北师大版八年级下册数学[等腰三角形(基础)知识点整理及重点题型梳理]

合集下载

北师大版八年级数学(下)第一章 等腰三角形

北师大版八年级数学(下)第一章 等腰三角形

1.1等腰三角形一、知识点梳理1.等腰三角形的性质定理:①等腰三角形的两底角相等(等边对等角)②等腰三角形的两腰相等(定义)③等腰三角形等角的平分线、底边上的中线及地边上的高线互相重合(三线合一)2.等边三角形的性质定理:①等边三角形的三条边都相等②等边三角形的三个内角都相等,并且每个角都等于60°3.等腰三角形的判定定理:①有两条边相等的三角形是等腰三角形(定义)②有两个角相等的三角形是等腰三角形(等角对等边)4.等边三角形的判定定理:①三条边都相等的三角形是等边三角形(定义)②三个角都相等的三角形是等边三角形③有一个角等于60°的等腰三角形是等边三角形5.反证法:证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立,这种证明方法成为反证法。

6.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

7.直角三角形斜边的中线等于斜边的一半8.作图要求:掌握尺规作图用两条已知线段做等腰三角形二、经典题型总结题型一:利用等腰三角形的性质求角题型二:利用等腰三角形的性质求线段长度题型三:用反证法证明简单证明题题型四:利用等腰三角形的判定定理进行证明题型五:动点与等腰三角形题型题型六:与等腰三角形相关的综合提升题三、解题技巧点睛1.在做等腰三角形类问题时可以随时“标图”,把相等的角或者相等的边用相同的小符号标注,便于我们清晰的读图。

2.若题目中需要证明两条线段相等,通常会想到:①两条线段所在的两个三角形“全等”②两条线短可以平移为某个“等腰三角形”的两个腰3.在图形中如果涉及到求边长问题,我们通常首先想到:根据欲求边构建直角三角形运用“勾股定理”4.在求角度的题目中,若思路不清晰,则本着两个计算原则去列式:①三角形内角和等于180°②三角形的外角等于与它不相邻的两个内角的和5.特别注意几个特殊角:75°、105°、120°、135°、150°,若图形题中出现了这几个特殊角并且涉及到求线段,则很有可能需要我们做辅助线把75°角分成45°角和30°角;而把105°角分成60°角和45°角;把120°角分成90°角和30°角或两个60°角;把135°角分成90°角和45°角;把150°角分成90°角和60°角。

北师大版八年级下册数学第一节等腰三角形

北师大版八年级下册数学第一节等腰三角形

第一章 三角形的证明1 等腰三角形知识清单全练>科学设计 对应梳理知识点一 全等三角形的性质及判定1.全等三角形的对应边 、对应角 .2.判定两三角形全等的方法有: 、SAS 、 、 . 知识点二 等腰三角形的性质和判定圆3.等腰三角形的两个底角 ,简称 .4.等腰三角形顶角的 、底边上的 、底边上的 互相重合.5.等腰三角形两腰上的中线 ,两底角的平分线 ,两腰上的高 .6.等腰三角形的判定:有 的三角形是等腰三角形,简称为 . 知识点三 等边三角形的性质和判定7.等边三角形的三个角都 ,并且每个角都等于 . 8.有一个角等于 的等腰三角形是等边三角形. 9.三个角都 的三角形是等边三角形. 10.三条边都 的三角形是等边三角形. 知识点四 有一个锐角是30°的直角三角形的性质 11.在直角三角形中,如果一个锐角等于,那么它所对的 等于 的一半.基础闯关全练>水滴石穿 全面过关 知识点一 全等三角形的性质及判定 1.如图.则的度数为( )2.如图1 -1 -2,下列条件中,不能证明的是 ( )3.如图1-1-3所示,︒=∠=∠90F E ,,C B ∠=∠ AE =AF,结论:①EM=FN; ②CD=DN; ③;EAM FAN ∠=∠④△ACN ≌△ABM. 其中正确的结论有( )A.1个B.2个C.3个D.4个4.如图1-1-4,在则 .5.如图1-1-5,AD是△ABC的中线,分别过点C、B作中线AD及其延长线的垂线,垂足分别为E、F求证:BF=CE.6.如图1-1-6,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由点B向点C运动,同时,点Q在线段CA上由点C 向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次相遇,在△ABC的哪条边上相遇?知识点二等腰三角形的性质和判定7.一个等腰三角形两个内角的和为,则它的顶角度数为 ( )8.某等腰三角形的两条边长分别为3cm和6cm,则它的周长为 ( )9.如图1-1-7所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6B.7C.8D.910.如图1-1-8,BD是△ABC的角平分线,∠则图中的等腰三角形有个 .11.已知,如图1-1-9,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为(10,0)、(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为 .12.如图1-1- 10所示,在△ABC中,AB=AC,D为BA延长线上的一点,且AE∥BC,证明:AE平分∠DAC.知识点三等边三角形的性质和判定圆13.下面给出几种三角形:①有两个角为60°的三角形;②三个外角都相等的三角形;③一条边上的高也是这条边上的中线的三角形;④有一个角为60°的等腰三角形,其中是等边三角形的有( )A.4种B.3种C.2种D.1种14.如图1-1-11所示.已知△ABC为等边三角形且AD⊥BC于D,以AD为一边作一个△ADE,且DE ⊥AC,∠CAE=30°.求证:△ADE为等边三角形.15.如图1-1-12,已知△ABC和△BDE都是等边三角形,求证:AE=CD.知识点四有一个钝角是30°的直角三角形的性质16.如图1-1-13,在△ABC中,于则DB等于 ( )知识点五反证法17.求证:等腰三角形的底角必为锐角.三年模拟全练>努力攀登综合提升一、选择题1.(2013陕西西安十七中期中,1,★☆☆)等腰三角形的顶角为则它的底角是( )二、填空题2.(2013山东青岛胶南月考,2,★★☆)某市在“旧城改造”中计划在一块如图1-1-14所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a 元,则购买这种草皮一共需要 元.三、解答题3.(2013重庆南开中学期中.9,★★☆)已知:如图1-1-15,点D 为△ABC 的边BC 上一点,且AB=AD ,点E 为△ABC 外一点,连接AE ,DE ,使得∠ADE=∠B ,∠CAE=∠BAD ,求证:BC =DE.(6分)4.(2012辽宁沈阳七模,23,★★☆)数学课上,李老师出示了如下框中的题目.(12分)小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论:当点E 为AB 的中点时,如图1-1-17①,确定线段AE 与DB 的大小关系,请你直接写出结论:AE DB (填“>”“<”或“=”).(2)特例启发,解答题目:解:题目中,AE 与DB 的大小关系为AE DB (填“>”“<”或“=”).理由:如图1-1 -17②,过点E 作EF∥BC,交AC 于点F.(请你完成解答过程) (3)拓展结论,设计新题:△ABC 为等边三角形,点E 在直线AB 上,点D 在直线BC 上,且ED=EC.若△ABC 的边长为1,AE =2,在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED =EC ,如图1-1 -16,试确定线段AE 与DB 的大小关系,并说明理由.求CD的长(请你直接写出结果).五年中考全练>实战演习勇夺第一一、选择题1.(2013四川成都,4,★☆☆)如图1-1-18,在△ABC中,∠B=∠C,AB=5,则AC的长为( )A.2B.3C.4D.52.(2013四川广安,7,★☆☆)等腰三角形的一边长为6,另一边长为13,则它的周长为 ( )A.25B.25或32C.32D.193.(2012山东淄博,5.★★☆)已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形不一定与已知三角形全等的是 ( )A.两条边长分别为4,5,它们的夹角为βB.两个角是β,它们的夹边为4C.三条边长分别是4,5,5D.两条边长是5,一个角是β4.(2012广东深圳,12,★★☆)如图1-1-19,已知:点在射线ON上,点在射线均为等边三角形,若则的边长为 ( )A.6B.12C.32D.64二、填空题5.(2012吉林,14,★★☆)如图1-1-20,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED.若BC=10,BD=9,则△AED的周长是 .6.(2012贵州贵阳.15,★★☆)如图1-1-21,在△AB,中,,在上取一点延长AA到使得1上取一点D,延长到,使得按此做法进行下去,∠的度数为 .三、解答题7.(2012广东河源,15,★★☆)如图1-1-22,已知∠和BD相交于点D,E是AD的中点,连接OE.(6分)(1)求证:(2)求AEO的度数.探究创新全练>思维开放天天向上1.如图1-1-23所示,△ABC是正三角形,△BDC是∠BDC =120°的等腰三角形,以点D为顶点作一个的角,角的两边分别交AB、AC边于M、N两点,连接MN探究:线段BM、MN、NC之间的关系,并加以证明.2.(2013山东东营中考)(1)如图1-1-24 (1),已知:在△ABC中,.直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:1-1-24(2),将(1)中的条件改为:在中,D、A、E三点都在直线m上,并且有,其中仅为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图1-1-24(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC的平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.。

北师大版八年级数学下册《等腰三角形》基础知识概述

北师大版八年级数学下册《等腰三角形》基础知识概述

等腰三角形
一、知识概述
(一)、等腰三角形的概念
有两条边相等的三角形,叫做等腰三角形. 相等的两边叫做腰,另一边叫底边;两腰的夹角叫做顶角,腰和底边上的夹角叫做底角.
(二)、等腰三角形的性质
等腰三角形是一个轴对称图形,其对称轴是底边的垂直平分线.
等腰三角形的两个底角相等(简写成“等边对等角”);等腰三角形的顶角平分线、底边上的中线和高互相重合(简称“三线合一”).
(三)、等边三角形的概念和性质
等边三角形指三边都相等的三角形,也叫正三角形,它是轴对称图形,有3条对称轴.
等边三角形的各个内角都相等,并且每一个内角都等于60°.
(四)、等腰三角形的识别
两边相等的三角形是等腰三角形.
若一个三角形有两个角相等,则这两个角所对的边也相等(简写“等角对等边”)
三个角都是60°的三角形是等边三角形.
顶角是直角的等腰三角形是等腰直角三角形.
二、重、难点知识归纳与讲解
(一)、等腰三角形是特殊的三角形,它具有一般三角形的所有性质,如三内角和为180°,任意两边之和大于第三边等性质,还具有特殊性质:等边对等角和“三线合一”的重要性质.
(二)、熟练掌握等腰三角形的性质和识别,注意边、角之间的转化关系,学会分类讨论的思想,注意不要漏解,学习周密思考问题的方法.
(三)、等腰三角形是轴对称图形,要用轴对称的思想解题.。

第1讲 等腰三角形八年级数学下册同步讲义(北师大版)

第1讲  等腰三角形八年级数学下册同步讲义(北师大版)

