么B 1D =OB 1﹣OD =1.5cm .【详解】∵在△AOB 中,∠AOB =90°,AO =3cm ,BO =4cm ,∴AB =5cm ,∵点D 为AB 的中点,∴OD =12AB =2.5cm . ∵将△AOB 绕顶点O ,按顺时针方向旋转到△A 1OB 1处,∴OB 1=OB =4cm ,∴B 1D =OB 1﹣OD =1.5cm .故选:D .【点睛】本题主要考查勾股定理和直角三角形的性质以及图形旋转的性质,掌握“直角三角形斜边上的中线等于斜边的一半”是解题的关键.15.C解析:C【解析】【分析】欲求证是否为勾股数,这里给出三边的长,只要验证222+=a b c 即可.【详解】解:A 、222768+≠,故此选项错误;BC 、222345+=,故此选项正确;D 、0.3,0.4,0.5,勾股数为正整数,故此选项错误.故选:C .【点睛】本题考查了勾股数的概念,一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.二、填空题16.【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求出CD .【详解】∵D 是AB 的中点,∴CDAB=2.故答案为:2.【点睛】本题主要是运用了直角三角形的性质:直角三角形斜解析:2【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求出CD.【详解】∵D是AB的中点,∴CD12AB=2.故答案为:2.【点睛】本题主要是运用了直角三角形的性质:直角三角形斜边上的中线等于斜边的一半.17.【解析】【分析】设行驶xkm,由油箱内剩余油量不低于油箱容量的,列出不等式,即可求解.【详解】设该型号汽车行驶的路程是xkm,∵油箱内剩余油量不低于油箱容量的,∴﹣x+40≥40×,解解析:【解析】【分析】设行驶xkm,由油箱内剩余油量不低于油箱容量的18,列出不等式,即可求解.【详解】设该型号汽车行驶的路程是xkm,∵油箱内剩余油量不低于油箱容量的18,∴﹣10100x+40≥40×18,解得:x≤350,答:该辆汽车最多行驶的路程是350km,故答案为:350.【点睛】本题主要考查一元一次不等式的实际应用,找出不等量关系,列出一元一次不等式,是解题的关键.18.±3【解析】分析:根据平方根的定义解答即可.详解:∵(±3)2=9,∴9的平方根是±3.故答案为±3.点睛:本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是解析:±3【解析】分析:根据平方根的定义解答即可.详解:∵(±3)2=9,∴9的平方根是±3.故答案为±3.点睛:本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.19..【解析】【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.【详解】依题意,得x-3≥0,解得:x≥3.【点睛】本题考查的知识点.解析:x3【解析】【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.【详解】依题意,得x-3≥0,解得:x≥3.【点睛】本题考查的知识点为:二次根式的被开方数是非负数.20.15°【解析】【分析】根据等边对等角和三角形的内角和定理,即可求出∠ABC,然后根据垂直平分线的性质和等边对等角即可求出∠EBA,从而求出的度数.【详解】解:∵,∴∠ABC=∠ACB=(解析:15°【解析】【分析】根据等边对等角和三角形的内角和定理,即可求出∠ABC ,然后根据垂直平分线的性质和等边对等角即可求出∠EBA ,从而求出EBC ∠的度数.【详解】解:∵AB AC =,50A ∠=︒∴∠ABC=∠ACB=12(180°-∠A )=65° ∵ED 垂直平分线段AB∴EA=EB ∴∠EBA=∠A=50°∴EBC ∠=∠ABC -∠EBA=15°故答案为:15°.【点睛】此题考查的是等腰三角形的性质、垂直平分线的性质和三角形的内角和,掌握等边对等角、垂直平分线的性质和三角形的内角和定理是解决此题的关键.21.【解析】【分析】根据二次根式,被开方数a≥0,可得6-x≥0,解不等式即可.【详解】解:∵有意义∴6-x≥0∴故答案为:【点睛】本题考查了函数自变量的取值范围,二次根式有意义的条解析:6x ≤【解析】【分析】a≥0,可得6-x≥0,解不等式即可.【详解】解:∵y =∴6-x≥0∴6x≤故答案为:6x≤【点睛】本题考查了函数自变量的取值范围,二次根式有意义的条件,掌握二次根式a,被开方数a≥0是解题的关键.22.65°或25°【解析】【分析】分两种情况:①当为锐角三角形;②当为钝角三角形.然后先在直角△ABD 中,利用三角形内角和定理求得∠BAC的度数,然后利用等边对等角以及三角形内角和定理求得∠C的度解析:65°或25°【解析】【分析】分两种情况:①当ABC为锐角三角形;②当ABC为钝角三角形.然后先在直角△ABD中,利用三角形内角和定理求得∠BAC的度数,然后利用等边对等角以及三角形内角和定理求得∠C的度数.【详解】解:①当ABC为锐角三角形时:∠BAC=90°-40°=50°,∴∠C=12(180°-50°)=65°;②当ABC为钝角三角形时:∠BAC=90°+40°=130°,∴∠C=12(180°-130°)=25°;故答案为:65°或25°.【点睛】此题考查了等腰三角形的性质,三角形的内角和定理,熟练掌握等腰三角形性质是解题的关键.23.(2,0)【解析】【分析】把y=0代入y=2x+4求出x的值,即可得出答案.【详解】把y=0代入y=2x-4得:0=2x-4,x=2,即一次函数y=2x-4与x轴的交点坐标是(2,0)解析:(2,0)【解析】【分析】把y=0代入y=2x+4求出x的值,即可得出答案.【详解】把y=0代入y=2x-4得:0=2x-4,x=2,即一次函数y=2x-4与x轴的交点坐标是(2,0).故答案是:(2,0).【点睛】考查了一次函数图象上点的坐标特征,注意:一次函数与x轴的交点的纵坐标是0.24.3【解析】【分析】首先根据折叠可得BE=EB′,AB′=AB=6,然后设BE=EB′=x,则EC=8-x,在Rt△ABC中,由勾股定理求得AC的值,再在Rt△B′EC中,由勾股定理列方程即可算解析:3【解析】【分析】首先根据折叠可得BE=EB′,AB′=AB=6,然后设BE=EB′=x,则EC=8-x,在Rt△ABC中,由勾股定理求得AC的值,再在Rt△B′EC中,由勾股定理列方程即可算出答案.【详解】解:根据折叠可得BE=EB′,AB′=AB=6,设BE=EB′=x,则EC=8-x,∵∠B=90°,AB=6,BC=8,∴在Rt△ABC中,由勾股定理得,AC=10,∴B′C=10-6=4,在Rt△B′EC中,由勾股定理得,x2+42=(8-x)2,解得x=3,故答案为:3.【点睛】此题主要考查了翻折变换,以及勾股定理,关键是分析清楚折叠以后哪些线段是相等的.直角三角形两条直角边的平方和等于斜边的平方.25.x <1.【解析】【分析】结合图象,写出直线y1=ax+3在直线y2=kx ﹣1上方所对应的自变量的范围即可.【详解】∵一次函数y1=ax+3与y2=kx ﹣1的图象的交点坐标为(1,2),∴解析:x <1.【解析】【分析】结合图象,写出直线y 1=ax +3在直线y 2=kx ﹣1上方所对应的自变量的范围即可.【详解】∵一次函数y 1=ax +3与y 2=kx ﹣1的图象的交点坐标为(1,2),∴当x <1时,y 1>y 2,∴不等式kx ﹣1<ax +3的解集为x <1.故答案为:x <1.【点睛】本题考查了一次函数与一元一次不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.三、解答题26.(1)22y x =-,y x =;(2)2x <;(3)1.【解析】【分析】(1)先把P (1,0),(0,-2)代入y=ax+b,可求出a,b 的值,然后把M 点坐标代入一次函数可求出m 的值;再将点M 的坐标代入y=kx 可得出k 的值.(2)观察函数图象,写出正比例函数图象在一次函数图象上方所对应的自变量的范围即可.(3)作MN 垂直x 轴,然后根据三角形面积求得即可.【详解】解:(1)∵y ax b =+经过()1,0和()0,2-∴02k b b =+⎧⎨-=⎩解得2k =,2b =- 一次函数表达式为:22y x =-∵点M 在该一次函数上,∴2222m =⨯-=,M 点坐标为()2,2又∵M 在函数y kx =上,∴2122m k ===. ∴正比例函数为y x =. (2)由图像可知,2x <时,22x x >-(3)作MN 垂直x 轴,由M 的纵坐标知2MN =, ∴故11212MOP S ∆=⨯⨯=.【点睛】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.27.(1)y 1=50x ﹣50,y 2=﹣40x +200;(2)乙车出发259小时后,两年相遇,相遇时,两车离A 地8009千米;(3)①160;②当1≤x ≤259时,s =250﹣90x ;当259<x ≤5时,s =90x ﹣250;图象详见解析.【解析】【分析】(1)用待定系数法可求解析式;(2)将两个函数表达式组成方程组可求解;(3)①由点P 表达的意义可求m 的值;②分相遇前和相遇后两种情况分别求解析式.【详解】解:(1)如图1,甲的图象过点(1,0),(5,200),∴设甲的函数表达式为:y 1=kx+b ,∴02005k b k b =+⎧⎨=+⎩解得:5050k b =⎧⎨=-⎩∴甲的函数表达式为:y 1=50x ﹣50,如图1,乙的图象过点(5,0),(0,200),∴设乙的函数表达式为:y 2=mx+200,∴0=5m+200∴m =﹣40,∴乙的函数表达式为:y 2=﹣40x+200,(2)由题意可得:505040200y xy x=-⎧⎨=-+⎩解得:2598009xy⎧=⎪⎪⎨⎪=⎪⎩答:乙车出发259小时后,两年相遇,相遇时,两车离A地8009千米.(3)①由题意可得乙先出发1小时,且速度为40千米/小时,∴m=200﹣40×1=160,故答案为160;②当1≤x≤259时,s=200﹣40×1﹣(40+50)(x﹣1)=250﹣90x;当259<x≤5时,s=90x﹣250;图象如下:【点睛】本题考查了一次函数的应用,用待定系数法求解析式,理解函数图象是本题的关键.28.(1)6;(2)()()322x x x+-;(3)236x x--;(4)2243x x++【解析】【分析】(1)根据二次根式乘法法则运算;(2)先提公因式,再套用公式;(3)根据整式乘法法则运算;(4)运用乘法公式运算.