第1讲 等腰三角形 1. 掌握等腰三角形,等边三角形的性质,并能利用它证明两个角相等、两条线段相等以及两条直线垂直.2. 掌握等腰三角形,等边三角形的判定定理.3. 熟练运用等腰三角形,等边三角形的判定定理与性质定理进行推理和计算. 知识点01 等腰三角形1.等腰三角形的定义有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角. 如图所示,在△ABC 中,AB =AC ,则它叫等腰三角形,其中AB 、AC 为腰,BC 为底边,∠A 是顶角,∠B 、∠C 是底角.要点诠释:等腰直角三角形的两个底角相等,且都等于45°.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A =180°-2∠B ,∠B =∠C =1802A ︒-∠ . 2.等腰三角形的性质性质1:等腰三角形的两个底角相等(简称“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).3.等腰三角形的性质的作用性质1证明同一个三角形中的两角相等.是证明角相等的一个重要依据.性质2用来证明线段相等,角相等,垂直关系等.4.等腰三角形是轴对称图形 目标导航知识精讲等腰三角形底边上的高(顶角平分线或底边上的中线)所在直线是它的对称轴,通常情况只有一条对称轴.5.等腰三角形的判定如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).要点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理.【知识拓展1】根据等边对等角求角度例1.(2021·贵州·思南县张家寨初级中学八年级阶段练习)如图,在等腰三角形ABC中,AB=AC,点D为AC上一点,且AD=BD=BC,则∠A等于多少?例2.(2021·黑龙江省八五一一农场中学八年级期末)如图,△ABC中,AB=AC=CD,BD=AD,求△ABC中∠CAB 的度数例3.(2021·广东·广州市白云区广大附中实验中学九年级阶段练习)已知:如图所示,在Rt△ABC中,∠C =90°,D是BC上一点,且DA=DB,∠B=15°.求∠CAD的度数.例4.(2021·广西三江·八年级期中)如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,求∠C的度数.【即学即练1】如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.【即学即练2】已知:如图,D、E分别为AB、AC上的点,AC=BC=BD,AD=AE,DE=CE,求∠B的度数.【知识拓展2】利用三线合一求解与证明例1.(2021·湖北武汉·八年级阶段练习)如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证:BD =CE.⊥,垂足为D,E是BC延长线上的一点,例2.(2021·重庆·八年级期中)如图:已知等边ABC中,BD AC=,且CE CD(1)求证:BD DE=;(2)若M为BE中点,求证:DM平分BDE∠.例3.(2021·河南镇平·八年级阶段练习)下面是某数学兴趣小组探究用不同方法作一个角的平分线的讨论片段,请仔细阅读,并完成相应的任务.小明:如图1,(1)分别在射线OA,OB上截取OC=OD,OE=OF(点C,E不重合);(2)分别作线段CE,DF的垂直平分线l1,l2,交点为P,垂足分别为点G,H;(3)作射线OP,射线OP即为∠AOB的平分线.简述理由如下:由作图知,∠PGO=∠PHO=90°,OG=OH,OP=OP,所以Rt△PGO≌Rt△PHO,则∠POG=∠POH,即射线OP是∠AOB的平分线.小军:我认为小明的作图方法很有创意,但是太麻烦了,可以改进如下,如图2,(1)分别在射线OA,OB 上截取OC=OD,OE=OF(点C,E不重合);(2)连接DE,CF,交点为P;(3)作射线OP.射线OP即为∠AOB的平分线.……任务:(1)小明得出Rt△PGO≌Rt△PHO的依据是_______(填序号).①SSS;②SAS;③AAS;④ASA;⑤HL(2)如图2,连接EF.①求证:△CEF ≌△DFE ;②求证:△PEF 是等腰三角形;③小军作图得到的射线OP 是∠AOB 的平分线吗?请判断并说明理由.例4.(2021·广东广州·八年级阶段练习)如图,在ABC 中,AB AC =,AD BC ⊥,垂足为D ,AB :AD :13BD =:12:5,ABC 的周长为36,求ABC 的面积.例5.(2022·黑龙江富裕·八年级期末)已知:在△ABC 中,∠ABC =45°,CD ⊥AB 于点D ,点E 为CD 上一点,且DE =AD ,连接BE 并延长交AC 于点F ,连接DF .(1)求证:BE =AC ;(2)若AB =BC ,且BE =2cm ,则CF = cm .例6.(2021·江苏滨海·八年级期中)如图,厂房屋顶的人字架是等腰三角形,AB=AC,AD⊥BC,若跨度BC =16m,上弦长AB=10m,求中柱AD的长.【即学即练1】(2021·福建·福州三牧中学九年级阶段练习)如图,在△ABC中,∠A=40°,∠ABC=80°,BE 平分∠ABC交AC于点E,ED⊥AB于点D,求证:AD=BD.【即学即练2】(2021·黑龙江五常·八年级阶段练习)已知:以线段AB为边在线段的同侧作△ABC与△BAD,BC与AD交于点E,若AC=BD,BC=AD.(1)如图1,求证:CE=DE;AB的线段.(2)如图2,当∠C=90°,∠AEB=2∠AEC时,作EF⊥AB于F,请直接写出所有等于12【即学即练3】(2021·吉林·八年级期末)如图,在ABC 中,AB AC =,AD 为边BC 的中线,E 是边AB 上一点(点E 不与点A 、B 重合),过点E 作EF BC ⊥于点F ,交CA 的延长线于点G .(1)求证:AD //FG ;(2)求证:AG AE =;(3)若3AE BE =,且4AC =,直接写出CG 的长.【即学即练4】(2021·江苏·扬州市梅岭中学八年级阶段练习)在平面直角坐标系中,三角形△ABC 为等腰直角三角形,AC =BC ,BC 交x 轴于点D .(1)若A (﹣8,0),C (0,6),直接写出点B 的坐标 ;(2)如图2,三角形△OAB 与△ACD 均为等腰直角三角形,连OD ,求∠AOD 的度数;(3)如图3,若AD 平分∠BAC ,A (﹣8,0),D (m ,0),B 的纵坐标为n ,求2n +m 的值.【知识拓展3】等腰三角形中的分类讨论例1.在等腰三角形中,有一个角为40°,求其余各角.例2、已知等腰三角形的周长为13,一边长为3,求其余各边.【即学即练】如图,△ABC 中BD 、CD 平分∠ABC 、∠ACB ,过D 作直线平行于BC ,交AB 、AC 于E 、F ,AB=5,AC=7,BC=8,△AEF 的周长为( )A .13B .12C .15D .20【知识拓展4】等腰三角形性质和判定综合应用例1、已知:如图,ABC △中,45ACB ∠=︒,AD⊥BC 于D ,CF 交AD 于点F ,连接BF 并延长交AC 于点E , BAD FCD ∠=∠.求证:(1)△ABD≌△CFD;(2)BE⊥AC.知识点02 等边三角形1.等边三角形定义:三边都相等的三角形叫等边三角形.要点诠释:由定义可知,等边三角形是一种特殊的等腰三角形.也就是说等腰三角形包括等边三角形.2.等边三角形的性质:等边三角形三个内角都相等,并且每一个内角都等于60°.3.等边三角形的判定:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.【知识拓展4】等边三角形例1、如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.(1)试判定△ODE的形状,并说明你的理由;(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.【即学即练】等边△ABC,P为BC上一点,含30°、60°的直角三角板60°角的顶点落在点P上,使三角板绕P点旋转.如图,当P为BC的三等分点,且PE⊥AB时,判断△EPF的形状.【知识拓展5】在直角三角形中,30°角所对的直角边等于斜边的一半。

北师大版八下数学1.1《等腰三角形》知识点精讲

北师大版八下数学1.1《等腰三角形》知识点精讲

知识点讲解
1、等腰三角形的性质:
(1)等腰三角形的两个底角相等(简称“等边对等角”)。

数学符号表达:因为AB=AC
所以∠B=∠C(等边对等角)
(2)等腰三角形顶角平分线、底边上的中线、底边上的高互相重合(简称“等腰三角形的三线合一”)。

数学符号表达式:1..∵AB=AC,BD=DC=1/2BC
∴AD⊥BD,AD平分∠BAC
2.∵AB=AC,AD⊥BC
∴B D=DC=1/2BC,AD平分∠BAC
3.∵AB=A C,AD平分∠BAC
∴AD⊥BD,BD=DC=1/2BC
(3)等腰三角形是轴对称图形,对称轴是顶角平分线所在的直线。

2、等腰三角形的判定:
方法一:利用定义判定平行,直接通过全等三角形或其他办法证明AB=AC 方法二:判定方法:一个三角形的两个内角相等,那么这两个角所对的边也相等。

(简称“等角对等边”)
通常证明两个内角相等的办法:角的和差计算、
全等三角形对应角相等、
平行线的性质。

3、基本图形(未完待续,下期继续更新)
(1)图例说明:
一个三角形的一个外角的平分线平行于三角形的一边,能通过说理得到这个三角形是等腰三角形。

反之,一个等腰三角形顶角的平分线一定平行于这个等腰三角形的底边。

顶角的外角等于底角的两倍。

(2)图例说明:
AD平行于BC,BD是∠ABC的平分线,可通过说理得△ABD是等腰三角形. 反之,△ABD是等腰三角形,当∠ABD=∠DBC时,AD平行于BC.
基本图2运用:
视频
知识点分析
等腰三角形和等边三角形知识要点总结。

北师大版数学八年级下册1.等腰三角形的特殊性质及等边三角形的性质课件

北师大版数学八年级下册1.等腰三角形的特殊性质及等边三角形的性质课件

新课讲授
典例分析
例 如图,已知△ABC,△BDE都是等边三角形. 求证:AE=CD.
分析:要证AE=CD,可通过证AE,CD所在的两个三角 形全等来实现,即证△ABE≌△CBD,条件可从 等边三角形中去寻找.
新课讲授
证明:∵△ABC和△BDE都是等边三角形, ∴AB=BC,BE=BD,∠ABC=∠DBE=60°. AB=CB, 在△ABE与△CBD中, ABE=CBD, BE=BD, ∴△ABE≌△CBD(SAS). ∴AE=CD.
第一章 三角形的证明
1 等腰三角形
课时2 等腰三角形的特殊性质及等边三角形的性质
学习目标
等腰三角形中相等的线段 等边三角形的性质.(重点、难点)
新课导入
等腰三角形有哪些性质?
1.等腰三角形的性质:等边对等角. 2.等腰三角形性质的推论:三线合一,即等腰三角形
顶角的平分线、底边上的中线及底边上的高线互相 重合.
新课讲授
典例分析
例 求证:等腰三角形两腰上的中线相等.
分析:先根据命题分析出题设和结论,画出图形,写 出已知和求证,然后利用等腰三角形的性质和 三角形全等的知识证明.
新课讲授
解:如图,在△ABC中,AB=AC,CE和BD分别是AB 和AC上的中线, 求证:CE=BD.
证明:∵AB=AC,CE和BD分别是AB 和AC上的中线,
新课讲授
知识点2 等边三角形的性质
1.等边三角形的定义是什么? 2.想一想
等边三角形是特殊的等腰三角形,那么等边三角 形的内角有什么特征呢?
新课讲授
定理 等边三角形的三个内角都相等,并且每个角 都等于60°.
新课讲授
典例分析
例 已知:如图, 在△ABC中,AB= AC=BC. 求证:∠A= ∠ B = ∠ C = 60°. ∵AB = AC, ∴∠ B = ∠ C (等边对等角). 又∵AC = BC, ∴∠A= ∠ B (等边对等角). ∴∠A= ∠ B = ∠ C. 在△ABC中,∠A+∠ B+∠ C = 180°. ∴∠A= ∠ B = ∠ C = 60°.

北师版初二下册数学知识点总结(精选)

北师版初二下册数学知识点总结(精选)

最新北师大版《数学》(八年级下册)知识点总结第一章三角形的证明1、等腰三角形(1)三角形全等的性质及判定全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS。

(2)等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)(3)等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。

判定定理:有一个角是60度的等腰三角形是等边三角形。

或者三个角都相等的三角形是等边三角形。

(4)含30度的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。

2、直角三角形(1)勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方。

逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

(2)命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。

(3)直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(斜边直角边,简称:HL)3、线段的垂直平分线(中垂线)(1)线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等。

判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。

(2)三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

(3)如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线。

4、角平分线(1)角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上。

北师大版数学八年级下册《等腰三角形》课件

北师大版数学八年级下册《等腰三角形》课件
∴∠PBC=∠MPB=∠PCB=∠NPC(等量代换)
∠ = ∠
在△MBP与△NCP中
=
∠ = ∠
∴△MBP≌△NCP(SAS). ∴MP=NP(全等三角形的对应边相等).
②△AMN的周长是 − .
A
M
B
P
N
C
教学过程——随堂练习
做一做
课本第9页“随堂练习”.
所以假设不成立,即△ABC中至少有一个内角小于或等于60°.
B
C
教学过程——新知探究
第一章 三角形的证明
知识点2 反证法
用反证法证明命题
从上面的证明过程可知,反证法与我们平时的上面方法不同.
注意:利用反
证法证明,假
反证法的定义:
设原命题的结
先假设命题的结论不成立,然后推导出与定义、基本事实、已
论不成立时,
D. 直角三角形中有一个锐角不大于45°
2.如图,CE是△ABC的外角平分线,且AB//CE,则△ABC
一定是( D )
A. 任意三角形
B. 直角三角形
C. 等边三角形
D. 等腰三角形
B
E
A
C
D
教学过程——典例精析
第一章 三角形的证明
听一听
A
C
例1 如图,已知直线AB//CD,直
线AB⊥ , 用反证法证明:CD⊥ .
M
B
N
D

教学过程——典例精析
第一章 三角形的证明
听一听
证明:假设直线CD与 直线 不垂直,
则∠CNM≠90°.
A
C
∵AB⊥ ,
∴∠AMN=90°.
∴∠AMN+∠CNM≠180°.