【详解】解:(13(1232)36+=3(2332)36+=63636-=6(2)()()()3231234322x x x x x x x -=-=+- (3)2(1)(2)(3)x x x x -+-+=22226x x x x -++-=236x x --(4)2(21)2(1)(1)x x x +-+-=224412(1)x x x ++--=2244122x x x ++-+=2243x x ++【点睛】考核知识点:因式分解,整式乘法.掌握相应法则是关键.29.(1)①②详见解析;③﹣4;(2)13.【解析】【分析】(1)①由旋转性质知AB=AD ,∠BAD=60°即可得证;②由BA=BD 、EA=ED 根据中垂线性质即可得证;③分别求出BF 、EF 的长即可得;(2)由∠ACB+∠BAC+∠ABC=180°、∠DAG+∠DAE+∠BAE=180°、∠DAG=∠ACB 、∠DAE=∠BAC 得∠BAE=∠BAC 且AE=AC ,根据三线合一可得CE ⊥AB 、AC=5、AH=3,继而知CE=2CH=8、BE=5,即可得答案.【详解】(1)①∵△ABC 绕点A 顺时针方向旋转60°得到△ADE ,∴AB=AD ,∠BAD=60°,∴△ABD 是等边三角形;②由①得△ABD 是等边三角形,∴AB=BD ,∵△ABC 绕点A 顺时针方向旋转60°得到△ADE ,∴AC=AE ,BC=DE ,又∵AC=BC ,∴EA=ED ,∴点B 、E 在AD 的中垂线上,∴BE 是AD 的中垂线,∵点F 在BE 的延长线上,∴BF ⊥AD , AF=DF ;③由②知BF ⊥AD ,AF=DF ,∴AF=DF=3,∵AE=AC=5,∴EF=4,∵在等边三角形ABD中,BF=AB•sin∠BAF=6×32=33,∴BE=BF﹣EF=33﹣4;(2)如图所示,∵∠DAG=∠ACB,∠DAE=∠BAC,∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,又∵∠DAG+∠DAE+∠BAE=180°,∴∠BAE=∠ABC,∵AC=BC=AE,∴∠BAC=∠ABC,∴∠BAE=∠BAC,∴AB⊥CE,且CH=HE=12 CE,∵AC=BC,∴AH=BH=12AB=3,则CE=2CH=8,BE=5,∴BE+CE=13.【点睛】本题主要考查旋转的性质、等边三角形的判定与性质、中垂线的性质、三角形内角和定理等知识点,熟练掌握旋转的性质是解题的关键.30.(1)450, y1=﹣150x+450,y2=75x;(2)当经过169、209小时,快慢车相距50千米;(3)见解析【解析】【分析】(1)利用A点坐标为(0,450),可以得出甲,乙两地之间的距离,B点坐标为(3,0),代入y1=kx+b求出即可,利用线段OC解析式为y2=ax 求出a即可;(2)分两种情况考虑:y1﹣y2=50,y2﹣y1=50,得出方程求解即可;(3)利用(2)中所求得出,y=|y1-y2|进而求出函数解析式,得出图象即可.【详解】(1)由图象可得,甲、乙两地之间的距离为450km设线段AB 对应的函数解析式为y 1=kx +b ,45030b k b =⎧⎨+=⎩,得150450k b =-⎧⎨=⎩, 即线段AB 对应的函数解析式为y 1=﹣150x +450,设线段OC 对应的函数解析式为y 2=ax ,450=6a ,得a =75,即线段OC 对应的函数解析式为y 2=75x ,(2) y 1﹣y 2=50,即﹣150x+450-75x=50,169=x y 2﹣y 1=50,即75x ﹣(﹣150x+450)=50,209x =当经过169、209小时,快慢车相距50千米 (3)甲车的速度为:450÷3=150km /h ,乙车的速度为:450÷6=75km /h ,故甲乙两车相遇的时间为:450÷(150+75)=2h ,设快、慢车之间的距离为y (km ),这个函数的大致图象如右图所示.【点睛】此题主要考查了一次函数的应用和待定系数法求解析式,根据已知图象上的点得出函数解析式以及利用分段函数分析是解题关键.31.证明见解析【解析】试题分析:要证明AC =DF 成立,只需要利用AAS 证明△ABC ≌△DEF 即可.试题解析:证明:∵BF =EC (已知),∴BF +FC =EC +CF ,即BC =EF ,在△ABC 和△DEF 中,,∴△ABC ≌△DEF (AAS ),∴AC=DF考点:全等三角形的判定与性质.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科版第一学期八年级数学第三次月考试卷(含解析)一、选择题1.在平面直角坐标系中,下列各点在第二象限的是( ) A .(3,1) B .(3,-1) C .(-3,1) D .(-3,-1)2.在平面直角坐标系中,把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为( ) A .31y x =-+ B .32y x =-+ C .31y x =-- D .32y x =-- 3.若一个数的平方等于4,则这个数等于( ) A .2± B .2 C .16± D .16 4.估计11的值应在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间5.