初二数学北师大版下册数学知识点总结

初二数学北师大版下册数学知识点总结

初二数学北师大版下册数学知识点总结一、三角形的证明1、等腰三角形(1)性质:等腰三角形的两腰相等;等腰三角形的两底角相等(等边对等角);等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合(三线合一)。

(2)判定:有两边相等的三角形是等腰三角形;如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。

2、等边三角形(1)性质:等边三角形的三条边都相等;等边三角形的三个内角都相等,并且每个角都等于 60°。

(2)判定:三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是 60°的等腰三角形是等边三角形。

3、直角三角形(1)性质:直角三角形的两个锐角互余;直角三角形斜边上的中线等于斜边的一半;在直角三角形中,如果一个锐角等于 30°,那么它所对的直角边等于斜边的一半。

(2)判定:如果三角形的三边长 a、b、c 满足 a²+ b²= c²,那么这个三角形是直角三角形。

4、反证法先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。

二、一元一次不等式与一元一次不等式组1、不等式的基本性质(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变。

(2)不等式两边乘(或除以)同一个正数,不等号的方向不变。

(3)不等式两边乘(或除以)同一个负数,不等号的方向改变。

2、一元一次不等式(1)定义:只含有一个未知数,未知数的次数是 1,且不等号两边都是整式的不等式叫做一元一次不等式。

(2)解法:去分母、去括号、移项、合并同类项、系数化为 1。

3、一元一次不等式组(1)定义:几个含有同一个未知数的一元一次不等式合在一起,就组成了一个一元一次不等式组。

(2)解集:几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。

(3)解不等式组:分别求出不等式组中各个不等式的解集,然后找出它们的公共部分。

北师大版八年级下册数学[等腰三角形(基础)知识点整理及重点题型梳理]

北师大版八年级下册数学[等腰三角形(基础)知识点整理及重点题型梳理]

北师大版八年级下册数学[等腰三角形(基础)知识点整理及重点题型梳理]北师大版八年级下册数学重难点突破:等腰三角形(基础)研究目标:1.了解等腰三角形和等边三角形的定义和概念,掌握等腰三角形的轴对称性;2.掌握等腰三角形和等边三角形的性质,并能利用这些性质进行简单的推理、证明、计算和作图;3.理解并掌握等腰三角形和等边三角形的判定方法及其证明过程,初步了解转化思想,并培养学生逻辑思维能力、分析问题和解决问题的能力;4.理解反证法并能用反证法推理证明简单几何题。

要点梳理:要点一、等腰三角形的定义等腰三角形是指有两条边相等的三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC为腰,BC为底边,∠A 是顶角,∠B、∠C是底角。

要点二、等腰三角形的性质1.等腰三角形的底角相等,简称“在同一个三角形中,等边对等角”。

推论:等边三角形的三个内角都相等,并且每个内角都等于60°。

2.等腰三角形的对称性1) 等腰三角形是轴对称图形;2) ∠B=∠C;3) BD=CD,AD为底边上的中线;4) ∠ADB=∠ADC=90°,AD为底边上的高线。

结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴。

3.等边三角形三条边都相等的三角形叫做等边三角形。

也称为正三角形。

等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴。

要点诠释:1) 等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

∠A=180°-2∠B,∠B=∠C=180A/2.2) 等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。

等腰三角形的重要线段性质之一是“等腰三角形三线合一”,即等腰三角形的顶角平分线、底边上中线和高线互相重合。

北师大版八年级(下)数学知识点归纳总结

北师大版八年级(下)数学知识点归纳总结

第一章 三角形的证明第1节 等腰三角形一、全等三角形的性质与判定1、全等三角形的性质定理1 全等三角形的对应边相等。

定理2 全等三角形的对应角相等。

推论1 全等三角形的面积相等。

推论2 全等三角形的周长相等。

2、全等三角形的判定公理1 两边夹角对应相等的两个三角形全等(SAS )公理2 两角及其夹边对应相等的两个三角形全等(ASA )公理3 三边对应相等的两个三角形全等(SSS )定理1 两角及其中一角的对边对应相等的两个三角形全等(AAS )定理2 斜边和一条直角边分别相等的两个直角三角形全等。

(HL )二、等腰三角形的性质与判定1、等腰三角形的性质定理 等腰三角形的两个底角相等。

(等边对等角)推论1 等腰三角形顶角平分线、底边上的中线和底边上的高互相重合。

(三线合一) 推论2 等腰三角形两腰上的中线、两腰上的高、两个底角的平分线都相等,并且它们的交点到底边两端点距离相等。

【说明】①等腰直角三角形的两个底角相等且等于45°。

②等腰三角形的底角只能为锐角,不能为钝角或直角,但顶角可为钝角或直角。

③等腰三角形的三边关系:设腰长为a ,底边长为b ,周长为C ,则2b <a <2C ④等腰三角形的三角关系:设顶角为∠C ,底角为∠A 、∠B ,则∠C =180°—2∠A=180°—2∠B ,∠A =∠B =2180A ∠-︒ 2、等腰三角形的判定定义:有两条边相等的三角形叫做等腰三角形。

定理:有两个角相等的三角形是等腰三角形。

(等角对等边)三、等边三角形的性质与判定1、等边三角形的性质定理1 等边三角形的三条边都相等。

定理2 等边三角形的三个角都相等,并且每个角都等于60°。

推论:在直角三角形中,如果有一个锐角等于30°,那么它所对直角边等于斜边一半。

2、等边三角形的判定定义:三条边都相等的三角形叫做等边三角形。

定理:三个角都相等的三角形是等边三角形。

北师大版八年级数学下册等腰三角形知识点整理及重点题型梳理

北师大版八年级数学下册等腰三角形知识点整理及重点题型梳理

八年级数学等腰三角形知识点整理及重点题型梳理一、等腰三角形含义:有两条边相等的三角形。

常见题:已知两边长和第三边,求周长。

例题:两条边长分别为3和4,求周长,注意:两边之和大于第三边,两边之差小于第三边。

二、 等腰三角形的性质:1.等边对等角,例如:已知AB=AC ,∠B=∠C 等腰三角形的性质:2等腰△的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”)。

注意:只有等腰三角形才有三线合一。

[例1]如图,在△ABC 中,AB=AC ,点D 在BC 上,且BD=DC=AD ,求:△ABC 各角的度数.D CAB3. 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角 所对的边也相等(简写成“等角对等边”).4. [例2]求证:如果三角形一个外角的平分线平行于三角形的一边,那么 这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC (如图). 求证:AB=AC . 证明:∵AD ∥BC ,∴∠1=∠B (两直线平行,同位角相等), ∠2=∠C (两直线平行,内错角相等).又∵∠1=∠2, ∴∠B=∠C , ∴AB=AC (等角对等边). 练习:已知:如图,AD ∥BC ,BD 平分∠ABC . 求证:AB=AD .证明:∵AD ∥BC ,∴∠ADB=∠DBC (两直线平行,内错角相等). 又∵BD 平分∠ABC , ∴∠ABD=∠DBC , ∴∠ABD=∠ADB , ∴AB=AD (等角对等边).[例3]如图(1),标杆AB 的高为5米,为了将它固定,需要由它的中点C•向地面上与点B 距离相等21EDABDCAB的D 、E 两点拉两条绳子,使得D 、B 、E 在一条直线上,量得DE=4米,•绳子CD 和CE 要多长?(1)EDCA B (2)分析:这是一个与实际生活相关的问题,解决这类型问题,需要将实际问题抽象为数学模型.本题是在等腰三角形中已知等腰三角形的底边和底边上的高,求腰长的问题. 一、复习知识要点1.有两条边相等的三角形是等腰三角形.相等的两条边叫做腰,另一条边叫做底边.两腰所夹的角叫做顶角,腰与底边的夹角叫做底角.2.三角形按边分类:三角形()⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形底边和腰不相等的等腰三角形等腰三角形等边三角形正三角形 3.等腰三角形是轴对称图形,其性质是:性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.4.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”). 二、例题例:如图,五边形ABCDE 中AB=AE ,BC=DE ,∠ABC=∠AED ,点F 是CD 的中点.•求证:AF ⊥CD.分析:要证明AF ⊥CD ,而点F 是CD 的中点,联想到这是等腰三角形特有的性质,•于是连接AC 、AD ,证明AC=AD ,利用等腰三角形“三线合一”的性质得到结论.证明:连接AC 、AD 在△ABC 和△AED 中()()()AB AE ABC AED BC ED =⎧⎪∠=∠⎨⎪=⎩已知已知已知 ∴△ABC ≌△AED (SAD )∴AC=AD (全等三角形的对应边相等) 又∵△ACD 中AF 是CD 边的中线(已知)EDCABF ∴AF ⊥CD (等腰三角形底边上的高和底边上的中线互相重合) 三、练习 (一)、选择题1.等腰三角形的对称轴是( )A .顶角的平分线B .底边上的高C .底边上的中线D .底边上的高所在的直线2.等腰三角形有两条边长为4cm 和7cm ,则该三角形的周长是( ) A .17cm B .22cm C .18cm 或15cm D .18cm 3.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是( ) A .30° B .50° C .60° D .40° 4.等腰三角形的一个外角是80°,则其底角是( ) A .100° B .100°或40° C .40° D .80°5.如图1,C 、E 和B 、D 、F 分别在∠GAH 的两边上,且AB=BC=CD=DE=EF ,若∠A=18°,则∠GEF 的度数是( )A .80°B .90°C .100°D .108°E DCABHFG如图1答案:1.D 2.C 3.D 4.C 5.B 如图2 (二)、填空题6.等腰△ABC 的底角是60°,则顶角是________度. 7.等腰三角形“三线合一”是指___________.8.等腰三角形的顶角是n °,则两个底角的角平分线所夹的钝角是_________.9.如图2,△ABC 中AB=AC ,EB=BD=DC=CF ,∠A=40°,则∠EDF•的度数是_____. 10.△ABC 中,AB=AC .点D 在BC 边上(1)∵AD 平分∠BAC ,∴_______=________;________⊥_________; (2)∵AD 是中线,∴∠________=∠________;________⊥________; (3)∵AD ⊥BC ,∴∠________=∠_______;_______=_______.11.△ABC 中,∠A=65°,∠B=50°,则AB :BC=_________.12.已知AD 是△ABC 的外角∠EAC 的平分线,要使AD•∥BC ,•则△ABC•的边一定满足________. 13.△ABC 中,∠C=∠B ,D 、E 分别是AB 、AC 上的点,•AE=•2cm ,•且DE•∥BC ,•则AD=________. 答案:6.60 7.等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合 8.(90+12n )° 9.70° 10.略 11.1 12.AB=AC 13.2cm 14.30海里 (三)、解答题15.如图,CD 是△ABC 的中线,且CD=12AB ,你知道∠ACB 的度数是多少吗?由 此你能得到一个什么结论?请叙述出来与你的同伴交流.DCAB16.如图,在四边形ABCD 中,AB=AD ,CB=CD ,求证:∠ABC=∠ADC.DCAB17.如图,△ABC 中BA=BC ,点D 是AB 延长线上一点,DF ⊥AC 于F 交BC 于E ,• 求证:△DBE 是等腰三角形.ED CABF答案:15.∠ACB=90°.结论:若一个三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形16.连接BD ,∵AB=AD ,∴∠ABD=∠ADB .∵CB=CD ,∴∠CBD=∠CDB . ∴∠ABC=∠ADC 17.证明∠D=∠BED等边三角形定理:在直角三角形中,如果一个锐角等于30°,•那么它所对的直角边等于斜边的一半. 已知:如图,在Rt △ABC 中,∠C=90°,∠BAC=30°.求证:BC=12AB . ABDC AB分析:从三角尺的摆拼过程中得到启发,延长BC 至D ,使CD=BC ,连接AD .[例5]右图是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、DE 垂直于横梁AC ,AB=7.4m ,∠A=30°,立柱BD 、DE 要多长?分析:观察图形可以发现在Rt △AED 与Rt △ACB 中,由于∠A=30°,所以DE=12AD ,BC=12AB ,又由D 是AB 的中点,所以DE=14AB . [例]等腰三角形的底角为15°,腰长为2a ,求腰上的高. 已知:如图,在△ABC 中,AB=AC=2a ,∠ABC=∠ACB=15°,CD 是腰AB 上的高. 求:CD 的长.分析:观察图形可以发现,在Rt △ADC 中,AC=2a ,而∠DAC 是△ABC的一个外角,则∠DAC=15°×2=30°,根据在直角三角形中,30°角所对的边是斜边的一半,可求出CD .等边三角形一、复习知识要点1.三条边都相等的三角形叫做等边三角形,也叫做正三角形.2.等边三角形的性质:•等边三角形的三个内角都相等,•并且每一个内角都等于60°3.等边三角形的判定方法:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.4.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.D C AEBDCA二、练习(一)、选择题1.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于()A.60°B.90°C.120°D.150°2.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;•③三个外角(每个顶点处各取一个外角)都相等的三角形;•④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③B.①②④C.①③D.①②③④3.如图,D、E、F分别是等边△ABC各边上的点,且AD=BE=CF,则△DEF•的形状是()A.等边三角形B.腰和底边不相等的等腰三角形C.直角三角形D.不等边三角形DA B F21EDCAB4.Rt△ABC中,CD是斜边AB上的高,∠B=30°,AD=2cm,则AB的长度是()A.2cm B.4cm C.8cm D.16cm5.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则对△ADE的形状最准备的判断是()A.等腰三角形B.等边三角形C.不等边三角形D.不能确定形状答案:1.C 2.D 3.A 4.C 5.B(二)、填空题6.△ABC中,AB=AC,∠A=∠C,则∠B=_______.7.已知AD是等边△ABC的高,BE是AC边的中线,AD与BE交于点F,则∠AFE=______.8.等边三角形是轴对称图形,它有______条对称轴,分别是_____________.9.△ABC中,∠B=∠C=15°,AB=2cm,CD⊥AB交BA的延长线于点D,•则CD•的长度是_______.答案:6.60° 7.60°8.三;三边的垂直平分线 9.1cm (三)、解答题10.已知D 、E 分别是等边△ABC 中AB 、AC 上的点,且AE=BD ,求BE 与CD•的夹角是多少度? 11.如图,△ABC 中,AB=AC ,∠BAC=120°,AD ⊥AC 交BC•于点D , •求证:•BC=3AD.D CAB12.如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE•都是等边三角形.BE 交AC 于F ,AD 交CE 于H ,①求证:△BCE ≌△ACD ; ②求证:CF=CH ;③判断△CFH•的形状并说明理由.EDABHF13.如图,点E 是等边△ABC 内一点,且EA=EB ,△ABC 外一点D 满足BD=AC ,且BE 平分∠DBC ,求∠BDE 的度数.(提示:连接CE )EDCA答案:10.60°或120°11.∵AB=AC ,∠BAC=120°,∴∠B=∠C=30°,∴在Rt △ADC 中CD=•2AD ,•∵∠BAC=120°,∴∠BAD=120°-90°=30°, ∴∠B=∠BAD ,∴AD=BD ,∴BC=3AD 12.①∵∠ACB=∠DCE=60°,∴∠BCE=∠ACD . 又∵BC=AC ,CE=CD , ∴△BCE ≌△ACD ; ②证明△BCF ≌△ACH ; ③△CFH 是等边三角形.13.连接CE ,先证明△BCE ≌△ACE 得到∠BCE=∠ACE=30°,再证明△BDE•≌△BCE 得到∠BDE=∠BCE=30° Ⅲ、随堂练习,变式训练练习1:请同学们做课本51页的练习第一题,同时教师在黑板上补充一下题目: 求等腰三角形个角度数:(1)在等腰三角形中,有一个角的度数为36°. (2)在等腰三角形中,有一个角的度数为110°.学生思考,练习,教师指导,并给出答案,之后引导学生对以上这种类型的题目存在的规律进行归纳总结。

北师大数学八年级下册第一章-等腰三角形与直角三角形经典讲义

北师大数学八年级下册第一章-等腰三角形与直角三角形经典讲义

第01讲_等腰三角形与直角三角形知识图谱等腰三角形知识精讲一、等腰三角形二、思路点拨等腰三角形边或者周长的计算注意三边关系的隐含条件等腰、角平分线、平行(1)△ABC是等腰三角形,(2)AD∥BC(3)∠1=∠2以上三个结论知二推一(需简单证明)三角形中角的2倍关系三点剖析重难点12B CDA12AB CEDααβββ2αααβ2βα2ββ等腰三角形有两条边相等的三角形叫做等腰三角形性质1.两个底角相等,两条腰相等.2.三线合一:(1)顶角角平分线、(2)底边上的中线、(3)底边上的高(可直接使用)判定如果一个三角形有两个角相等,那么这两个角所对的边也相等三线合一逆定理:一个三角形(1)对角角平分线、(2)该边上的中线、(3)该边上的高有两条互相重合,则是等腰三角形(需简单证明)1.等腰三角形的三线合一及其逆定理2.角平分线、平行线、等腰三角形知二推一 3.等腰三角形与全等三角形综合问题 考点1.等腰三角形的性质和判定2.等腰三角形的三线合一及其逆定理3.角平分线、平行线、等腰三角形知二推一 4.等腰三角形与全等三角形综合问题易错点1.等腰三角形边或者周长的计算问题容易忽略“三角形两边之和大于第三边,两边之差小于第三边”这个隐含的限制条件2.等腰三角形的三线合一及可以直接使用,但是三线合一的逆定理需要证明之后才能用3.角平分线、平行线、等腰三角形知二推一要非常熟练,在使用的时候是需要简单证明的,不可直接得出结论等边对等角例题1、 如图,ABC 中,,,18,12==∠=︒∠=︒AB AC AD DE BAD EDC ,则∠DAE 的度数为( )A.58︒B.52︒C.62︒D.60︒ 【答案】 C【解析】 暂无解析随练1、 如图,等腰三角形ABC 中,AB=AC ,BD 平分∠ABC ,∠A=36°,则∠1的度数为( )A.36°B.60°C.72°D.108° 【答案】 C【解析】 ∵∠A=36°,AB=AC , ∴∠ABC=∠C=72°,∵BD 平分∠ABC ,∴∠ABD=36°, ∴∠1=∠A+∠ABD=72°随练2、 一个等腰三角形的两边长分别为4和9,则这个等腰三角形的周长是________. 【答案】 22【解析】 暂无解析等角对等边例题1、 如图,在△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于点D . 求证:AD=BC .【答案】 见解析【解析】 ∵AB=AC ,∠A=36°, ∴∠ABC=C=72°,∵BD 平分∠ABC 交AC 于点D , ∴∠ABD=∠DBC=36°,∠BDC=72°, ∴∠A=∠ABD ,∠BDC=∠C , ∴AD=BD=BC .例题2、 如图,在ABC ∆中,5BC cm =,BP 、CP 分别是ABC ∠和ACB ∠的角平分线,且PD AB ∥,PE AC ∥,则PED ∆的周长是_______cm【答案】 5【解析】 ∵BP 、CP 分别是ABC ∠和ACB ∠的角平分线, ABP PBD ∴∠=∠,ACP PCE ∠=∠.PD AB ∥,PE AC ∥,ABP BPD ∴∠=∠,ACP CPE ∠=∠, PBD BPD ∴∠=∠,PCE CPE ∠=∠,BD PD ∴=,CE PE =, ∴PDE ∆的周长5PD DE PE BD DE EC BC cm =++=++==.随练1、 如图,△ABC 中,AD 是∠BAC 的平分线,DE //AB 交AC 于点E ,若7DE =,5CE =,则AC =( )A.11B.12C.13D.14【答案】 B【解析】 该题考查的是等腰三角形的判定. ∵DE //AB ,∴BAD ADE ∠=∠,又∵BAD DAE ∠=∠ ∴DAE ADE ∠=∠ ∴7AE DE ==∴7512AC AE EC =+=+= ∴该题的答案是B .三线合一例题1、 如图,△ABC 中,AB AC =,100BAC ∠=︒,AD 是BC 边上的中线,且BD BE =,则ADE ∠的度数为( )A.10︒B.20︒C.40︒D.70︒【答案】 B【解析】 该题考查的是三角形的性质. ∵AB AC =, ∴B C ∠=∠, ∵100BAC ∠=︒, ∴40B C ∠=∠=︒,∵AD 是BC 边上的中线, ∴AD BC ⊥, ∴90ADB ∠=︒, ∵BD BE =,∴70BDE BED ∠=∠=︒, ∴20ADE ∠=︒, 故该题答案为B .例题2、 在Rt △ABC 中,90ACB ∠=︒,CD ⊥AB 于D ,∠BAC 的平分线AF 交CD 于E ,交BC 于F ,CM ⊥AF 于M ,求证:EM FM =.【答案】 见解析【解析】 ∵90ACB ∠=︒,CD ⊥AB , ∴90ADC ∠=︒,∴90AED DAE ∠+∠=︒,90CFE CAE ∠+∠=︒, 又∵∠BAC 的平分线AF 交CD 于E , ∴DAE CAE ∠=∠, ∴AED CFE ∠=∠, 又∵AED CEF ∠=∠, ∴CEF CFE ∠=∠, 又∵CM ⊥AF , ∴EM FM =.随练1、 如图,在△ABC 中,54B ∠=︒,72ACB ∠=︒,AD 平分BAC ∠,ME AD ⊥于G ,交AB 、AC 及BC 的延长线于E 、M 、F ,则BFE ∠=______________.ABC D E【答案】 9︒【解析】 该题考查的是等腰三角形三线合一. ∵54B ∠=︒,72ACB ∠=︒,AD 平分BAC ∠∴1805472272BAD CAD ︒-︒-︒∠=∠==︒又∵AD ⊥EF 即90AGM ∠=︒∴902763CMF AMG ∠=∠=︒-︒=︒ 又∵△CFM 的外角72ACB ∠=︒∴72639CFM ACB CMF ∠=∠-∠=︒-︒=︒角平分线,平行线,等腰三角形知二推一例题1、 如图,D 为ABC △内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若5AC =,3BC =,则BD 的长为( )A.2B.1C.52D.32【答案】 B【解析】 该题考查的是等腰三角形三线合一逆定理. 延长BD 与AC 交于点E ,∵A ABD ∠=∠, ∴BE AE =, ∵BD CD ⊥, ∴BE CD ⊥, ∵CD 平分ACB ∠, ∴BCD ECD ∠=∠, ∴EBC BEC ∠=∠,MAB CD(第6题)∴△BEC为等腰三角形,∴BC CE=,∵BE CD⊥,∴2BD BE=,∵5BC=,AC=,3∴3CE=,∴532=-=-=,AE AC EC∴2BE=,∴1BD=.所以答案选A例题2、(2013初二上期末怀柔区)如图所示,BO平分∠CBA,CO平分∠ACB,过O作EF∥BC,若△AEF的周长为12,则AB+AC等于____.【答案】12【解析】该题考查的是平行线的性质.∵BO平分CBA∠,CO平分ACB∠,∴OBC OBA∠=∠,∠=∠,OCB OCA∵EF∥BC,∴OBA BOE∠=∠,OCA COF∠=∠,∴BE OE=,=,CF OF∴△AEF的周长AE OE OF AF AE BE CF AF AB AC=+++=+++=+,∵△AEF的周长为12,∴12+=.AB AC例题3、如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)【答案】(1)见解析;(2)等腰直角三角形.【解析】(1)如图所示:(2)△ADF的形状是等腰直角三角形,理由是:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵AF平分∠EAC,∴∠EAF=∠FAC,∵∠FAD=∠FAC+∠DAC=12∠EAC+12∠BAC=12×180°=90°,即△ADF是直角三角形,∵AB=AC,∴∠B=∠ACB,∵∠EAC=2∠EAF=∠B+∠ACB,∴∠EAF=∠B,∴AF∥BC,∴∠AFD=∠FDC,∵DF平分∠ADC,∴∠ADF=∠FDC=∠AFD,∴AD=AF,即直角三角形ADF是等腰直角三角形.随练1、如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?【答案】(1)见解析(2)70°(3)△DEF不可能是等腰直角三角形,见解析【解析】(1)证明:∵AB=AC∴∠B=∠C,在△BDE与△CEF中BD CEB C BE CF=⎧⎪∠=∠⎨⎪=⎩∴△BDE≌△CEF.∴DE=EF,即△DEF是等腰三角形.(2)解:由(1)知△BDE≌△CEF,∴∠BDE=∠CEF∵∠CEF+∠DEF=∠BDE+∠B ∴∠DEF=∠B∵AB=AC ,∠A=40°∴∠DEF=∠B=18040702︒︒︒-=(3)解:△DEF 不可能是等腰直角三角形. ∵AB=AC ,∴∠B=∠C ≠90° ∴∠DEF=∠B ≠90°,∴△DEF 不可能是等腰直角三角形等腰三角形与全等三角形综合例题1、 如图,△ABC 中,AB =AC =2,∠B =∠C =40°.点D 在线段BC 上运动(点D 不与B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于E .(1)当∠BAD =20°时,∠EDC =________°;(2)当DC 等于多少时,△ABD ≌△DCE ?试说明理由;(3)△ADE 能成为等腰三角形吗?若能,请直接写出此时∠BAD 的度数;若不能,请说明理由.【答案】 (1)20(2)当DC =2时,△ABD ≌△DCE ,证明见解析 (3)∠BAD =30°或∠BAD =60°【解析】 (1)∵∠BAD =20°,∠B =40°, ∴∠ADC =60°, ∵∠ADE =40°,∴∠EDC =60°-40°=20°(2)当DC =2时,△ABD ≌△DCE ; 理由:∵∠ADE =40°,∠B =40°,又∵∠ADC =∠B +∠BAD ,∠ADC =∠ADE +∠EDC . ∴∠BAD =∠EDC . 