若+1x 有意义,则x 的取值范围是( ). A .x >﹣1 B .x ≥0 C .x ≥﹣1 D .任意实数 6.下列各组数不是勾股数的是( )A .3,4,5B .6,8,10C .4,6,8D .5,12,137.如图,在ABC ∆中,90C ∠=︒,2AC =,点D 在BC 上,5AD =,ADC 2B ∠=∠,则BC的长为( )A .51-B .51+C .31-D .31+8.在平面直角坐标系中,点()3,2P -关于x 轴对称的点的坐标是( ) A .()3,2B .()2,3-C .()3,2-D .()3,2--9.如图,在平面直角坐标系中,A (0,3),B (5,3),C (5,0),点D 在线段OA 上,将△ABD 沿着直线BD 折叠,点A 的对应点为E ,当点E 在线段OC 上时,则AD 的长是( )A .1B .43C .53D .210.在下列各数中,无理数有( )33224,3,,8,9,07π A .1个 B .2个 C .3个 D .4个 11.下列各数中,无理数的是( )A .0B .1.01001C .πD .412.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,013.下列四个图案中,不是轴对称图案的是( ) A .B .C .D .14.2的整数部分用a 表示,小数部分用b 表示,42的整数部分用c 表示,小数部分用d 表示,则b dac+值为( ) A .12 B .14C .212D .2+1215.下列各组数是勾股数的是( ) A .6,7,8 B .132 C .5,4,3D .0.3,0.4,0.5二、填空题16.如图,在ABC ∆中,90ACB ∠=︒,点D 为AB 中点,若4AB =,则CD =_______________.17.关于x 的分式方程211x ax +=+的解为负数,则a 的取值范围是_________. 18.如图,△ABC 中,D 是BC 上一点,AC =AD =DB ,∠C =70°,则∠B =_____°.19.地球上七大洲的总面积约为149480000km 2(精确到10000000 km 2),用四舍五入法按要求取近似值,并用科学记数法为_________ km 2. 20.对于分式23x a ba b x++-+,当1x =时,分式的值为零,则a b +=__________.21.若关于x 的方程233x mx +=-的解不小于1,则m 的取值范围是_______. 22.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB 绕点B 顺时针旋转90°至CB ,那么点C 的坐标是 .23.如图,已知直线l 1:y=kx+4交x 轴、y 轴分别于点A (4,0)、点B (0,4),点C 为x 轴负半轴上一点,过点C 的直线l 2:12y x n =+经过AB 的中点P ,点Q (t ,0)是x 轴上一动点,过点Q 作QM ⊥x 轴,分别交l 1、l 2于点M 、N ,当MN=2MQ 时,t 的值为_____.24.在△ABC 中,AB =AC =5,BC =6,若点P 在边AB 上移动,则CP 的最小值是_____.25.若等腰三角形的顶角为30°,那么这个等腰三角形的底角为_____°三、解答题26.求下列各式中的x : (1)()2116x -=; (2)321x +=.27.阅读下列材料,然后解答问题: 问题:分解因式:3245x x +-.解答:把1x =带入多项式3245x x +-,发现此多项式的值为0,由此确定多项式3245x x +-中有因式()1x -,于是可设()()322451x x x x mx n +-=-++,分别求出m ,n 的值.再代入()()322451x x x x mx n +-=-++,就容易分解多项式3245x x +-,这种分解因式的方法叫做“试根法”. (1)求上述式子中m ,n 的值;(2)请你用“试根法”分解因式:3299x x x +--.28.如图,在ABC ∆中,4AB =,8BC =,AC 的垂直平分线交AC 于点D ,交BC 于点E ,3CE =,连接AE . (1)求证:ABE ∆是直角三角形; (2)求ACE ∆的面积.29.(1)如图①,小明同学作出ABC ∆两条角平分线AD ,BE 得到交点I ,就指出若连接CI ,则CI 平分ACB ∠,你觉得有道理吗?为什么?(2)如图②,Rt ABC ∆中,5AC =,12BC =,13AB =,ABC ∆的角平分线CD 上有一点I ,设点I 到边AB 的距离为d .(d 为正实数) 小季、小何同学经过探究,有以下发现: 小季发现:d 的最大值为6013. 小何发现:当2d =时,连接AI ,则AI 平分BAC ∠. 请分别判断小季、小何的发现是否正确?并说明理由.30.如图,AD ∥BC ,∠A =90°,E 是AB 上的一点,且AD =BE ,∠1=∠2.(1)求证:△ADE ≌△BEC ;(2)若AD =3,AB =9,求△ECD 的面积.31.在长方形纸片ABCD 中,点E 是边CD 上的一点,将△AED 沿AE 所在的直线折叠,使点D 落在点F 处.(1)如图1,若点F 落在对角线AC 上,且∠BAC =54°,则∠DAE 的度数为 °. (2)如图2,若点F 落在边BC 上,且AB =6,AD =10,求CE 的长.(3)如图3,若点E 是CD 的中点,AF 的沿长线交BC 于点G ,且AB =6,AD =10,求CG 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】由第二象限中坐标特点为,横坐标为负,纵坐标为正,由此即可判断. 【详解】A. (3,1)位于第一象限;B. (3,-1)位于第四象限;C. (-3,1)位于第二象限;D. (-3,-1)位于第三象限; 故选C. 【点睛】此题主要考察直角坐标系的各象限坐标特点.2.D解析:D 【解析】 【分析】根据左加右减,上加下减的平移规律解题. 【详解】解:把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为3(2)4y x =-++,整理得:32y x =--, 故选D. 【点睛】本题考查了直线的平移变换,属于简单题,熟悉直线的平移规律是解题关键.3.A解析:A 【解析】 【分析】平方为4,由此可得出答案. 【详解】±2. 所以这个数是:±2. 故选:A . 【点睛】本题考查了平方根的知识,比较简单,注意不要漏解.4.B解析:B 【解析】 【分析】直接利用32=9,42=16的取值范围. 【详解】 ∵32=9,42=16,在3和4之间. 故选:B . 【点睛】本题考查了估算无理数的大小,正确得出接近无理数的有理数是解题的关键.5.C解析:C 【解析】 【分析】根据二次根式的意义可得出x +1≥0,即可得到结果. 【详解】解:由题意得:x +1≥0, 解得:x ≥﹣1, 故选:C . 【点睛】本题主要是考查了二次根式有意义的条件应用,计算得出的不等式是关键.6.C解析:C 【解析】 【分析】根据勾股数的定义:有a 、b 、c 三个正整数,满足a 2+b 2=c 2,称为勾股数.由此判定即可. 【详解】解:A 、32+42=52,能构成勾股数,故选项错误; B 、62+82=102,能构成勾股数,故选项错误 C 、42+62≠82,不能构成勾股数,故选项正确; D 、52+122=132,能构成勾股数,故选项错误. 故选:C . 【点睛】本题考查勾股数,解答此题要深刻理解勾股数的定义,并能够熟练运用.7.B解析:B 【解析】 【分析】根据ADC 2B ∠=∠,可得∠B=∠DAB ,即BD AD ==Rt △ADC 中根据勾股定理可得DC=1,则1. 【详解】解:∵∠ADC 为三角形ABD 外角 ∴∠ADC=∠B+∠DAB ∵ADC 2B ∠=∠ ∴∠B=∠DAB∴BD AD ==在Rt △ADC 中,由勾股定理得:DC 1===∴1 故选B 【点睛】本题考查勾股定理的应用以及等角对等边,关键抓住ADC 2B ∠=∠这个特殊条件.8.D解析:D 【解析】 【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答. 【详解】解:点()3,2P -关于x 轴对称的点的坐标为()3,2--. 故选:D . 【点睛】本题考查坐标与图形变化——轴对称.熟记①关于x 轴对称的点,横坐标相同,纵坐标互为相反数;②关于y 轴对称的点,纵坐标相同,横坐标互为相反数.是解决此题的关键.9.C解析:C 【解析】 【分析】先根据勾股定理求出EC 的长,进而可得出OE 的长,在Rt △DOE 中,由DE=AD 及勾股定理可求出AD 的长. 【详解】解:根据各点坐标可得AB=OC=BE=5,AO=BC=3, 设AD=x ,则DE=x ,DO=3-x∴=4, ∴OE=1,在Rt △DOE 中,DO 2+OE 2=DE 2, 解得x=53, ∴AD=53, 故选C.【点睛】本题考查了勾股定理的应用,找准直角三角形,设出未知数列出方程即可解答.10.B解析:B 【解析】 【分析】先将能化简的进行化简,再根据无理数的定义进行解答即可. 【详解】,∴这一组数中的无理数有:32个. 故选:B . 【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.11.C解析:C【解析】 【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数. 【详解】解:A.0是整数,属于有理数; B.1.01001是有限小数,属于有理数; C .π是无理数;2=,是整数,属于有理数. 故选:C . 【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有ππ的数.12.B解析:B 【解析】 【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论. 【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0. 故选: B. 【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.13.B解析:B 【解析】 【分析】根据轴对称的概念对各选项分析判断利用排除法求解.【详解】解:A .此图案是轴对称图形,不符合题意;B .此图案不是轴对称图形,符合题意;C .此图案是轴对称图形,不符合题意;D .此图案是轴对称图形,不符合题意;故选:B .