在△ABD 和△DCE 中, B C AB DCBAD EDC ∠=∠⎧⎪=⎨⎪∠=∠⎩. ∴△ABD ≌△DCE (ASA ); (3)当∠BAD =30°时,∵∠B =∠C =40°,∴∠BAC =100°, ∵∠ADE =40°,∠BAD =30°, ∴∠DAE =70°,∴∠AED =180°-40°-70°=70°,∴DA =DE ,这时△ADE 为等腰三角形;当∠BAD =60°时,∵∠B =∠C =40°,∴∠BAC =100°, ∵∠ADE =40°,∠BAD =60°,∠DAE =40°, ∴EA =ED ,这时△ADE 为等腰三角形.例题2、 如图1,在ABC △中,2ACB B ∠=∠,BAC ∠的平分线AO 交BC 于点D ,点H 为AO 上一动点,过点H 作直线l AO ⊥于H ,分别交直线AB 、AC 、BC 于点N 、E 、M .(1)当直线l 经过点C 时(如图2),证明:BN CD =;(2)当M 是BC 中点时,写出CE 和CD 之间的等量关系,并加以证明; (3)请直接写出BN 、CE 、CD 之间的等量关系.【答案】 (1)见解析(2)2CD CE =(3)当点M 在线段BC 上时,CD BN CE =+;当点M 在BC 的延长线上时,CD BN CE =-;当点M 在CB 的延长线上时,CD CE BN =-【解析】 该题考查的是等腰三角形的三线合一,全等三角形的判定和性质. (1)证明:连接ND . ∵AO 平分∠BAC , ∴12∠=∠, ∵直线l ⊥AO 于H , ∴4590∠=∠=︒, ∴67∠=∠, ∴AN AC =, ∴NH CH =,∴AH 是线段NC 的中垂线, ∴DN DC =, ∴89∠=∠. ∴AND ACB ∠=∠,∵3AND B ∠=∠+∠,2ACB B ∠=∠, ∴3B ∠=∠, ∴BN DN =. ∴BN DC =;(2)如图,当M 是BC 中点时,CE 和CD 之间的等量关系为2CD CE = 证明:过点C 作CN '⊥AO 交AB 于N '.由(1)可得BN CD '=,AN AC '=,AN AC '=. ∴43∠=∠,NN CE '=. 过点C 作CG ∥AB 交直线l 于G . ∴42∠=∠,1B ∠=∠. ∴23∠=∠.ABC M ElNHD O lNH A ABBC CD O O D 图1图2图3∴CG CE =. ∵M 是BC 中点, ∴BM CM =在△BNM 和△CGM 中, 1B BM CMNMB GMC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BNM ≌△CGM .(ASA ) ∴BN CE =.∴2CD BN NN BN CE ''==+=.(3)BN 、CE 、CD 之间的等量关系: 当点M 在线段BC 上时,CD BN CE =+; 当点M 在BC 的延长线上时,CD BN CE =-; 当点M 在CB 的延长线上时,CD CE BN =-.随练1、 如图,已知线段AC ∥y 轴,点B 在第一象限,且AO 平分∠BAC ,AB 交y 轴于G ,连OB 、OC . (1)判断△AOG 的形状,并予以证明;(2)若点B 、C 关于y 轴对称,求证:AO ⊥BO .【答案】 (1)等腰三角形;证明见解析 (2)见解析【解析】 (1)△AOG 是等腰三角形; ∵AC ∥y 轴,∴∠CAO=∠AOG , ∵AO 平分∠BAC , ∴∠CAO=∠GAO , ∴∠GAO=∠AOG , ∴AG=GO ,∴△AOG 是等腰三角形;(2)连接BC 交y 轴于K ,过A 作AN ⊥y 轴于N ,∵AC ∥y 轴,点B 、C 关于y 轴对称, ∴AN=CK=BK ,在△ANG 和△BKG 中,AGN BGK ANG BKG AN BK ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ANG ≌△BKG ,(AAS ) ∴AG=BG , ∵AG=OG ,(1)中已证, ∴AG=OG=BG ,∴∠BOG=∠OBG ,∠OAG=∠AOG ,∵∠OAG+∠AOG+∠BOG+∠OBG=180°, ∴∠AOG+∠BOG=90°, ∴AO ⊥BO .等边三角形知识精讲等边三角形 (1)三条边都相等的三角形 (2)是一种特殊的等腰三角形性质三个内角都等于60︒判定判定1:三个角都相等的三角形是等边三角形判定2:有一个角是60︒的等腰三角形是等边三角形直角三角形性质定理在直角三角形中,如果一个锐角等于30︒,那么它所对的直角边等于斜边的一半证明:延长BC 至'B 使'CB CB =∴AC 垂直平分'BB ,∴'AB AB =,60B ∠=︒,∴'ABB △是等边三角形,∴'2AB BB BC ==,∴12BC AB =二.思路点拨90°60°60°30°A BCDB'CBA三点剖析一.考点:1.等边三角形的性质与判定;2.直角三角形性质定理;3.等边三角形与全等三角形综合.二.重难点:1.等边三角形是特殊的等腰三角形,具有等腰三角形的所有性质.做题时常作为隐藏条件考察.2.等边三角形的判定用定义判断的不多,一般都是利用有一个角是60︒的等腰三角形是等边三角形来判定,所以在构造全等是要注意同时兼顾边相等,并且可以推导出有一个角为60°.3.等边三角形的性质非常特殊,在证明或计算中要注意边角之间的转化,尤其是含30°角的直角三角形中边的关系.4.在解决建立在等边三角形基础上的全等综合问题时,关键是抓住边相等,角度都是特殊角.三.易错点:在利用直角三角形性质定理的过程中,需要注意两点:一是必须在直角三角形中才能运用,锐角三角形和钝角三角形均不存在上述关系;二是一定要注意是30︒所对的直角边等于斜边的一半.等边三角形的性质例题1、(2013初二上期末怀柔区)如图,等边△ABC的周长是9,D是AC边上的中点,E在BC的延长线上.若DE=DB,则CE的长为____.【答案】3 2【解析】该题考查的是∵△ABC为等边三角形,D为AC边上的中点,BD为ABC∠的平分线,∴60ABC∠=︒,30DBE∠=︒,又DE DB=,∴30E DBE∠=∠=︒,∴30CDE ACB E∠=∠-∠=︒,即CDE E∠=∠,∴CD CE=;∵等边△ABC的周长为9,∴3AC=,∴1322 CD CE AC===,即32 CE=.例题2、如图,在等边△ABC中,点D为BC边上的点,DE⊥BC交AB于E,DF⊥AC于F,则∠EDF的度数为___________.【答案】60°.【解析】∵△ABC是等边三角形,∴∠A=∠B=60°.∵DE⊥BC交AB于E,DF⊥AC于F,∴∠BDE=∠AFD=90°.∵∠AED是△BDE的外角,∴∠AED=∠B+∠BDE=60°+90°=150°,∴∠EDF=180°﹣∠A﹣∠AED﹣∠AFD=360°﹣60°﹣150°﹣90°=60°.例题3、在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列结论错误的是()A.AE∥BCB.∥ADE=∥BDCC.∥BDE是等边三角形D.∥ADE的周长是9【答案】B【解析】本题考查的是图形旋转的性质及等边三角形的判定与性质,平行线的判定,熟知旋转前、后的图形全等是解答此题的关键.首先由旋转的性质可知∥AED=∥ABC=60°,所以看得AE∥BC,先由∥ABC是等边三角形得出AC=AB=BC=5,根据图形旋转的性质得出AE=CD,BD=BE,故可得出AE+AD=AD+CD=AC=5,由∥EBD=60°,BE=BD即可判断出∥BDE是等边三角形,故DE=BD=4,故∥AED的周长=AE+AD+DE=AC+BD=9,问题得解.∥∥ABC是等边三角形,∥∥ABC=∥C=60°,∥将∥BCD绕点B逆时针旋转60°,得到∥BAE,∥∥EAB=∥C=∥ABC=60°,∥AE∥BC,故选项A正确;∥∥ABC是等边三角形,∥AC=AB=BC=5,∥∥BAE∥BCD逆时针旋旋转60°得出,∥AE=CD,BD=BE,∥EBD=60°,∥AE+AD=AD+CD=AC=5,∥∥EBD=60°,BE=BD,∥∥BDE是等边三角形,故选项C正确;∥DE=BD=4,∥∥AED的周长=AE+AD+DE=AC+BD=9,故选项D正确;而选项B没有条件证明∥ADE=∥BDC,∥结论错误的是B,故选:B.随练1、如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A.150°B.160°C.130°D.60°【答案】A【解析】∵AB∥ED,∴∠E=180°﹣∠EAB=180°﹣120°=60°,∵AD=AE,∴△ADE是等边三角形,∴∠EAD=60°,∴∠BAD=∠EAB﹣∠DAE=120°﹣60°=60°,∵AB=AC=AD,∴∠B=∠ACB,∠ACD=∠ADC,在四边形ABCD中,∠BCD=12(360°﹣∠BAD)=12(360°﹣60°)=150°.随练2、如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN 周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°【答案】B【解析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=12∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;随练3、 如图,△ABC 是等边三角形,BD 平分∠ABC ,点E 在BC 的延长线上,且CE=1,∠E=30°,则BC=___________.【答案】 2.【解析】 ∵△ABC 是等边三角形, ∴∠ABC=∠ACB=60°,BA=BC , ∵BD 平分∠ABC ,∴∠DBC=∠E=30°,BD ⊥AC , ∴∠BDC=90°, ∴BC=2DC ,∵∠ACB=∠E+∠CDE , ∴∠CDE=∠E=30°, ∴CD=CE=1, ∴BC=2CD=2.等边的判定例题1、 △ABC 中,①若AB =BC =CA ,则△ABC 是等边三角形;②属于轴对称图形,且有一个角为60°的三角形是等边三角形;③有三条对称轴的三角形是等边三角形;④有两个角是60°的三角形是等边三角形.上述结论中正确的有( ) A.1个 B.2个 C.3个 D.4个 【答案】 D【解析】 ①三边相等的三角形是等边三角形,正确;②属于轴对称图形,且有一个角为60°的三角形是等边三角形,正确; ③有三条对称轴的三角形是等边三角形,正确; ④有两个角是60°的三角形是等边三角形,正确; 则正确的有4个.