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.14.A解析:A【解析】【分析】和4的值,确定其整数部分,再用原数减去其整数部分可得小数部分,将求得的值代入求解即可.【详解】解:∵1<2<4,∴1<2.∴a =1,b ﹣1,∵2<4<3∴c =2,d =4﹣2=2.∴b +d =1,ac =2. ∴b d ac +=12. 故选:A .【点睛】本题考查了实数的估算,灵活的利用估算确定无理数的整数部分与小数部分是解题的关键. 15.C解析:C【解析】【分析】欲求证是否为勾股数,这里给出三边的长,只要验证222+=a b c 即可.【详解】解:A 、222768+≠,故此选项错误;BC 、222345+=,故此选项正确;D 、0.3,0.4,0.5,勾股数为正整数,故此选项错误.故选:C.【点睛】本题考查了勾股数的概念,一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.二、填空题16.【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求出CD.【详解】∵D是AB的中点,∴CDAB=2.故答案为:2.【点睛】本题主要是运用了直角三角形的性质:直角三角形斜解析:2【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求出CD.【详解】∵D是AB的中点,∴CD12=AB=2.故答案为:2.【点睛】本题主要是运用了直角三角形的性质:直角三角形斜边上的中线等于斜边的一半.17.【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1解析:12a a>≠且【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1-a≠-1解得:a>1且a≠2,故答案为: a>1且a≠2【点睛】此题考查分式方程的解,解题关键在于求出x的值再进行分析18.【解析】【分析】根据等腰三角形的性质得到∠ADC=70,再根据三角形外角的性质和等腰三角形可求∠B的度数.【详解】∵AC=AD,∠C=70,∴∠ADC=∠C=70,∵AD=DB,∴∠解析:【解析】【分析】根据等腰三角形的性质得到∠ADC=70︒,再根据三角形外角的性质和等腰三角形可求∠B 的度数.【详解】∵AC=AD,∠C=70︒,∴∠ADC=∠C=70︒,∵AD=DB,∴∠B=∠BAD,∴∠B=12∠ADC=35︒.故答案为:35.【点睛】本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等,熟练掌握等腰三角形的性质是解题的关键.19.5×108【解析】试题解析:将149480000用科学记数法表示为:1.4948×108≈1.5×108.故答案为:1.5×108.点睛:科学记数法的表示形式为的形式,其中 为整数.解析:5×108【解析】试题解析:将149480000用科学记数法表示为:1.4948×108≈1.5×108.故答案为:1.5×108.点睛:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<, n 为整数. 20.-1且.【解析】【分析】根据分式的值为零的条件为0的条件可得且,则可求出的值.【详解】解:∵分式,当时,分式的值为零,∴且,∴,且故答案为:-1且.【点睛】此题主要考查了分式值为解析:-1且5233ab ,. 【解析】【分析】 根据分式的值为零的条件为0的条件可得10a b且230a b ,则可求出+a b 的值.【详解】 解:∵分式23x a b a b x++-+,当1x =时,分式的值为零, ∴10a b 且230a b , ∴1a b +=-,且5233ab , 故答案为:-1且5233ab ,. 【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少. 21.m≥-8 且m≠-6【解析】【分析】首先求出关于x 的方程的解,然后根据解不小于1列出不等式,即可求出.【详解】解:解关于x的方程得x=m+9因为的方程的解不小于,且x≠3所以m+解析:m≥-8 且m≠-6【解析】【分析】首先求出关于x的方程233x mx+=-的解,然后根据解不小于1列出不等式,即可求出.【详解】解:解关于x的方程233x mx+=-得x=m+9因为x的方程233x mx+=-的解不小于1,且x≠3所以m+9≥1 且m+9≠3解得m≥-8 且m≠-6 .故答案为:m≥-8 且m≠-6【点睛】此题主要考查了分式方程的解,是一个方程与不等式的综合题目,重点注意分式方程存在的意义分母不为零.22..【解析】【分析】【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,解析:(21)-,.