例题2、 如图所示,AD 是ABC △的中线,60ADC ∠=°,8BC =,把ADC △沿直线AD 折叠后,点C 落在C '位置,则BC '的长为________.【答案】 4【解析】 本题考察的是等边三角形.由题意,60ADC ADC '∠=∠=︒,DC DC DB '==. 180606060BDC '∠=︒-︒-︒=︒,有一个角为60︒的等腰三角形为等边三角形,118422BC BD BC '===⋅=.故本题的答案是4.例题3、 已知:如图,点C 为线段AB 上一点,ACM ∆,CBN ∆都是等边三角形,AN 交MC 于点E ,BM 交CN 于点F .(1)求证:AN BM =;(2)求证:CEF ∆为等边三角形.【答案】 见解析【解析】 (1)ACM ∆,CBN ∆是等边三角形, AC MC ∴=,BC NC =,60ACM NCB ∠=∠=︒,ACM MCN NCB MCN ∴∠+∠=∠+∠,即ACN MCB ∠=∠.在ACN ∆和MCB ∆中,AC MC =,ACN MCB ∠=∠,NC BC =, ACN MCB ∴∆≅∆,AN BM ∴=.(2)ACN MCB ∆≅∆,CAN CMB ∴∠=∠,又18060MCF ACM NCB ∠=︒-∠-∠=︒,MCF ACE ∴∠=∠,在CAE ∆和CMF ∆中,CAE CMF ∠=∠,CA CM =,ACE MCF ∠=∠, CAE CMF ∴∆≅∆,CE CF ∴=,CEF ∴∆为等腰三角形, 又60ECF ∠=︒,CEF ∴∆为等边三角形.随练1、 已知:如图,△AOB 的顶点O 在直线l 上,且AO AB =.(1)画出△AOB 关于直线l 成轴对称的图形△COD ,且使点A 的对称点为点C ; (2)在(1)的条件下,AC 与BD 的位置关系是_________; (3)在(1)、(2)的条件下,联结AD ,如果2ABD ADB ∠=∠,求∠AOC 的度数.【答案】 (1)如图1(2)平行(3)60AOC ∠=︒ 【解析】 该题考查的是轴对称与全等三角形. (1)如图1; (2)平行.AC DB∵AC与BD是对应点的连线,l为对称轴,∴AC l⊥,⊥,BD l∴AC∥BD.(3)如图2,∵由(1)可知,△AOB与△COD关于直线l对称,∴△AOB≌△COD.∴AO AB CO CD===,∵2∠=∠=∠,ABD CDB ADB而ADB DAC∠=∠,∴CDA CAD∠=∠,∴CD CA=,∴CA CO OA==,∴△COA为等边三角形,∴60∠=︒.AOC直角三角形中30°角所对的直角边等于斜边的一边例题1、如图,已知ABC⊥,则下列关系式正确的为()∠=︒,AB AD∆中,AB AC=,30CA.BD CDBD CD= D.4=BD CDBD CD= B.2= C.3【答案】B【解析】该题考查的是特殊的直角三角形.C CAD∠=∠=︒,30∴DAC∆为等腰三角形,∴CD AD=,在Rt BAD∆中,30∠=︒,B∴22==BD AD CD故选B.例题2、如图,30∥交OA于C.若10PC=,则OC=__________,⊥于D,PC OBAOB∠=︒,OP平分AOB∠,PD OBPD=__________.【答案】10;5【解析】该题考查的是角平分线的性质定理和含30°直角三角形的性质.∵OP平分AOB∠,∴AOP BOP ∠=∠, ∵PC OB ∥,∴CPO BOP ∠=∠, ∴CPO AOP ∠=∠, ∴PC OC =, ∵10PC =,∴10OC PC ==,过P 作PE OA ⊥于点E ,∵PD OB ⊥,OP 平分AOB ∠, ∴PD PE =,∵PC OB ∥,30AOB ∠=︒ ∴30ECP AOB ∠=∠=︒在Rt ECP ∆中,152PE PC ==∴5PE PD ==随练1、 如图,ABC △中,90A ∠=︒,30C ∠=︒,BD 是ABC ∠的平分线,12AC =,则BCD △中BC 边上的高是____【答案】 6【解析】 该题考察的是三角形的高. 过A 做BC 的高AE , 在Rt △AEC 中,30C ∠=︒,由在直角三角形中30︒所对直角边等于斜角边的一半得:11=12622AE AC =⨯=.等边三角形与全等三角形综合例题1、 如图△ABC 为等边三角形,直线a ∥AB ,D 为直线BC 上任一动点,将一60°角的顶点置于点D 处,它的一边始终经过点A ,另一边与直线a 交于点E .(1)若D 恰好在BC 的中点上(如图1)求证:△ADE 是等边三角形;ODB P CA E BA DCBA DCE(2)若D 为直线BC 上任一点(如图2),其他条件不变,上述(1)的结论是否成立?若成立,请给予证明;若不成立,请说明理由.【答案】 见解析【解析】 (1)证明:∵a ∥AB ,且△ABC 为等边三角形, ∴60ACE BAC ABD ∠=∠=∠=︒,AB AC =, ∵BD CD =,∴AD ⊥BC∵60ADE ∠=︒,∴30EDC ∠=︒,∴18090DOC EDC ACB ∠=︒-∠-∠=︒, ∴30DEC DOC ACE ∠=∠-∠=︒,∴EDC DEC ∠=∠,∴EC CD DB ==,∴△ABD ≌△ACE .∴AD AE =,且60ADE ∠=︒, ∴△ADE 是等边三角形;(2)在AC 上取点F ,使CF CD =,连结DF , ∵60ACB ∠=︒,∴△DCF 是等边三角形, ∵60ADF FDE EDC FDE ∠+∠=∠+∠=︒, ∴ADF EDC ∠=∠,∵DAF ADE DEC ACE ∠+∠=∠+∠,∴DAF DEC ∠=∠, ∴△ADF ≌△EDC (AAS ),∴AD ED =, 又∵60ADE ∠=︒,∴△ADE 是等边三角形.例题2、 在等腰直角三角形ABC 中,∠C=90°,AC=BC=10cm ,等腰直角三角形DEF 的顶点D 为AB 的中点.(1)如图(1)所示,DE ⊥AC 于M ,BC ⊥DF 于N ,则DM 与DN 在数量上有什么关系?两个三角形重叠部分的面积是多少?(2)在(1)的基础上,将三角形DEF 绕着点D 旋转一定的角度,且AC 与DE 相交于M ,BC 与DF 相交于N ,如图(2),则DM 与DN 在数量上有什么关系?两个三角形重叠部分的面积是多少?【答案】 (1)DM=DN ;25cm 2(2)DM=DN ;25cm 2【解析】 (1)连接DC ,∵AC=BC ,D 为AB 的中点,∠ACB=90°,∴CD ⊥AB ,∠ACD=∠BCD=45°,∠A=∠B=45°, ∴∠A=∠DCN ,AD=DC , ∵DM ⊥AC ,DN ⊥BC , ∴∠DMA=∠DNC ,∴△ADM ≌△CDN (AAS ), ∴DM=DN ,则S 重叠=S △DNC +S △DMC =S △DMA +S △DMC =S △ADC =12S △ABC =12×12×10×10=25(cm 2); (2)连接CD ,则CD ⊥AB ,∠A=∠DCB=45°,AD=CD ,∵∠ADM+∠MDC=∠MDC+∠CDF=90°, ∴∠ADM=∠CDN ,∴△AMD ≌△CND (ASA ), ∴DM=DN , 同(1)可得S 重叠=12S △ABC =12×12×10×10=25(cm 2).随练1、 如图,已知∥ABC 为等边三角形,点D 、E 分别在BC 、AC 边上,且AE=CD ,AD 与BE 相交于点F .(1)求证:∥ABE∥∥CAD ;(2)求∥BFD 的度数.【答案】 (1)见解析(2)60° 【解析】(1)证明:∥∥ABC 为等边三角形, ∥∥BAE=∥C=60°,AB=CA , 在∥ABE 和∥CAD 中, AB CA BAE C AE CD =⎧⎪∠=∠⎨⎪=⎩, ∥∥ABE∥∥CAD (SAS ).(2)∥∥BFD=∥ABE+∥BAD , 又∥∥ABE∥∥CAD , ∥∥ABE=∥CAD .∥∥BFD=∥CAD+∥BAD=∥BAC=60°.随练2、 如图,在ABC ∆中,AB AC =,D 是三角形外一点,且60ABD ∠=︒,BD DC AB +=.求证:60ACD ∠=︒.【答案】 见解析 【解析】 延长BD 至E ,使CD DE =,连接AE ,AD ,BD CD AB +=,BE BD DE =+,BE AB ∴=,60ABD ∠=︒,ABE ∴∆是等边三角形,AE AB AC ∴==,60E ∠=︒,在ACD ∆和AED ∆中,AC AE CD DE AD AD =⎧⎪=⎨⎪=⎩,()ACD AED SSS ∴∆≅∆,60ACD E ∴∠=∠=︒.随练3、 已知:90A ∠=︒,AB AC =,BD 平分ABC ∠,CE ⊥BD ,垂足为E .求证:2BD CE =.【答案】 见解析【解析】 本题考查全等三角形的判定与性质. 证明:延长CE 、BA 交于点F . ∵CE ⊥BD 于E ,90BAC ∠=︒, ∴ABD ACF ∠=∠.又∵AB AC =,90BAD CAF ∠=∠=︒, ∴△ABD ≌△ACF (AAS ), ∴BD CF =.∵BD 平分ABC ∠, ∴CBE FBE ∠=∠. 有BE BE =, ∴CE EF =,∴12CE BD =,∴2BD CE =.勾股定理的证明知识精讲一.勾股定理定理如果直角三角形的两直角边长分别为a、b,斜边长为c,那么222a b c+=.举例如图,在Rt ABC△中,A B C∠∠∠、、的对边分别用字母a、b、c来表示,则有:222a b c+=其中,当34a b==,时,则有斜边222223425c a b=+=+=变形22c a b=+,22a c b=-,22b c a=-.二.勾股定理的证明证明方法一:(赵爽弦图)22 2222222214()214()222ABCDS c ab b a c ab b ac ab b a abc b a==⨯+-∴=⨯+-=++-=+正方形证明方法二:(等面积法)()2222222214222ABCDS a b ab ca b ab ab ca b c=+=⨯+∴++=+∴+=正方形cbaCBA cabAFDCBEHG证明方法三:(总统证法)()()222222211222222ABCD a b a b S ab c a ab b ab c a b c ++==⨯+∴++=+∴+=梯形三.易错点:1. 运用勾股定理求直角三角形边长时,注意分清直角边和斜边,采用正确的计算公式。