【解析】【分析】【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO 与△BCD 中,∠CBD=∠BAO,∠BDC=∠AOB, BC=AB ,∴△ABO ≌△BCD (AAS ), ∴CD=OB ,BD=AO ,∵点A (1,0),B (0,2),∴CD=2,BD=1,∴OD=OB-BD=1,又∵点C 在第二象限,∴点C 的坐标是(-2,1).23.10或【解析】【分析】先求出的值,确定的关系式,然后根据一次函数图象上点的坐标特征求得点M 、N 的坐标,由两点间的距离公式求得MN ,MQ 的代数式,由已知条件,列出方程,借助于方程求得t 的值即可;解析:10或227 【解析】【分析】先求出k n ,的值,确定12l l ,的关系式,然后根据一次函数图象上点的坐标特征求得点M 、N 的坐标,由两点间的距离公式求得MN ,MQ 的代数式,由已知条件,列出方程,借助于方程求得t 的值即可;【详解】解:把()40A ,代入到4y kx =+中得:440k +=,解得:1k =-, ∴1l 的关系式为:4y x =-+,∵P 为AB 的中点,()40A ,,()0,4B ∴由中点坐标公式得:()2,2P ,把()2,2P 代入到12y x n =+中得:1222n ⨯+=,解得:1n =, ∴2l 的关系式为:112y x =+, ∵QM x ⊥轴,分别交直线1l ,2l 于点M N 、,()0Q t ,,∴(),4M t t -+,1,12N t t ⎛⎫+ ⎪⎝⎭,∴()1341322MN t t t ⎛⎫=-+-+=- ⎪⎝⎭,44MQ t t =-+=-, ∵2MN MQ =, ∴33242t t -=-, 分情况讨论得:①当4t ≥时,去绝对值得:()33=242t t --, 解得:10t =;②当24t ≤<时,去绝对值得:()33=242t t --, 解得:227t =; ③当2t <时,去绝对值得:()33=242t t --, 解得:102t =>,故舍去;综上所述:10t =或227t =; 故答案为:10或227. 【点睛】本题属于一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,两点间的距离公式等知识点,能够表示出线段的长度表达式,合理的使用分类讨论思想是解决本题的关键,有一定的难度.24.8【解析】【分析】作BC 边上的高AF ,利用等腰三角形的三线合一的性质求BF =3,利用勾股定理求得AF 的长,利用面积相等即可求得AB 边上的高CP 的长.【详解】解:如图,作AF⊥BC 于点F ,作解析:8【解析】【分析】作BC边上的高AF,利用等腰三角形的三线合一的性质求BF=3,利用勾股定理求得AF的长,利用面积相等即可求得AB边上的高CP的长.【详解】解:如图,作AF⊥BC于点F,作CP⊥AB于点P,根据题意得此时CP的值最小;解:作BC边上的高AF,∵AB=AC=5,BC=6,∴BF=CF=3,∴由勾股定理得:AF=4,∴S△ABC=12AB•PC=12BC•AF=12×5CP=12×6×4得:CP=4.8故答案为4.8.【点睛】此题主要考查直角三角形的性质,解题的关键是熟知勾股定理及三角形的面积公式的运用. 25.75【解析】【分析】根据等腰三角形两个底角相等可得解.【详解】依题意知,等腰三角形两个底角相等.当顶角=30°时,两底角的和=180°-30°=150°.所以每个底角=75°.故答案解析:75【解析】【分析】根据等腰三角形两个底角相等可得解.【详解】依题意知,等腰三角形两个底角相等.当顶角=30°时,两底角的和=180°-30°=150°.所以每个底角=75°.故答案为75.考点:三角形内角和与等腰三角形性质.点评:本题难度较低.已知角为顶角,根据等腰三角形性质与三角形内角和性质计算即可.三、解答题26.(1)5x =或-3;(2)1x =-【解析】【分析】(1)根据平方根的定义求解;(2)先移项,再根据立方根的定义求解.【详解】解:(1)(x-1)2=16,x-1=±4,x=5或x=-3;(2)321x +=,x 3=-1,x=-1.【点睛】本题考查平方根与立方根,解题的关键是正确理解平方根与立方根的定义,本题属于基础题型.27.(1)5m =,5n =;(2)()()()133x x x ++-【解析】【分析】(1)先找出一个x 的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论;(2)先找出x=-1时,得出多项式的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论.【详解】解:(1)把1x =带入多项式3245x x +-,发现此多项式的值为0,∴多项式3245x x +-中有因式()1x -,于是可设322451xx x x mx n , 得出:3232451x x x m x n m x n ,∴14m ,0n m,∴5m =,5n =, (2)把1x =-代入3299x x x +--,多项式的值为0,∴多项式3299x x x +--中有因式()1x +,于是可设322329911x x x x x mx n x m x n m x n ,∴11m +=,9n m,9n =- ∴0m =,9n =-,∴3229133991x x x x x x x x【点睛】此题是分解因式,主要考查了试根法分解因式的理解和掌握,解本题的关键是理解试根法分解因式.28.(1)详见解析;(2)185. 【解析】【分析】(1)根据线段垂直平分线性质得AE=CE=3,利用勾股定理逆定理可得;(2)作AH ⊥BC,由1122AB AE BE AH •=•可得高AH ,再求面积. 