北师大八年级下册 -第1讲-等腰三角形与直角三角形 讲义

北师大八年级下册  -第1讲-等腰三角形与直角三角形 讲义

等腰三角形与直角三角形【知识梳理】1、等腰三角形及其性质(1)有两条边相等的三角形,叫做等腰三角形,相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.(2)性质性质1:等腰三角形的两个底角相等(简写成“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.2、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).3.一般地,两条直角边相等的直角三角形叫做等腰直角三角形.等腰直角三角形的两个底角相等,都等于45°.4、直角三角形的性质:直角三角形ABC可以表示为Rt△ABC.(1)直角三角形中,如果两条直角边为a、b,斜边为 c,斜边上的高为h,那么它们存在这样的关系:或h=.(2)定理:直角三角形的两个锐角互余.推理过程:在△ABC中,∵∠C=90°,∴∠A+∠B=90°(或∠A=90°-∠B,∠B=90°-∠A).说明:这一定理应用的前提是Rt△,已知一个锐角,求另一个角.反过来,有两个角互余的三角形是直角三角形,可以作为判定三角形是直角三角形的方法.(3) 定理:在直角三角形中,如果一个锐角为30°,那么它所对的直角边等于斜边的一半.推理格式:∵在△ABC中,∠C=90°,∠A=30°,∴BC=AB.(4)定理:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角为30°.推理格式:∵在△ABC中,∠C=90°,BC=AB,∴∠A=30°【典型例题】知识点一:等腰三角形考点一:等腰三角形的判断与证明例1、如图,△ABC中,D、E分别是AC,AB上的点,BD与CE交于点O,给出下列四个条件:①∠EBO=∠DCO;②∠BEO=∠ODC;③BE=CD;④OB=OC.(1)上述四个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出所有情形).(2)选择第(1)题中的一种情形,证明△ABC是等腰三角形.分析:这是一道开放型的题目,考虑分析各种情形,从中选出适合题意的情形.解:(1)①③,①④,②③,②④.(2)选择①④来证明结论成立.已知:∠EBO=∠DCO,OB=OC.求证:△ABC是等腰三角形.证明:∵OB=OC,∴∠OBC=∠OCB.又∵∠EBO=∠DCO,∴∠ABC=∠ACB,∴AB=AC.∴△ABC为等腰三角形.例2、如图,在△ABC中,AB=AC,O为△ABC内一点,且OB=OC.求证:AO⊥BC.证明:延长AO交BC于D在△ABO与△ACO中,∴△ABO≌△ACO,∴∠BAO=∠CAO,即∠BAD=∠CAD,∴AO⊥BC.考点二:利用等腰三角形求度数例3、如图,点D在AC上,点E在AB上,且AB=AC,BC=BD,AD=DE=BE.求∠A的度数.分析:本题中没有给出一个角的度数,而要求∠A的度数,必然是运用三角形内角和定理,其解题思路是设某一个角的度数为x,其他各角都能用x的代数式表示,列出代数方程求解.解:设∠A=x.∵AD=DE=EB∴∠DEA=∠A=x,∠EBD=∠EDB.又∵∠DEA=∠EBD+∠EDB,∴∠EBD=∠EDB=.∴BDC=∠A+∠ABD=x.∵BD=BC,AB=AC,∴∠BDC=∠BCD=∠ABC=x.在△ABC中,∠A+∠ABC+∠ACB=180°,即x+x+x=180,∴x=45°,即∠A=45°.例4、AD和BE是△ABC的高,H是AD与BE或是AD、EB延长线的交点,BH=AC,求∠ABC的度数.(1)当H是AD与BE的交点时,∵BE、AD是△ABC的高,∴∠4=∠3=∠5=90°,∴∠1+∠C=∠2+∠C=90°,∴∠2=∠1.又∵BH=AC,∴△BHD≌△ACD,∴BD=AD,∴∠DBA=∠6.又∵∠6+∠DBA=90°,∴∠DBA=45°,即∠ABC=45°.(2)当H是AD、EB延长线的交点时,∵BE、AD是△ABC的高,∴∠3=∠2=90°,∠4=90°,∴∠1+∠H=90°,∴∠CAD+∠H=90°,∴∠1=∠CAD.又∵BH=AC,∴△DBH≌△DAC,∴DB=DA,∴∠5=∠6.又∵∠5+∠6=90°,∴∠6=45°,∴∠ABC=180°-45°=135°.故∠ABC的度数为45°或135°.考点三:几种辅助线作法:证明线段的和、差、倍、分问题时,常采用“截长”、“补短”等方法.例5、如图,已知AD是△ABC的角平分线,∠B=2∠C,求证:AC=AB+BD.(你可以用不同的方法证明吗)方法一:(截长法)在AC上截取AE=AB,连接DE.因为AD平分∠BAC,所以∠2=∠1.又因为AD=AD,所以△BAD≌△EAD(SAS).所以BD=ED.所以∠3=∠B=2∠C.因为∠3=∠C+∠4,所以2∠C=∠C+∠4,所以∠C=∠4,所以DE=CE.所以CE=BD.所以AC=AE+EC=AB+DB.方法二:(补短法)如图,延长AB到E,使BE=BD,连接DE,所以∠E=∠1.因为∠2=∠E+∠1=2∠E,又因为∠2=2∠C(已知),所以∠C=∠E.因为∠4=∠3,AD=AD,所以△ADC≌△ADE(AAS),所以AC=AE.因为AE=AB+BD,所以AC=AB+BD.例6、数学课堂上,老师布置了一道几何证明题,让大家讨论它的证明方法,通过大家的激烈讨论,有几位同学说出了他们的思路,并添加了辅助线,你能根据他们的辅助线的作法写出证明过程吗?如图,已知△ABC中AB=AC,F在AC上,在BA延长线上取AE=AF.求证:EF⊥BC.方法一:解:首先,小明根据等腰三角形这一已知条件,结合等腰三角形的性质,想到了过A作AG⊥BC于G这一条辅助线,如图.证明1:过A作AG⊥BC于G.∵AB=AC,∴∠3=∠4.又∵AE=AF,∴∠1=∠E.又∵∠3+∠4=∠1+∠E,∴∠3=∠E,∴AG//EF,∴EF⊥BC.方法二:接着小亮根据题设AE=AF,结合等腰三角形的性质作出过A作AH⊥EF于H这条辅助线,如图.证明2:过A作AH⊥EF于H.∵AE=AF,∴∠EAH=∠FAH.又∵∠AB=AC,∴∠B=∠C.又∵∠EAH+∠FAH=∠B+∠C,∴∠EAH=∠B,∴AH//BC,∴EF⊥BC.方法三:小彬也作出了一条辅助线,过C作MC⊥BC交BA的延长线于M,如图.证明3:过C作MC⊥BC交BA的延长线于M,则∠1+∠2=90°.∵AE=AF,∴∠AEF=∠AFE,∴∠EAF=180°-2∠AFE.又∵AB=AC,∴∠B=∠1.又∵∠EAF=∠B+∠1,∴∠EAF=2∠1,∴2∠1=180°-2∠AFE,∴∠1+∠AFE=90°,∴∠2=∠AFE,∴DE//MC,∴EF⊥BC.方法四:小颖的作法是:过E作EN⊥EF交CA的延长线于N,如图.证明4:过E作EN⊥EF交CA的延长线于N,则∠1+∠2=90°.∵AE=AF,∴∠2=∠AFE,∴∠EAF=180°-2∠2.又∵AB=AC,∴∠B=∠C,∴∠EAF=∠B+∠C=2∠B,∴2∠B=180°-2∠2,∴∠B+∠2=90°,∴∠1=∠B,∴EN//BC,∴EF⊥BC.方法五:小虎的作法是:过E点作EP//AC交BC的延长线于P,如图.证明5:过E作EP//AC交BC的延长线于P,则∠AFE=∠2,∠3=∠P.又∵AE=AF,∴∠1=∠AFE,∴∠1=∠2.又∵AB=AC,∴∠B=∠3,∴∠B=∠P,∴EB=EP,∴EF⊥BC.方法六:大家都在激烈地讨论着如何作出辅助线时,小红突然站起来说,不作辅助线也可以证明,你说是吗?(如图).证明6:∵AE=AF,∴∠1=∠E.又∵∠2=∠1+∠E,∴∠2=2∠E.又∵AB=AC,∴∠B=∠C,∴∠2=180°-2∠B,∴2∠E=180°-2∠B,即∠E+∠B=90°,∴∠3=180°-90°=90°,∴EF⊥BC.例7、如图,在△ABC中,AB=2AC,AD平分∠BAC,AD=BD.求证:CD⊥AC.证明:取AB的中点E,连结DE.∵AD=BD,∴DE⊥AB,∴∠3=90°.又∵AB=2AC,AB=2AE,∴AE=AC.又∵∠1=∠2,AD=AD,∴△AED≌△ACD,∴∠3=∠ACD,∴∠ACD=90°,∴CD⊥AC.例8、△ABC中,AB=AC,D在AB上,E在AC的延长线上,且BD=CE,连结DE交BC于F.求证:DF=EF.过E作EG//AB交BC的延长线于G,则∠G=∠B.又∵AB=AC,∴∠B=∠1.又∵∠1=∠ECG,∴∠G=∠ECG,∴CE=GE.又∵BD=CE,∴BD=GE.又∵∠BFD=∠GFE,∴△BDF≌△GEF,∴DF=EF.知识点二:直角三角形思路分析:过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角直角边,再由等腰直角三角形求出最大边.点评:此题考查的知识点是含30°角的直角三角形及等腰直角三角形问题,关键是先由求得直角边,再由勾股定理求出最大边.例2.如图,∠ACB = ∠ADB = 90°,AC = AD,E是AB上的一点。

北师版八年级数学下册_1.1 等腰三角形

北师版八年级数学下册_1.1 等腰三角形

感悟新知
知5-练
解:已知:∠ A,∠ B,∠ C 是△ ABC 的三个内角. 求证:∠ A,∠ B,∠ C 中不能有两个角是钝角. 证明:假设∠ A,∠ B,∠ C 中有两个角是钝角,不妨设 ∠ A > 90°,∠ B > 90°,则∠ A+ ∠ B+ ∠ C > 180°. 这与三角形内角和定理相矛盾,故∠ A,∠ B 均大于90° 不成立. 即在一个三角形中,不能有两个角是钝角.
相等、角相等的重要依据.
感悟新知
知1-练
例 1 如图1-1-1,C 为BE 上一点,点A,D 分别在BE的两 侧,且BC=DE,AB ∥ ED,AB=CE. 求证:AC=CD.
感悟新知
知1-练
解题秘方:紧扣三角形全等的判定证两个三角形 全等,然后利用全等三角形的性质证 线段相等.
感悟新知
证明: ∵ AB ∥ ED,∴∠ B= ∠ E. 在△ ABC 和△ CED 中, AB=CE,
∴△ABD≌△ACE(SAS),∴AD=AE.
知2-练
感悟新知
知识点 3 等边三角形的性质定理
知3-讲
1. 等边三角形内角的性质定理 等边三角形的三个内 角都相等,并且每个角都等于60°.
感悟新知
2. 等边三角形的其他性质
知3-讲
(1)等边三角形的三条边都相等;
(2)等边三角形是轴对称图形,它有3 条对称轴,分别为
解题秘方:利用等边三角形中边相等、角相等且 为60°的性质进行解答.
感悟新知
(1)求证:△ ABE ≌△ CAD. 证明:∵△ ABC 为等边三角形,
知3-练
∴∠ BAE= ∠ ACD=60°,AB=CA.
在△ ABE 和△ CAD 中,

等腰三角形(3)八年级数学下册(北师大版)

等腰三角形(3)八年级数学下册(北师大版)
新课标 北师大版 八年级下册
第一章 三角形的证明 1.1.3等腰三角形(3)
学习目标
1.探索等腰三角形判定定理. 2.理解等腰三角形的判定定理,并会运用其进行 简单的证明. 3.了解反证法的基本证明思路,并能简单应用。
情境导入
等腰三角形有哪些性质?
文字
1.等腰三角形的两底角相等.
A
语言
(简写成“等边对等角”)
随堂练习
9. 用反证法证明:等腰三角形的两底角必为锐角. 证明:①假设等腰三角形ABC的底角∠B,∠C都是直角,则 ∠B=∠C=90° , 从而 ∠A+∠B+∠C >180°, 这与 三角形内角和为180°矛盾. ②假设等腰三角形ABC的底角∠B,∠C都是钝角, 则 ∠B=∠C>90°,从而∠A+∠B+∠C>180°, 这与三角形内角和为180°矛盾. 综上所述,假设①② 均不成立 ,所以∠B,∠C只能为 锐角 . 故等腰三角形的两底角必为锐角.
∴△ABD≌△DCA(SSS),
B
C
∴∠ADB=∠DAC(全等三角形的对应角相等),
∴AE=DE(等角对等边),
∴ △AED是等腰三角形.
探究新知
核心知识点二: 反证法
小明认为,在一个三角形中,如果两个角不相等,那么这 两个角所对的边也不相等,即在△ABC 中, 如果 ∠B≠∠C, 那么AB≠AC.你认为这个结论成立吗?如果成立,请证明.
测量后发现AB与AC相等. 猜想:若∠B= ∠C,则AB=AC
3cm
3cm
探究新知
证明:有两个角相等的三角形是等腰三角形. 已知:如图,在△ABC 中, ∠B= ∠C. 求证:AB=AC .
分析:如图,在△ABC中,∠B=∠C,要想 证明 AB=AC, 只要能构造两个全等的三角形,使AB与AC 成为对应边就可以了.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版八年级下册数学重难点突破知识点梳理及重点题型巩固练习等腰三角形(基础)知识讲解【学习目标】1. 了解等腰三角形、等边三角形的有关概念, 掌握等腰三角形的轴对称性;2. 掌握等腰三角形、等边三角形的性质,会利用这些性质进行简单的推理、证明、计算和作图.3. 理解并掌握等腰三角形、等边三角形的判定方法及其证明过程. 通过定理的证明和应用,初步了解转化思想,并培养学生逻辑思维能力、分析问题和解决问题的能力.4. 理解反证法并能用反证法推理证明简单几何题.【要点梳理】要点一、等腰三角形的定义1.等腰三角形有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.2.等腰三角形的作法已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a.作法:1.作线段BC=a;2.分别以B,C为圆心,以b为半径画弧,两弧相交于点A;3.连接AB,AC.△ABC为所求作的等腰三角形3.等腰三角形的对称性(1)等腰三角形是轴对称图形;(2)∠B=∠C;(3)BD=CD,AD为底边上的中线.(4)∠ADB=∠ADC=90°,AD为底边上的高线.结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴.4.等边三角形三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴.要点诠释:(1)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A=180°-2∠B,∠B=∠C=1802A︒-∠.(2)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形.要点二、等腰三角形的性质1.等腰三角形的性质性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”.推论:等边三角形的三个内角都相等,并且每个内角都等于60°.性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”.2.等腰三角形中重要线段的性质等腰三角形的两底角的平分线(两腰上的高、两腰上的中线)相等.要点诠释:这条性质,还可以推广到一下结论:(1)等腰三角形底边上的高上任一点到两腰的距离相等。

(2)等腰三角形两底边上的中点到两腰的距离相等.(3)等腰三角形两底角平分线,两腰上的中线,两腰上的高的交点到两腰的距离相等,到底边两端上的距离相等.(4)等腰三角形顶点到两腰上的高、中线、角平分线的距离相等.要点三、等腰三角形的判定定理1.等腰三角形的判定定理如果一个三角形有两个角相等,那么这个三角形是等腰三角形.可以简单的说成:在一个三角形中,等角对等边.要点诠释:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.判定定理得到的结论是等腰三角形,性质定理是已知三角形是等腰三角形,得到边和角关系.(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.2.等边三角形的判定定理三个角相等的三角形是等边三角形.有一个角是60°的等腰三角形是等边三角形.3. 含有30°角的直角三角形定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. 要点四、反证法在证明时,先假设命题的结论不成立,然后从这个假设出发,经过逐步推导论证,最后推出与学过的概念、基本事实,以证明的定理、性质或题设条件相矛盾的结果,从而证明命题的结论一定成立,这种证明命题的方法叫做反证法.要点诠释:反证法也称归谬法,是一种间接证明的方法,一般适用于直接证明有困难的命题.一般证明步骤如下:(1)假定命题的结论不成立;(2)从这个假设和其他已知条件出发,经过推理论证,得出与学过的概念、基本事实,以证明的定理、性质或题设条件相矛盾的结果;(3)由矛盾的结果,判定假设不成立,从而说明命题的结论是正确的.【典型例题】类型一、等腰三角形中有关角度的计算题1、(2016春•太仓市期末)如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.【思路点拨】由于AB=BD=DC,所以△ABD和△BDC都是等腰三角形,可设∠C=∠CDB=x,则∠BDA=∠A=2x,根据等腰三角形的性质和三角形内角和定理的推论,可以求出∠A,∠C度数.【答案与解析】解:∵AB=BD,∴∠BDA=∠A,∵BD=DC,∴∠C=∠CBD,设∠C=∠CBD=x,则∠BDA=∠A=2x,∴∠ABD=180°﹣4x,∴∠ABC=∠ABD+∠CDB=180°﹣4x+x=105°,解得:x=25°,所以2x=50°,即∠A=50°,∠C=25°.【总结升华】本题考查了等腰三角形的性质及三角形内角和定理;解题中运用了等腰三角形“等边对等角”的性质,并联系三角形的内角定理求解有关角的度数问题.举一反三:【变式】已知:如图,D、E分别为AB、AC上的点,AC=BC=BD,AD=AE,DE=CE,求∠B的度数.【答案】解:∵AC=BC=BD,AD=AE,DE=CE,∴设∠ECD=∠EDC=x,∠BCD=∠BDC=y,则∠AED=∠ADE=2x,∠A=∠B=180°-4x在△ABC中,根据三角形内角和得,x+y+180°-4x+180°-4x=180°①又∵A、D、B在同一直线上,∴2x+x+y=180°②由①,②解得x=36°∴∠B=180°-4x=180°-144°=36°.类型二、等腰三角形中的分类讨论2、在等腰三角形中,有一个角为40°,求其余各角.【思路点拨】由一个等腰三角形内角为40°,分别从40°是等腰三角形顶角与40°是底角的角度去分析求解即可求得答案.【答案与解析】解:(1)当40°的角为顶角时,由三角形内角和定理可知:两个底角的度数之和=180°-40°=140°,又由等腰三角形的性质可知:两底角相等,故每个底角的度数1140702=⨯︒=︒;(2)当40°的角为底角时,另一个底角也为40°,则顶角的度数=180°-40°-40°=100°.∴其余各角为70°,70°或40°,100°.【总结升华】此题考查了等腰三角形的性质.此题比较简单,注意掌握分类讨论思想的应用,小心别漏解.3、已知等腰三角形的周长为13,一边长为3,求其余各边.【答案与解析】解:(1)3为腰长时,则另一腰长也为3,底边长=13-3-3=7;(2)3为底边长时,则两个腰长的和=13-3=10,则一腰长1105 2=⨯=.这样得两组:①3,3,7 ②5,5,3.由三角形三边关系可知:两边之和大于第三边,3+3<7,故不能构成三角形,应舍去.∴等腰三角形的周长为13,一边长为3,其余各边长为5,5.【总结升华】唯独等腰三角形的边有专用名词“腰”“底”,别的三角形没有,此题没有说明边长为3的边是腰还是底,所以做此题应分类讨论.同时结合三角形内角和定理、三角形两边之和大于第三边、两边之差小于第三边,来验证讨论哪些情况符合,哪些情况不符合,从而决定取舍,最后得到正确答案.举一反三:【变式】已知等腰三角形的底边BC=8cm,且|AC-BC|=2cm,那么腰AC的长为( ). A.10cm或6cm B.10cm C.6cm D.8cm或6cm【答案】A;解:∵ |AC-BC|=2cm,∴ AC-BC=±2.又BC=8.∴ AC=10或6.∴ AB=10(cm)或(6cm).类型三、等腰三角形的性质及其运用4、如图,在△ABC中,边AB>AC.求证:∠ACB>∠ABC【思路点拨】在AB上截取AE=AC,连接CE,根据等腰三角形的性质推出∠AEC=∠ACE,根据三角形的外角性质求出∠AEC>∠ABC即可.【答案与解析】证明:证明:在AB上截取AE=AC,连接CE,∵AE=AC,∴∠AEC=∠ACE,∵∠AEC>∠B,∴∠ACB>∠ABC.【总结升华】本题主要考查了等腰三角形的性质、三角形的外角性质,能推出∠AEC=∠ACE和∠AEC>∠ABC是解此题的关键.举一反三:【变式】已知:如图,在△ABC中,AB=AC,∠A=60°,BD是中线,延长BC至点E,使CE=CD.求证:DB=DE.【答案与解析】证明:如图,在△ABC中,∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ABC=∠2=60°,∵BD是中线,∴BD是∠ABC的平分线,∴∠1=30°,∵CE=CD,∴∠E=∠3,∴∠E=∠2=30°,∴∠E=∠1,∴DB=DE.类型四、等腰三角形的判定5、如图1,在△ABC中,BO平分∠ABC,CO平分∠ACB,过点O作DE∥BC,交AB于点D,交AC于点E.(1)试找出图中的等腰三角形,并说明理由;(2)若BD=4、CE=3,求DE的长;(3)若 AB=12、AC=9,求△ADE的周长;(4)若将原题中平行线DE的方向改变,如图2,OD∥AB,OE∥AC,BC=16,你能得出什么结论呢?【思路点拨】(1)运用两三角形两底角相等得出等腰三角形;(2)由等腰三角形两腰相等求解;(3)由△ADE的周长=AD+DO+OE+AE=AB+AC求解;(4)由OD∥AB,OE∥AC,BO平分∠ABC,CO平分∠ACB,得出△BDO和△ECO是等腰三角形,利用等腰三角形两腰相等得出△ODE的周长等于BC的长度.【答案与解析】解:(1)△DBO和△EOC是等腰三角形.∵BO平分∠ABC,∴∠DBO=∠CBO,∵DE∥BC,∴∠CBO=∠DOB,∴∠DBO=∠DOB,∴DB=DO,∴△DBO是等腰三角形,同理△EOC是等腰三角形;(2)∵BD=4、CE=3,∴由(1)得出DO=4,EO=3,∴DE=DO+OE=4+3=7;(3)△ADE的周长=AD+DO+OE+AE;∵DO=DB,OE=EC,∴△ADE的周长=AB+AC,∵AB=12、AC=9,∴△ADE的周长=AB+AC=12+9=21;(4)∵OD∥AB,OE∥AC,BO平分∠ABC,CO平分∠ACB,∴△BDO和△ECO是等腰三角形,∴BD=DO,CE=OE,∵BC=16,∴△ODE的周长为16.即△ODE的周长等于BC的长度.【总结升华】本题主要考查了等腰三角形的判定与性质及平行线的性质,解题的关键是熟练掌握等腰三角形的两角相等或两边相等.举一反三【变式】如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC 是等腰三角形.【答案】①③;②③;①④;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形;证明:∵在△EBO 和△DCO 中, ∵,∴△EBO≌△DCO(AAS ),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC,∴△ABC 是等腰三角形.类型五、 含有30°角的直角三角形6. 如图所示,△ABC 中,∠ACB=90°,CD ⊥AB ,垂足是D ,∠A=60°.求证:BD=3AD.【答案与解析】证明:∵CD ⊥AB ,∴∠ADC=90°,又∵∠A=60°,∴∠ACD=30°∴在Rt △ACD 中,AD=21AC , 又∵∠ACB=90°,在Rt △ACB 中,∴∠B=30°, ∴AC=21AB ∴AD= 14AB , 则AD=31BD ,即BD=3AD. 【总结升华】根据直角三角形中30°角所对的边是斜边的一半可得到BC=2BD ,AB=2BC ,从而可推出AB=4BD ,从而不难证得BD 与AD 的数量关系.此题主要考查含30°角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.举一反三:【变式】如图,已知,在四边形ABCD 中,AD∥BC,BD 平分∠ABC,∠A=120°,CD=4cm ,∠ABC=∠DCB,求BC 的长.【答案】解:∵AD∥BC,∠A=120°,∴∠ABC=180°﹣120°=60°,∵BD平分∠ABC,∴∠DBC=∠ABC=×60°=30°,又∵∠ABC=∠DCB=60°,∴∠BDC=180°﹣30°﹣60°=90°,∴BC=2CD=2×4=8cm.类型六、反证法7. 求证:在一个三角形中,至少有一个内角小于或等于60°。

相关文档
最新文档