【详解】 (1)因为AC 的垂直平分线交AC 于点D ,所以AE=CE=3因为BC=BE+CE所以BE=BC-CE=8-3=5因为32+42=52所以AB 2+AE 2=BE 2所以ABE ∆是直角三角形;(2)作AH ⊥BC由(1)可知1122AB AE BE AH •=• 所以435AH ⨯=所以AH=125所以ACE ∆的面积=11121832255EC AH •=⨯⨯= 【点睛】 考核知识点:线段垂直平分线、勾股定理逆定理.理解线段垂直平分线性质和勾股定理逆定理是关键.29.(1)有道理,理由详见解析;(2)小季和小何都正确,理由详见解析【解析】【分析】(1)过I 点分别作IM ,IN ,IK 垂直于AB ,BC ,AC 于点M ,N ,K ,根据角平分线的性质即可得解; (2)根据等积法的相关方法进行求解即可.【详解】(1)如下图,过I 点分别作IM ,IN ,IK 垂直于AB ,BC ,AC 于点M ,N ,K ,连接IC∵AI 平分∠BAC ,IM ⊥AB ,IK ⊥AC∴IM =IK ,同理IM =IN∴IK =IN又∵IK ⊥AC ,IN ⊥BC∴CI 平分∠BCA ;(2)如下图,过C 点作CE ⊥AB 于点E ,则d 的最大值为CE 长∵5AC =,12BC =∴115123022ABC S AC BC ∆=⋅=⨯⨯= 又∵11133022ABC S AB CE CE ∆=⋅=⨯⨯= ∴6013CE = ∴d 的最大值为6013 ∴小季正确;假设此时AI 平分BAC ∠,如下图,连接AI ,BI ,过I 点作IG ,IH ,IF 分别垂直于AC ,BC ,AB 于点G ,H ,F∵AI 平分BAC ∠,CD 平分∠ACB∴BI 平分∠CBA∵IG ⊥AC ,IH ⊥BC ,ID ⊥AB∴IG=IH=IF=d∵ACB AIC BIC ABI S S S S ∆∆∆∆=++ ∴11112222AC BC AC IG BC IH AB IF ⋅=⋅+⋅+⋅ ∴1111512512132222d d d ⨯⨯=⨯⨯+⨯⨯+⨯⨯ ∴2d =∴假设成立,当2d =时,连接AI ,则AI 平分BAC ∠∴小何正确.【点睛】本题主要考查了等积法及角平分线的性质,熟练掌握等积法的运用及角平分线性质的证明是解决本题的关键.30.(1)见解析;(2)452【解析】【分析】(1)根据已知可得到∠A =∠B =90°,DE =CE ,AD =BE 从而利用HL 判定两三角形全等; (2)由三角形全等可得到对应角相等,对应边相等,由已知可推出∠DEC =90°,由已知我们可求得BE 、AE 的长,再利用勾股定理求得ED 的长,利用三角形面积公式解答即可.【详解】(1)∵AD ∥BC ,∠A =90°,∠1=∠2,∴∠A =∠B =90°,DE =CE .∵AD =BE ,在Rt △ADE 与Rt △BEC 中 AD BE DE CE =⎧⎨=⎩, ∴Rt △ADE ≌Rt △BEC (HL )(2)由△ADE ≌△BEC 得∠AED =∠BCE ,AD =BE .∴∠AED +∠BEC =∠BCE +∠BEC =90°.∴∠DEC =90°.又∵AD =3,AB =9,∴BE =AD =3,AE =9﹣3=6.∵∠1=∠2,∴ED =EC∴△CDE 的面积=14522⨯=. 【点睛】此题主要考查全等三角形的判定与性质的运用,熟练掌握,即可解题.31.(1)18;(2)CE的长为83;(3)CG的长为910.【解析】【分析】(1)由矩形的性质可知∠BAD=90°,易知∠DAC的度数,由折叠的性质可知∠DAE=12∠DAC,计算可得∠DAE的度数.(2)由矩形四个角都是直角及对边相等的性质及折叠后图形对应边相等的性质,结合勾股定理可得BF长,由CF=BC﹣BF可求出CF长,设CE=x,则EF=ED=6﹣x,在Rt△CEF 中,根据勾股定理求出x值即可;(3)连接EG,由中点及折叠的性质利用HL定理可证Rt△CEG≌△FEG,结合全等三角形对应边相等的性质可设CG=FG=y,可用含y的代数式表示出AG、BG,在Rt△ABG中,根据勾股定理求解即可.【详解】解:(1)∵四边形ABCD是矩形,∴∠BAD=90°,∵∠BAC=54°,∴∠DAC=90°﹣54°=36°,由折叠的性质得:∠DAE=∠FAE,∴∠DAE=12∠DAC=18°;故答案为:18;(2)∵四边形ABCD是矩形,∴∠B=∠C=90°,BC=AD=10,CD=AB=6,由折叠的性质得:AF=AD=10,EF=ED,∴BF8,∴CF=BC﹣BF=10﹣8=2,设CE=x,则EF=ED=6﹣x,在Rt△CEF中,由勾股定理得:22+x2=(6﹣x)2,解得:x=83,即CE的长为83;(3)连接EG,如图3所示:∵点E是CD的中点,∴DE=CE,由折叠的性质得:AF=AD=10,∠AFE=∠D=90°,FE=DE,∴∠EFG=90°=∠C,在Rt △CEG 和△FEG 中,EG EG CE FE=⎧⎨=⎩, ∴Rt △CEG ≌△FEG (HL ),∴CG =FG ,设CG =FG =y ,则AG =AF +FG =10+y ,BG =BC ﹣CG =10﹣y ,在Rt △ABG 中,由勾股定理得:62+(10﹣y )2=(10+y )2,解得:y =910, 即CG 的长为910.【点睛】本题考查了四边形的折叠问题,涉及了矩形的性质、折叠的性质、直角三角形的判定、勾股定理,灵活利用矩形与折叠的性质是解题的关键.。

相关文档
最新文档